JP6378471B2 - Vacuum insulation panel - Google Patents

Vacuum insulation panel Download PDF

Info

Publication number
JP6378471B2
JP6378471B2 JP2013149099A JP2013149099A JP6378471B2 JP 6378471 B2 JP6378471 B2 JP 6378471B2 JP 2013149099 A JP2013149099 A JP 2013149099A JP 2013149099 A JP2013149099 A JP 2013149099A JP 6378471 B2 JP6378471 B2 JP 6378471B2
Authority
JP
Japan
Prior art keywords
welding
vacuum
insulation panel
heat insulation
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013149099A
Other languages
Japanese (ja)
Other versions
JP2015021540A (en
Inventor
努 東
努 東
仲子 武文
武文 仲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2013149099A priority Critical patent/JP6378471B2/en
Publication of JP2015021540A publication Critical patent/JP2015021540A/en
Application granted granted Critical
Publication of JP6378471B2 publication Critical patent/JP6378471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、例えば冷蔵庫や保冷庫、或いは保温庫や住宅等の断熱壁等に好適に用いられる真空断熱パネルに関するものである。   The present invention relates to a vacuum heat insulating panel suitably used for a refrigerator, a cold storage, a heat insulating wall, a heat insulating wall of a house, or the like, for example.

昨今、電力不足などの影響によりあらゆる産業で省エネ製品や省エネ技術の開発が進められている。真空断熱パネルも省エネ対策の1つとして開発された商品であり、現在では冷蔵庫や自動販売機などの断熱材として、断熱性能を高めて消費電力を抑えるために広く採用されている。
また、住宅用の断熱材としての適用検討も進められているが、現行の真空断熱パネルは、例えば図1の左図に示すように、グラスウール等の芯材をアルミラミネートフィルムでヒートシールした構造のものが一般的である。
In recent years, energy-saving products and energy-saving technologies are being developed in various industries due to the power shortage. Vacuum insulation panels are products that have been developed as an energy-saving measure, and are currently widely used as insulation materials for refrigerators and vending machines in order to enhance insulation performance and reduce power consumption.
In addition, although examination of application as a heat insulating material for houses is underway, the current vacuum heat insulating panel has a structure in which a core material such as glass wool is heat sealed with an aluminum laminate film as shown in the left figure of FIG. The ones are common.

アルミラミネートフィルムでヒートシールした構造の真空断熱パネルでは、ヒートシール部から水分が透過して真空度が低下するため、活性炭やゼオライト等の吸着剤を封入しているが、それでも7〜8年で断熱性能が半減するといった問題がある。
このため、長期に亘って断熱性を維持できる真空断熱パネルの開発が望まれている。
そこで、例えば図1の右図に示すように、グラスウール等の芯材がステンレス鋼などの薄金属板で包まれ、真空引きされた後、端部が溶接接合された真空断熱パネルが各種提案されている。そして真空引きし易い構造或いは真空引き方法が各種試みられている。
In the vacuum heat insulation panel with the structure heat-sealed with aluminum laminate film, moisture permeates from the heat-sealed part and the degree of vacuum is lowered, so adsorbents such as activated carbon and zeolite are enclosed, but still in 7-8 years There is a problem that the heat insulation performance is halved.
For this reason, development of the vacuum heat insulation panel which can maintain heat insulation over a long term is desired.
Therefore, for example, as shown in the right figure of FIG. 1, various vacuum heat insulating panels in which a core material such as glass wool is wrapped in a thin metal plate such as stainless steel and evacuated and then welded at the ends are proposed. ing. Various attempts have been made to make the structure easy to vacuum or vacuuming.

特許文献1では、芯材を包む金属外包材の一方に空気を案内して排出するための溝と溝に接続された排気口を設けて真空引き行う方法が提案されている。この方法では、予め真空引きを行う前にシーム溶接やプラズマ溶接などで溝及び排気口周辺の予備封止を行い、予備封止後に溝部を通して排気口より真空引きを行い、真空引き完了後、溝部周辺をプレスなどにより平らにした後に先と同じ溶接方法により平らになった溝部上を溶接し完全封止して、封止完了後、余分な材料をカットして真空断熱パネルを製造している。   Patent Document 1 proposes a method of evacuating by providing a groove for guiding and discharging air to one side of a metal outer packaging material that wraps the core material and an exhaust port connected to the groove. In this method, preliminary sealing around the groove and the exhaust port is performed by seam welding, plasma welding, or the like before vacuuming is performed in advance, and after the preliminary sealing, vacuuming is performed from the exhaust port through the groove. After the periphery is flattened with a press, etc., the groove that has been flattened by the same welding method as above is welded and completely sealed, and after sealing is completed, excess material is cut to produce a vacuum insulation panel. .

