JP2010091105A - Vacuum heat insulation material - Google Patents
Vacuum heat insulation material Download PDFInfo
- Publication number
- JP2010091105A JP2010091105A JP2008298976A JP2008298976A JP2010091105A JP 2010091105 A JP2010091105 A JP 2010091105A JP 2008298976 A JP2008298976 A JP 2008298976A JP 2008298976 A JP2008298976 A JP 2008298976A JP 2010091105 A JP2010091105 A JP 2010091105A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thin
- heat insulating
- sealing
- insulating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02B80/12—
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
本発明は、真空断熱材に関するものである。 The present invention relates to a vacuum heat insulating material.
近年、深刻な地球環境問題である温暖化への対策として、家電製品や設備機器並びに住宅などの建物の省エネルギー化を推進する動きが活発となっており、優れた断熱効果を長期的に有する真空断熱材が、これまで以上に求められている。 In recent years, as a measure against global warming, which is a serious global environmental problem, there has been an active movement to promote energy conservation in home appliances, equipment, and buildings such as houses, and a vacuum that has an excellent thermal insulation effect over the long term. Insulation is more demanded than ever.
真空断熱材とは、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外被材で覆い、外被材の内部を減圧密封したものである。真空断熱材は、その内空間を高真空に保ち、気相を伝わる熱量を出来る限り小さくすることにより、高い断熱効果の発現を可能としたものである。よって、その優れた断熱効果を長期にわたって発揮するためには、真空断熱材内部の高い真空度を維持する技術が極めて重要となる。 The vacuum heat insulating material is a material in which a core material having fine voids such as glass wool or silica powder is covered with a jacket material having gas barrier properties, and the inside of the jacket material is sealed under reduced pressure. A vacuum heat insulating material enables expression of a high heat insulating effect by keeping the inner space in a high vacuum and reducing the amount of heat transmitted through the gas phase as much as possible. Therefore, a technique for maintaining a high degree of vacuum inside the vacuum heat insulating material is extremely important in order to exhibit the excellent heat insulating effect over a long period of time.
真空断熱材内部の真空度を維持する方法として、気体吸着剤や水分吸着剤を芯材とともに真空断熱材内部に減圧密封する方法が、一般的に用いられている。これによって、真空包装後に芯材の微細空隙から真空断熱材中へ放出される残存水分や、外気から外被材を透過して経時的に真空断熱材内へ浸透する水蒸気や酸素等の大気ガスを除去することが可能となる。 As a method for maintaining the degree of vacuum inside the vacuum heat insulating material, a method in which a gas adsorbent or a moisture adsorbent is sealed under reduced pressure inside the vacuum heat insulating material together with the core material is generally used. As a result, residual moisture released into the vacuum heat insulating material from the minute gaps in the core material after vacuum packaging, or atmospheric gases such as water vapor and oxygen that permeate through the jacket material from the outside air and permeate into the vacuum heat insulating material over time. Can be removed.
しかし、現存の吸着剤の吸着能力を考慮すると、高い断熱効果を長期的に維持する真空断熱材を提供するには、吸着剤の使用だけでは不十分であるといえ、真空断熱材内部へ浸透する大気ガス量自体を抑制する手段を講じる必要がある。 However, considering the adsorption capacity of existing adsorbents, it can be said that the use of adsorbents alone is insufficient to provide a vacuum insulation material that maintains a high thermal insulation effect over the long term. It is necessary to take measures to control the amount of atmospheric gas that is generated.
ここで、外気から真空断熱材内部へ侵入するガス経路について述べる。 Here, a gas path entering from the outside air into the vacuum heat insulating material will be described.
真空断熱材は、通常、2枚の長方形の外被材を重ね合わせて外被材の3辺の周縁近傍の外周部同士を熱溶着して作製した3方シール袋内へ3方シール袋の開口部から芯材を挿入し、真空包装機を用いて外被材の袋内部を真空引きしながら、3方シール袋の開口部を熱溶着することによって製造される。 The vacuum heat insulating material is usually a three-way sealing bag that is formed by superposing two rectangular outer covering materials and heat-sealing the outer peripheral portions in the vicinity of the three sides of the outer covering material. It is manufactured by inserting the core material from the opening and thermally welding the opening of the three-side seal bag while evacuating the inside of the bag of the jacket material using a vacuum packaging machine.
外被材には、通常、最内層に低密度ポリエチレンなどの熱可塑性樹脂からなる熱溶着層、中間層にアルミニウム箔やアルミニウム蒸着フィルムなどのバリア性を有する材料からなるガスバリア層、そして最外層にはナイロンフィルムやポリエチレンテレフタレートフィルムなどの表面保護の役割を果たす表面保護層を、接着剤を介して積層したラミネートフィルムを用いる。 The outer cover material is usually a heat-welded layer made of a thermoplastic resin such as low density polyethylene in the innermost layer, a gas barrier layer made of a material having a barrier property such as an aluminum foil or an aluminum vapor deposited film in the intermediate layer, and an outermost layer in the outer layer. Uses a laminated film obtained by laminating a surface protective layer such as a nylon film or a polyethylene terephthalate film through an adhesive.
この場合、外気から真空断熱材内部へ透過する大気ガスは、外被材表面のアルミニウム箔のピンホールや蒸着層の隙間などを透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分との2つに分類される。 In this case, the atmospheric gas that permeates from the outside air into the vacuum heat insulating material is a component that permeates through the pinholes of the aluminum foil on the surface of the jacket material or the gaps between the vapor deposition layers, and the heat-welded layer on the edge surface of the jacket material. Are classified into two types, that is, a component that penetrates from the exposed portion to the inside through the sealing portion.
このうち、熱溶着層を構成している熱可塑性樹脂は、ガスバリア層と比べると気体透過度および透湿度が極めて高いことから、真空断熱材内部へ経時的に侵入する大気ガス量のうち、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過したものが大半を占める。 Of these, the thermoplastic resin constituting the heat-welded layer has extremely high gas permeability and moisture permeability compared to the gas barrier layer. Most of the material is transmitted through the sealing portion to the inside from the exposed portion of the heat-welded layer on the end surface of the peripheral edge of the workpiece.
よって、長期にわたって優れた断熱性能を有する真空断熱材の提供には、外被材周縁の端面の熱溶着層が露出している部分からの大気ガス浸透量抑制が不可欠であり、その効果的な手法が課題とされてきた。 Therefore, in order to provide a vacuum heat insulating material having excellent heat insulating performance over a long period of time, it is indispensable to suppress the amount of atmospheric gas permeation from the portion where the heat-welded layer on the edge surface of the outer jacket material is exposed. Techniques have been a challenge.
この課題に対して、封止部における熱溶着層の一部を薄肉にした薄肉部を設けた真空断熱材が報告されている(例えば、特許文献1参照)。 In response to this problem, there has been reported a vacuum heat insulating material provided with a thin portion in which a part of the heat-welded layer in the sealing portion is thin (see, for example, Patent Document 1).
図9は、特許文献1に記載された従来の真空断熱材の断面図である。 FIG. 9 is a cross-sectional view of a conventional vacuum heat insulating material described in Patent Document 1.
図9に示すように、真空断熱材101は、ガスバリア層102と熱溶着層103とを有する外被材104の封止部分の熱溶着層103の一部が薄肉になっている。この薄肉部105は、図10に示すような封止冶具106を用いて、封止部分における外被材104の一部を特に強く加圧することにより形成されたもので、外被材104の全周を取り巻くように形成されている。 As shown in FIG. 9, in the vacuum heat insulating material 101, a part of the heat welding layer 103 in the sealing portion of the outer covering material 104 having the gas barrier layer 102 and the heat welding layer 103 is thin. The thin-walled portion 105 is formed by using a sealing jig 106 as shown in FIG. 10 to apply a particularly strong pressure to a portion of the jacket material 104 at the sealed portion. It is formed so as to surround the circumference.
従来の構成は、薄肉部105によって外被材周縁の端面から侵入するガスの透過抵抗が増大し、内部へのガス侵入を抑制することで長期に渡って優れた断熱性能を発揮できるとされている。
上記特許文献1の構成では、薄肉部105における外被材104の詳細な形状については述べられていないものの、薄肉部105に、図9および図10に示されるような角部107を有している場合は、真空断熱材101製造時および取り扱い時に、角部107において、外被材104、特にガスバリア層102にクラックが発生する。このクラックから、経年的に大気ガス成分の真空断熱材101内部への侵入が促進されるという課題があった。 In the configuration of Patent Document 1, although the detailed shape of the jacket material 104 in the thin wall portion 105 is not described, the thin wall portion 105 has corner portions 107 as shown in FIGS. 9 and 10. When the vacuum heat insulating material 101 is manufactured and handled, cracks occur in the outer cover material 104, particularly the gas barrier layer 102, at the corner portion 107. From this crack, there was a problem that the penetration of atmospheric gas components into the vacuum heat insulating material 101 was promoted over time.
ここで、角部107とは、封止部を外被材104の周縁に垂直な平面で切断した場合の断面を見た時、薄肉部105の境界及びその近傍に生じる、熱溶着層103の厚み変化に伴い形成される角形状となった部位(曲率が大きい部位)を指す。 Here, the corner portion 107 refers to the thermal weld layer 103 generated at and near the boundary of the thin portion 105 when the cross section when the sealing portion is cut by a plane perpendicular to the periphery of the outer covering material 104 is seen. This refers to a square-shaped part (a part having a large curvature) formed with a change in thickness.
本発明は、上記従来の課題を解決するものであり、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and it is excellent for a long period of time, in which the occurrence of cracks and breakage of the sealed portion are extremely unlikely to occur in and near the thin portion of the heat-welded layer provided in the sealed portion. It aims at providing the vacuum heat insulating material which maintains heat insulation performance.
