JP2018035922A - Vacuum heat insulation panel for structure - Google Patents

Vacuum heat insulation panel for structure Download PDF

Info

Publication number
JP2018035922A
JP2018035922A JP2016171878A JP2016171878A JP2018035922A JP 2018035922 A JP2018035922 A JP 2018035922A JP 2016171878 A JP2016171878 A JP 2016171878A JP 2016171878 A JP2016171878 A JP 2016171878A JP 2018035922 A JP2018035922 A JP 2018035922A
Authority
JP
Japan
Prior art keywords
heat insulation
core material
vacuum
insulation panel
outer packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016171878A
Other languages
Japanese (ja)
Inventor
努 東
Tsutomu Azuma
努 東
弘久 三島
Hirohisa Mishima
弘久 三島
仲子 武文
Takefumi Nakako
武文 仲子
誠一 久保庭
Seiichi Kuboniwa
誠一 久保庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Mag Isover KK
Original Assignee
Mag Isover KK
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mag Isover KK, Nisshin Steel Co Ltd filed Critical Mag Isover KK
Priority to JP2016171878A priority Critical patent/JP2018035922A/en
Priority to US16/329,851 priority patent/US20190242120A1/en
Priority to CN201780053401.5A priority patent/CN109844392B/en
Priority to PCT/JP2017/031619 priority patent/WO2018043712A1/en
Priority to EP17846715.5A priority patent/EP3508771B1/en
Priority to SI201731150T priority patent/SI3508771T1/en
Priority to KR1020197009478A priority patent/KR102356138B1/en
Priority to CA3035326A priority patent/CA3035326A1/en
Publication of JP2018035922A publication Critical patent/JP2018035922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase of heat conductivity within a fixed period right after manufacturing a vacuum heat insulation panel, to maintain excellent heat insulation performance substantially equivalent to heat insulation performance right after manufacturing.SOLUTION: A method for manufacturing a vacuum heat insulation panel comprises wrapping a core material 1 comprising inorganic fibers with an external wrapping material 2 made of a stainless steel plate, and making an internal space 3 of the external wrapping material 2 wrapping the core material 1 into a vacuum state. The method also comprises sealing a peripheral edge part of the external wrapping material 2 with welding in a state where the moisture content contained in the core material 1 is equal to or less than 0.05 wt.%, surface roughness Ra of a surface on an internal space side of the external wrapping material 2 is equal to or less than 0.2 μm, and pressure in the internal space 3 of the external wrapping material 2 is equal to or less than 1 Pa.SELECTED DRAWING: Figure 1

Description

本発明は、例えば住宅などの建築物の壁や天井、床の断熱に用いられる真空断熱パネルに関する。   The present invention relates to a vacuum heat insulation panel used for heat insulation of a wall, ceiling, or floor of a building such as a house.

近年、地球環境問題である温暖化を抑制することの重要性から、省エネルギー化が望まれており、様々な設備の省エネルギー対応が推進されている。住宅などの建築物に関しては、消費する電気量を抑制するため、特に空調機器の電気量を抑制するために内部空間の断熱性能を高め、これによって外部から入り込む熱を遮る遮熱性能も向上させることが試みられている。つまり、建築物の壁や天井、床に用いられる部材の断熱性能を向上させることが必要である。 In recent years, energy saving is desired because of the importance of suppressing global warming, which is a global environmental problem, and energy saving measures for various facilities are being promoted. For buildings such as houses, in order to reduce the amount of electricity consumed, especially in order to reduce the amount of electricity in air-conditioning equipment, improve the heat insulation performance of the internal space, thereby improving the heat insulation performance to block heat entering from the outside. It has been tried. That is, it is necessary to improve the heat insulation performance of members used for the walls, ceilings, and floors of buildings.

断熱性能を向上させる手段としては、真空断熱パネルを用いることが、以下の特許文献1に開示されている。先ず、特許文献1に開示された真空断熱パネルは、自動車のルーフパネルやルーフレール等に固定されるものであり、ラミネート材製ケースの内部に不織布を収納して真空状態としており、密封はヒートシールで行われたものである。   As means for improving the heat insulation performance, use of a vacuum heat insulation panel is disclosed in Patent Document 1 below. First, the vacuum heat insulation panel disclosed in Patent Document 1 is fixed to an automobile roof panel, a roof rail, or the like, and a non-woven fabric is housed in a laminated material case in a vacuum state. It was done in.

また、真空断熱パネルの一例は、特許文献2に開示されている。特許文献2に開示された真空断熱パネルは、無機繊維からなる芯材を、ガス吸着剤とともにガスバリア性フィルムからなるケースに収納し、ケース内部を真空吸引して、開口部をフィルムのヒートシールで封止することで製造されたものである。   An example of the vacuum heat insulation panel is disclosed in Patent Document 2. The vacuum heat insulation panel disclosed in Patent Document 2 stores a core material made of inorganic fiber in a case made of a gas barrier film together with a gas adsorbent, vacuums the inside of the case, and opens the opening by a heat seal of the film. It is manufactured by sealing.