また特許文献2では、外周部が溶接接合された上下包材によって形成される略平板状の空間内に厚肉領域と薄肉領域を兼ね備えたスペーサー(断熱材)を挿入し、真空引き時は厚肉領域と薄肉領域で発生する段差を利用して上下包材の内面が接触することを防止するとともに、排気通路を確保しながら排気口より真空引きを行った後、排気口を封止し、排気口手前を溶接接合し、その後に溶接箇所の外側をカットして真空断熱パネルを製造している。   Further, in Patent Document 2, a spacer (heat insulating material) having both a thick region and a thin region is inserted into a substantially flat space formed by upper and lower wrapping materials whose outer peripheral portions are welded and joined. While preventing the inner surface of the upper and lower packaging materials from contacting using the step generated in the meat region and the thin wall region, after evacuating from the exhaust port while securing the exhaust passage, the exhaust port is sealed, A vacuum insulation panel is manufactured by welding and joining the front of the exhaust port and then cutting the outside of the welded part.

特開2009‐228803号公報JP 2009-228803 A 特開2001‐311497号公報Japanese Patent Laid-Open No. 2001-311497

前記の溶接接合方法としては、シーム溶接、TIG溶接、レーザー溶接、プラズマ溶接等の各種溶接法が採用されている。特にステンレス薄鋼板を素材とした場合には溶接時に歪の発生が少ないレーザー溶接法が採用されることが多い。
しかしながら、レーザー溶接法を採用する場合、2枚の金属板間の隙間管理が重要で、金属板間に僅かな隙間があっても溶け落ちが発生し易くなる(図2(a)参照)。素材金属板の板厚が薄くなるほど溶け落ちの発生頻度が多くなる。
そこで、2枚の金属板を加圧して両者間の隙間を潰しながら溶接するシーム溶接法の採用も検討されている。シーム溶接法で真空断熱パネルを製造すると、圧力の付加によって隙間がなくなるので、安定した溶接が可能になる(図2(b)参照)。
As the welding method, various welding methods such as seam welding, TIG welding, laser welding, plasma welding, and the like are employed. In particular, when a stainless steel sheet is used as a material, a laser welding method in which distortion is hardly generated during welding is often employed.
However, when the laser welding method is employed, it is important to manage the gap between the two metal plates, and even if there is a slight gap between the metal plates, the melt-off easily occurs (see FIG. 2A). As the thickness of the material metal plate decreases, the frequency of occurrence of melting increases.
Therefore, the adoption of a seam welding method in which two metal plates are pressurized and welded while crushing a gap between the two metal plates has been studied. When a vacuum heat insulation panel is manufactured by the seam welding method, there is no gap due to the application of pressure, so that stable welding is possible (see FIG. 2B).

シーム溶接法で矩形の真空断熱パネルを製造する場合、図3(a)に見られるように、4本の溶接ラインを作るように溶接することが考えられ、その場合、溶接ラインが交差したラップ部が生じることになる。それぞれの溶接ラインの断面では、図3(b)に示すように、高さがほぼ一定のナゲットが規則正しく繋がっている。一方、ラップ部では2回の加熱が行われることになるため、図3(c)、(d)に示すように、2本のラインの交差点でナゲットが過剰に成長し、前後にナゲット未形成部位が生じたり、2本のラインの交差点近傍にブローホールや溶着が生じたりすることがある。いわゆる溶接不良を発生させやすくなる。また、溶接熱の影響で素材金属板が歪み、図3(e)に示すように、フランジ部が波打ち、平坦性が悪化することがある。これらの問題点は板厚が薄い場合に顕著となる。   When manufacturing a rectangular vacuum insulation panel by the seam welding method, as shown in FIG. 3 (a), it is conceivable to weld so as to form four weld lines, in which case the laps where the weld lines intersect are considered. Part will occur. In the cross section of each welding line, as shown in FIG.3 (b), the nuggets with substantially constant height are connected regularly. On the other hand, since the heating is performed twice in the lap portion, as shown in FIGS. 3C and 3D, the nugget grows excessively at the intersection of the two lines, and the nugget is not formed before and after. A part may arise or a blowhole and welding may arise near the intersection of two lines. It becomes easy to generate so-called welding defects. Further, the material metal plate is distorted by the influence of welding heat, and as shown in FIG. 3 (e), the flange portion may be wavy and flatness may be deteriorated. These problems become prominent when the plate thickness is thin.