上記目的を達成するために、本発明の真空断熱材は、熱溶着層同士が対向する2枚の外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されており、前記封止部の前記熱溶着層は両面に他の層との境界面を有し、前記凹部の一方の前記境界面のうねりの波高が、前記凹部の他方の前記境界面のうねりの波高よりも大きく、前記凹部の一方の前記境界面の前記熱溶着層側に凹となっている部分の最深部と、前記凹部の他方の前記境界面の前記熱溶着層側に凹となっている部分の最深部とが対向していないことを特徴とする。 In order to achieve the above-described object, the vacuum heat insulating material of the present invention includes two jacket materials that cover the core material by sealing the core material under reduced pressure between the two jacket materials facing the heat-welded layers. In the vacuum heat insulating material in which the outer peripheral portions in the vicinity of the periphery of the outer periphery are thermally welded, a cross section when at least a part of the sealing portion in which the outer peripheral portions of the jacket material are thermally welded is cut along a plane perpendicular to the peripheral The heat-welded layer located in the sealing portion has a recess, and a thin-walled portion where the thickness of the heat-welded layer is thinner than the peripheral portion of the deepest portion is formed in the deepest portion of the recess. The heat-welded layer of the sealing portion has a boundary surface with another layer on both sides, and the wave height of the undulation of one of the boundary surfaces of the concave portion is that of the other boundary surface of the concave portion. The deepest part of the concave portion on the thermal welding layer side of one of the boundary surfaces of the concave portion, which is larger than the wave height of the undulation. When, characterized in that the deepest portion of the part which is concave to the heat welding layer side of the other of the boundary surfaces of the recess does not face.
上記構成において、まず、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。 In the above configuration, first, when looking at a cross section when cutting at least a part of the sealing portion in which the peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral portion, the heat-welding layer of the sealing portion By providing a thin portion with a locally thin thickness, the permeation area of gas and moisture entering from the end surface of the outer periphery of the outer cover material is reduced in the thin portion of the heat-welded layer, and the permeation resistance of gas and moisture is increased. In addition, since the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate over time is suppressed, and excellent heat insulation performance can be exhibited over a long period of time.
また、薄肉部及びその近傍では、熱溶着層よりも外層側にある外被材が、熱溶着層の形状に沿って歪曲することによる応力を受け、強度が低下するが、凹部の一方の境界面のうねりの波高を、凹部の他方の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側の外被材の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側の外被材と比べて僅かとなり、外被材の封止部では、強度低下が小さい外被材がもう一方の外被材を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部の破断が極めて起きにくくなる。 Further, in the thin wall portion and the vicinity thereof, the outer cover material on the outer layer side from the heat welding layer receives stress due to distortion along the shape of the heat welding layer, and the strength is reduced, but one boundary of the concave portion By making the wave height of the waviness of the surface larger than the wave height of the waviness of the other boundary surface of the recess, the strength reduction of the outer shell material on the boundary surface side having a relatively small wave height is reduced relative to the other. In comparison with the outer shell material on the boundary surface side having a large wave height, the outer shell material having a small strength decrease supports the other outer shell material at the sealing portion of the outer shell material. Thus, cracks and breakage of the sealed portion are hardly caused when an external force is applied.
なお、波高とは、凹部の周辺部に位置する境界面と、凹部の最深部を含む境界面と平行な面との距離を指す。 The wave height refers to the distance between the boundary surface located in the peripheral portion of the recess and a plane parallel to the boundary surface including the deepest portion of the recess.
また、薄肉部があると、熱溶着層の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材の強度低下が起こるが、凹部の一方の境界面の熱溶着層側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部の強度低下が抑制され、封止部が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層のクラック発生の抑制効果もさらに高くなる。 In addition, if there is a thin portion, not only the thickness of the heat-welded layer is thin and the strength is lowered, but also the strength of the outer jacket material is reduced due to distortion because the deepest portion of the concave portion is located. The deepest part of the part that is concave on the side of the thermal welding layer of the boundary surface and the deepest part of the part that is concave on the side of the thermal welding layer of the other boundary surface of the recess are not facing each other, A decrease in strength of the sealing portion where the deepest portion of the concave portion is located is suppressed, and damage or breakage when the sealing portion receives an external force is extremely difficult to occur. At the same time, the effect of suppressing the occurrence of cracks in the gas barrier layer in the recesses is further enhanced.
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。 As described above, it is possible to provide a vacuum heat insulating material that maintains the excellent heat insulating performance for a long period of time, in which the generation of cracks and the breakage of the sealing portion are extremely unlikely to occur in the thin portion of the heat welding layer provided in the sealing portion and in the vicinity thereof.
本発明によれば、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、外被材周縁の端面から侵入する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。また、凹部の一方の境界面のうねりの波高を、凹部の他方の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側の外被材の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側の外被材と比べて僅かとなり、外被材の封止部では、強度低下が小さい外被材がもう一方の外被材を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部の破断が極めて起きにくくなる。また、凹部の一方の境界面の熱溶着層側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部の強度低下が抑制され、封止部が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層のクラック発生の抑制効果もさらに高くなる。 According to the present invention, by providing the thin portion where the thickness of the heat-welding layer of the sealing portion is locally thin, the gas and moisture amount entering from the end face of the outer periphery of the outer jacket material are suppressed, and the thermal insulation layer is excellent over a long period of time. Insulation performance can be demonstrated. In addition, by making the wave height of the undulation of one boundary surface of the recess larger than the wave height of the undulation of the other boundary surface of the recess, the strength of the outer cover material on the boundary surface side having a relatively small undulation is reduced. Is slightly smaller than the other envelope material on the boundary surface side having a relatively large wave height, and in the sealing portion of the outer envelope material, the outer envelope material having a small strength reduction is the other outer envelope material. The rigidity is maintained in the form of supporting the cracks, and the occurrence of cracks and the breakage of the sealing portion when receiving external force are extremely difficult. In addition, the deepest portion of the concave portion on the side of the thermal welding layer on one boundary surface of the concave portion and the deepest portion of the concave portion on the side of the thermal bonding layer on the other boundary surface of the concave portion face each other. As a result, a decrease in strength of the sealing portion where the deepest portion of the concave portion is located is suppressed, and damage or breakage when the sealing portion receives an external force is extremely difficult to occur. At the same time, the effect of suppressing the occurrence of cracks in the gas barrier layer in the recesses is further enhanced.
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。 As described above, it is possible to provide a vacuum heat insulating material that maintains the excellent heat insulating performance for a long period of time, in which the generation of cracks and the breakage of the sealing portion are extremely unlikely to occur in the thin portion of the heat welding layer provided in the sealing portion and in the vicinity thereof.
請求項1に記載の真空断熱材の発明は、熱溶着層同士が対向する2枚の外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されており、前記封止部の前記熱溶着層は両面に他の層との境界面を有し、前記凹部の一方の前記境界面のうねりの波高が、前記凹部の他方の前記境界面のうねりの波高よりも大きく、前記凹部の一方の前記境界面の前記熱溶着層側に凹となっている部分の最深部と、前記凹部の他方の前記境界面の前記熱溶着層側に凹となっている部分の最深部とが対向していないことを特徴とする。 In the vacuum heat insulating material according to claim 1, the core material is sealed under reduced pressure between the two jacket materials facing each other with the heat-welding layers, and the vicinity of the periphery of the two jacket materials covering the core material In the vacuum heat insulating material in which the outer peripheral portions of the outer cover members were heat-welded, the cross-section when the outer peripheral portions of the jacket material were cut at a part perpendicular to the peripheral edge was cut at least part of the sealing portion. The heat-welded layer located in the sealing portion has a recess, and a thin-walled portion is formed in the deepest portion of the recess where the thickness of the heat-welded layer is thinner than the peripheral portion of the deepest portion. The thermal welding layer of the sealing portion has a boundary surface with another layer on both surfaces, and the wave height of the undulation of one of the boundary surfaces of the concave portion is the wave height of the undulation of the other boundary surface of the concave portion. The deepest portion of the concave portion on the thermal welding layer side of one of the boundary surfaces of the concave portion, and the concave portion And deepest characterized by not facing the portion of the other of the heat welding layer side of the boundary surface has a concave.
上記構成において、まず、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。 In the above configuration, first, when looking at a cross section when cutting at least a part of the sealing portion in which the peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral portion, the heat-welding layer of the sealing portion By providing a thin portion with a locally thin thickness, the permeation area of gas and moisture entering from the end surface of the outer periphery of the outer cover material is reduced in the thin portion of the heat-welded layer, and the permeation resistance of gas and moisture is increased. In addition, since the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate over time is suppressed, and excellent heat insulation performance can be exhibited over a long period of time.
ここで、当然ながら、熱溶着層の薄肉部及びその近傍に限らず、封止部全体において角部を形成していないことが望ましい。 Here, as a matter of course, it is desirable that corner portions are not formed in the whole sealing portion, not limited to the thin-walled portion and the vicinity thereof.
また、薄肉部及びその近傍では、熱溶着層よりも外層側にある外被材が、熱溶着層の形状に沿って歪曲することによる応力を受け、強度が低下するが、凹部の一方の境界面のうねりの波高を、凹部の他方の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側の外被材の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側の外被材と比べて僅かとなり、外被材の封止部では、強度低下が小さい外被材がもう一方の外被材を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部の破断が極めて起きにくくなる。 Further, in the thin wall portion and the vicinity thereof, the outer cover material on the outer layer side from the heat welding layer receives stress due to distortion along the shape of the heat welding layer, and the strength is reduced, but one boundary of the concave portion By making the wave height of the waviness of the surface larger than the wave height of the waviness of the other boundary surface of the recess, the strength reduction of the outer shell material on the boundary surface side having a relatively small wave height is reduced relative to the other. In comparison with the outer shell material on the boundary surface side having a large wave height, the outer shell material having a small strength decrease supports the other outer shell material at the sealing portion of the outer shell material. Thus, cracks and breakage of the sealed portion are hardly caused when an external force is applied.
また、薄肉部があると、熱溶着層の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材の強度低下が起こるが、凹部の一方の境界面の熱溶着層側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部の強度低下が抑制され、封止部が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層のクラック発生の抑制効果もさらに高くなる。 In addition, if there is a thin portion, not only the thickness of the heat-welded layer is thin and the strength is lowered, but also the strength of the outer jacket material is reduced due to distortion because the deepest portion of the concave portion is located. The deepest part of the part that is concave on the side of the thermal welding layer of the boundary surface and the deepest part of the part that is concave on the side of the thermal welding layer of the other boundary surface of the recess are not facing each other, A decrease in strength of the sealing portion where the deepest portion of the concave portion is located is suppressed, and damage or breakage when the sealing portion receives an external force is extremely difficult to occur. At the same time, the effect of suppressing the occurrence of cracks in the gas barrier layer in the recesses is further enhanced.