特許第3786755号公報Japanese Patent No. 3786755 特開2004−308691号公報JP 2004-308691 A

特許文献1および特許文献2に開示された真空断熱パネルでは、開口部の封止方法として、ヒートシールを採用していることから、当該封止部から水分が透過し真空度が低下して、熱伝導率が上昇するという問題がある。特に建築物は、屋外環境によって長い期間において水分に接する機会が多く、これによって壁や天井、床において内部空間に面していない裏側が湿潤環境となり、水分の透過が多くなる。そのため、時間の経過とともに真空断熱パネルの内部の圧力が上昇してしまう。   In the vacuum heat insulation panels disclosed in Patent Document 1 and Patent Document 2, since heat sealing is employed as a method for sealing the opening, moisture is transmitted from the sealing portion and the degree of vacuum is reduced. There is a problem that the thermal conductivity increases. In particular, buildings have many opportunities to come into contact with moisture for a long period of time depending on the outdoor environment, and the back side of the wall, ceiling, or floor that does not face the internal space becomes a moist environment, and moisture permeation increases. For this reason, the pressure inside the vacuum heat insulation panel increases with the passage of time.

また、特許文献2の真空断熱パネルは、ガス吸着剤を外包材内に芯材とともに封入しているので、封止部から透過して内部に入った水分はガス吸着剤に吸着されるため、ある程度の期間は真空度の低下を抑制できるが、ガス吸着剤の吸着量には限度があるため、ある程度の期間を過ぎると真空度が低下し熱伝導率が上昇する。   Moreover, since the vacuum heat insulation panel of patent document 2 has enclosed the gas adsorbent with the core material in the outer packaging material, since the water | moisture content permeate | transmitted and entered from the sealing part is adsorbed by the gas adsorbent, Although a decrease in the degree of vacuum can be suppressed for a certain period, the amount of adsorption of the gas adsorbent is limited, so that the degree of vacuum decreases and the thermal conductivity increases after a certain period.

本発明は、かかる実情に鑑みて創案されたものであり、真空断熱パネルの製造直後から、一定期間内の熱伝導率の上昇を抑制することにより、製造直後の断熱性能に近い良好な断熱性能を長期にわたって維持することが可能な真空断熱パネルを提供することを目的とする。   The present invention was devised in view of such circumstances, and immediately after the manufacture of the vacuum heat insulation panel, by suppressing the increase in the thermal conductivity within a certain period, the good heat insulation performance close to the heat insulation performance immediately after the manufacture. An object of the present invention is to provide a vacuum thermal insulation panel capable of maintaining the temperature for a long time.

本発明の真空断熱パネルは、無機繊維からなる芯材をステンレス鋼板製の外包材で包み込み、その芯材を包み込んだ外包材の内部空間が真空状態とされた真空断熱パネルであって、前記芯材を加熱して当該芯材が含有する水分量を0.05重量%以下とし、前記外包材の内部空間側となる面の表面粗さRaが0.2μm以下であり、前記芯材を前記外包材で包み込み、前記芯材を包み込んだ外包材の内部空間の圧力を1Pa以下とした状態で当該外包材の周縁部を溶接により封止したことを特徴とするものである。   The vacuum heat insulation panel of the present invention is a vacuum heat insulation panel in which a core material made of an inorganic fiber is wrapped in an outer packaging material made of stainless steel plate, and the inner space of the outer packaging material that wraps the core material is in a vacuum state, Heating the material, the moisture content of the core material is 0.05 wt% or less, the surface roughness Ra of the surface on the inner space side of the outer packaging material is 0.2 μm or less, the core material The outer wrapping material is wrapped, and the peripheral portion of the outer wrapping material is sealed by welding in a state where the pressure of the inner space of the outer wrapping material wrapping the core material is 1 Pa or less.

真空断熱パネルの性能劣化は、外包材の封止を溶接で行っているため、水分透過を抑制でき、これによっても経時変化を抑制できる。   The deterioration of the performance of the vacuum heat insulating panel can suppress moisture permeation because the outer packaging material is sealed by welding, and this can also suppress the change with time.

本発明の真空断熱パネルの製造は、無機繊維からなる芯材をステンレス鋼板製の外包材で包み込み、その芯材を包み込んだ外包材の内部空間が真空状態とされた真空断熱パネルを製造するものを前提とし、前記芯材を加熱して当該芯材が含有する水分量を0.05重量%以下とする工程と、前記芯材を前記外包材で包み込む工程と、前記芯材を包み込んだ外包材の内部空間の圧力を1Pa以下とした状態で当該外包材の開口部を溶接により封止する封止工程の方法で実施できる。     The manufacture of the vacuum heat insulation panel of the present invention is to produce a vacuum heat insulation panel in which a core material made of inorganic fibers is wrapped in an outer packaging material made of stainless steel plate, and the inner space of the outer packaging material that wraps the core material is in a vacuum state. On the assumption that the core material is heated to a moisture content of 0.05% by weight or less, the core material is wrapped with the outer packaging material, and the outer packaging is wrapped with the core material. This can be carried out by a method of a sealing process in which the opening of the outer packaging material is sealed by welding in a state where the pressure in the internal space of the material is 1 Pa or less.

本発明に係る真空断熱パネルによれば、製造直後の断熱性能に近い良好な断熱性能を長期にわたって維持することができる可能性が高まる。   According to the vacuum heat insulation panel concerning the present invention, possibility that the good heat insulation performance near the heat insulation performance immediately after manufacture can be maintained over a long period increases.