シーム溶接法で真空断熱パネルを製造する場合、真空チャンバー内でシーム溶接することになるが、真空チャンバー内で連続的にシーム溶接すると熱を外に排出できず、電極の温度がどんどん上昇する現象が発生する。この現象は、溶接線長及び溶接時間が長くなるほど発生しやすく、溶接部は後半になればなるほど入熱過多条件となり先述した溶接不良や歪を増長することになる。また、電極の温度が上昇することによりチャンバー内の温度も上昇するため製造設備全体の機能を低下させて、装置の長時間の使用ができなくなることもある。
本発明は、このような問題点を解消するために案出されたものであり、断熱性に優れた芯材と、その周囲を覆うガス不透過性に優れた外包金属板からなり、前記芯材を内包する前記外包金属板の内部が真空状態とされた後、前記外包金属板周縁部で封止された、耐久性に優れた真空断熱パネルであって、溶接不良品の発生頻度が極力低減され、かつフランジ部の平坦性が良好な真空断熱パネルを提供することを目的とする。
When manufacturing vacuum insulation panels using the seam welding method, seam welding is performed in the vacuum chamber. However, when seam welding is continuously performed in the vacuum chamber, heat cannot be discharged to the outside, and the temperature of the electrode increases steadily. Will occur. This phenomenon is more likely to occur as the weld line length and the welding time become longer, and the welding portion becomes more heat input as the latter half becomes, and the above-described welding failure and distortion are increased. Moreover, since the temperature in the chamber rises as the temperature of the electrode rises, the function of the entire manufacturing facility is lowered, and the apparatus may not be used for a long time.
The present invention has been devised to solve such problems, and comprises a core material excellent in heat insulation and an enveloping metal plate excellent in gas impermeability covering its periphery, and the core After the inside of the outer metal plate that encloses the material is in a vacuum state, it is a vacuum heat insulating panel that is sealed at the outer periphery of the outer metal plate and has excellent durability, and the frequency of occurrence of defective welds is minimized An object of the present invention is to provide a vacuum heat insulating panel that is reduced and has a good flatness of the flange portion.

本発明の真空断熱パネルは、その目的を達成するため、断熱性を有する芯材と、その周囲を覆う二枚の外包金属板からなり、前記芯材を内包する前記二枚の外包金属板の内部が真空状態とされて前記外包金属板周縁部がシーム溶接により接合された真空断熱パネルであって、溶接部の全長にわたって固相接合部と溶融接合部が規則的に繰り返された接合状態となっており、前記溶接部の一部が交差し、前記溶接部の一部が交差する部位は前記固相接合部であることを特徴とする。
外包金属板としてはステンレス鋼板が、特に少なくとも片方にフェライト系ステンレス鋼板が用いられているものが好ましい。
In order to achieve the object, the vacuum heat insulation panel of the present invention comprises a heat-insulating core material and two enveloping metal plates covering the periphery thereof, and the two enveloping metal plates enclosing the core material. It is a vacuum heat insulation panel in which the inside is in a vacuum state and the outer peripheral metal plate peripheral edge is joined by seam welding, and the solid state joint and the melt joint are regularly repeated over the entire length of the weld It is characterized in that a part of the welded portion intersects and a part where the welded portion intersects is the solid phase joint .
As the enveloping metal plate, a stainless steel plate is preferable, and in particular, a ferritic stainless steel plate is used at least on one side.

本発明の真空断熱パネルでは、その製造時に、外包金属板周縁部の接合法としてシーム溶接法が使用され、かつナゲットが連続的に繋がらず、ナゲットの間を固相接合させるようなシーム溶接電流を間欠的に流す条件でシーム溶接されている。
このため、真空断熱パネルの外包金属板周縁部での封止が、ナゲットの形成が極力抑えられ、或いは形成されるナゲットが極力小さくなるような形態での溶接接合でなされることになり、2回目の接合時に接合不良を発生させることがない。また、全体的に入熱量が少ないために、溶接熱の影響で素材金属板が歪むことも抑制され、フランジ部の平坦性が優れた真空断熱パネルが得られている。
このような相乗的な効果により、高性能な真空断熱パネルが低コストで提供できる。
In the vacuum heat insulation panel of the present invention, a seam welding current is used as a method for joining the peripheral portion of the outer metal sheet during the production thereof, and the nugget is not continuously connected and the nugget is solid-phase joined. Is seam welded under the condition of intermittent flow.
For this reason, the sealing at the outer peripheral metal plate peripheral portion of the vacuum heat insulating panel is performed by welding joining in such a form that the formation of the nugget is suppressed as much as possible or the formed nugget is minimized. No bonding failure occurs during the second bonding. Moreover, since the amount of heat input is generally small, distortion of the material metal plate due to the influence of welding heat is suppressed, and a vacuum heat insulating panel with excellent flange flatness is obtained.
With such a synergistic effect, a high-performance vacuum insulation panel can be provided at a low cost.