なお、凹部とは、外被材の外周部同士が熱溶着された封止部の少なくとも一部を外被材の周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層が凹んでいる部分であり、熱溶着層と熱溶着層の外側に隣接する他の層との境界線(境界面)が熱溶着層側へ凸となる曲線部を指す。 In addition, a recessed part is a sealing part when seeing the cross section at the time of cut | disconnecting at least one part of the sealing part by which the outer peripheral parts of the jacket material were heat-welded by a plane perpendicular | vertical to the periphery of a jacket material. This is a portion where the heat-welded layer is recessed, and indicates a curved portion where a boundary line (boundary surface) between the heat-welded layer and another layer adjacent to the outside of the heat-welded layer is convex toward the heat-welded layer.
なお、凹部の最深部とは、凹部を形成している点群のうち、対向する境界面上の点との間に位置する熱溶着層の厚みが、最も薄い箇所に位置する点部を指す。 In addition, the deepest part of a recessed part refers to the point part located in the location where the thickness of the heat welding layer located between the points on the opposing boundary surface is the thinnest among the point groups which form the recessed part. .
なお、境界面とは、封止部において、熱溶着層と、熱溶着層と隣接する外被材が有する他層との境界面を指す。 Note that the boundary surface refers to a boundary surface between the heat-welded layer and another layer included in the jacket material adjacent to the heat-welded layer in the sealing portion.
なお、波高とは、凹部の周辺部に位置する境界面と、凹部の最深部を含む境界面と平行な面との距離を指す。 The wave height refers to the distance between the boundary surface located in the peripheral portion of the recess and a plane parallel to the boundary surface including the deepest portion of the recess.
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。 As described above, it is possible to provide a vacuum heat insulating material that maintains the excellent heat insulating performance for a long period of time, in which the generation of cracks and the breakage of the sealing portion are extremely unlikely to occur in the thin portion of the heat welding layer provided in the sealing portion and in the vicinity thereof.
加えて、外被材端面から封止部の熱溶着層を透過するガス侵入量が抑制されることから、薄肉部形成による封止部の透過抵抗増大分と相殺できる程度まで、外被材周縁に形成する封止部の幅を短くしても断熱性能が低下しないことから、同一寸法の芯材を有する真空断熱材に使用する外被材の寸法を小さくすることができ、材料費削減の効果がある。 In addition, since the gas intrusion amount that permeates through the heat-welded layer of the sealing portion from the end surface of the outer covering material is suppressed, the outer periphery of the outer covering material can be offset to the extent that the increase in the permeation resistance of the sealing portion due to the formation of the thin portion Even if the width of the sealing part to be formed is shortened, the heat insulation performance does not deteriorate, so the size of the jacket material used for the vacuum heat insulating material having the same core material can be reduced, and the material cost can be reduced. effective.
次に真空断熱材の構成材料について説明する。 Next, constituent materials of the vacuum heat insulating material will be described.
外被材を構成する熱溶着層としては、特に指定されるものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、中密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂あるいはそれらの混合フィルム等が使用できる。 The heat welding layer constituting the jacket material is not particularly specified, but a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a medium density polyethylene film, a polypropylene film, a polyacrylonitrile film, etc. These thermoplastic resins or mixed films thereof can be used.
ここで、2枚の外被材が各々有する熱溶着層の厚みは、同一であっても異なっていてもよい。 Here, the thickness of the heat-welded layer that each of the two jacket materials has may be the same or different.
また、熱溶着層と隣接する外被材が有する他層の構成材料は特に指定するものではないが、本発明の効果を最大限に高めるために、金属箔、もしくは、高いガスバリア性を有するフィルムを用いることが望ましい。 In addition, the constituent material of the other layer of the jacket material adjacent to the heat-welded layer is not particularly specified, but in order to maximize the effects of the present invention, a metal foil or a film having a high gas barrier property It is desirable to use
外被材に使用するラミネート接着剤については、特に指定するものではないが、2液硬化型ウレタン接着剤等の従来公知のラミネート用接着剤もしくはエポキシ系樹脂接着剤が使用できる。 The laminate adhesive used for the jacket material is not particularly specified, and conventionally known laminate adhesives such as two-component curable urethane adhesives or epoxy resin adhesives can be used.
また、2枚の外被材の層構成は、異なっていてもよい。 Further, the layer configuration of the two jacket materials may be different.
芯材は、その種類について特に指定するものではないが、気層比率90%前後の多孔体であり、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの連続気泡体や、グラスウールやロックウール、アルミナ繊維、シリカアルミナ繊維などの繊維体、パーライトや湿式シリカ、乾式シリカなどの粉体など、従来公知の芯材が利用できる。 The core material is not particularly specified for its type, but is a porous body having a gas layer ratio of about 90%, and is open-celled such as urethane foam, styrene foam, phenol foam, glass wool, rock wool, alumina fiber, Conventionally known core materials such as fiber bodies such as silica-alumina fibers, powders such as pearlite, wet silica, and dry silica can be used.
請求項2に記載の真空断熱材の発明は、請求項1に記載の発明において、前記封止部に前記薄肉部を少なくとも2個以上有していることを特徴としている。 According to a second aspect of the present invention, the vacuum heat insulating material according to the first aspect is characterized in that the sealing portion has at least two thin portions.
薄肉部においては、封止部の他箇所に比べて熱溶着層の厚みが薄く、シール強度が低下することにより、例えば、製造工程において芯材物質であるガラス繊維やシリカ粉末等を挟み込んだ状態で外被材が熱溶着された場合、薄肉部において熱溶着不良が発生することが懸念される。 In the thin-walled portion, the thickness of the heat-welded layer is thin compared to other portions of the sealing portion, and the sealing strength is reduced, for example, a state in which glass fiber or silica powder as a core material is sandwiched in the manufacturing process When the outer cover material is heat-welded, there is a concern that a heat-welding failure may occur in the thin portion.
熱溶着不良が発生した箇所では樹脂が存在しないため、ガス侵入抑制効果が低下する。この対策として、少なくとも2個以上の薄肉部を設けることにより、熱溶着不良に起因する真空断熱材内部への気体および水分侵入促進の影響が緩和される。 Since there is no resin at the location where the thermal welding failure occurs, the effect of suppressing gas intrusion decreases. As a countermeasure, by providing at least two or more thin-walled portions, the influence of gas and moisture penetration into the vacuum heat insulating material due to poor heat welding is mitigated.
特に、芯材としてガラス繊維を用いた場合は、挟雑物として熱溶着の際に挟み込まれた芯材物質が加熱変形し、薄肉部にスルーホールを形成することが多々あることから、本発明の効果がより顕著となる。 In particular, when glass fiber is used as the core material, the core material sandwiched during the thermal welding as an interstitial material is often heat-deformed and forms a through hole in the thin portion. The effect becomes more prominent.
また、薄肉部においては、外被材の強度が周囲部よりも低くなり、外力を受けた際の荷重集中が懸念されるが、薄肉部が複数個存在することにより、外力の荷重が分散され、薄肉部におけるクラックの発生や封止部の破断が極めて起きにくくなる。 In addition, in the thin part, the strength of the jacket material is lower than the surrounding part, and there is a concern about load concentration when receiving external force, but the load of external force is dispersed due to the presence of multiple thin parts. In addition, generation of cracks in the thin-walled portion and breakage of the sealing portion are extremely difficult to occur.
また、薄肉部を複数個有する場合は、薄肉部が1個のみの場合と比べて、薄肉部における熱溶着層の厚みを増加させても同一の効果が得られるため、薄肉部における外被材強度やシール強度低下が緩和され、薄肉部におけるクラック発生や封止部の破断のリスクが低減される。 In addition, in the case where a plurality of thin portions are provided, the same effect can be obtained even if the thickness of the heat-welded layer in the thin portion is increased compared to the case where there is only one thin portion. The decrease in strength and seal strength is alleviated, and the risk of cracking in the thin-walled portion and breaking of the sealed portion is reduced.
さらに、2枚の外被材が、ガスバリア層として、ともに金属箔層を有している場合は、封止部における2層の金属箔の距離の接近が緩和されるため、ヒートリークによる熱伝導率の増加が極めて起きにくくなる。 Further, when the two outer cover materials have both metal foil layers as gas barrier layers, the proximity of the distance between the two metal foil layers in the sealing portion is alleviated. The increase in rate is extremely difficult to occur.
このような観点から、薄肉部の個数は多い方がよく、封止部の幅に依るものの、通常4〜6個程度がより好ましいと考えられる。 From this point of view, it is better that the number of thin-walled portions is larger, and it is considered that about 4 to 6 are usually more preferable although it depends on the width of the sealing portion.
請求項3に記載の真空断熱材の発明は、請求項2に記載の発明において、連続する前記封止部に形成された隣り合う前記薄肉部同士の間に位置する封止部の少なくとも一部の前記熱溶着層の厚みが、2枚の前記外被材の非封止部が有する前記熱溶着層の厚みの和よりも厚くなっていることを特徴としている。 The invention for a vacuum heat insulating material according to claim 3 is the invention according to claim 2, wherein at least a part of the sealing portion located between the adjacent thin portions formed in the continuous sealing portion. The thickness of the heat-welded layer is greater than the sum of the thicknesses of the heat-welded layers of the two unsealed portions of the jacket material.
通常、薄肉部を設けない場合、封止部の厚みは、2枚の外被材の非封止部が有する熱溶着層の厚みの総和に略等しくなる。 Usually, when the thin portion is not provided, the thickness of the sealing portion is substantially equal to the sum of the thicknesses of the heat welding layers of the non-sealing portions of the two jacket materials.
連続する封止部に複数個の薄肉部を形成する際、各薄肉部の位置にあった熱溶着層を構成していた樹脂は、封止部および封止部外へ移動する。 When a plurality of thin portions are formed in the continuous sealing portion, the resin constituting the heat-welded layer at the position of each thin portion moves out of the sealing portion and the sealing portion.
連続する封止部に形成された隣り合う薄肉部同士の間に位置する封止部の厚みが、2枚の外被材の非封止部が有する熱溶着層の厚みの総和よりも薄いもしくは略等しい場合は、樹脂の移動箇所が設けられていないため、樹脂の流動による負荷により、薄肉部周辺の封止部に位置する外被材の熱溶着層に隣接する他層を破り、樹脂が外側へ流出するリスクが高くなる。 The thickness of the sealing part located between adjacent thin parts formed in the continuous sealing part is thinner than the sum of the thicknesses of the heat-sealing layers of the two non-sealing parts of the jacket material or In the case of approximately equal, since the resin moving portion is not provided, the load caused by the flow of the resin breaks the other layer adjacent to the heat-welded layer of the outer cover material located in the sealing portion around the thin-walled portion, and the resin The risk of spilling out increases.