真空断熱パネルの分解図である。It is an exploded view of a vacuum heat insulation panel. 真空断熱パネルの製造工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of a vacuum heat insulation panel. 含有する水分量が異なる複数の芯材をそれぞれ使用した真空断熱パネルの熱伝導率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the heat conductivity of the vacuum heat insulation panel which each uses the several core material from which the moisture content to contain differs.

以下、真空断熱パネルの実施形態について説明する。この実施形態に係る製造方法によって製造される真空断熱パネルは、例えば図1に示すように、芯材1をステンレス鋼板製の外包材2で包み込み、その芯材1を包み込んだ外包材2の内部空間3を真空状態としたものである。   Hereinafter, embodiments of the vacuum heat insulation panel will be described. For example, as shown in FIG. 1, the vacuum heat insulation panel manufactured by the manufacturing method according to this embodiment wraps a core material 1 with an outer packaging material 2 made of a stainless steel plate, and the inside of the outer packaging material 2 that wraps the core material 1. The space 3 is in a vacuum state.

芯材1は、製造して出来上がった真空断熱パネル10の外包材2が大気圧によって圧潰しないように、内側から外包材2を支持するものである。この芯材1には無機繊維が使用される。無機繊維としては、グラスウール、セラミックファイバー等が例示される。この芯材1には、バインダーを一切含まないものを使用することが望ましい。バインダーを含む芯材を使用すれば、経時的に芯材からアウトガスが発生し、断熱性能が経時的に悪化するおそれがあるからである。   The core material 1 supports the outer packaging material 2 from the inside so that the outer packaging material 2 of the manufactured vacuum heat insulation panel 10 is not crushed by atmospheric pressure. An inorganic fiber is used for the core material 1. Examples of the inorganic fiber include glass wool and ceramic fiber. It is desirable to use a core material that does not contain any binder. This is because if a core material containing a binder is used, outgas is generated from the core material over time, and the heat insulation performance may deteriorate over time.

外包材2は、2枚の外包板2A,2Bで構成されている。これらの外包板2A,2Bには、ステンレス薄鋼板が使用される。2枚の外包板2A,2Bは、周縁部の形状およびサイズが一致している。少なくとも一方の外包板2Bに膨出部4が形成されており、2枚の外包板2A,2Bの周縁部を揃えて重ね合わせることで、一方の外包板2Bの膨出部4の凹側面と、もう一方の外包板2Aとの間に内部空間3が形成される。外包板2Aと2Bで構成される内部空間3内側の外包板表面の表面粗さRaは0.2μm以下であり、この内部空間3に芯材1が収容される。図面に例示する2枚の外包板2A,2Bは、厚さ方向から視て矩形状のものとなっている。
外包材2の内部空間3側となる面の表面粗さRaを規制するのは、外包材2の内部空間3側の表面に吸着する水分に関連する。つまり、表面粗さRaが大きい表面ほど、見掛け表面積よりも実際の表面積は大きいから、外包材2の内部空間3側の面の表面粗さが大きいほど、真空断熱パネル10の内部空間に持ち込まれる水分量は増えるためである。表面粗さRaを0.2μm以下とする理由については後述する。
The outer packaging material 2 is composed of two outer packaging plates 2A and 2B. Stainless steel sheets are used for the outer cover plates 2A and 2B. The two outer packaging plates 2A and 2B have the same shape and size at the peripheral edge. A bulging portion 4 is formed on at least one outer packaging plate 2B, and the peripheral sides of the two outer packaging plates 2A and 2B are aligned and overlapped to form a concave side surface of the bulging portion 4 of one outer packaging plate 2B. An internal space 3 is formed between the other outer packaging plate 2A. The surface roughness Ra of the outer cover plate surface inside the inner space 3 constituted by the outer cover plates 2A and 2B is 0.2 μm or less, and the core material 1 is accommodated in the internal space 3. The two outer cover plates 2A and 2B illustrated in the drawings are rectangular when viewed from the thickness direction.
The regulation of the surface roughness Ra of the surface on the inner space 3 side of the outer packaging material 2 is related to moisture adsorbed on the surface of the outer packaging material 2 on the inner space 3 side. That is, the surface with a larger surface roughness Ra has a larger actual surface area than the apparent surface area. This is because the amount of water increases. The reason why the surface roughness Ra is 0.2 μm or less will be described later.

この実施形態における真空断熱パネル10の製造は、芯材1が含有する水分を取り除く水分除去工程と、芯材1を外包材2で包み込む芯材包込工程と、外包材2を溶接する溶接工程と、で主に実施されている。   The manufacture of the vacuum heat insulating panel 10 in this embodiment includes a moisture removal process for removing moisture contained in the core material 1, a core material wrapping process for wrapping the core material 1 with the outer packaging material 2, and a welding process for welding the outer packaging material 2. And is mainly implemented in.

水分除去工程においては、芯材1を加熱処理することにより、芯材1が含有する水分を水分量が0.05重量%以下(好ましくは0.02重量%以下)となるまで取り除く。なお、芯材1の水分量を0.05重量%以下(好ましくは0.02重量%以下)とする理由については後に詳述する。   In the moisture removal step, the core material 1 is heat-treated to remove moisture contained in the core material 1 until the moisture content is 0.05% by weight or less (preferably 0.02% by weight or less). The reason why the water content of the core material 1 is 0.05% by weight or less (preferably 0.02% by weight or less) will be described in detail later.