真空断熱パネルの構造を説明する概略図Schematic explaining the structure of the vacuum insulation panel レーザー溶接とシーム溶接の違いを説明する図Diagram explaining the difference between laser welding and seam welding シーム溶接で真空断熱パネルを製造する際の問題点を説明する図Diagram explaining problems in manufacturing vacuum insulation panels by seam welding 溶融接合と固相接合の違いを説明する図Diagram explaining the difference between melt bonding and solid phase bonding 溶融接合と固相接合が規則的に繰り返された接合状態を説明する図A diagram for explaining a joining state in which fusion joining and solid-phase joining are regularly repeated シーム溶接時のパルス通電形態を説明する図The figure explaining the pulse energization form at the time of seam welding 実施例で作製した真空断熱パネルの部材構成を説明する図The figure explaining the member structure of the vacuum heat insulation panel produced in the Example 実施例で作製した真空断熱パネルの溶接工程を説明する図The figure explaining the welding process of the vacuum heat insulation panel produced in the Example 実施例での接合形態を説明する図The figure explaining the joining form in an Example 実施例での真空断熱パネルの作製に使用した装置の概略構造を示す図The figure which shows the schematic structure of the apparatus used for preparation of the vacuum heat insulation panel in an Example.

前記した通り、断熱性に優れた芯材を、その周囲をガス不透過性に優れた外包金属板で覆い、内部を長期に亘り高真空状態に維持できる真空断熱パネルを製造するためには、芯材をステンレス鋼などの薄金属板等の包材で包み、真空引きした後、端部を溶接接合する必要がある。溶接法として、シーム溶接法を採用すると、前記した通りの溶接不良を発生したり、フランジ部の平坦度が悪化したりする。また、溶接熱の影響で、製造装置の機能が低下し、長時間の連続操業を行うことができなくなってしまう。
そこで、本発明者らは、包材の重ね合わせ面から簡便に真空引きした後に封止接合することが可能な方法について鋭意検討する過程で、本発明に到達した。
以下にその詳細を説明する。
As described above, in order to manufacture a vacuum insulation panel that covers a core material excellent in heat insulation with an outer metal plate excellent in gas impermeability and can maintain the inside in a high vacuum state for a long time, It is necessary to wrap the core material with a wrapping material such as a thin metal plate such as stainless steel, and after evacuation, the ends are welded together. When the seam welding method is employed as the welding method, the above-described welding failure occurs or the flatness of the flange portion deteriorates. Moreover, the function of a manufacturing apparatus falls by the influence of welding heat, and it becomes impossible to perform continuous operation for a long time.
Therefore, the inventors of the present invention have reached the present invention in the process of intensively studying a method capable of sealing and joining after simply evacuating from the overlapping surface of the packaging material.
Details will be described below.

シーム溶接法は、接合しようとする金属間に電流を流して抵抗発熱させ、その熱で溶融接合しようとするものである。
このようなシーム溶接法を用いて矩形の真空断熱パネルを製造する際には、溶接ラインの交差が避けられない。この交差部において2回目のシーム溶接電流を流すとき、前回のシーム溶接時に形成されたナゲットの影響で、溶接電流が分流し、ナゲットの未形成やブローホール、或いは溶着等の溶接不良が発生すると考えられる。すなわち、シーム溶接なる溶融溶接法により形成したナゲットが、次のシーム溶接時の溶接不良の発生の一因になっていると考えられる。
In the seam welding method, an electric current is caused to flow between metals to be joined to cause resistance heating, and the heat is used to melt and join.
When manufacturing a rectangular vacuum heat insulation panel using such a seam welding method, the crossing of a welding line is inevitable. When the second seam welding current is passed at this intersection, the welding current is shunted due to the influence of the nugget formed during the previous seam welding, and welding failure such as nugget non-formation, blowhole, or welding occurs. Conceivable. That is, it is thought that the nugget formed by the fusion welding method called seam welding contributes to the occurrence of poor welding during the next seam welding.

そこで、ナゲットの形成を極力抑えるように、或いは形成されるナゲットが極力小さくなるように接合しておけば、2回目の接合時に接合不良を発生させることがない、と想定できる。図4に示すように、溶融接合のような高入熱の加熱ではなく、低入熱の加熱を行って固相領域での原子の拡散により界面を接合させる固相拡散接合を採用すればよいのである。
各種予備実験を繰り返し、真空断熱パネルの場合にあっては、十分接合されていれば固相接合でも溶融接合と同等程度の強度を呈して真空断熱パネルの場合にあっては十分であることを確認した。
Therefore, if bonding is performed so as to suppress the formation of the nugget as much as possible or so that the formed nugget is as small as possible, it can be assumed that no bonding failure occurs during the second bonding. As shown in FIG. 4, solid phase diffusion bonding in which the interface is bonded by diffusion of atoms in the solid phase region by performing heating with low heat input instead of heating with high heat input such as fusion bonding may be employed. It is.
Repeated various preliminary experiments, and in the case of vacuum insulation panels, if they are sufficiently joined, solid-phase joining will exhibit the same strength as melt joining and should be sufficient in the case of vacuum insulation panels. confirmed.