連続する封止部に設けた薄肉部同士の間に位置する封止部の少なくとも一部に、2枚の外被材の非封止部が有する熱溶着層の厚みの総和よりも厚くなるよう予め設定しておくことにより、樹脂の逃げ部が設けられているため、薄肉部同士の間に位置する封止部の外被材が受ける負荷が緩和され、外被材の破れを極めて起きにくくする。 At least a part of the sealing part located between the thin parts provided in the continuous sealing part so as to be thicker than the total thickness of the heat-welded layers of the two non-sealing parts of the jacket material By setting in advance, since the resin escape portion is provided, the load received by the outer cover material of the sealing portion located between the thin-walled portions is relieved, and the outer cover material is hardly broken. To do.
また、封止部と非封止部との境界位置と境界位置側に位置する薄肉部との間にも、2枚の外被材の非封止部が有する熱溶着層の厚みの総和よりも厚い封止部を設けておくことがより望ましい。 Also, from the sum of the thicknesses of the heat-welded layers of the two non-sealed portions of the outer cover material between the boundary position between the sealing portion and the non-sealing portion and the thin portion located on the boundary position side It is more desirable to provide a thicker sealing portion.
なお、外被材の非封止部とは、外被材がもう一方の外被材と熱溶着されていない箇所を指す。 In addition, the non-sealing part of a jacket material refers to the location where the jacket material is not heat-welded with the other jacket material.
請求項4に記載の真空断熱材の発明は、請求項1から3のいずれか一項に記載の発明において、前記芯材がガラス繊維からなることを特徴としている。 The invention of a vacuum heat insulating material according to a fourth aspect is characterized in that, in the invention according to any one of the first to third aspects, the core material is made of glass fiber.
芯材がガラス繊維である場合、ガラス繊維による真空断熱材内部から外被材への貫通ピンホールが発生しやすい。 When the core material is glass fiber, a penetrating pinhole from the inside of the vacuum heat insulating material to the jacket material due to the glass fiber is likely to occur.
通常、このピンホール発生を防止策として、真空断熱材内部に面する外被材の最内層にある熱溶着層の厚みを厚くすることが有効とされているが、熱溶着層の厚みを厚くすることにより封止部断面のガス侵入経路の面積が拡大するという懸念があった。 Usually, it is effective to increase the thickness of the heat welding layer in the innermost layer of the jacket material facing the inside of the vacuum heat insulating material as a measure for preventing the occurrence of this pinhole, but the thickness of the heat welding layer is increased. As a result, there is a concern that the area of the gas intrusion path in the cross section of the sealing portion is enlarged.
本発明の真空断熱材においては、薄肉部においてガス侵入量を制御できるために、熱溶着層の厚みを厚くしても、外被材周縁の端面から封止部を通って真空断熱材の内部に侵入する気体および水分侵入量の増加が抑制される。 In the vacuum heat insulating material of the present invention, since the gas intrusion amount can be controlled in the thin wall portion, even if the thickness of the heat welding layer is increased, the inside of the vacuum heat insulating material passes through the sealing portion from the end surface of the outer periphery of the jacket material. An increase in the amount of gas and moisture entering the water is suppressed.
請求項5に記載の真空断熱材の発明は、請求項1から4のいずれか一項に記載の発明において、前記外被材が金属箔層を有していることを特徴としている。 The invention of a vacuum heat insulating material according to a fifth aspect is characterized in that, in the invention according to any one of the first to fourth aspects, the covering material has a metal foil layer.
外被材にガスバリア性を付与するためのガスバリア層として、アルミニウム箔等の金属箔層を採用した場合、金属箔は、樹脂フィルムに金属原子や金属酸化物分子を蒸着したガスバリアフィルムと比べてガスバリア性は優れるものの伸縮性や追従性に劣るため、クラックやピンホールが発生しやすくなり、本発明による効果がより顕著に現れる。 When a metal foil layer such as an aluminum foil is used as a gas barrier layer for imparting a gas barrier property to the jacket material, the metal foil is more gas barrier than a gas barrier film in which metal atoms and metal oxide molecules are deposited on a resin film. Although it has excellent properties, it is inferior in stretchability and follow-up property, so that cracks and pinholes are likely to occur, and the effects of the present invention are more prominent.
以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略するものとする。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the above-described embodiments, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図、図2は、同実施の形態の真空断熱材の平面図、図3は、同実施の形態の真空断熱材における薄肉部を含む封止部の一例を示す断面図を示す。
(Embodiment 1)
1 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention, FIG. 2 is a plan view of the vacuum heat insulating material of the same embodiment, and FIG. 3 is a thin-walled portion of the vacuum heat insulating material of the same embodiment. Sectional drawing which shows an example of the sealing part containing is shown.
図1において、真空断熱材1は、芯材2と芯材2内に配置された吸着剤3と、同一寸法に裁断された長方形の2枚の外被材4よりなり、2枚の外被材4の間に芯材2と吸着剤3が減圧密封され、芯材2を覆う2枚の外被材4の周縁近傍の外周部同士が熱溶着されている。 In FIG. 1, a vacuum heat insulating material 1 includes a core material 2, an adsorbent 3 disposed in the core material 2, and two rectangular envelope materials 4 cut to the same dimensions. The core material 2 and the adsorbent 3 are sealed under reduced pressure between the materials 4, and the outer peripheral portions in the vicinity of the peripheral edges of the two jacket materials 4 covering the core material 2 are heat-welded.
2枚の外被材4は、外層側から、表面保護層5と、ガスバリア層6と、熱溶着層7とが積層されてなる。また、外被材4の周囲辺(外周部)には、外被材の有する熱溶着層同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に薄肉部9を有している。 The two jacket materials 4 are formed by laminating a surface protective layer 5, a gas barrier layer 6, and a heat welding layer 7 from the outer layer side. In addition, on the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers of the jacket material are melted and bonded together, and three of the four sides of the sealing portion 8. Has a thin portion 9.
ここで、薄肉部9周辺の封止部8の形状について説明する。 Here, the shape of the sealing part 8 around the thin part 9 will be described.
図3において、熱溶着層7とガスバリア層6との境界面が有する円弧状の凹部の波高の大きさには差が設けられており、波高の大きい凹部を有する境界面に設けられた凹部の最深部のみが薄肉部9に位置している。 In FIG. 3, there is a difference in the wave height of the arc-shaped concave portion provided on the boundary surface between the heat welding layer 7 and the gas barrier layer 6, and the concave portion provided on the boundary surface having the concave portion having a large wave height. Only the deepest part is located in the thin part 9.
次に、本実施の形態において、図1〜3に示す本実施の形態の真空断熱材1の製造方法の一例を述べる。 Next, in the present embodiment, an example of a method for manufacturing the vacuum heat insulating material 1 of the present embodiment shown in FIGS.
まず、2枚の外被材4の熱溶着層7同士が対向するように配置し、外被材4の周囲辺の3辺を熱溶着して袋状とする。この熱溶着時に、金属製の加熱圧縮冶具10(図4参照)とシリコンゴムヒーターとで2枚の外被材4を挟むように加熱圧縮し、図3に示す形状の封止部8を形成する。この後、袋内に芯材2と吸着剤3とを挿入し、袋内部を減圧しながら、外被材4の袋の開口部を熱溶着させて密封することにより真空断熱材1を得る。 First, it arrange | positions so that the heat-welding layers 7 of the two jacket | cover materials 4 may oppose, and the three sides of the circumference | surroundings of the jacket | cover_material 4 are heat-welded and it is set as a bag shape. At the time of this thermal welding, the metal heating compression jig 10 (see FIG. 4) and a silicon rubber heater are heated and compressed so as to sandwich the two outer cover materials 4 to form the sealing portion 8 having the shape shown in FIG. To do. Thereafter, the core material 2 and the adsorbent 3 are inserted into the bag, and the vacuum heat insulating material 1 is obtained by thermally welding and sealing the opening of the bag of the jacket material 4 while reducing the pressure inside the bag.
ここでは、加熱圧縮冶具10で熱溶着されていない2枚の外被材4を加熱圧縮することにより薄肉部9を含めた封止部8を同時に形成したが、2枚の外被材4周縁に通常の平板冶具を用いて薄肉部を有さない厚みが略均一な熱溶着層からなる封止部8を形成した後、封止部8上を加熱圧縮冶具10で加熱圧縮して薄肉部9を形成してもよい。 Here, the two outer jacket materials 4 that are not thermally welded by the heat compression jig 10 are heated and compressed to simultaneously form the sealing portion 8 including the thin wall portion 9. After forming the sealing portion 8 made of a heat-welded layer having a substantially uniform thickness without having a thin portion using a normal flat plate jig, the thin portion is heated and compressed on the sealing portion 8 with the heating compression jig 10. 9 may be formed.
また、4辺目の袋開口部を封止する際は、袋内部を減圧しながら密封するために、真空包装機を用いて封止する必要がある。 Moreover, when sealing the bag opening part of the 4th side, in order to seal, reducing the inside of a bag, it is necessary to seal using a vacuum packaging machine.
通常の真空包装機は、平板状のヒートシール冶具が備わっていることから、袋開口部のみは真空包装機を用いて厚みが略均一な熱溶着層からなる封止部8を形成した後に、加熱圧縮冶具10を用いて薄肉部9を形成してもよい。 Since a normal vacuum packaging machine is equipped with a flat plate heat seal jig, only the bag opening is formed using the vacuum packaging machine after forming the sealing portion 8 made of a heat welding layer having a substantially uniform thickness. You may form the thin part 9 using the heating compression jig 10. FIG.