芯材包込工程においては、芯材1の含有水分量が前記の値以下となり、芯材1の温度が所定温度まで低下した後に、芯材1を外包板2Bの膨出部4の凹側に収容して、2枚の外包板2A,2Bの周縁部を揃えて重ね合わせる。これにより、芯材1が外包板2で包み込まれた状態となる。   In the core material wrapping step, after the moisture content of the core material 1 is equal to or less than the above value and the temperature of the core material 1 is lowered to a predetermined temperature, the core material 1 is placed on the concave side of the bulging portion 4 of the outer packaging plate 2B. And the peripheral edges of the two outer packaging plates 2A and 2B are aligned and overlapped. Thereby, it will be in the state where the core material 1 was wrapped with the outer cover board 2. FIG.

溶接工程について、図2を用いて説明する。溶接工程は、外包材2の周縁部の一部に開口部6を設けるために行う第1溶接工程と、真空中で行い、内部空間3を真空状態に保ったまま、第1溶接工程で設けた開口部を封止するために行う第2溶接工程に分けられる。第一溶接工程は、大気中で行うことができる。   The welding process will be described with reference to FIG. The welding process is performed in a first welding process performed in order to provide the opening 6 in a part of the peripheral edge of the outer packaging material 2 and in the first welding process in a vacuum while the internal space 3 is kept in a vacuum state. It is divided into the 2nd welding process performed in order to seal the opened part. The first welding process can be performed in the atmosphere.

溶接方法としては、シーム溶接、アーク溶接、レーザ溶接、電子ビーム溶接など公知の溶接方法を用いることができる。ただし、外包板2A,2Bが薄いステンレス鋼板である場合は、シーム溶接を用いることが好ましい。これは、外包板2A,2Bが薄いステンレス鋼板であるため、膨出部を絞り加工により形成した場合は、周縁部にしわが生じていることがあり、しわが生じている周縁部を溶接により接合すると、2枚の外包板2A,2Bの隙間において溶接不良が発生する可能性が高いためである。溶接不良としては、溶け落ち等が挙げられる。そのため、外包板2A,2Bの上下から加圧しつつ溶接することが可能なシーム溶接を用いて、しわを潰しながら隙間なく溶接することが好ましい。   As a welding method, known welding methods such as seam welding, arc welding, laser welding, and electron beam welding can be used. However, when the outer cover plates 2A and 2B are thin stainless steel plates, it is preferable to use seam welding. This is because the outer cover plates 2A and 2B are thin stainless steel plates, and when the bulging portion is formed by drawing, wrinkles may occur in the peripheral portion, and the peripheral portion where the wrinkle is generated is joined by welding. This is because there is a high possibility of poor welding occurring in the gap between the two outer packaging plates 2A and 2B. Examples of poor welding include burn-off. Therefore, it is preferable to weld without a gap while crushing wrinkles by using seam welding that can be welded while applying pressure from above and below the outer packaging plates 2A and 2B.

ここでは、図2を参照しながら、シーム溶接を用いて第一溶接工程、第二溶接工程を行う手順を説明する。
図2(a)は、第一溶接工程の説明図である。芯材1を外包板2Bの膨出部4の凹側に収容し、2枚の外包板2A,2Bの周縁部を揃えて重ね合わせた状態の周縁部に対し、シーム溶接により外包板の板厚方向に加圧しながら、外包板2の4辺の周縁部のうち3辺(7a、7b、7c)に対し、それぞれに直線状にシーム溶接を行って封止する。その結果、周縁部の1辺が開口部6として残ることになる。この第一溶接工程は、大気中で行うことができる。
Here, the procedure of performing the first welding process and the second welding process using seam welding will be described with reference to FIG.
Fig.2 (a) is explanatory drawing of a 1st welding process. The core material 1 is accommodated in the concave side of the bulging portion 4 of the outer cover plate 2B, and the outer cover plate 2A, 2B is aligned with the peripheral portions of the outer cover plates 2A and 2B, and the outer peripheral plate is seam welded. While pressing in the thickness direction, three sides (7a, 7b, 7c) of the four peripheral edges of the outer cover plate 2 are each linearly seam welded and sealed. As a result, one side of the peripheral portion remains as the opening 6. This first welding process can be performed in the atmosphere.

第二溶接工程は、真空中で行う必要がある。これは、開口部6を経由して内部空間3を排気し、圧力1Pa以下の真空状態とするためである。そこで、真空チャンバー内にシーム溶接機を設置した装置を用意し、この装置の中で開口部6に対して真空中においてシーム溶接を行うことによって封止部7dを形成すれば、本発明の真空断熱パネルを製造することができる。   The second welding process needs to be performed in a vacuum. This is because the internal space 3 is evacuated through the opening 6 to be in a vacuum state with a pressure of 1 Pa or less. Therefore, if a device in which a seam welding machine is installed in a vacuum chamber is prepared and the sealing portion 7d is formed by performing seam welding on the opening 6 in the vacuum in this device, the vacuum of the present invention is formed. Insulating panels can be manufactured.