しかしながら、低入熱により十分な接合強度を発現する固相接合を行おうとする場合、接合しようとする金属板の材質や板厚によって入熱量を厳密に調整する必要がある。入熱量が多すぎると通常のシーム溶接になってナゲットが繋がった接合状態になり、逆に入熱量が少なすぎると十分な強度を発現する固相接合とはならない。
そこで本発明では、溶接部の全長を固相接合により接合するのではなく、固相接合部と溶融接合部が規則的に繰り返された接合状態となっていることにより、十分な接合強度を得たものである。
However, in the case of performing solid phase bonding that exhibits sufficient bonding strength with low heat input, it is necessary to strictly adjust the amount of heat input depending on the material and thickness of the metal plate to be bonded. If the amount of heat input is too large, the seam welding will result in a joined state in which the nugget is connected. Conversely, if the amount of heat input is too small, solid phase bonding will not produce sufficient strength.
Therefore, in the present invention, the entire length of the welded portion is not joined by solid-phase joining, but sufficient joining strength is obtained by the joining state in which the solid-phase joining portion and the fusion joint portion are regularly repeated. It is a thing.

溶接部の全長において固相接合部と溶融接合部が規則的に繰り返された接合状態とするためには、溶接速度を一定として溶接電流を間欠的に流せばよい。溶接電流はパルス通電としてナゲットの形成が可能で且つナゲットが連続的に繋がらない条件を選定することにより図6に示すように、通電がonの領域ではナゲットが形成され、通電がoffの領域では、ナゲット形成時の残熱により固相接合される。この方法で溶接を行えば、全体の入熱量は従来のナゲットが連続的に形成される溶融接合条件と比較して低く抑えることができる。   In order to obtain a joint state in which the solid-phase joint and the melt joint are regularly repeated over the entire length of the weld, the welding current may be intermittently supplied at a constant welding speed. As shown in FIG. 6, by selecting a condition in which the nugget can be formed as pulsed energization and the nugget is not continuously connected, the nugget is formed in the energized area and the energized area is off. Solid phase bonding is performed by residual heat during nugget formation. If welding is performed by this method, the total heat input can be kept low compared to the conventional melt bonding conditions in which nuggets are continuously formed.

なお、固相接合部と溶融接合部が規則的に繰り返された接合状態で溶接部の全長に占める溶融接合部の割合は低いほど入熱量が抑えられ熱歪やラップ部の溶接不良の問題などを回避することが可能である。しかしながら、溶接部の全長における溶融接合部の割合が40%以下の条件では適正電流範囲が狭くなる傾向にある。また、溶接部の全長における溶融接合部の割合が90%を超える条件になると固相接合部が極端に少なくなるため、従来の溶融接合条件に近い形となり先述した熱歪やラップ部の溶接不良の問題も発生する恐れがある。このため、溶接部の全長における溶融接合部の割合は条件設定がしやすく熱歪や溶接不良発生の恐れも少ない50〜90%の範囲に収まるよう調整することが好ましい。   In addition, in the joint state in which the solid-phase joint and the melt joint are regularly repeated, the lower the proportion of the melt joint in the total length of the weld, the lower the amount of heat input, and the problems of thermal distortion and poor welding of the lap part, etc. Can be avoided. However, the appropriate current range tends to be narrowed under the condition where the ratio of the melt-bonded portion in the entire length of the welded portion is 40% or less. In addition, if the ratio of the melt-bonded part in the entire length of the welded part exceeds 90%, the solid-phase jointed part will become extremely small, so it becomes a form close to the conventional melt-joined condition and the above-mentioned thermal strain and poor welding of the lap part There is also a risk of problems. For this reason, it is preferable to adjust the ratio of the melt-bonded portion in the entire length of the welded portion so as to be within a range of 50 to 90% in which conditions can be easily set and there is little risk of thermal distortion or poor welding.