本実施の形態の真空断熱材1は、熱溶着層7同士が対向する2枚の長方形の外被材4の間に芯材2と吸着剤3が減圧密封され芯材2を覆う2枚の外被材4の周縁近傍の3辺の外周部同士が熱溶着された真空断熱材1であり、外被材4の外周部同士が熱溶着された封止部8のうち3辺の封止部8を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が略円弧状の凹部を有しており、その凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されている。 The vacuum heat insulating material 1 according to the present embodiment includes two sheets of the core material 2 and the adsorbent 3 that are sealed under reduced pressure between the two rectangular outer cover materials 4 facing each other with the heat-welded layers 7 facing each other. 3 is a vacuum heat insulating material 1 in which the outer peripheral portions of the three sides in the vicinity of the periphery of the jacket material 4 are heat-welded, and the sealing is performed on three sides of the sealing portion 8 in which the outer peripheral portions of the jacket material 4 are heat-welded. When the cross section when the portion 8 is cut by a plane perpendicular to the periphery is viewed, the heat welding layer 7 located in the sealing portion 8 has a substantially arc-shaped recess, and the heat welding is performed at the deepest portion of the recess. A thin portion 9 in which the thickness of the layer 7 is thinner than the peripheral portion of the deepest portion is formed.
また、封止部8の熱溶着層7は両面に他の層(ガスバリア層6)との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。 Further, the heat-welding layer 7 of the sealing portion 8 has a boundary surface with another layer (gas barrier layer 6) on both surfaces, and the wave height of the undulation of one boundary surface of the recess is the undulation of the other boundary surface of the recess. Greater than the wave height.
また、凹部の一方の境界面の熱溶着層側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層側に凹となっている部分の最深部とが対向していない。 In addition, the deepest portion of the concave portion on the side of the thermal welding layer on one boundary surface of the concave portion and the deepest portion of the concave portion on the side of the thermal bonding layer on the other boundary surface of the concave portion face each other. Not.
また、図3に示す例では、封止部8に薄肉部9を少なくとも2個以上(4つ)有している。 In the example shown in FIG. 3, the sealing portion 8 has at least two thin portions 9 (four).
以上のように構成された真空断熱材1について、以下その動作、作用を説明する。 About the vacuum heat insulating material 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
まず、芯材2は、真空断熱材1の骨材として微細空間を形成する役割を果たし、真空排気後の真空断熱材1の断熱部を形成するものであり、ガラス繊維からなる。 First, the core material 2 plays a role of forming a fine space as an aggregate of the vacuum heat insulating material 1, forms a heat insulating portion of the vacuum heat insulating material 1 after evacuation, and is made of glass fiber.
吸着剤3は、真空包装後に芯材2の微細空隙から真空断熱材1中へ放出された残留ガス成分や、真空断熱材1内へ侵入する水分や気体を吸着除去する役割を果たすものである。 The adsorbent 3 serves to adsorb and remove residual gas components released into the vacuum heat insulating material 1 from the fine gaps of the core material 2 after vacuum packaging, and moisture and gas that enter the vacuum heat insulating material 1. .
外被材4は、熱可塑性樹脂やガスバリア性を有する金属箔や樹脂フィルム等をラミネート加工したものであり、外部から真空断熱材1内部への大気ガス侵入を抑制する役割を果たすものである。 The jacket material 4 is obtained by laminating a thermoplastic resin, a metal foil having a gas barrier property, a resin film, or the like, and plays a role of suppressing atmospheric gas intrusion into the vacuum heat insulating material 1 from the outside.
表面保護層5は、外被材が有する層のうち、ガスバリア層6よりも外層側に位置する、外力から外被材4、特にガスバリア層6の傷つきや破れを防ぐ役割を果たすものである。 The surface protective layer 5 serves to prevent the outer cover material 4, particularly the gas barrier layer 6 from being damaged or torn from an external force, located on the outer layer side of the gas barrier layer 6 among the layers of the outer cover material.
表面保護層5としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用でき、1種類でも2種類以上重ねて使用してもよい。 As the surface protective layer 5, a conventionally known material such as a nylon film, a polyethylene terephthalate film, or a polypropylene film can be used, and one type or two or more types may be used.
ガスバリア層6は、高いバリア性を有する1種類もしくは2種以上のフィルムから構成される層であり、外被材4に優れたガスバリア性を付与するものである。 The gas barrier layer 6 is a layer composed of one or more kinds of films having high barrier properties, and imparts excellent gas barrier properties to the jacket material 4.
ガスバリア層6としては、アルミニウム箔、銅箔、ステンレス箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルムへアルミニウムや銅等の金属原子もしくはアルミナやシリカ等の金属酸化物を蒸着したフィルムや、金属原子や金属酸化物を蒸着した面にコーティング処理を施したフィルム等が使用できる。 As the gas barrier layer 6, metal foil such as aluminum foil, copper foil, stainless steel foil, polyethylene terephthalate film, ethylene-vinyl alcohol copolymer film, metal atoms such as aluminum or copper, or metal oxide such as alumina or silica are used. A vapor-deposited film, a film in which a metal atom or metal oxide is vapor-deposited, or the like can be used.
熱溶着層7は、外被材4同士を溶着し、真空断熱材1内部の真空を保持する役割に加えて、芯材2や吸着剤3による真空断熱材1内部からの突刺し等からガスバリア層6を保護する役割を果たすものである。 The thermal welding layer 7 welds the jacket materials 4 to each other, and in addition to the role of maintaining the vacuum inside the vacuum heat insulating material 1, the gas barrier from the piercing from the inside of the vacuum heat insulating material 1 by the core material 2 and the adsorbent 3, etc. It serves to protect the layer 6.
封止部8は、外被材4の熱溶着層7同士を溶着することにより構成され、真空断熱材1内部と外部とを遮断する役割を果たしている。 The sealing portion 8 is configured by welding the heat welding layers 7 of the jacket material 4, and plays a role of blocking the inside and the outside of the vacuum heat insulating material 1.
薄肉部9は、外被材4周縁の端面から封止部8を通って真空断熱材1内部へ侵入する大気ガスの透過速度を抑制し、真空断熱材1の真空度を維持する役割を果たしている。 The thin-walled portion 9 serves to maintain the vacuum degree of the vacuum heat insulating material 1 by suppressing the permeation rate of atmospheric gas that enters the vacuum heat insulating material 1 through the sealing portion 8 from the end surface of the outer periphery of the jacket material 4. Yes.
以上のように、本実施の形態においては、封止部8における熱溶着層7とガスバリア層6との境界面が有する略円弧状の凹部の最深部位置に薄肉部9が設けられ、この2層の境界面が有する凹部の波高に差が設けられているため、ガスバリア層6および外被材4の劣化や破断が極めて起きにくくなるとともに、真空断熱材1内部への経時的な大気ガス侵入が抑制される。 As described above, in the present embodiment, the thin-walled portion 9 is provided at the deepest position of the substantially arc-shaped concave portion included in the boundary surface between the heat welding layer 7 and the gas barrier layer 6 in the sealing portion 8. Since there is a difference in the wave heights of the recesses on the boundary surface of the layers, the gas barrier layer 6 and the jacket material 4 are extremely unlikely to deteriorate and break, and the atmospheric gas intrusion into the vacuum heat insulating material 1 with time Is suppressed.
また、上記の製造方法にて真空断熱材1を作製した場合、通常、図4に示すような円弧状の曲面を有する突起部11によって構成される過熱圧縮冶具10により熱溶着層7が加熱圧縮されるため、加圧による外力が突起部11の円弧の接線と垂直な方向にも加わることにより、熱溶着層7の樹脂が薄肉部9の両端方向へ流動しやすくなることから、図10のような従来の封止冶具106のような平面部にて圧縮される場合と比べて、同一の薄肉部9の厚みを得る場合の製造時の温度条件および圧力条件が緩和され、ガスバリア層6および外被材4の劣化が抑制される。 Moreover, when the vacuum heat insulating material 1 is produced by the above-described manufacturing method, the heat-welded layer 7 is usually heated and compressed by the superheated compression jig 10 constituted by the protruding portions 11 having an arcuate curved surface as shown in FIG. 10 is applied to the direction perpendicular to the tangent line of the arc of the protrusion 11, the resin of the heat-welded layer 7 easily flows toward both ends of the thin portion 9. Compared with the case where the flat portion such as the conventional sealing jig 106 is compressed, the temperature condition and pressure condition at the time of manufacturing when the same thin portion 9 is obtained are relaxed, and the gas barrier layer 6 and Deterioration of the jacket material 4 is suppressed.
言い換えれば、同一の成形条件によって、より熱溶着層7の薄肉部9の厚みを薄くすることが可能となり、外被材4周縁の端面からの気体および水分侵入量の抑制が容易となる。 In other words, under the same molding conditions, the thickness of the thin portion 9 of the heat-welded layer 7 can be further reduced, and the amount of gas and moisture intrusion from the end surface of the outer periphery of the outer cover material 4 can be easily suppressed.
本実施の形態の真空断熱材1は、熱溶着層7同士が対向する2枚の長方形の外被材4の間に芯材2と吸着剤3が減圧密封され芯材2を覆う2枚の外被材4の周縁近傍の3辺の外周部同士が熱溶着された真空断熱材1であり、外被材4の外周部同士が熱溶着された封止部8のうち3辺の封止部8を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が略円弧状の凹部を有しており、その凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されている。 The vacuum heat insulating material 1 according to the present embodiment includes two sheets of the core material 2 and the adsorbent 3 that are sealed under reduced pressure between the two rectangular outer cover materials 4 facing each other with the heat-welded layers 7 facing each other. 3 is a vacuum heat insulating material 1 in which the outer peripheral portions of the three sides in the vicinity of the periphery of the jacket material 4 are heat-welded, and the sealing is performed on three sides of the sealing portion 8 in which the outer peripheral portions of the jacket material 4 are heat-welded. When the cross section when the portion 8 is cut by a plane perpendicular to the periphery is viewed, the heat welding layer 7 located in the sealing portion 8 has a substantially arc-shaped recess, and the heat welding is performed at the deepest portion of the recess. A thin portion 9 in which the thickness of the layer 7 is thinner than the peripheral portion of the deepest portion is formed.
上記構成において、まず、外被材4の周縁部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8の熱溶着層7の厚みが局所的に薄い薄肉部9を設けていることにより、熱溶着層7の薄肉部9において、外被材4周縁の端面から侵入する気体および水分の透過断面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。 In the above-described configuration, first, when a cross-section when cutting at least a part of the sealing portion 8 where the peripheral portions of the jacket material 4 are heat-welded is cut by a plane perpendicular to the peripheral portion, the heat of the sealing portion 8 is obtained. By providing the thin portion 9 where the thickness of the welding layer 7 is locally thin, the gas and moisture permeation cross-sectional area entering from the end face of the outer periphery of the outer cover material 4 is reduced in the thin portion 9 of the heat welding layer 7. Since the permeation resistance of gas and moisture is increased and the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate with time is suppressed, and excellent heat insulation performance can be exhibited over a long period of time.