<芯材が含有する水分量を0.05重量%以下とする理由>
つぎに、芯材1が含有する水分量を0.05重量%以下とする理由について説明する。
図3に、芯材1が含有する水分量をどの程度まで除去すれば、ある程度の断熱性能を維持することができるかを調査した結果示す。この図は、含有する水分量が異なる複数のグラスウールからなる芯材1をそれぞれ使用した真空断熱パネルを複数試作し、試作直後の熱伝導率と、熱伝導率の経時変化が概ね止まる3ヶ月後の熱伝導率とを調査した結果を示している。一般的に世の中で使用されている高性能な真空断熱材の、製造直後の熱伝導率の平均的なレベルである熱伝導率5mW/m・Kを許容熱伝導率の上限とした場合、この熱伝導率を満足するものは、芯材1の含有する水分量が0.05重量%程度であることがこの調査結果からわかる。なお、芯材1が含有する水分量の測定には、京都電子工業株式会社製の電量滴定式カールフィッシャー水分計を使用した。
<Reason why the water content of the core material is 0.05% by weight or less>
Next, the reason why the amount of water contained in the core material 1 is 0.05% by weight or less will be described.
FIG. 3 shows the results of investigating to what extent the amount of water contained in the core material 1 can be removed to maintain a certain degree of heat insulation performance. This figure shows a prototype of a number of vacuum insulation panels using core materials 1 made of a plurality of glass wools having different moisture contents, and three months after the thermal conductivity immediately after the trial and the temporal change in thermal conductivity almost stop. The result of investigating the thermal conductivity of is shown. When the upper limit of the allowable thermal conductivity is 5 mW / m · K, which is the average level of the thermal conductivity immediately after production of the high-performance vacuum heat insulating material generally used in the world, From this investigation result, it can be seen that those satisfying the thermal conductivity have a water content of about 0.05% by weight contained in the core material 1. A coulometric titration Karl Fischer moisture meter manufactured by Kyoto Electronics Industry Co., Ltd. was used to measure the amount of water contained in the core material 1.

この調査結果により、グラスウールからなる芯材1の含有水分量を0.02重量%まで除去することにより、長期間良好な断熱性能を維持することが可能な真空断熱パネル10を製造できることが確認できる。また、ある程度の熱伝導率の経時変化はあるものの、最終的には熱伝導率が5mW/m・K以下におさまることを期待できる芯材1の含有水分量として、0.05重量%が上限であることがわかる。このことから、本実施形態においては、芯材1の含有水分量を0.05重量%以下(好ましくは0.02重量%以下)とした。   From this investigation result, it can be confirmed that the vacuum heat insulation panel 10 capable of maintaining good heat insulation performance for a long period of time can be manufactured by removing the moisture content of the core material 1 made of glass wool to 0.02% by weight. . In addition, although there is some change in the thermal conductivity over time, the upper limit is 0.05% by weight as the moisture content of the core material 1 that can be expected to eventually be kept below 5 mW / m · K. It can be seen that it is. Therefore, in the present embodiment, the water content of the core material 1 is set to 0.05% by weight or less (preferably 0.02% by weight or less).

(実施例1)
以下、真空断熱パネル10の具体的な実施例について説明する。芯材1を包み込む外包材2を構成する外包板2A,2Bには、寸法が220mm×220mm×厚さ100μmのステンレス箔(SUS304)を用いた。ステンレス箔(SUS304)は、表面粗さRaが、それぞれ0.05μm、0.10μm、0.20μm、0.30μm、0.40μmの5種類のものを準備した。また、一方の外包板2Bには、プレス成形の絞り加工により、190mm×190mm×高さ5.0mmの膨出部4を設けた。
Example 1
Hereinafter, specific examples of the vacuum heat insulation panel 10 will be described. Stainless steel foil (SUS304) having dimensions of 220 mm × 220 mm × thickness of 100 μm was used for the outer cover plates 2A and 2B constituting the outer cover material 2 for wrapping the core material 1. As the stainless steel foil (SUS304), five types having a surface roughness Ra of 0.05 μm, 0.10 μm, 0.20 μm, 0.30 μm, and 0.40 μm were prepared. In addition, one outer packaging plate 2B was provided with a bulging portion 4 having a size of 190 mm × 190 mm × height 5.0 mm by press forming.

また、芯材1には、約1200g/mのグラスウールを用いた。そして、このグラスウールを、あらかじめ大気雰囲気の電気炉に挿入して、温度200℃、3時間の加熱処理を行ったのち、炉から取り出し、すみやかに室温(20℃)、相対湿度30%のデシケータに移して30分間保持する冷却処理を行った。この加熱処理と冷却処理の条件は、予備実験を行って、この芯材1が含有する水分量が0.03〜0.04重量%となるように決定した条件である。 For the core material 1, glass wool of about 1200 g / m 2 was used. Then, this glass wool is inserted in an electric furnace in an air atmosphere in advance and subjected to a heat treatment at a temperature of 200 ° C. for 3 hours, and then taken out from the furnace and immediately put into a desiccator at room temperature (20 ° C.) and a relative humidity of 30%. The cooling process which moved and hold | maintained for 30 minutes was performed. The conditions for the heat treatment and the cooling treatment are conditions determined by conducting a preliminary experiment so that the amount of water contained in the core material 1 is 0.03 to 0.04% by weight.