本発明の採用により、絞り加工または張り出し加工を施して芯材収容部を形成する加工部側素材にオーステナイト系ステンレス鋼板を、前記芯材収容部を覆う非加工部側素材にフェライト系ステンレス鋼板を用いた真空断熱パネルであっても、溶接不良がなく、またフランジ部の平坦性に優れた真空断熱パネルを安定的に、かつ低価格で提供することができる。
特に、溶接ラインが交差する部位においても、1回目のシーム溶接時にナゲットが形成されていないか、形成されていても細かい。したがって、2回目のシーム溶接時に溶接電流が分流することがないので、溶接不良がない真空断熱パネルが提供できる。
さらに、溶接時の入熱量が比較的少ないので、溶接熱歪みによるフランジ部の平坦度を悪化させることもない。
By adopting the present invention, an austenitic stainless steel plate is used for the processed part side material that forms the core material containing part by drawing or overhanging, and a ferritic stainless steel sheet is used for the non-processed part side material that covers the core material containing part. Even if it is the vacuum heat insulation panel used, the vacuum heat insulation panel which does not have poor welding and was excellent in the flatness of a flange part can be provided stably and at low cost.
In particular, even in a portion where the welding lines intersect, the nugget is not formed or is fine even if it is formed during the first seam welding. Accordingly, since the welding current is not diverted during the second seam welding, a vacuum heat insulation panel free from welding defects can be provided.
Furthermore, since the amount of heat input during welding is relatively small, the flatness of the flange portion due to welding thermal distortion is not deteriorated.

作製例1;
図7に作成した真空断熱パネルの部材構成を示す。芯材を覆う上下包材には寸法が220mm×220mm×0.1mmのSUS430とSUS304の鋼板を用いた。SUS304側には芯材収容用に190mm×190mm×5.0mmの膨出部を張り出し成形により作製した。
そして、下側SUS304包材の膨出部に、180mm×180mm×5.0mmのグラスウール製芯材を収容して、上側SUS430包材と重ね合わせた。
上下包材を加圧保持した状態で、先ず、第一工程として大気中で図8(a)に示したように上下包材のフランジ周縁部を、一部開口部を除いてシーム溶接により溶接する。この時に使用したシーム溶接機は単相交流式で上側電極が円盤状、下側電極が棒状で上側電極が下電極の上を回転移動しながら溶接するタイプの装置を使用した。上下電極には、先端形状は同一として幅4mmで20Rの曲率を付いた電極を使用し、溶接条件は加圧力:150N、溶接速度:1m/min、溶接電流:1.2kA、通電時間on/off:3/2msとし、図9(a)に示したように溶接全長における溶融接合部の割合が50%、固相接合部の割合が50%となる条件とした。
Production Example 1;
The member structure of the vacuum heat insulation panel created in FIG. 7 is shown. SUS430 and SUS304 steel plates with dimensions of 220 mm × 220 mm × 0.1 t mm were used for the upper and lower packaging materials covering the core material. On the SUS304 side, a bulging portion of 190 mm × 190 mm × 5.0 mm was prepared by overhanging for containing the core material.
Then, a glass wool core material of 180 mm × 180 mm × 5.0 mm was accommodated in the bulging portion of the lower SUS304 packaging material and overlapped with the upper SUS430 packaging material.
In a state where the upper and lower packaging materials are held under pressure, first, as shown in FIG. 8 (a), the flange peripheral portions of the upper and lower packaging materials are welded by seam welding except for some openings. To do. The seam welding machine used at this time was a single-phase AC type, and the upper electrode was disk-shaped, the lower electrode was rod-shaped and the upper electrode was welded while rotating over the lower electrode. For the upper and lower electrodes, electrodes with the same tip shape and a width of 4mm and a curvature of 20R are used. Welding conditions are pressure: 150N, welding speed: 1m / min, welding current: 1.2kA, energization time on / off : 3/2 ms, and as shown in FIG. 9A, the ratio of the melt-bonded portion to the total length of the weld was 50%, and the ratio of the solid-phase bonded portion was 50%.

続く第二工程の封止では図10に示す真空チャンバー内に第一工程で使用した同一のシーム溶接機を内蔵した装置を用いた。本装置には、チャンバー内にワークを固定するためのワーク用テーブルも備えられており、このワーク用テーブルに先程溶接したパネルを固定し、チャンバー内の真空度が2Pa以下になるまで真空引きを行った。この際パネル内部の真空度はパネル開口部を通して内部空気が強制的に排気されるため真空チャンバー内の真空度とほぼ同一となっていると推定される。目標とする真空度到達後、第一工程で未溶接だった開口部を先述したシーム溶接機を用いて第一工程と同一の溶接条件で図8(b)に示すように溶接開始部と終了部がそれぞれ第一工程の溶接部とラップするよう溶接し、封止した。   In the subsequent sealing in the second step, an apparatus including the same seam welding machine used in the first step in the vacuum chamber shown in FIG. 10 was used. This equipment is also equipped with a work table for fixing the work in the chamber, and the panel that has been previously welded is fixed to this work table, and vacuuming is performed until the degree of vacuum in the chamber becomes 2 Pa or less. went. At this time, the degree of vacuum inside the panel is estimated to be almost the same as the degree of vacuum in the vacuum chamber because the internal air is forcibly exhausted through the panel opening. After reaching the target degree of vacuum, the welding start portion and end as shown in FIG. 8 (b) using the seam welder described above for the opening that was unwelded in the first step as shown in FIG. Each part was welded and sealed so as to wrap with the weld in the first step.