また、外被材4の周縁部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が略円弧状の凹部を有しているので、熱溶着層7より外層側に積層された層(ガスバリア層6)は、封止部8の薄肉部9およびその近傍において、熱溶着層7の形状に沿って、円弧状に曲がり、角部を形成することなく、熱溶着層7より外層側に積層された層(ガスバリア層6)のクラックの発生が極めて起きにくくなる。 Moreover, when the cross section at the time of cut | disconnecting at least one part of the sealing part 8 by which the peripheral parts of the jacket material 4 were heat-welded by a plane perpendicular | vertical to a peripheral part was seen, the heat welding layer located in the sealing part 8 7 has a substantially arc-shaped recess, the layer (gas barrier layer 6) laminated on the outer layer side of the heat-welded layer 7 is the thin-walled portion 9 of the sealing portion 8 and the vicinity thereof. In this way, the generation of cracks in the layer (gas barrier layer 6) laminated on the outer layer side from the heat-welded layer 7 is extremely difficult to occur without forming a corner portion by bending in a circular arc shape.
ここで、当然ながら、熱溶着層7の薄肉部9及びその近傍に限らず、封止部8全体において角部を形成していないことが望ましい。 Here, as a matter of course, it is desirable that corner portions are not formed in the entire sealing portion 8, not limited to the thin-walled portion 9 and the vicinity thereof.
さらに、熱溶着層7の薄肉部9においては、熱溶着層7の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層7が有する凹部が略円弧状を形成している場合、熱溶着層7の厚みが円弧に沿って徐々に滑らかに増減することに伴い、封止部8の強度(曲げ強度など)も位置が変わるにつれて連続的に滑らかに増減することから、熱溶着層7の薄肉部9において局所的に外力が集中することが起きにくく、熱溶着層7の薄肉部9及びその近傍の外被材4におけるクラック発生や封止部8の破断が極めて起きにくくなる。 Further, in the thin-walled portion 9 of the heat-welded layer 7, the thickness of the heat-welded layer 7 is thinner than the peripheral portion, and the strength is reduced by the thickness reduction, but the concave portion of the heat-welded layer 7 has a substantially arc shape. When formed, the strength (bending strength, etc.) of the sealing portion 8 also increases and decreases smoothly and continuously as the position changes as the thickness of the heat welding layer 7 gradually increases and decreases along the arc. Therefore, it is difficult for external force to concentrate locally in the thin portion 9 of the heat-welded layer 7, and cracks in the thin-wall portion 9 of the heat-welded layer 7 and the jacket material 4 in the vicinity thereof and breakage of the sealing portion 8 are caused. Is extremely difficult to occur.
以上により、封止部8に設けた熱溶着層7の薄肉部9及びその近傍において、クラック発生や封止部8破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材1を提供できる。 By the above, the vacuum heat insulating material which maintains the heat insulation performance excellent in the long term in which the crack generation | occurrence | production and the fracture | rupture of the sealing part 8 do not occur easily in the thin part 9 of the heat welding layer 7 provided in the sealing part 8 and its vicinity. 1 can be provided.
また、本実施の形態の真空断熱材1は、封止部8の熱溶着層7は両面に他の層(ガスバリア層6)との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。 Further, in the vacuum heat insulating material 1 of the present embodiment, the heat welding layer 7 of the sealing portion 8 has a boundary surface with another layer (gas barrier layer 6) on both surfaces, and the undulation of one boundary surface of the concave portion The wave height is larger than the wave height of the undulation of the other boundary surface of the recess.
薄肉部9及びその近傍では、熱溶着層7よりも外層側にある外被材4(の各層6,5)が、略円弧状の凹である熱溶着層7の形状に沿って歪曲することによる応力を受け、強度が低下する。 In the thin-walled portion 9 and the vicinity thereof, the covering material 4 (each of the layers 6 and 5) on the outer layer side of the heat-welding layer 7 is distorted along the shape of the heat-welding layer 7 that is a substantially arc-shaped recess. Due to the stress caused by, the strength decreases.
よって、凹部の一方(図1では上側)の境界面のうねりの波高を、凹部の他方(図1では下側)の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側(図1では下側)の外被材4の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側(図1では上側)の外被材4と比べて僅かとなり、外被材4の封止部8では、強度低下が小さい(図1では下側の)外被材4がもう一方の(図1では上側の)外被材4を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部8の破断が極めて起きにくくなる。 Therefore, by making the wave height of the undulation of the boundary surface on one side (upper side in FIG. 1) of the concave portion larger than that of the boundary surface on the other side (lower side in FIG. 1), the wave height is relatively small. The lowering of the strength of the outer cover material 4 on the boundary surface side having waviness (lower side in FIG. 1) In comparison with the sealing portion 8 of the outer covering material 4, the outer covering material 4 (lower in FIG. 1) supports the other outer covering material 4 (upper in FIG. 1). The rigidity is maintained in the shape, and the occurrence of cracks and breakage of the sealing portion 8 when receiving external force are extremely difficult.
薄肉部9があると、熱溶着層7の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材4の強度低下が起こる。 When the thin-walled portion 9 is present, not only the thickness of the heat-welded layer 7 is thin and the strength is reduced, but also the strength of the jacket material 4 is reduced due to the distortion due to the deepest portion of the recess being located.
本実施の形態では、凹部の一方の(図1では上側の)境界面の熱溶着層7側に凹となっている部分の最深部と、凹部の他方の(図1では下側の)境界面の熱溶着層7側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部8の強度低下が抑制され、封止部8が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層6のクラック発生の抑制効果もさらに高くなる。 In the present embodiment, the deepest portion of the concave portion on the heat welding layer 7 side of one boundary surface (upper side in FIG. 1) and the other boundary (lower side in FIG. 1) of the concave portion. Since the deepest portion of the concave portion on the surface of the surface is not opposed to the deepest portion, a decrease in strength of the sealing portion 8 where the deepest portion of the concave portion is located is suppressed, and the sealing portion 8 has an external force. Scratches and breakage are less likely to occur. At the same time, the effect of suppressing the occurrence of cracks in the gas barrier layer 6 in the recesses is further enhanced.
また、図3に示す例のように、封止部8に薄肉部9を少なくとも2個以上有していることが好ましい。 Moreover, it is preferable that the sealing part 8 has at least two thin parts 9 as in the example shown in FIG.
薄肉部9においては、封止部8の他箇所に比べて熱溶着層7の厚みが薄く、シール強度が低下することにより、例えば、製造工程において芯材2物質であるガラス繊維やシリカ粉末等を挟み込んだ状態で外被材4が熱溶着された場合、薄肉部9において熱溶着不良が発生することが懸念される。 In the thin portion 9, the thickness of the heat-welded layer 7 is thinner than that of the other portion of the sealing portion 8, and the sealing strength is reduced. For example, glass fiber or silica powder that is the core material 2 in the manufacturing process When the outer cover material 4 is heat-welded in a state where the material is sandwiched, there is a concern that a poor heat-welding occurs in the thin portion 9.
熱溶着不良が発生した箇所では樹脂が存在しないため、ガス侵入抑制効果が低下する。この対策として、少なくとも2個以上の薄肉部9を設けることにより、熱溶着不良に起因する真空断熱材1内部への気体および水分侵入促進の影響が緩和される。 Since there is no resin at the location where the thermal welding failure occurs, the effect of suppressing gas intrusion decreases. As a countermeasure, by providing at least two or more thin-walled portions 9, the influence of gas and moisture intrusion promotion into the vacuum heat insulating material 1 due to poor heat welding is mitigated.
特に、芯材2としてガラス繊維を用いた場合は、挟雑物として熱溶着の際に挟み込まれた芯材2物質が加熱変形し、薄肉部9にスルーホールを形成することが多々あることから、本発明の(本実施の形態の)効果がより顕著となる。 In particular, when glass fiber is used as the core material 2, the core material 2 material sandwiched at the time of heat welding as an interstitial material is often heat-deformed and forms a through hole in the thin portion 9. The effect (of the present embodiment) of the present invention becomes more remarkable.
また、薄肉部9においては、外被材4の強度が周囲部よりも低くなり、外力を受けた際の荷重集中が懸念されるが、薄肉部9が複数個存在することにより、外力の荷重が分散され、薄肉部9におけるクラックの発生や封止部8の破断が極めて起きにくくなる。 Moreover, in the thin part 9, although the intensity | strength of the jacket material 4 becomes lower than a surrounding part and there is a concern about the load concentration at the time of receiving external force, the load of external force is due to the presence of a plurality of thin parts 9. Are dispersed, and the occurrence of cracks in the thin-walled portion 9 and the breakage of the sealing portion 8 are extremely difficult to occur.
また、薄肉部9を複数個有する場合は、薄肉部9が1個のみの場合と比べて、薄肉部9における熱溶着層7の厚みを増加させても同一の効果が得られるため、薄肉部9における外被材4強度やシール強度低下が緩和され、薄肉部9におけるクラック発生や封止部8の破断のリスクが低減される。 Further, when the plurality of thin portions 9 are provided, the same effect can be obtained even if the thickness of the thermal welding layer 7 in the thin portion 9 is increased as compared with the case where only one thin portion 9 is provided. 9 is reduced, and the risk of cracks in the thin-walled portion 9 and breakage of the sealing portion 8 is reduced.
なお、本実施の形態では、薄肉部9を有する封止部8を3辺としたが、封止部8全周の4辺に設けても良い。 In the present embodiment, the sealing portion 8 having the thin portion 9 has three sides, but may be provided on four sides of the entire circumference of the sealing portion 8.
なお、各薄肉部9における熱溶着層7の厚みは、同一でなくても良い。 In addition, the thickness of the heat welding layer 7 in each thin part 9 does not need to be the same.
なお、本実施の形態では、図2に示すように、薄肉部9が直交しているが、薄肉部9は交差していなくてもよい。 In the present embodiment, as shown in FIG. 2, the thin portions 9 are orthogonal, but the thin portions 9 do not have to intersect.
なお、各薄肉部9に位置する境界面の凹部の曲率半径は同一ある必要はなく、ガスバリア層6として使用している金属箔やフィルムが、劣化しない程度の曲率半径を有しておればよい。 In addition, the curvature radius of the recessed part of the interface located in each thin part 9 does not need to be the same, The metal foil and film used as the gas barrier layer 6 should just have a curvature radius of the grade which does not deteriorate. .