その後、冷却処理後の芯材1をデシケータから取り出し、外包板2A、芯材1、外包板2Bの順に重ね合わせた。このとき芯材1は、外包板2Bに設けられている膨出部4の内部に隙間なく充填されるように収容した。そして、外包板2Aの周縁部と外包板2Bの周縁部を、大気中でシーム溶接によって加圧しながら溶接して接合した。このシーム溶接は、矩形の外包板2A,2Bの3辺の外周に沿ってシーム溶接を3回に分けて、それぞれ直線状に溶接し、残りの1辺を開口部として残した。   Thereafter, the core material 1 after the cooling treatment was taken out from the desiccator, and the outer packaging plate 2A, the core material 1, and the outer packaging plate 2B were superposed in this order. At this time, the core material 1 was accommodated so that the inside of the bulging part 4 provided in the outer packaging plate 2B could be filled without a gap. And the peripheral part of outer packaging board 2A and the peripheral part of outer packaging board 2B were welded and joined in the air | atmosphere by seam welding. In this seam welding, the seam welding was divided into three times along the outer periphery of the three sides of the rectangular outer cover plates 2A and 2B, and each was welded linearly, leaving the remaining one side as an opening.

用いたシーム溶接機は、単相交流式で、上側電極は、直径が100mm、厚さ4mmの円盤状であり、電極先端の曲率は20Rとした。下側電極は、厚さ4mmのブロック状である。上側電極と下側電極は、いずれもクロム銅製である。溶接条件は、加圧力:150N、溶接速度:1m/min、溶接電流:1.6kA、通電時間のon/off比は3ms/2msとした。 The seam welder used was a single-phase AC type, the upper electrode was a disk having a diameter of 100 mm and a thickness of 4 mm, and the curvature of the electrode tip was 20R. The lower electrode has a block shape with a thickness of 4 mm. Both the upper electrode and the lower electrode are made of chromium copper. The welding conditions were as follows: pressing force: 150 N, welding speed: 1 m / min, welding current: 1.6 kA, and the on / off ratio of the energization time was 3 ms / 2 ms.

次に、3辺を溶接した被溶接材とシーム溶接機を真空チャンバー内に持ち込み、真空チャンバーを真空ポンプに接続して外包板2A,2Bの内部空間の圧力が1Pa以下になるまで真空排気したのち、そのまま真空中で開口部を溶接して封止した。   Next, the workpiece to be welded on the three sides and the seam welder were brought into the vacuum chamber, and the vacuum chamber was connected to a vacuum pump and evacuated until the pressure in the inner space of the outer cover plates 2A and 2B became 1 Pa or less. After that, the opening was welded and sealed in vacuum.

製造した真空断熱パネルの性能評価として、熱伝導率を評価した。次の環境下での熱伝導率の経時変化を測定して行った。
まず、製造直後の真空断熱パネルの熱伝導率を測定し、そのあと、真空断熱パネルを、高温環境と低温環境の両方を繰り返す環境負荷試験に供した。詳しくは、真空断熱パネルを80℃の温度環境で12時間保持したあと、−15℃の温度環境で12時間保持し、その後は、これらの温度環境を12時間毎に交互に繰り返す温度サイクルを形成した。この環境負荷試験を開始して60日経過した時点で真空断熱パネルを取り出し、熱伝導率を測定した。熱伝導率の測定後には、再び、上記環境負荷試験を継続した。その後も60日経過ごとに同様に真空断熱パネルを取り出し、熱伝導率を測定し、環境負荷試験を継続した。
The thermal conductivity was evaluated as a performance evaluation of the manufactured vacuum insulation panel. The change over time in the thermal conductivity under the following environment was measured.
First, the thermal conductivity of the vacuum heat insulation panel immediately after manufacture was measured, and then the vacuum heat insulation panel was subjected to an environmental load test in which both a high temperature environment and a low temperature environment were repeated. Specifically, after holding the vacuum heat insulation panel for 12 hours in a temperature environment of 80 ° C., hold it for 12 hours in a temperature environment of −15 ° C., and then form a temperature cycle in which these temperature environments are alternately repeated every 12 hours. did. When this environmental load test was started and 60 days passed, the vacuum heat insulation panel was taken out and the thermal conductivity was measured. After the measurement of thermal conductivity, the environmental load test was continued again. Thereafter, the vacuum insulation panel was similarly taken out every 60 days, the thermal conductivity was measured, and the environmental load test was continued.

熱伝導率の評価は、英弘精機社製の熱伝導率測定装置HC−074/200を用い、真空断熱パネルの中央部の平均温度が25℃となる条件で、ステンレス箔の表面粗さRaが異なる複数の真空断熱パネルについて熱伝導率を測定した。詳細には、ステンレス箔の表面粗さRaが同じ真空断熱パネル3体についてその平均値を求めて、ステンレス箔の表面粗さRaごとの熱伝導率とした。   Evaluation of thermal conductivity is performed using a thermal conductivity measuring device HC-074 / 200 manufactured by Eiko Seiki Co., Ltd. under the condition that the average temperature of the central portion of the vacuum heat insulating panel is 25 ° C., and the surface roughness Ra of the stainless steel foil is The thermal conductivity was measured for a plurality of different vacuum insulation panels. In detail, the average value was calculated | required about 3 vacuum heat insulation panels with the same surface roughness Ra of stainless steel foil, and it was set as the thermal conductivity for every surface roughness Ra of stainless steel foil.

表1に、真空断熱パネルの製造直後から、環境負荷試験60日ごとの時点における熱伝導率の測定結果を示す。   Table 1 shows the measurement results of the thermal conductivity immediately after the production of the vacuum heat insulation panel, at the time point of every 60 days of the environmental load test.

Figure 2018035922
Figure 2018035922

この表1から、外包材に用いたステンレス鋼板の表面粗さRaが小さいほど、製造直後からの日数が経過しても熱伝導率の増大が小さいことが明らかである。特に、ステンレス鋼板の表面粗さRaが最も小さい0.05μmの真空断熱パネル(表1中にNo.Aで示すもの)は、製造直後の熱伝導率と比較して、180日後における熱伝導率が殆ど増加しておらず、断熱性能の劣化という点ではきわめて優秀な真空断熱パネルであった。   From Table 1, it is clear that the smaller the surface roughness Ra of the stainless steel plate used for the outer packaging material, the smaller the increase in thermal conductivity even if the number of days has passed since the production. In particular, the 0.05 μm vacuum thermal insulation panel (shown as No. A in Table 1) having the smallest surface roughness Ra of the stainless steel plate has a thermal conductivity after 180 days as compared with the thermal conductivity immediately after production. However, the vacuum insulation panel was extremely excellent in terms of deterioration of heat insulation performance.

ステンレス鋼板の表面粗さRaが最も小さい0.05μmの真空断熱パネル(表1中にNo.Aで示すもの)以外の真空断熱パネルは、製造直後から180日後までの間にそれぞれ熱伝導率の増大が認められるものの、どの真空断熱パネルも熱伝導率が大きく増大しているのは製造直後から60日後までの間であり、その後の変化は小さく熱伝導率は安定している。このことは、製造直後から60日後までに、外包材に使用するステンレス鋼板の表面に吸着して持ち込まれた水分の大部分が、真空断熱パネルの温度上昇によってガス分子となって真空断熱パネルの内部空間に放出されたためである。   The vacuum heat insulation panels other than the 0.05 μm vacuum heat insulation panel (shown as No. A in Table 1) having the smallest surface roughness Ra of the stainless steel plate have a thermal conductivity between immediately after production and after 180 days. Although an increase is observed, the heat conductivity of any vacuum insulation panel is greatly increased from immediately after manufacture until 60 days later, and the change thereafter is small and the heat conductivity is stable. This is because most of the moisture adsorbed on the surface of the stainless steel plate used for the outer packaging material immediately after production becomes gas molecules due to a rise in the temperature of the vacuum insulation panel. This is because it was released into the internal space.

また、製造直後から60日以降は、熱伝導率の上昇が非常に小さい。これは、本発明の真空断熱パネルは、外包材2Aと2Bの周縁部の接合にヒートシールを用いるのでなくシーム溶接によって接合したため、周縁部から真空断熱パネルの内部に水分が浸入しなかったことが分かる。すなわち、溶接構造は、真空断熱パネルの断熱性能を長期間に渡って維持するために有効である。   In addition, the increase in thermal conductivity is very small after 60 days after production. This is because the vacuum heat insulation panel of the present invention was joined by seam welding instead of using a heat seal for joining the peripheral portions of the outer packaging materials 2A and 2B, so that moisture did not enter the vacuum heat insulation panel from the peripheral portion. I understand. That is, the welded structure is effective for maintaining the heat insulating performance of the vacuum heat insulating panel over a long period of time.

さらに、表1に示した結果から、外包材2の内部空間3側の面の表面粗さRaは、熱伝導率の変化が小さい点を考慮すると、0.2μm以下であることが指標となる。   Furthermore, from the results shown in Table 1, the surface roughness Ra of the surface of the outer packaging material 2 on the inner space 3 side is an index of 0.2 μm or less considering that the change in thermal conductivity is small. .

本発明を実施することにより製造された真空断熱パネルは、住宅などの建築物の壁や天井、床の断熱に好適に用いられる。   The vacuum heat insulation panel manufactured by implementing this invention is used suitably for the heat insulation of the wall, ceiling, and floor of buildings, such as a house.

1 芯材
2 外包材
3 内部空間
4 膨出部
6 開口部
10 真空断熱パネル
DESCRIPTION OF SYMBOLS 1 Core material 2 Outer packaging material 3 Internal space 4 A bulging part 6 Opening part 10 Vacuum insulation panel

Claims (1)

無機繊維からなる芯材をステンレス鋼板製の外包材で包み込み、その芯材を包み込んだ外包材の内部空間が真空状態とされた真空断熱パネルであって、
前記芯材が含有する水分量が0.05重量%以下で、
前記外包材の内部空間側となる面の表面粗さRaが0.2μm以下であり、
前記芯材を包み込んだ外包材の内部空間の圧力が1Pa以下であり、
外包材の周縁部を溶接により封止したことを特徴とする建築物用真空断熱パネル。
A vacuum insulation panel in which a core material made of inorganic fibers is wrapped in a stainless steel outer packaging material, and the inner space of the outer packaging material in which the core material is wrapped is in a vacuum state,
The amount of water contained in the core material is 0.05% by weight or less,
The surface roughness Ra of the surface on the inner space side of the outer packaging material is 0.2 μm or less,
The pressure of the inner space of the outer packaging material enclosing the core material is 1 Pa or less,
A vacuum heat insulating panel for buildings, wherein the outer periphery of the outer packaging material is sealed by welding.
JP2016171878A 2016-09-02 2016-09-02 Vacuum heat insulation panel for structure Pending JP2018035922A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016171878A JP2018035922A (en) 2016-09-02 2016-09-02 Vacuum heat insulation panel for structure
US16/329,851 US20190242120A1 (en) 2016-09-02 2017-09-01 Vacuum insulation panel
CN201780053401.5A CN109844392B (en) 2016-09-02 2017-09-01 Vacuum heat insulation plate
PCT/JP2017/031619 WO2018043712A1 (en) 2016-09-02 2017-09-01 Vacuum insulation panel
EP17846715.5A EP3508771B1 (en) 2016-09-02 2017-09-01 Vacuum insulation panel
SI201731150T SI3508771T1 (en) 2016-09-02 2017-09-01 Vacuum insulation panel
KR1020197009478A KR102356138B1 (en) 2016-09-02 2017-09-01 vacuum insulation panel
CA3035326A CA3035326A1 (en) 2016-09-02 2017-09-01 Vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171878A JP2018035922A (en) 2016-09-02 2016-09-02 Vacuum heat insulation panel for structure