作製例2;
続いて、上下包材にSUS304材同士を使用してステンレス鋼板製の真空断熱パネルを製造する方法を示す。
芯材を覆う上下包材にはSUS304で寸法が220mm×220mm×0.1mmのステンレス鋼板を用い、一方の包材には芯材収容用に190mm×190mm×5.0mmの膨出部を張り出し成形により作製した。
そして、包材の膨出部に、180mm×180mm×5.0mmのグラスウール製芯材を収容して、上下包材を重ね合わせた。
Production Example 2;
Subsequently, a method of manufacturing a vacuum heat insulation panel made of stainless steel plate using SUS304 materials as upper and lower packaging materials will be described.
The upper and lower wrapping materials that cover the core material are SUS304 stainless steel plates with dimensions of 220 mm x 220 mm x 0.1 t mm, and one wrapping material is formed by overhanging a 190 mm x 190 mm x 5.0 mm bulge to accommodate the core material. It was produced by.
Then, a glass wool core material of 180 mm × 180 mm × 5.0 mm was accommodated in the bulging portion of the packaging material, and the upper and lower packaging materials were overlapped.

作製例1と同様の方法で大気中での第一工程の溶接とチャンバー内での第二工程の封止により真空断熱パネルを製造する.この際使用する上下電極形状と溶接条件を変更した。電極の上側には幅4mmでフラット状の電極を、下側には幅4mmで20Rの曲率が付された電極を使用した。溶接条件は加圧力:150N、溶接速度:1.2m/min、溶接電流:1.6kA、通電時間on/off:3/2msとし、図9(b)に示したように溶接全長における溶融接合部の割合が90%、固相接合部の割合が10%となる条件とした。
以上のような方法でステンレス鋼板製の真空断熱パネルを作製した。
A vacuum heat insulation panel is manufactured by welding in the first step in the atmosphere and sealing in the second step in the chamber in the same manner as in Production Example 1. The shape of the upper and lower electrodes used at this time and the welding conditions were changed. A flat electrode with a width of 4 mm was used on the upper side of the electrode, and an electrode with a width of 4 mm and a curvature of 20 R was used on the lower side. Welding conditions were as follows: welding pressure: 150 N, welding speed: 1.2 m / min, welding current: 1.6 kA, energization time on / off: 3/2 ms, as shown in FIG. The ratio was 90%, and the ratio of the solid phase junction was 10%.
A vacuum heat insulating panel made of a stainless steel plate was produced by the method described above.

上記2つの方法で作製された真空断熱パネルは、いずれもフランジ部で溶接不良は発生しておらず、またフランジ部の平坦性も良好で、全体的な形状変化も見られなかった。
作製例2では、2枚のオーステナイト系ステンレス鋼板を用い、オーステナイト系ステンレス鋼板を接合して真空断熱パネルしたが、作製例1で確認したように、絞り加工性に優れたオーステナイト系ステンレス鋼板と、比較的安価なフェライト系ステンレス鋼板を使用しても、フランジ部で問題なく固相接合された真空断熱パネルを製造することが可能になった。
None of the vacuum heat insulation panels produced by the two methods described above had poor welding at the flange portion, the flatness of the flange portion was good, and no overall shape change was observed.
In Production Example 2, two austenitic stainless steel plates were used, and the austenitic stainless steel plates were joined to form a vacuum heat insulating panel. However, as confirmed in Production Example 1, an austenitic stainless steel plate excellent in drawing workability, Even if a relatively inexpensive ferritic stainless steel sheet is used, it has become possible to produce a vacuum heat insulation panel that is solid-phase bonded at the flange without any problem.

Claims (4)

断熱性を有する芯材と、その周囲を覆う二枚の外包金属板からなり、前記芯材を内包する前記二枚の外包金属板の内部が真空状態とされて前記外包金属板周縁部がシーム溶接により接合された真空断熱パネルであって
接部の全長にわたって固相接合部と溶融接合部が規則的に繰り返された接合状態となっており、前記溶接部の一部が交差し、前記溶接部の一部が交差する部位は前記固相接合部であることを特徴とする真空断熱パネル。
It consists of a core material having heat insulation properties and two enveloping metal plates covering the periphery thereof, and the inside of the two enveloping metal plates enclosing the core material is in a vacuum state, and the periphery of the enveloping metal plate is a seam A vacuum insulation panel joined by welding ,
Has become over the entire length of the welded portion with the solid joint between the bonding state of fusion bonding portion is regularly repeated, sites a part of the weld cross, a portion of the weld intersect the A vacuum heat insulation panel characterized by being a solid phase junction .
溶接部の全長に占める溶融接合部の割合が50〜90%の範囲である請求項1に記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 1, wherein the ratio of the melt-bonded portion in the entire length of the welded portion is in the range of 50 to 90%. 外包金属板としてステンレス鋼板が用いられている請求項1または2に記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 1 or 2, wherein a stainless steel plate is used as the outer metal plate. 外包金属板の片方にフェライト系ステンレス鋼板が用いられている請求項3に記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 3, wherein a ferritic stainless steel plate is used on one side of the outer metal plate.
JP2013149099A 2013-07-18 2013-07-18 Vacuum insulation panel Active JP6378471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013149099A JP6378471B2 (en) 2013-07-18 2013-07-18 Vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013149099A JP6378471B2 (en) 2013-07-18 2013-07-18 Vacuum insulation panel