なお、薄肉部9の間隔は特に指定するものではなく、また、図5のように、境界面が有する凹部同士の間隔が等しくなくてもよい。 In addition, the space | interval of the thin part 9 is not specified in particular, and as shown in FIG. 5, the space | interval of the recessed parts which a boundary surface does not need to be equal.
なお、本実施の形態では、薄肉部9の位置は特に指定するのもではないが、境界面の有する凹部位置が、外被材4の封止部8とそうでない部分との境目に存在している場合は、薄肉部9の片側の樹脂が十分に加熱されておらず、樹脂の流動性が悪いため薄肉化が困難となり、好ましくない。 In the present embodiment, the position of the thin-walled portion 9 is not particularly specified, but the position of the concave portion on the boundary surface exists at the boundary between the sealing portion 8 of the jacket material 4 and the portion that is not. In such a case, the resin on one side of the thin-walled portion 9 is not sufficiently heated, and the fluidity of the resin is poor.
以下、本発明における薄肉部9の詳細形状とその効果について、実施例を用いて説明する。 Hereinafter, the detailed shape of the thin part 9 and the effect in this invention are demonstrated using an Example.
(実施例1)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムからなる吸着剤3から構成された真空断熱材1を作製した。
Example 1
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 made of calcium oxide was produced.
外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are positioned). The radius of curvature at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the undulation of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The distance between adjacent deepest portions was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat welding layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材4同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、9.5×10-15mol/m2/s/Paであった。 At this time, when the seal width (width for thermally welding the jacket materials 4) is 20 mm and the thickness of the thin portion 9 is 10 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the jacket material 4 of the vacuum heat insulating material 1. The amount of atmospheric gas entering through was 9.5 × 10 −15 mol / m 2 / s / Pa.
また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。 Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.
実施例1では、芯材2がガラス繊維からなる。 In Example 1, the core material 2 consists of glass fiber.
芯材2がガラス繊維である場合、ガラス繊維による真空断熱材1内部から外被材4への貫通ピンホールが発生しやすい。 When the core material 2 is a glass fiber, a penetrating pinhole from the inside of the vacuum heat insulating material 1 to the jacket material 4 due to the glass fiber is likely to occur.
通常、このピンホール発生を防止策として、真空断熱材1内部に面する外被材4の最内層にある熱溶着層7の厚みを厚くすることが有効とされているが、熱溶着層7の厚みを厚くすることにより、外被材4周縁の端面から封止部8を通って侵入するガス侵入経路の通路断面積が拡大するという懸念があった。 Usually, as a measure for preventing the occurrence of pinholes, it is effective to increase the thickness of the heat welding layer 7 in the innermost layer of the jacket material 4 facing the inside of the vacuum heat insulating material 1. By increasing the thickness, there is a concern that the passage cross-sectional area of the gas intrusion path that enters through the sealing portion 8 from the end face of the outer periphery of the outer cover material 4 increases.
実施の形態1(の実施例1)の真空断熱材1においては、薄肉部9においてガス侵入量を制御できるために、熱溶着層7の厚みを厚くしても、外被材4周縁の端面から封止部8を通って内部に侵入する気体および水分侵入量の増加が抑制される。 In the vacuum heat insulating material 1 of the first embodiment (Example 1), since the gas penetration amount can be controlled in the thin portion 9, the end surface of the outer periphery of the outer cover material 4 even if the thickness of the heat welding layer 7 is increased. Increase in the amount of gas and moisture entering from the inside through the sealing portion 8 to the inside is suppressed.
また、実施例1では、外被材4にガスバリア性を付与するためのガスバリア層として、アルミニウム箔(金属箔)を採用したが、金属箔は、樹脂フィルムに金属原子や金属酸化物分子を蒸着したガスバリアフィルムと比べてガスバリア性は優れるものの伸縮性や追従性に劣るため、クラックやピンホールが発生しやすくなり、本発明(の実施の形態1)による効果がより顕著に現れる。 Moreover, in Example 1, although aluminum foil (metal foil) was employ | adopted as a gas barrier layer for providing gas-barrier property to the jacket material 4, a metal foil vapor-deposits a metal atom and a metal oxide molecule on a resin film. Although the gas barrier property is excellent as compared with the gas barrier film, the stretchability and followability are inferior, so that cracks and pinholes are likely to occur, and the effect of the present invention (Embodiment 1) appears more remarkably.
(実施例2)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムからなる吸着剤3から構成された真空断熱材1を作製した。
(Example 2)
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 made of calcium oxide was produced.
外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are positioned). The radius of curvature at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the undulation of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The distance between adjacent deepest portions was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat welding layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材4同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを5μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、8.0×10-15mol/m2/s/Paであった。 At this time, when the seal width (the width for heat-sealing the outer cover materials 4) is 20 mm and the thickness of the thin portion 9 is 5 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the outer cover material 4 of the vacuum heat insulating material 1. The amount of atmospheric gas entering through was 8.0 × 10 −15 mol / m 2 / s / Pa.
また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。 Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.
(実施例3)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムからなる吸着剤3から構成された真空断熱材1を作製した。
(Example 3)
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 made of calcium oxide was produced.
外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are positioned). The radius of curvature at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the undulation of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The distance between adjacent deepest portions was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat welding layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材4同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを20μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、1.0×10-14mol/m2/s/Paであった。 At this time, when the seal width (the width for thermally welding the jacket materials 4) is 20 mm and the thickness of the thin portion 9 is 20 μm, the sealing portion 8 is formed from the end surface of the outer periphery of the jacket material 4 of the vacuum heat insulating material 1. The amount of atmospheric gas entering through was 1.0 × 10 −14 mol / m 2 / s / Pa.
また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。 Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.
(実施例4)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
Example 4
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.
外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に3つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図6では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図6では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図6では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図6参照)。 On the peripheral side (outer peripheral part) of the jacket material 4, there is a sealing part 8 in which the heat-welding layers 7 of the jacket material 4 are melted and bonded together, and three of the four sides of the sealing part 8 Three groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin-walled portions 9 (in FIG. 6, the upper gas barrier layer 6 and the thermal welding layer 7 are arranged). The radius of curvature at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 6 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The distance from the deepest part of the adjacent recesses was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 6, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 6).
この際、シール幅(外被材4同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、1.0×10-14mol/m2/s/Paであった。 At this time, when the seal width (width for thermally welding the jacket materials 4) is 20 mm and the thickness of the thin portion 9 is 10 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the jacket material 4 of the vacuum heat insulating material 1. The amount of atmospheric gas entering through was 1.0 × 10 −14 mol / m 2 / s / Pa.
また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。 Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.
(実施例5)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
(Example 5)
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.
外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に5つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図7では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図7では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図7では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図7参照)。 On the peripheral side (outer peripheral part) of the jacket material 4, there is a sealing part 8 in which the heat-welding layers 7 of the jacket material 4 are melted and bonded together, and three of the four sides of the sealing part 8 A groove-like thin portion 9 parallel to the peripheral edge is formed in the direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 7, the upper gas barrier layer 6 and the thermal welding layer 7 are positioned). The radius of curvature at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 7 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The distance from the deepest part of the adjacent recesses was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 7, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 7).
この際、シール幅(外被材4同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、8.6×10-15mol/m2/s/Paであった。 At this time, when the seal width (width for thermally welding the jacket materials 4) is 20 mm and the thickness of the thin portion 9 is 10 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the jacket material 4 of the vacuum heat insulating material 1. The amount of atmospheric gas entering through was 8.6 × 10 −15 mol / m 2 / s / Pa.
また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。 Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.
(比較例1)
熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材を作製した。
(Comparative Example 1)
An outer sheath formed by laminating a linear low-density polyethylene film having a thickness of 50 μm as the heat welding layer 7, an aluminum foil having a thickness of 6 μm as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm as the surface protective layer 5. A vacuum heat insulating material composed of a material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.
封止部8における熱溶着層7の厚みが略均一の100μmの場合、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、2.0×10-14mol/m2/s/Paであった。 When the thickness of the heat-welding layer 7 in the sealing part 8 is substantially uniform 100 μm, the amount of atmospheric gas entering through the sealing part 8 from the end surface of the outer periphery 4 of the vacuum heat insulating material 1 is 2.0 ×. It was 10 −14 mol / m 2 / s / Pa.
また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。 Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.
(比較例2)
熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムからなる吸着剤3から構成された真空断熱材を作製した。
(Comparative Example 2)
An outer sheath formed by laminating a linear low-density polyethylene film having a thickness of 50 μm as the heat welding layer 7, an aluminum foil having a thickness of 6 μm as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm as the surface protective layer 5. A vacuum heat insulating material composed of the material 4, the core material 2 made of glass fiber, and the adsorbent 3 made of calcium oxide was produced.
外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する(ガスバリア層6と熱溶着層7との)境界面の凹部において、熱溶着層7は略均一な10μmの厚みを有し、薄肉部9の境界に角部12を有していた(図8参照)。 On the peripheral side (outer peripheral part) of the jacket material 4, there is a sealing part 8 in which the heat-welding layers 7 of the jacket material 4 are melted and bonded together, and three of the four sides of the sealing part 8 Four groove-shaped thin portions 9 are formed in parallel to the peripheral edge in a direction perpendicular to the peripheral edge, and the concave portion of the boundary surface (the gas barrier layer 6 and the thermal welding layer 7) is located in each thin portion 9 The heat-welded layer 7 had a substantially uniform thickness of 10 μm, and had corner portions 12 at the boundaries of the thin-walled portions 9 (see FIG. 8).
この際、シール幅(外被材4同士を熱溶着する幅)は20mmであり、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量を試算すると、9.5×10-15mol/m2/s/Paであった。 At this time, the seal width (the width at which the jacket materials 4 are thermally welded) is 20 mm, and the amount of atmospheric gas that enters through the sealing portion 8 from the end surface of the outer periphery of the jacket material 4 of the vacuum heat insulating material 1 is estimated. 9.5 × 10 −15 mol / m 2 / s / Pa.
ただし、薄肉部9の境界部は角部12を有するため、角部12においてアルミニウム箔にクラックの発生が確認された。 However, since the boundary portion of the thin portion 9 has the corner portion 12, the occurrence of cracks in the aluminum foil at the corner portion 12 was confirmed.