Publications (1)

Publication Number Publication Date
JP2018035922A true JP2018035922A (en) 2018-03-08

Family

ID=61565748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171878A Pending JP2018035922A (en) 2016-09-02 2016-09-02 Vacuum heat insulation panel for structure

Country Status (1)

Country Link
JP (1) JP2018035922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214138A (en) * 2018-06-11 2019-12-19 日鉄ステンレス株式会社 Multi-layer stainless steel foil
JP2020133656A (en) * 2019-02-13 2020-08-31 日鉄日新製鋼株式会社 Vacuum heat insulating panel
JP2022040091A (en) * 2020-08-27 2022-03-10 ファ-クー-テック アクチェンゲゼルシャフト Temperature-stable vacuum insulation element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363754A (en) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd Thin film manufacturing apparatus, and manufacturing method thereof
JP2015158261A (en) * 2014-02-25 2015-09-03 日新製鋼株式会社 Manufacturing method of vacuum heat insulation panel
WO2016006186A1 (en) * 2014-07-08 2016-01-14 パナソニックIpマネジメント株式会社 Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall
JP2016517944A (en) * 2013-05-07 2016-06-20 セイント−ゴバイン イソバー Method for manufacturing a vacuum insulation panel
JP2017053400A (en) * 2015-09-08 2017-03-16 日新製鋼株式会社 Manufacturing method and manufacturing device of vacuum heat insulation panel, and vacuum heat insulation panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363754A (en) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd Thin film manufacturing apparatus, and manufacturing method thereof
JP2016517944A (en) * 2013-05-07 2016-06-20 セイント−ゴバイン イソバー Method for manufacturing a vacuum insulation panel
JP2015158261A (en) * 2014-02-25 2015-09-03 日新製鋼株式会社 Manufacturing method of vacuum heat insulation panel
WO2016006186A1 (en) * 2014-07-08 2016-01-14 パナソニックIpマネジメント株式会社 Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall
JP2017053400A (en) * 2015-09-08 2017-03-16 日新製鋼株式会社 Manufacturing method and manufacturing device of vacuum heat insulation panel, and vacuum heat insulation panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214138A (en) * 2018-06-11 2019-12-19 日鉄ステンレス株式会社 Multi-layer stainless steel foil
JP2020133656A (en) * 2019-02-13 2020-08-31 日鉄日新製鋼株式会社 Vacuum heat insulating panel
JP7215202B2 (en) 2019-02-13 2023-01-31 日本製鉄株式会社 vacuum insulation panel
JP2022040091A (en) * 2020-08-27 2022-03-10 ファ-クー-テック アクチェンゲゼルシャフト Temperature-stable vacuum insulation element

Similar Documents

Publication Publication Date Title
JP6385319B2 (en) Vacuum insulating panel manufacturing method and manufacturing apparatus, and vacuum insulating panel
US10710196B2 (en) Vacuum insulation panel manufacturing method, and vacuum insulation panel
JP2018035922A (en) Vacuum heat insulation panel for structure
JP2008249003A (en) Vacuum insulation panel and appliance provided with it
US10632564B2 (en) Vacuum insulation panel manufacturing device
JP2010060048A (en) Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
US2700633A (en) Insulating structure and method of forming same
JP2014505846A (en) Vacuum insulation material including inner bag and method of manufacturing the same
KR102356138B1 (en) vacuum insulation panel
JP6285749B2 (en) Manufacturing method of vacuum insulation panel
JPWO2011145481A1 (en) Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
GB2121159A (en) A heat insulating device
JP2018035924A (en) Vacuum heat insulation panel for electrical equipment
JP2018035923A (en) Vacuum heat insulation panel for automobile
JP2003269687A (en) Evacuated heat insulating panel
JP2013170652A (en) Method of manufacturing vacuum heat insulating panel
JP2020133655A (en) Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel
JP6508162B2 (en) Method of manufacturing vacuum insulation panel
JP6598715B2 (en) Vacuum insulation panel and method for manufacturing the same, gas adsorption pack
JP6301986B2 (en) Vacuum insulation panel and method for manufacturing the same
CN204843256U (en) Fixed frock of vacuum welding solder
KR20120013067A (en) Vacuum insulation panel comprising less than 2 folded fin and method of manufacturing thereof
JP2015096743A (en) Manufacturing method of vacuum insulation panel
JP2014152847A (en) Manufacturing method of vacuum heat insulation panel
JP2013024372A (en) Vacuum heat insulating panel, vacuum heat insulating structure and heat insulating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512