Publications (2)

Publication Number Publication Date
JP2015021540A JP2015021540A (en) 2015-02-02
JP6378471B2 true JP6378471B2 (en) 2018-08-22

Family

ID=52486176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013149099A Active JP6378471B2 (en) 2013-07-18 2013-07-18 Vacuum insulation panel

Country Status (1)

Country Link
JP (1) JP6378471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301986B2 (en) * 2016-02-23 2018-03-28 日新製鋼株式会社 Vacuum insulation panel and method for manufacturing the same
JP6981745B2 (en) 2016-10-11 2021-12-17 トヨタ自動車株式会社 Welding method and welded structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099829B2 (en) * 1990-08-08 2000-10-16 株式会社神戸製鋼所 Manufacturing method of capsule for isotropic pressure treatment
JP3267482B2 (en) * 1995-10-24 2002-03-18 ダイハツ工業株式会社 Tank seam welding method
EP0802011A3 (en) * 1996-04-19 1998-02-04 Elpatronic Ag Method for joining two metal foils
JP2004243410A (en) * 2003-01-20 2004-09-02 Nippon Steel Corp Metal foil tube, and method and device for manufacturing the same
JP4829172B2 (en) * 2006-08-31 2011-12-07 象印マホービン株式会社 Vacuum insulation panel
JP5084376B2 (en) * 2007-07-11 2012-11-28 倉敷紡績株式会社 Vacuum insulation
JP5591149B2 (en) * 2011-02-25 2014-09-17 日新製鋼株式会社 Method and apparatus for manufacturing vacuum insulation panel
US20120285971A1 (en) * 2011-05-09 2012-11-15 General Electric Company Integrated vacuum insulation panel

Also Published As

Publication number Publication date
JP2015021540A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
WO2017217233A1 (en) Vacuum insulation panel manufacturing method, and vacuum insulation panel
JP6385319B2 (en) Vacuum insulating panel manufacturing method and manufacturing apparatus, and vacuum insulating panel
CN105108272B (en) A kind of method and apparatus of different-metal material welding
JP6285749B2 (en) Manufacturing method of vacuum insulation panel
CN104096954A (en) Double two-sided synchronous tungsten electrode high-frequency pulse argon arc welding butt welding method
JP5377763B2 (en) Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
JP6378471B2 (en) Vacuum insulation panel
WO2017217232A1 (en) Vacuum insulation panel manufacturing device
JP6143593B2 (en) Vacuum insulation panel
JP2013107084A (en) Beam welding method, vacuum packaging method, vacuum insulating material produced by the vacuum packaging method, and heating cooker using the vacuum insulating material
JP6301986B2 (en) Vacuum insulation panel and method for manufacturing the same
JP5924729B2 (en) Manufacturing method of vacuum insulation panel
JP2009115015A (en) Hermetic compressor and method for manufacturing tubular shell for hermetic compressor
CN104708176B (en) Welding method for freeze drier board layer and freeze drier board layer
CN101979204A (en) Indirect-heating braze-welding method for packaging shell with thermal sensitive element
CN104907657B (en) A kind of TiAl/TC4 electron beam melt-brazing methods for adding alloy interlayer
CN105108280A (en) Welding method of high-molybdenum stainless steel plate
JP4746898B2 (en) Insulated container and manufacturing method thereof
JP2015117830A (en) Manufacturing method of vacuum insulation panel
RU2374054C1 (en) Method for welding of flat panels with header pipe
JP2009228803A (en) Metallic vacuum heat insulating material
JP7269468B2 (en) Vacuum insulation panel manufacturing method and vacuum insulation panel
JP5591149B2 (en) Method and apparatus for manufacturing vacuum insulation panel
JP2015096743A (en) Manufacturing method of vacuum insulation panel
JP2018128129A (en) Manufacturing method of vacuum heat insulation panel, and vacuum heat insulation panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180727

R150 Certificate of patent or registration of utility model

Ref document number: 6378471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350