以上、本発明における実施例および比較例を(表1)に示す。 As mentioned above, the Example and the comparative example in this invention are shown in (Table 1).
ただし、(表1)における外被材4の劣化に関しては、下記の基準で判定した。 However, the deterioration of the jacket material 4 in (Table 1) was determined according to the following criteria.
○:劣化なし(薄肉部に位置するアルミニウム箔にピンホール増加が確認されず。)
×:劣化あり(薄肉部に位置するアルミニウム箔にピンホール増加が確認された。)
(表1)の結果より、実施の形態1に示す薄肉部9を設けた真空断熱材1は、薄肉部9の厚みや凹部の個数により効果差は見られたものの、薄肉部9を設けない真空断熱材よりも常に有意差が見られた。また、外被材4の劣化も確認されなかった。
○: No deterioration (No increase in pinholes was confirmed in the aluminum foil located in the thin part)
X: Deteriorated (an increase in pinholes was confirmed in the aluminum foil located in the thin part)
From the results of (Table 1), the vacuum heat insulating material 1 provided with the thin-walled portion 9 shown in the first embodiment does not have the thin-walled portion 9 although there is a difference in effect depending on the thickness of the thin-walled portion 9 and the number of concave portions. There was always a significant difference compared to vacuum insulation. Moreover, deterioration of the jacket material 4 was not confirmed.
本発明にかかる真空断熱材は、長期にわたる使用にも耐えうる断熱性能を有しているものであり、冷蔵庫用断熱材や自動販売機、建造物用断熱材、自動車用断熱材、保冷ボックスなどにも適用できる。 The vacuum heat insulating material according to the present invention has a heat insulating performance that can withstand long-term use, such as a refrigerator heat insulating material, a vending machine, a building heat insulating material, an automotive heat insulating material, a cold insulation box, and the like. It can also be applied to.
1 真空断熱材
2 芯材
4 外被材
6 ガスバリア層
7 熱溶着層
8 封止部
9 薄肉部
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 4 Cover material 6 Gas barrier layer 7 Heat welding layer 8 Sealing part 9 Thin part
Claims (5)
前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されており、
前記封止部の前記熱溶着層は両面に他の層との境界面を有し、前記凹部の一方の前記境界面のうねりの波高が、前記凹部の他方の前記境界面のうねりの波高よりも大きく、前記凹部の一方の前記境界面の前記熱溶着層側に凹となっている部分の最深部と、前記凹部の他方の前記境界面の前記熱溶着層側に凹となっている部分の最深部とが対向していない真空断熱材。 In a vacuum heat insulating material in which a core material is sealed under reduced pressure between two outer cover materials facing each other with a thermal welding layer, and outer peripheral portions in the vicinity of the peripheral edges of the two outer cover materials covering the core material are heat-welded. ,
When the cross-section when cutting at least a part of the sealing portion in which the outer peripheral portions of the jacket material are thermally welded is cut by a plane perpendicular to the peripheral edge, the thermal welding layer located in the sealing portion is A thin-walled portion having a thickness that is thinner than the peripheral portion of the deepest portion is formed in the deepest portion of the concave portion,
The heat-sealed layer of the sealing portion has a boundary surface with another layer on both surfaces, and the wave height of the undulation of one boundary surface of the concave portion is higher than the wave height of the undulation of the other boundary surface of the concave portion. A deepest portion of the concave portion on the side of the thermal welding layer on the one boundary surface of the concave portion, and a portion concave on the side of the thermal welding layer on the other boundary surface of the concave portion Vacuum heat insulating material that does not face the deepest part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008298976A JP4893728B2 (en) | 2008-09-10 | 2008-11-25 | Vacuum insulation |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231737 | 2008-09-10 | ||
JP2008231737 | 2008-09-10 | ||
JP2008298976A JP4893728B2 (en) | 2008-09-10 | 2008-11-25 | Vacuum insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010091105A true JP2010091105A (en) | 2010-04-22 |
JP4893728B2 JP4893728B2 (en) | 2012-03-07 |
Family
ID=42253849
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008253149A Active JP5040881B2 (en) | 2008-09-10 | 2008-09-30 | Vacuum insulation |
JP2008298976A Active JP4893728B2 (en) | 2008-09-10 | 2008-11-25 | Vacuum insulation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008253149A Active JP5040881B2 (en) | 2008-09-10 | 2008-09-30 | Vacuum insulation |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5040881B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011089740A (en) * | 2009-10-26 | 2011-05-06 | Panasonic Corp | Bag body and vacuum heat insulating material |
WO2015037247A1 (en) * | 2013-09-12 | 2015-03-19 | パナソニックIpマネジメント株式会社 | Heat-insulating container provided with vacuum insulation panel |
WO2015186346A1 (en) * | 2014-06-04 | 2015-12-10 | パナソニックIpマネジメント株式会社 | Heat insulator and heat-insulating vessel |
JP6123927B1 (en) * | 2016-02-24 | 2017-05-10 | 大日本印刷株式会社 | Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation |
JP2017125564A (en) * | 2016-01-14 | 2017-07-20 | 大日本印刷株式会社 | Outer wrapping material for vacuum heat insulation material, vacuum heat insulation material, and apparatus with vacuum heat insulation material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101486634B1 (en) * | 2012-07-03 | 2015-01-27 | (주)엘지하우시스 | Vacuum insulation panel improved explosion defect and the method for manufacturing the same |
JP6327430B2 (en) * | 2013-10-24 | 2018-05-23 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Vacuum insulation |
JP2015143555A (en) * | 2014-01-31 | 2015-08-06 | 三菱電機株式会社 | Vacuum heat insulation material and heat insulation box using the same |
FR3030353B1 (en) * | 2014-12-23 | 2021-02-12 | Saint Gobain Isover | VACUUM INSULATION PANEL WITH IMPROVED GASKET |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269854A (en) * | 1981-10-08 | 1993-10-19 | Tetra Pak Internatl Ab | Heat sealing apparatus for packing laminate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62141190U (en) * | 1986-02-28 | 1987-09-05 | ||
JP2008008431A (en) * | 2006-06-30 | 2008-01-17 | Asahi Fiber Glass Co Ltd | Composite heat insulating material comprising vacuum heat insulating material and expanded polystyrene, and its manufacturing method |
-
2008
- 2008-09-30 JP JP2008253149A patent/JP5040881B2/en active Active
- 2008-11-25 JP JP2008298976A patent/JP4893728B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269854A (en) * | 1981-10-08 | 1993-10-19 | Tetra Pak Internatl Ab | Heat sealing apparatus for packing laminate |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011089740A (en) * | 2009-10-26 | 2011-05-06 | Panasonic Corp | Bag body and vacuum heat insulating material |
WO2015037247A1 (en) * | 2013-09-12 | 2015-03-19 | パナソニックIpマネジメント株式会社 | Heat-insulating container provided with vacuum insulation panel |
CN104968584A (en) * | 2013-09-12 | 2015-10-07 | 松下知识产权经营株式会社 | Heat-insulating container provided with vacuum insulation panel |
JPWO2015037247A1 (en) * | 2013-09-12 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Insulated container with vacuum insulation |
CN107559585A (en) * | 2013-09-12 | 2018-01-09 | 松下知识产权经营株式会社 | Heat-insulated container with vacuum heat-insulation component |
CN104968584B (en) * | 2013-09-12 | 2018-02-13 | 松下知识产权经营株式会社 | Heat-insulated container with vacuum heat-insulation component |
WO2015186346A1 (en) * | 2014-06-04 | 2015-12-10 | パナソニックIpマネジメント株式会社 | Heat insulator and heat-insulating vessel |
JPWO2015186346A1 (en) * | 2014-06-04 | 2017-04-20 | パナソニックIpマネジメント株式会社 | Insulation and insulation container |
JP2017125564A (en) * | 2016-01-14 | 2017-07-20 | 大日本印刷株式会社 | Outer wrapping material for vacuum heat insulation material, vacuum heat insulation material, and apparatus with vacuum heat insulation material |
JP6123927B1 (en) * | 2016-02-24 | 2017-05-10 | 大日本印刷株式会社 | Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation |
WO2017146165A1 (en) * | 2016-02-24 | 2017-08-31 | 大日本印刷株式会社 | Vacuum insulation material outer packaging material, vacuum insulation material, and article with vacuum insulation material |
JP2017150565A (en) * | 2016-02-24 | 2017-08-31 | 大日本印刷株式会社 | Vacuum insulation material outer packaging material, vacuum insulation material, and apparatus with vacuum insulation material |
Also Published As
Publication number | Publication date |
---|---|
JP5040881B2 (en) | 2012-10-03 |
JP4893728B2 (en) | 2012-03-07 |
JP2010090905A (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333038B2 (en) | Vacuum insulation and manufacturing method thereof | |
JP4893728B2 (en) | Vacuum insulation | |
JP2010255805A (en) | Vacuum heat insulating material | |
JP6214648B2 (en) | Vacuum insulation material with improved rupture failure and manufacturing method thereof | |
JP2013508640A (en) | Vacuum insulation | |
JP3234649U (en) | Vacuum insulated panel with improved sealing joint | |
JP2011089740A (en) | Bag body and vacuum heat insulating material | |
JP2011094639A (en) | Vacuum bag body and vacuum heat insulating material | |
JP2011208763A (en) | Vacuum heat insulating material | |
JP2010260619A (en) | Bag and method of manufacturing the same | |
JP2007155135A (en) | Vacuum insulation material and manufacturing method thereof | |
JP2011094637A (en) | Vacuum heat insulating material | |
JP2010139006A (en) | Vacuum heat insulating material | |
JP2011094638A (en) | Vacuum bag body and vacuum heat insulating material | |
JP2012026512A (en) | Bag body and vacuum heat insulating material | |
JP5381306B2 (en) | Bag body and vacuum insulation | |
JP2010174997A (en) | Vacuum heat insulation material | |
JP2010173700A (en) | Bag body and method for manufacturing the same | |
JP2010139005A (en) | Vacuum heat insulating material | |
JP2010285219A (en) | Bag | |
JP2012026511A (en) | Bag, and vacuum heat insulating material | |
JP6793571B2 (en) | Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material | |
JP2011208762A (en) | Vacuum heat insulating material | |
JP2012026513A (en) | Bag body, and vacuum heat insulating material | |
JP2011208764A (en) | Vacuum heat insulating material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100312 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111205 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4893728 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |