JP2012026512A - Bag body and vacuum heat insulating material - Google Patents
Bag body and vacuum heat insulating material Download PDFInfo
- Publication number
- JP2012026512A JP2012026512A JP2010165645A JP2010165645A JP2012026512A JP 2012026512 A JP2012026512 A JP 2012026512A JP 2010165645 A JP2010165645 A JP 2010165645A JP 2010165645 A JP2010165645 A JP 2010165645A JP 2012026512 A JP2012026512 A JP 2012026512A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- heat
- thin
- heat insulating
- sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
本発明は、充填物を密封する袋体と、それを用いた真空断熱材に関するものである。 The present invention relates to a bag for sealing a filling and a vacuum heat insulating material using the bag.
近年、菓子や飲料などの食品、あるいは液体、気体、固体状の薬品や生活雑貨などを密封袋へ収納し長期保存を可能としたり、密封袋に発泡体、粉末、繊維体を真空密封し真空断熱材としたり、袋体の密封技術が広く用いられている。ここでは、真空断熱材を例に説明する。 In recent years, food such as confectionery and beverages, or liquid, gas, solid chemicals and household goods can be stored in a sealed bag for long-term storage, or foam, powder and fiber can be vacuum sealed in a sealed bag. Insulation materials and bag sealing techniques are widely used. Here, a vacuum heat insulating material will be described as an example.
深刻な地球環境問題である温暖化への対策として、家電製品や設備機器並びに住宅などの建物の省エネルギー化を推進する動きが活発となっており、優れた断熱効果を長期的に維持する真空断熱材が、これまで以上に求められている。 As measures against global warming, which is a serious global environmental problem, there is an active movement to promote energy saving in home appliances, equipment and buildings such as houses, and vacuum insulation that maintains an excellent thermal insulation effect over the long term More material is needed than ever before.
真空断熱材とは、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外被材で覆い、外被材の内部を減圧密封したものである。真空断熱材は、その内空間を高真空に保ち、気相を伝わる熱量を出来る限り小さくすることにより、高い断熱効果の実現を可能としたものである。よって、その優れた断熱効果を長期にわたって発揮するためには、真空断熱材内部の高い真空度を維持する技術が極めて重要となる。 The vacuum heat insulating material is a material in which a core material having fine voids such as glass wool or silica powder is covered with a jacket material having gas barrier properties, and the inside of the jacket material is sealed under reduced pressure. The vacuum heat insulating material can realize a high heat insulating effect by keeping the inner space in a high vacuum and reducing the amount of heat transmitted through the gas phase as much as possible. Therefore, a technique for maintaining a high degree of vacuum inside the vacuum heat insulating material is extremely important in order to exhibit the excellent heat insulating effect over a long period of time.
真空断熱材内部の真空度を維持する方法として、気体吸着剤や水分吸着剤を芯材とともに真空断熱材内部に減圧密封する方法が、一般的に用いられている。これによって、真空包装後に芯材の微細空隙から真空断熱材中へ放出される残存水分や、外気から外被材を透過して経時的に真空断熱材内へ浸透する水蒸気や酸素等の大気ガスを除去することが可能となる。 As a method for maintaining the degree of vacuum inside the vacuum heat insulating material, a method in which a gas adsorbent or a moisture adsorbent is sealed under reduced pressure inside the vacuum heat insulating material together with the core material is generally used. As a result, residual moisture released into the vacuum heat insulating material from the minute gaps in the core material after vacuum packaging, or atmospheric gases such as water vapor and oxygen that permeate through the jacket material from the outside air and permeate into the vacuum heat insulating material over time. Can be removed.
しかし、現存の吸着剤の吸着能力を考慮すると、高い断熱効果を長期的に維持する真空断熱材を提供するには、吸着剤の使用だけでは不十分であると言え、真空断熱材内部へ浸透する大気ガス量自体を抑制する手段を講じる必要がある。 However, considering the adsorption capacity of existing adsorbents, it can be said that the use of adsorbents alone is not sufficient to provide vacuum insulation that maintains a high thermal insulation effect over the long term. It is necessary to take measures to control the amount of atmospheric gas that is generated.
ここで、外気から真空断熱材内部へ侵入するガス経路について述べる。 Here, a gas path entering from the outside air into the vacuum heat insulating material will be described.
真空断熱材は、通常、2枚の長方形の外被材を重ね合わせて外被材の3辺の周縁近傍の外周部同士を熱溶着して作製した3方シール袋内へ、3方シール袋の開口部から芯材を挿入し、真空包装機を用いて外被材の袋内部を真空引きしながら、3方シール袋の開口部を熱溶着することによって製造される。 The vacuum heat insulating material is usually a three-side seal bag into a three-side seal bag prepared by superposing two rectangular outer cover materials and heat-sealing the outer peripheral portions of the three peripheral edges of the outer cover material. It is manufactured by inserting a core material from the opening portion of the bag and heat-welding the opening portion of the three-side seal bag while evacuating the inside of the bag of the jacket material using a vacuum packaging machine.
外被材には、通常、最内層に低密度ポリエチレンなどの熱可塑性樹脂からなる熱溶着層、中間層にアルミニウム箔やアルミニウム蒸着フィルムなどのバリア性を有する材料からなるガスバリア層、そして最外層にはナイロンフィルムやポリエチレンテレフタレートフィルムなどの表面保護の役割を果たす表面保護層を、接着剤を介して積層したラミネートフィルムを用いる。 The outer cover material is usually a heat-welded layer made of a thermoplastic resin such as low density polyethylene in the innermost layer, a gas barrier layer made of a material having a barrier property such as an aluminum foil or an aluminum vapor deposited film in the intermediate layer, and an outermost layer in the outer layer. Uses a laminated film obtained by laminating a surface protective layer such as a nylon film or a polyethylene terephthalate film through an adhesive.
この場合、外気から真空断熱材内部へ透過する大気ガスは、外被材表面から透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分との2つに分類される。 In this case, the atmospheric gas that permeates from the outside air into the vacuum heat insulating material passes through the sealing portion from the portion where the component that permeates from the surface of the jacket material and the heat-welded layer on the edge surface of the jacket material are exposed. And the components that permeate inside.
このうち、熱溶着層を構成している熱可塑性樹脂は、ガスバリア層と比べると気体透過
度および透湿度が極めて高いことから、真空断熱材内部へ経時的に侵入する大気ガス量のうち、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過したものが大半を占める。
Of these, the thermoplastic resin constituting the heat-welded layer has extremely high gas permeability and moisture permeability compared to the gas barrier layer. Most of the material is transmitted through the sealing portion to the inside from the exposed portion of the heat-welded layer on the end surface of the peripheral edge of the workpiece.
よって、長期にわたって優れた断熱性能を維持する真空断熱材の提供には、外被材周縁の端面の熱溶着層が露出している部分からの大気ガス浸透量抑制が不可欠であり、その効果的な手法が課題とされてきた。 Therefore, in order to provide a vacuum insulation material that maintains excellent heat insulation performance over a long period of time, it is indispensable to suppress the amount of atmospheric gas permeation from the exposed part of the edge of the outer periphery of the outer jacket material. Techniques have been a challenge.
この課題に対して、封止部における熱溶着層の一部を薄肉にした薄肉部を設けた真空断熱材が報告されている(例えば、特許文献1参照)。 In response to this problem, there has been reported a vacuum heat insulating material provided with a thin portion in which a part of the heat-welded layer in the sealing portion is thin (see, for example, Patent Document 1).
図7は、特許文献1に記載された従来の真空断熱材の断面図である。 FIG. 7 is a cross-sectional view of a conventional vacuum heat insulating material described in Patent Document 1.
図7に示すように、特許文献1に記載された従来の真空断熱材101は、ガスバリア層102と熱溶着層103とを有する外被材104の封止部分の熱溶着層103の一部が薄肉になっている。この薄肉部105は、図8に示すような加熱加圧冶具106を用いて、封止部分における外被材104の一部を特に強く加圧することにより形成されたもので、外被材104の全周を取り巻くように形成されている。このとき、加熱加圧治具106の突起形状によりガスバリア層102には角部(角形状となった部位)107ができる。 As shown in FIG. 7, the conventional vacuum heat insulating material 101 described in Patent Document 1 has a part of the thermal welding layer 103 in the sealing portion of the outer covering material 104 having the gas barrier layer 102 and the thermal welding layer 103. It is thin. The thin-walled portion 105 is formed by using a heating and pressing jig 106 as shown in FIG. 8 to particularly strongly press a part of the jacket material 104 in the sealed portion. It is formed so as to surround the entire circumference. At this time, due to the protrusion shape of the heating and pressing jig 106, the gas barrier layer 102 has a corner 107 (a portion having a square shape).
従来の構成は、薄肉部105によって外被材104周縁の端面から侵入するガスの透過抵抗が増大し、内部へのガス侵入を抑制することで長期に渡って優れた断熱性能を発揮できるとされている。 In the conventional configuration, the thin wall portion 105 increases the permeation resistance of the gas entering from the end surface of the outer periphery of the outer covering material 104, and can suppress the gas intrusion into the inside, thereby exhibiting excellent heat insulation performance for a long time. ing.
さらに、長期にわたって優れた断熱性能を維持する真空断熱材の提供には、残りの外被材表面から透過してくる大気ガスの浸透量を抑制することが課題とされる。 Furthermore, in order to provide a vacuum heat insulating material that maintains excellent heat insulating performance over a long period of time, it is an object to suppress the permeation amount of the atmospheric gas that permeates from the surface of the remaining jacket material.
この課題に対して、ガスバリア層にアルミニウム箔を設けた真空断熱材が報告されている(例えば、特許文献2参照)。 In response to this problem, a vacuum heat insulating material in which an aluminum foil is provided on a gas barrier layer has been reported (see, for example, Patent Document 2).
図9は、特許文献2に記載された従来の真空断熱材の断面図である。図9に示すように、特許文献2に記載された従来の真空断熱材は、ラミネートフィルム容器201の中に断熱材202が充填され、断熱材202の外周部にラミネートフィルム容器201同士が熱溶着されたヒレ状の熱溶着部203を有している。 FIG. 9 is a cross-sectional view of a conventional vacuum heat insulating material described in Patent Document 2. As shown in FIG. 9, in the conventional vacuum heat insulating material described in Patent Document 2, the heat insulating material 202 is filled in the laminated film container 201, and the laminated film containers 201 are thermally welded to the outer periphery of the heat insulating material 202. The fin-like heat welding portion 203 is provided.
図10は、特許文献2に記載された従来の真空断熱材のラミネートフィルム容器201の拡大断面図である。図10に示すように、ラミネートフィルム容器201は、熱溶着層204、アルミニウム箔層205、表面保護層206により構成されている。 FIG. 10 is an enlarged cross-sectional view of a conventional laminated film container 201 of a vacuum heat insulating material described in Patent Document 2. As shown in FIG. 10, the laminate film container 201 includes a heat welding layer 204, an aluminum foil layer 205, and a surface protective layer 206.
従来の構成は、アルミニウム箔層205を20μm以下のアルミニウム箔とすることにより、アルミニウム箔層205にピンホールや亀裂が発生することなく、長期間、真空を保持することができるとされている。 According to the conventional configuration, the aluminum foil layer 205 is an aluminum foil having a thickness of 20 μm or less, so that a vacuum can be maintained for a long time without causing pinholes or cracks in the aluminum foil layer 205.
さらなる長期にわたって優れた密封性能を維持する袋体、および断熱性能を維持する真空断熱材の提供には、外被材表面から透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分の両方の大気ガスの浸透量を抑制しなければならない。 In order to provide a bag body that maintains excellent sealing performance for a longer period of time and a vacuum heat insulating material that maintains heat insulating performance, a component that permeates from the surface of the outer jacket material and a heat-welded layer on the edge of the outer edge of the outer jacket material are provided. It is necessary to suppress the permeation amount of both atmospheric gases from the exposed portion through the sealing portion to the inside.
しかし、図10に示されるような上記特許文献2のラミネートフィルム容器201を外被材に用いた真空断熱材の熱溶着部の熱溶着時に特許文献1に記載された加熱圧縮冶具を用いた場合は、薄肉部に、図11に示されるような角部207ができ、真空断熱材の製造時および取り扱い時に、角部207において、ラミネートフィルム容器201、特にアルミニウム箔205にクラックが発生する。このクラックから、経年的に大気ガス成分の真空断熱材内部への侵入が促進されるという課題があった。 However, when the heat compression jig described in Patent Document 1 is used at the time of heat welding of the heat welding part of the vacuum heat insulating material using the laminate film container 201 of Patent Document 2 as shown in FIG. In the thin wall portion, a corner portion 207 as shown in FIG. 11 is formed, and cracks are generated in the laminate film container 201, particularly the aluminum foil 205, in the corner portion 207 when the vacuum heat insulating material is manufactured and handled. From this crack, there was a problem that the penetration of atmospheric gas components into the vacuum heat insulating material was promoted over time.
ここで、角部207とは、封止部をラミネートフィルム容器201(外被材)の周縁に垂直な平面で切断した場合の断面を見た時、薄肉部の境界及びその近傍に生じる、熱溶着層204の厚み変化に伴い形成される角形状となった部位(曲率が大きい部位)を指す。 Here, the corner portion 207 is a heat generated at the boundary of the thin portion and the vicinity thereof when the cross section when the sealing portion is cut by a plane perpendicular to the periphery of the laminate film container 201 (cover material) is seen. It refers to a square-shaped part (a part having a large curvature) formed with a change in the thickness of the weld layer 204.
また、二枚の積層フィルムで断熱コア材を封入したものについては、特許文献2では熱溶着性フィルムの溶着部を介して真空断熱材内部へ侵入するガスや水蒸気への対策が講じられていないため、芯材となる断熱材202が構成する空隙へ侵入するガスや水蒸気の量は、アルミニウム箔をガスバリア性フィルムとして利用した真空断熱材よりも、蒸着面からの侵入量分だけ増加するので、空隙における真空度の増加速度は従来よりも大きくなる。 Moreover, about what sealed the heat insulation core material with the laminated film of 2 sheets, in patent document 2, the countermeasure against the gas and water vapor | steam which penetrate | invade into a vacuum heat insulating material through the welding part of a heat welding film is not taken. Therefore, the amount of gas and water vapor that penetrates into the gap formed by the heat insulating material 202 as the core material increases by the amount of intrusion from the vapor deposition surface, compared to the vacuum heat insulating material that uses aluminum foil as a gas barrier film. The increasing rate of the degree of vacuum in the air gap is larger than before.
よって、上記特許文献1の技術手段のみでは、真空断熱材を製作した直後の熱伝導率と、積層フィルムのガスバリア性に関する記載はあっても熱伝導率の経年的な変化に関する記載が無く、長期にわたって外装体内部の真空状態が保たれ、断熱性能が維持できると言い難い。 Therefore, only with the technical means of the above-mentioned Patent Document 1, there is no description about the change over time in the thermal conductivity even though there is a description about the thermal conductivity immediately after the vacuum heat insulating material is manufactured and the gas barrier property of the laminated film, It is difficult to say that the vacuum state inside the exterior body is maintained and the heat insulation performance can be maintained.
また、真空断熱材をリサイクルする際、粉砕した後に、比重の違いを利用し芯材と外被材を分別し再利用する方法が知られているが、再生時には多くのエネルギーを要してしまうという課題があり、簡単に芯材と外被材を分離する方法が求められている。 In addition, when recycling vacuum insulation, there is known a method of separating and reusing the core material and the jacket material using the difference in specific gravity after pulverization, but it takes a lot of energy during regeneration. Thus, there is a need for a method for easily separating the core material and the jacket material.
本発明は、上記従来の課題を解決するものであり、封止部に設けた熱溶着層の薄肉部及びその近傍において、ガスバリア層の劣化や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持でき、充填物として微細空隙を有する芯材を減圧密封した場合に、長期に渡って優れた断熱性能を維持でき、芯材を容易に分離できる、リサイクル性に優れた真空断熱材となる袋体と、それを用いた真空断熱材を提供することを目的とする。 The present invention solves the above-described conventional problems, and the deterioration of the gas barrier layer and the breakage of the sealing part are extremely unlikely to occur in the thin-walled part of the heat-welded layer provided in the sealing part and the vicinity thereof for a long period of time. A vacuum with excellent recyclability that can maintain excellent sealing performance, maintain a good thermal insulation performance for a long period of time when a core material having fine voids as a filling is sealed under reduced pressure, and can easily separate the core material. It aims at providing the bag body used as a heat insulating material, and the vacuum heat insulating material using the same.
上記目的を達成するために、本発明の袋体は、2枚の外被材の周縁または周縁近傍の外周部同士が熱溶着された充填物密封用の袋体であって、前記外被材が、外側から内側に向かって、表面保護層、内部保護層、ガスバリア層、熱溶着層の順でラミネートされたラミネートフィルムからなり、前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が少なくとも一つの凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されており、前記外被材の周縁部の少なくとも一部に切り欠き又は切り込みが形成されており、前記充填物が内袋に収納された状態で密封されている。 In order to achieve the above object, the bag body of the present invention is a bag body for sealing a filling, in which the outer peripheral portions of two outer jacket materials or the outer peripheral portions in the vicinity of the outer periphery are thermally welded to each other. Is a sealing part comprising a laminate film laminated in the order of a surface protective layer, an internal protective layer, a gas barrier layer, and a heat welding layer from the outside to the inside, and the outer peripheral parts of the jacket material are heat welded to each other When the cross-section when cutting at least a part of the surface by a plane perpendicular to the peripheral edge is viewed, the thermal welding layer located in the sealing portion has at least one recess, and the deepest portion of the recess A thin-walled portion where the thickness of the heat-welded layer is thinner than the peripheral portion of the deepest portion is formed, and a notch or a cut is formed in at least a part of the peripheral portion of the jacket material, and the filling is Sealed in a state of being housed in an inner bag.
上記構成において、まず、外被材の外周部同士が熱溶着された封止部の少なくとも一部
を周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。
In the above configuration, first, when seeing a cross-section when cutting at least a part of the sealing portion in which the outer peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral edge, thermal welding located in the sealing portion By providing a thin portion where the layer thickness is locally thin, the permeation area of gas and moisture entering from the end face of the outer periphery of the jacket material is reduced in the thin portion of the heat-welded layer, and the permeation resistance of gas and moisture Since the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate over time is suppressed, and excellent sealing performance can be exhibited over a long period of time.
また、外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、保護層は表面保護層、内部保護層といった複数のフィルムにより構成されているので、封止部の薄肉部およびその近傍において、熱溶着層は少なくとも一つの凹部の形状に沿って曲がるが、表面保護層、内部保護層といった複数のフィルムにより凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層より外層側に積層されたガスバリア層の劣化の発生が極めて起きにくくなる。 Moreover, when the cross section when cutting at least a part of the sealing portion in which the outer peripheral portions of the jacket material are thermally welded is cut by a plane perpendicular to the peripheral edge, the protective layer includes a plurality of protective layers such as a surface protective layer and an internal protective layer. The heat welding layer bends along the shape of at least one recess in the thin portion of the sealing portion and in the vicinity thereof, but the recess is formed by a plurality of films such as a surface protective layer and an internal protective layer. Sometimes when external force is applied, the stress is gradually reduced as it becomes the inner layer, and it is difficult for stress to concentrate locally, and the deterioration of the gas barrier layer laminated on the outer layer side from the heat-welded layer occurs. It becomes extremely difficult to get up.
さらに、熱溶着層の薄肉部においては、熱溶着層の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層の厚みが凹部形成に用いる加熱圧縮冶具の突起部に沿って徐々に滑らかに増減することに伴い、封止部の強度も連続的に滑らかに増減することから、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるガスバリア層の劣化や封止部の破断が極めて起きにくくなる。 Furthermore, in the thin part of the heat-welded layer, the thickness of the heat-welded layer is thinner than the peripheral part, and the strength is reduced by the thickness reduction, but the thickness of the heat-welded layer is the protrusion of the heating compression jig used for forming the recess. As the strength of the sealing portion also increases and decreases continuously and smoothly along with the increase and decrease gradually along the part, it is difficult for stress to concentrate locally in the thin part of the heat-welded layer, Deterioration of the gas barrier layer and breakage of the sealing portion in the thin-walled portion of the weld layer and the jacket material in the vicinity thereof are extremely difficult to occur.
さらに、外被材の周縁部の少なくとも一部に切り欠き又は切り込みが形成されており、充填物が内袋に収納された状態で密封されているので、外被材を容易に引き裂いて、容易に充填物を取り出すことができ、外被材内部にある充填物を取り出す時に、充填物を内袋で保護して、内袋内の充填物を傷つけることを防止できる。 Furthermore, since a notch or a notch is formed in at least a part of the peripheral portion of the jacket material and the filling is sealed in a state of being stored in the inner bag, the jacket material can be easily torn and easily It is possible to take out the filling material and to protect the filling material with the inner bag when taking out the filling material inside the jacket material, and to prevent the filling material in the inner bag from being damaged.
そして、充填物として微細空隙を有する芯材を内袋に入れた状態で袋内に減圧密封した場合は、長期に渡って優れた断熱性能を維持でき、真空断熱材をリサイクルするために、芯材を取り出す時に、芯材を容易に分離でき、芯材を内袋で保護しているので、内袋内の芯材を傷つけることを防止でき、芯材をそのままの状態、または、内袋のみを新しく変えて、真空断熱材の芯材に再利用することができ、且つ、再生エネルギーを減少することができる。 And when the core material having fine voids as a filling material is sealed in the bag under reduced pressure, excellent insulation performance can be maintained for a long time, and the core material is recycled in order to recycle the vacuum insulation material. When the material is taken out, the core material can be easily separated and the core material is protected by the inner bag, so that the core material in the inner bag can be prevented from being damaged, and the core material is left as it is or only the inner bag. Can be reused for the core material of the vacuum heat insulating material, and the regenerative energy can be reduced.
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、ガスバリア層の劣化や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持でき、充填物として微細空隙を有する芯材を内袋に入れた状態で減圧密封した場合に、長期に渡って優れた断熱性能を維持でき、芯材を容易に分離でき、芯材をそのままの状態、または、内袋のみを新しく変えて、真空断熱材の芯材に再利用することができるリサイクル性に優れた真空断熱材となる袋体と、それを用いた真空断熱材を提供することができる。 As described above, the gas barrier layer is hardly deteriorated and the sealing part is hardly broken at the thin part of the heat-welded layer provided in the sealing part, and excellent sealing performance can be maintained over a long period of time. When sealed with vacuum in a state where a core material having a gap is put in an inner bag, it is possible to maintain excellent heat insulation performance over a long period of time, the core material can be easily separated, and the core material is left as it is, or the inner bag The bag body used as the vacuum heat insulating material excellent in recyclability which can be reused for the core material of a vacuum heat insulating material, and a vacuum heat insulating material using the same can be provided.
本発明によれば、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、外被材周縁の端面から侵入する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。また、保護層は表面保護層、内部保護層といった複数のフィルムにより構成されているので、凹部形成時に外力を受けた場合に、熱溶着層より外層側に積層されたガスバリア層の劣化が極めて起きにくくなる。さらに、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や封止部の破断が極めて起きにくくなる。また、充填物を芯材とし、袋体を真空引きした真空断熱材にも適用できる。 According to the present invention, by providing the thin portion where the thickness of the heat-welding layer of the sealing portion is locally thin, the gas and moisture amount entering from the end face of the outer periphery of the outer jacket material are suppressed, and the thermal insulation layer is excellent over a long period of time. Sealing performance can be demonstrated. In addition, since the protective layer is composed of a plurality of films such as a surface protective layer and an internal protective layer, when an external force is applied during the formation of the recess, the gas barrier layer laminated on the outer layer side from the heat-welded layer is extremely deteriorated. It becomes difficult. Furthermore, it is difficult for stress to be locally concentrated in the thin portion of the heat-welded layer, and cracks and breakage of the sealing portion in the thin-wall portion of the heat-welded layer and the jacket material in the vicinity thereof are extremely unlikely to occur. Further, the present invention can also be applied to a vacuum heat insulating material in which the filling is used as a core material and the bag body is evacuated.
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持する袋体、および断熱性能を維持する真空断熱材を提供できる。 As described above, in the thin-walled portion of the heat-welded layer provided in the sealing portion and in the vicinity thereof, the bag body that is extremely unlikely to cause cracking or breaking of the sealing portion and that maintains excellent sealing performance over a long period of time, and the heat insulating performance The vacuum insulation material to maintain can be provided.
さらに、外被材の周縁部の少なくとも一部に切り欠き又は切り込みが形成されており、充填物が内袋に収納された状態で密封されているので、外被材を容易に引き裂いて、容易に充填物を取り出すことができ、外被材内部にある充填物を取り出す時に、充填物を内袋で保護して、内袋内の充填物を傷つけることを防止できるので、充填物として微細空隙を有する芯材を内袋に入れた状態で減圧密封した場合に、リサイクル時には、芯材を容易に分離でき、芯材をそのままの状態、または、内袋のみを新しく変えて、真空断熱材の芯材に再利用することができ、且つ、再生エネルギーを減少することができる。 Furthermore, since a notch or a notch is formed in at least a part of the peripheral portion of the jacket material and the filling is sealed in a state of being stored in the inner bag, the jacket material can be easily torn and easily It is possible to take out the filling material, and when taking out the filling material inside the jacket material, the filling material can be protected by the inner bag, and the filling material in the inner bag can be prevented from being damaged. When the core material having the inner bag is sealed under reduced pressure, the core material can be easily separated at the time of recycling. It can be reused for the core material and the regenerative energy can be reduced.
第1の発明は、2枚の外被材の周縁または周縁近傍の外周部同士が熱溶着された充填物密封用の袋体であって、前記外被材が、外側から内側に向かって、表面保護層、内部保護層、ガスバリア層、熱溶着層の順でラミネートされたラミネートフィルムからなり、前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が少なくとも一つの凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されており、前記外被材の周縁部の少なくとも一部に切り欠き又は切り込みが形成されており、前記充填物が内袋に収納された状態で密封されている袋体である。 The first invention is a bag body for sealing a filler in which the outer peripheral portions of two outer jacket materials or the outer peripheral portions in the vicinity of the outer periphery are thermally welded, and the outer jacket material is directed from the outside to the inside. It consists of a laminate film laminated in the order of a surface protective layer, an internal protective layer, a gas barrier layer, and a heat-welded layer, and at least a part of the sealing portion in which the outer peripheral portions of the jacket material are heat-welded to each other is perpendicular to the peripheral edge When the cross section when cut in a flat plane is viewed, the thermal welding layer located in the sealing portion has at least one concave portion, and the thickness of the thermal welding layer is the deepest in the deepest portion of the concave portion. A thin-walled portion thinner than the peripheral portion is formed, and at least a part of a peripheral edge portion of the jacket material is formed with a notch or a notch, and the filling is sealed in a state of being accommodated in an inner bag. It is a bag body.
上記構成において、まず、外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。 In the above configuration, first, when seeing a cross-section when cutting at least a part of the sealing portion in which the outer peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral edge, thermal welding located in the sealing portion By providing a thin portion where the layer thickness is locally thin, the permeation area of gas and moisture entering from the end face of the outer periphery of the jacket material is reduced in the thin portion of the heat-welded layer, and the permeation resistance of gas and moisture Since the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate over time is suppressed, and excellent sealing performance can be exhibited over a long period of time.
また、外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、保護層は表面保護層、内部保護層といった複数のフィルムにより構成されているので、封止部の薄肉部およびその近傍において、熱溶着層は少な
くとも一つの凹部の形状に沿って曲がるが、表面保護層、内部保護層といった複数のフィルムにより凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層より外層側に積層されたガスバリア層の劣化の発生が極めて起きにくくなる。
Moreover, when the cross section when cutting at least a part of the sealing portion in which the outer peripheral portions of the jacket material are thermally welded is cut by a plane perpendicular to the peripheral edge, the protective layer includes a plurality of protective layers such as a surface protective layer and an internal protective layer The heat welding layer bends along the shape of at least one recess in the thin portion of the sealing portion and in the vicinity thereof, but the recess is formed by a plurality of films such as a surface protective layer and an internal protective layer. Sometimes when external force is applied, the stress is gradually reduced as it becomes the inner layer, and it is difficult for stress to concentrate locally, and the deterioration of the gas barrier layer laminated on the outer layer side from the heat-welded layer occurs. It becomes extremely difficult to get up.
さらに、熱溶着層の薄肉部においては、熱溶着層の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層の厚みが凹部形成に用いる加熱圧縮冶具の突起部に沿って徐々に滑らかに増減することに伴い、封止部の強度も連続的に滑らかに増減することから、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるガスバリア層の劣化や封止部の破断が極めて起きにくくなる。 Furthermore, in the thin part of the heat-welded layer, the thickness of the heat-welded layer is thinner than the peripheral part, and the strength is reduced by the thickness reduction, but the thickness of the heat-welded layer is the protrusion of the heating compression jig used for forming the recess. As the strength of the sealing portion also increases and decreases continuously and smoothly along with the increase and decrease gradually along the part, it is difficult for stress to concentrate locally in the thin part of the heat-welded layer, Deterioration of the gas barrier layer and breakage of the sealing portion in the thin-walled portion of the weld layer and the jacket material in the vicinity thereof are extremely difficult to occur.
さらに、外被材の周縁部の少なくとも一部に切り欠き又は切り込みが形成されており、充填物が内袋に収納された状態で密封されているので、外被材を容易に引き裂いて、容易に充填物を取り出すことができ、外被材内部にある充填物を取り出す時に、充填物を内袋で保護して、内袋内の充填物を傷つけることを防止できる。 Furthermore, since a notch or a notch is formed in at least a part of the peripheral portion of the jacket material and the filling is sealed in a state of being stored in the inner bag, the jacket material can be easily torn and easily It is possible to take out the filling material and to protect the filling material with the inner bag when taking out the filling material inside the jacket material, and to prevent the filling material in the inner bag from being damaged.
そして、充填物として微細空隙を有する芯材を内袋に入れた状態で袋内に減圧密封した場合は、長期に渡って優れた断熱性能を維持でき、真空断熱材をリサイクルするために、芯材を取り出す時に、芯材を容易に分離でき、芯材を内袋で保護しているので、内袋内の芯材を傷つけることを防止でき、芯材をそのままの状態、または、内袋のみを新しく変えて、真空断熱材の芯材に再利用することができ、且つ、再生エネルギーを減少することができる。 And when the core material having fine voids as a filling material is sealed in the bag under reduced pressure, excellent insulation performance can be maintained for a long time, and the core material is recycled in order to recycle the vacuum insulation material. When the material is taken out, the core material can be easily separated and the core material is protected by the inner bag, so that the core material in the inner bag can be prevented from being damaged, and the core material is left as it is or only the inner bag. Can be reused for the core material of the vacuum heat insulating material, and the regenerative energy can be reduced.
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、ガスバリア層の劣化や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持でき、充填物として微細空隙を有する芯材を内袋に入れた状態で減圧密封した場合に、長期に渡って優れた断熱性能を維持でき、芯材を容易に分離でき、芯材をそのままの状態、または、内袋のみを新しく変えて、真空断熱材の芯材に再利用することができるリサイクル性に優れた真空断熱材となる袋体と、それを用いた真空断熱材を提供することができる。 As described above, the gas barrier layer is hardly deteriorated and the sealing part is hardly broken at the thin part of the heat-welded layer provided in the sealing part, and excellent sealing performance can be maintained over a long period of time. When sealed with vacuum in a state where a core material having a gap is put in an inner bag, it is possible to maintain excellent heat insulation performance over a long period of time, the core material can be easily separated, and the core material is left as it is, or the inner bag The bag body used as the vacuum heat insulating material excellent in recyclability which can be reused for the core material of a vacuum heat insulating material, and a vacuum heat insulating material using the same can be provided.
また、ラミネートフィルム基材に関して特に指定するものではないが、外被材のガスバリア性を高めるため、ナイロン−6やナイロン−66などのポリアミドフィルムや、ポリエチレンテレフタレートやポリエチレンナフタレート、ポリブチレンテレフタレートなどのポリエステルフィルム、ポリ塩化ビニリデンフィルムや、ポリビニルアルコールフィルムや、エチレン−ビニルアルコール共重合体などのようにガスバリア性の高い材料を使用することが望ましい。 Although not particularly specified for the laminate film substrate, in order to improve the gas barrier property of the jacket material, polyamide films such as nylon-6 and nylon-66, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc. It is desirable to use a material having a high gas barrier property such as a polyester film, a polyvinylidene chloride film, a polyvinyl alcohol film, an ethylene-vinyl alcohol copolymer.
また、熱溶着性フィルムとしては特に指定するものではないが、低密度ポリエチレン、直鎖低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、無延伸ポリプロピレン、ポリアクリロニトリル等の熱可塑性フィルム或いはそれらを含む混合体や積層体が使用できる。 Although not particularly specified as a heat-weldable film, thermoplastic films such as low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, unstretched polypropylene, polyacrylonitrile, or a mixture containing them. Body and laminate can be used.
また、内袋に関しては特に指定するものではないが、ポリアミドフィルムやポリエステルフィルムなどの汎用フィルムが使用できる。 Moreover, although it does not specify in particular regarding an inner bag, general purpose films, such as a polyamide film and a polyester film, can be used.
また、内袋の形状は四方シール袋、ガゼット袋、三方シール袋、ピロー袋など、特に指定するものではないが、通気孔などを設けた真空排気が容易な構造を保持しているものが望ましい。 The shape of the inner bag is not particularly specified, such as a four-side sealed bag, a gusset bag, a three-side sealed bag, or a pillow bag, but it is desirable that the inner bag has a structure that can be easily evacuated with a vent hole or the like. .
また、外被材の周縁部とは、外被材の複層方向に対して垂直な方向から見たときに、外被材の複層状態が確認な外被材の端部付近を指す。さらに具体的には、外被材の複層方向に対して垂直な方向から見たときに、外被材の複層状態が確認な外被材の端部から熱溶着性フィルム同士が熱溶着可能な50mm以内の場所を指す。フィルムの使用量削減や製作し易さを鑑みると30mm以内が望ましい。 Further, the peripheral edge portion of the jacket material refers to the vicinity of the end portion of the jacket material in which the multilayer state of the jacket material is confirmed when viewed from a direction perpendicular to the multilayer direction of the jacket material. More specifically, when seen from a direction perpendicular to the multilayer direction of the jacket material, the heat-welding films are thermally welded from the end of the jacket material where the multilayer state of the jacket material is confirmed. Refers to a location within 50 mm possible. In view of reducing the amount of film used and ease of production, it is preferably within 30 mm.
外被材に使用するラミネート接着剤については、特に指定するものではないが、2液硬化型ウレタン接着剤等の従来公知のラミネート用接着剤もしくはエポキシ系樹脂接着剤が使用できる。 The laminate adhesive used for the jacket material is not particularly specified, and conventionally known laminate adhesives such as two-component curable urethane adhesives or epoxy resin adhesives can be used.
外被材の袋形状は、四方シール袋、ガゼット袋、三方シール袋、ピロー袋など、特に指定するものではない。 The bag shape of the jacket material is not particularly specified, such as a four-side seal bag, a gusset bag, a three-side seal bag, and a pillow bag.
なお、凹部とは、外被材の外周部同士が熱溶着された封止部の少なくとも一部を外被材の周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層が少なくとも一つの凹んでいる部分であり、熱溶着層と熱溶着層の外側に隣接する他の層との境界線(境界面)が熱溶着層側へ少なくとも一つの凸となる曲線部を指す。 In addition, a recessed part is a sealing part when seeing the cross section at the time of cut | disconnecting at least one part of the sealing part by which the outer peripheral parts of the jacket material were heat-welded by a plane perpendicular | vertical to the periphery of a jacket material. The position of the heat-welded layer is at least one recessed portion, and the boundary line (boundary surface) between the heat-welded layer and another layer adjacent to the outside of the heat-welded layer is at least one convex toward the heat-welded layer side. It points to the curve part.
なお、凹部の最深部とは、凹部を形成している点群のうち、対向する境界面上の点との間に位置する熱溶着層の厚みが、最も薄い箇所に位置する点部を指す。 In addition, the deepest part of a recessed part refers to the point part located in the location where the thickness of the heat welding layer located between the points on the opposing boundary surface is the thinnest among the point groups which form the recessed part. .
また、充填物としては、菓子や飲料などの食品、あるいは液体、気体、固体状の薬品や生活雑貨などに限らず、発泡体、粉末、繊維体を真空密封した真空断熱材の芯材にも適用できる。 Filling materials are not limited to foods such as confectionery and beverages, liquids, gases, solid chemicals and household goods, but also to the core material of vacuum heat insulating materials in which foams, powders, and fibers are vacuum-sealed. Applicable.
第2の発明は、第1の発明の袋体内に、充填物として微細空隙を有する芯材を内袋に収納された状態で減圧密封した真空断熱材であり、長期に渡って優れた断熱性能を維持でき、芯材を容易に分離でき、芯材をそのままの状態、または、内袋のみを新しく変えて、真空断熱材の芯材に再利用することができるリサイクル性に優れた真空断熱材を提供することができる。 2nd invention is the vacuum heat insulating material which carried out the pressure reduction sealing in the state which accommodated the core material which has a fine space | gap as a filling in the bag body of 1st invention, and was excellent in heat insulation performance over a long period of time Can be easily separated, and the core material remains as it is, or only the inner bag is newly changed and can be reused as the core material for vacuum insulation materials. Can be provided.
以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略するものとする。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the above-described embodiments, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1における袋体の平面図、図2は、同実施の形態の袋体の断面図、図3は、同実施の形態の袋体における薄肉部を含む封止部の一例を示す断面図を示す。
(Embodiment 1)
1 is a plan view of a bag body according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the bag body according to the first embodiment, and FIG. 3 is a seal including a thin portion in the bag body according to the first embodiment. Sectional drawing which shows an example of a stop part is shown.
図1において、袋体1は、内袋2aに収納された状態の充填物2と、同一寸法に裁断された長方形の2枚の外被材3よりなり、2枚の外被材3の間に充填物2が密封され、充填物2を覆う2枚の外被材3の周縁近傍の外周部同士が熱溶着されている。 In FIG. 1, a bag body 1 is composed of a filling 2 in a state accommodated in an inner bag 2 a and two rectangular outer jacket materials 3 cut to the same size. The filler 2 is hermetically sealed, and the outer peripheral portions in the vicinity of the peripheral edges of the two jacket materials 3 that cover the filler 2 are thermally welded.
2枚の外被材3は、外層側から内層側に向かって、表面保護層4、内部保護層5、ガスバリア層6、熱溶着層7の順で積層されたラミネートフィルムである。また、外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの少なくとも3辺に薄肉部9を有している。 The two jacket materials 3 are laminated films in which a surface protective layer 4, an internal protective layer 5, a gas barrier layer 6, and a heat welding layer 7 are laminated in this order from the outer layer side toward the inner layer side. Further, on the peripheral side (outer peripheral part) of the jacket material 3, there is a sealing part 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together. The thin portion 9 is provided on at least three sides.
次に、薄肉部9周辺の封止部8の形状について説明する。 Next, the shape of the sealing part 8 around the thin part 9 will be described.
図3において、熱溶着層7とガスバリア層6との境界面が有する凹部の波高の大きさには差が設けられており、波高の大きい凹部を有する境界面に設けられた凹部の最深部のみが薄肉部9に位置している。 In FIG. 3, there is a difference in the wave height of the concave portion of the boundary surface between the thermal welding layer 7 and the gas barrier layer 6, and only the deepest portion of the concave portion provided in the boundary surface having the concave portion having a large wave height. Is located in the thin portion 9.
次に、本実施の形態において、図1〜図3に示す本実施の形態の袋体1の製造方法の一例を述べる。 Next, in the present embodiment, an example of a method for manufacturing the bag body 1 of the present embodiment shown in FIGS. 1 to 3 will be described.
まず、2枚の外被材3の熱溶着層7同士が対向するように配置し、外被材3の周囲辺の3辺を熱溶着して袋状とする。この熱溶着時に、金属製の加熱圧縮冶具10(図4参照)とシリコンゴムヒーター(図示せず)とで2枚の外被材3を挟むように加熱圧縮し、図3に示す形状の封止部8を形成する。この後、内袋2aに収納された状態の充填物2を袋体1内に挿入し、外被材3の袋の開口部を熱溶着させて密封することにより袋体1を得る。 First, it arrange | positions so that the heat welding layers 7 of the two jacket materials 3 may oppose, and heat-welds the three sides of the jacket material 3 into a bag shape. At the time of this thermal welding, heat compression is performed so that the two outer cover materials 3 are sandwiched between a metal heating and compression jig 10 (see FIG. 4) and a silicon rubber heater (not shown), and the sealing of the shape shown in FIG. A stop 8 is formed. Thereafter, the filler 2 in a state accommodated in the inner bag 2a is inserted into the bag body 1, and the bag body 1 is obtained by heat-sealing and sealing the opening of the bag of the outer jacket material 3.
本実施の形態の袋体1は、充填物2を挿入して密封する2枚の外被材3の周縁近傍の外周部同士が熱溶着された袋体1において、外被材3が、保護層、ガスバリア層6、熱溶着層7で構成されており、保護層は表面保護層4、内部保護層5といった複数のフィルムにより構成されており、かつ外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が少なくとも一つの凹部を有しており、凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されている。 In the bag body 1 of the present embodiment, the outer cover material 3 is protected in the bag body 1 in which the outer peripheral portions in the vicinity of the peripheral edges of the two outer cover materials 3 into which the filler 2 is inserted and sealed are thermally welded. The protective layer is composed of a plurality of films such as a surface protective layer 4 and an internal protective layer 5, and the outer peripheral portions of the jacket material 3 are thermally welded to each other. When the cross section when cutting at least a part of the sealed portion 8 cut along a plane perpendicular to the periphery is viewed, the heat-welded layer 7 located in the sealed portion 8 has at least one recess, A thin-walled portion 9 in which the thickness of the heat-welded layer 7 is thinner than the peripheral portion of the deepest portion is formed in the deepest portion.
また、封止部8の熱溶着層7は両面に他の層(ガスバリア層6)との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。 Further, the heat-welding layer 7 of the sealing portion 8 has a boundary surface with another layer (gas barrier layer 6) on both surfaces, and the wave height of the undulation of one boundary surface of the recess is the undulation of the other boundary surface of the recess. Greater than the wave height.
また、凹部の一方の境界面の熱溶着層7側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層7側に凹となっている部分の最深部とが対向していない。 Further, the deepest portion of the concave portion on the side of the thermal welding layer 7 on the one boundary surface and the deepest portion of the concave portion on the side of the thermal welding layer 7 on the other boundary surface of the concave portion. Not facing each other.
また、図3に示す例では、封止部8に薄肉部9を少なくとも2個以上(4つ)有している。 In the example shown in FIG. 3, the sealing portion 8 has at least two thin portions 9 (four).
また、外被材3の周縁部に沿って、三角波状の切り欠きが形成されている。 In addition, a triangular wave-shaped notch is formed along the peripheral edge of the jacket material 3.
以上のように構成された袋体1について、以下その動作、作用を説明する。 About the bag 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
外被材3は、熱可塑性樹脂やガスバリア性を有する金属箔や樹脂フィルム等をラミネート加工したものであり、外部から袋体1内部への大気ガス侵入を抑制する役割を果たすものである。 The jacket material 3 is obtained by laminating a thermoplastic resin, a metal foil having a gas barrier property, a resin film, or the like, and plays a role of suppressing atmospheric gas intrusion into the bag body 1 from the outside.
表面保護層4および内面保護層5は、外被材3が有する層のうち、ガスバリア層6よりも外層側に位置する、外力から外被材3、特にガスバリア層6の傷つきや破れを防ぐ役割を果たすものである。 The surface protective layer 4 and the inner surface protective layer 5 are located on the outer layer side of the gas barrier layer 6 among the layers of the outer jacket material 3, and prevent the outer shell material 3, particularly the gas barrier layer 6 from being damaged or torn from external forces. To fulfill.
熱溶着層7より外層側に積層されたガスバリア層6は、封止部8の薄肉部9およびその近傍において、熱溶着層7は少なくとも一つの凹部の形状に沿って曲がるが、表面保護層4、内部保護層5といった複数のフィルムにより凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層7より外層側に積層されたガスバリア層6のクラックの発生が極めて起きにくくなる。 In the gas barrier layer 6 laminated on the outer layer side from the heat welding layer 7, the heat welding layer 7 bends along the shape of at least one recess in the thin portion 9 and the vicinity of the sealing portion 8, but the surface protective layer 4 When an external force is applied at the time of forming a recess by a plurality of films such as the inner protective layer 5, the stress is gradually reduced as the inner layer is formed, and the stress is less likely to concentrate locally. The generation of cracks in the gas barrier layer 6 laminated on the outer layer side is extremely difficult.
表面保護層4および内面保護層5としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用でき、同一種類でも2種類以上でも、表面保護層4および内面保護層5共に複数枚重ねて使用してもよい。 As the surface protective layer 4 and the inner surface protective layer 5, conventionally known materials such as nylon film, polyethylene terephthalate film, polypropylene film can be used, and both the surface protective layer 4 and the inner surface protective layer 5 may be the same type or two or more types. You may use it repeatedly.
本実施の形態では、ガスバリア層6は、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルムへアルミニウムや銅等の金属原子もしくはアルミナやシリカ等の金属酸化物を蒸着したフィルムや、金属原子や金属酸化物を蒸着した面にコーティング処理を施したフィルム等が使用できる。 In the present embodiment, the gas barrier layer 6 is a film obtained by depositing a metal atom such as aluminum or copper or a metal oxide such as alumina or silica on a polyethylene terephthalate film or an ethylene-vinyl alcohol copolymer film, or a metal atom or metal. A film or the like obtained by coating the surface on which the oxide is deposited can be used.
熱溶着層7は、外被材3同士を溶着し、袋体1内部の密封性を保持する役割に加えて、充填物2による袋体1内部からの突刺し等からガスバリア層6を保護する役割を果たすものである。 The heat welding layer 7 welds the jacket materials 3 to each other and protects the gas barrier layer 6 from piercing from the inside of the bag body 1 by the filler 2 in addition to the role of maintaining the sealing performance inside the bag body 1. It plays a role.
熱溶着層7としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、メタロセン触媒系直鎖状低密度ポリエチレンフィルム、高密度ポリエチレン、ポリプロピレン等従来公知の材料が使用でき、1種類でも2種類以上重ねて使用してもよい。 Conventionally known materials such as low-density polyethylene, linear low-density polyethylene, metallocene catalyst-based linear low-density polyethylene film, high-density polyethylene, and polypropylene can be used as the heat-welded layer 7, and one or more types can be stacked. May be used.
封止部8は、外被材3の熱溶着層7同士を溶着することにより構成され、真空断熱材1内部と外部とを遮断する役割を果たしている。 The sealing portion 8 is configured by welding the heat welding layers 7 of the jacket material 3, and plays a role of blocking the inside and outside of the vacuum heat insulating material 1.
薄肉部9は、外被材3周縁の端面から封止部8を通って袋体1内部へ侵入する大気ガスの透過速度を抑制し、袋体1の密封性を維持する役割を果たしている。 The thin-walled portion 9 plays a role of maintaining the sealing performance of the bag body 1 by suppressing the permeation rate of the atmospheric gas that enters the bag body 1 from the end surface of the outer periphery of the jacket material 3 through the sealing portion 8.
以上のように、本実施の形態においては、封止部8における熱溶着層7とガスバリア層6との境界面が有する凹部の最深部位置に薄肉部9が設けられ、この2層の境界面が有する凹部の波高に差が設けられているため、ガスバリア層6および外被材3の劣化や破断が極めて起きにくくなるとともに、袋体1内部への経時的な大気ガス侵入が抑制される。 As described above, in the present embodiment, the thin-walled portion 9 is provided at the deepest position of the recess of the boundary surface between the heat-welded layer 7 and the gas barrier layer 6 in the sealing portion 8, and the boundary surface between the two layers. Since the difference is provided in the wave height of the concave portion of the gas barrier layer 6, the gas barrier layer 6 and the covering material 3 are hardly deteriorated or broken, and the atmospheric gas intrusion into the bag body 1 with time is suppressed.
また、上記の製造方法にて袋体1を作製した場合、通常、図4に示すような突起部11によって構成される加熱圧縮冶具10により熱溶着層7が加熱圧縮されるため、加圧による外力が突起部11の接線と垂直な方向にも加わることにより、熱溶着層7の樹脂が薄肉部9の両端方向へ流動しやすくなることから、図10のような従来の封止冶具106のような平面部にて圧縮される場合と比べて、同一の薄肉部9の厚みを得る場合の製造時の温度条件および圧力条件が緩和され、ガスバリア層6および外被材3の劣化が抑制される。 Moreover, when the bag body 1 is produced by the manufacturing method described above, the heat welding layer 7 is usually heated and compressed by the heat compression jig 10 constituted by the protrusions 11 as shown in FIG. Since the external force is also applied in the direction perpendicular to the tangent line of the protrusion 11, the resin of the heat welding layer 7 can easily flow toward both ends of the thin portion 9. Compared to the case where the flat portion is compressed, the temperature condition and pressure condition during manufacture when obtaining the same thickness of the thin portion 9 are relaxed, and the deterioration of the gas barrier layer 6 and the jacket material 3 is suppressed. The
言い換えれば、同一の成形条件によって、より熱溶着層7の薄肉部9の厚みを薄くすることが可能となり、外被材3周縁の端面からの気体および水分侵入量の抑制が容易となる。 In other words, it becomes possible to further reduce the thickness of the thin portion 9 of the heat-welded layer 7 under the same molding conditions, and it becomes easy to suppress the amount of gas and moisture intrusion from the end surface of the outer periphery of the outer cover material 3.
本実施の形態の袋体1は、内袋2aに収納された状態の充填物2を挿入して密封する2枚の外被材3の周縁近傍の外周部同士が熱溶着された袋体1において、外被材3が保護層、ガスバリア層6、熱溶着層7で構成されており、保護層は表面保護層4、内部保護層5といった複数のフィルムにより構成されており、かつ外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が少なくとも一つの凹部を有しており、凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されている。 The bag body 1 according to the present embodiment is a bag body 1 in which the outer peripheral portions in the vicinity of the peripheral edges of the two outer cover materials 3 to be inserted and sealed with the filler 2 stored in the inner bag 2a are heat-welded. The covering material 3 is composed of a protective layer, a gas barrier layer 6, and a heat welding layer 7, and the protective layer is composed of a plurality of films such as a surface protective layer 4 and an internal protective layer 5, and the covering material. 3, when at least a part of the sealing portion 8 in which the outer peripheral portions are heat-welded to each other is cut by a plane perpendicular to the peripheral edge, the heat-welding layer 7 located in the sealing portion 8 has at least one A thin-walled portion 9 is formed at the deepest portion of the concave portion where the thickness of the heat-welded layer 7 is thinner than the peripheral portion of the deepest portion.
上記構成において、まず、外被材3の周縁部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8の熱溶着層7の厚みが局所的に薄い薄肉部9を設けていることにより、熱溶着層7の薄肉部9において、外被材
3の周縁の端面から侵入する気体および水分の透過断面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。
In the above-described configuration, first, when a cross section when cutting at least a part of the sealing portion 8 in which the peripheral portions of the jacket material 3 are thermally welded is cut by a plane perpendicular to the peripheral portion, the heat of the sealing portion 8 is obtained. By providing the thin-walled portion 9 where the thickness of the weld layer 7 is locally thin, the permeation cross-sectional area of gas and moisture entering from the end face of the outer periphery of the outer cover material 3 is reduced in the thin-walled portion 9 of the heat-welded layer 7. Further, the permeation resistance of gas and moisture is increased, and the permeation rate of gas and moisture is reduced. Therefore, the amount of gas and moisture that permeate with time is suppressed, and excellent heat insulation performance can be exhibited over a long period of time.
また、外被材3の周縁部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、保護層は表面保護層4、内部保護層5といった複数のフィルムにより構成されているので、熱溶着層7より外層側に積層されたガスバリア層6は、封止部8の薄肉部9およびその近傍において、熱溶着層7の形状に沿って曲がるが、表面保護層4、内部保護層5といった複数のフィルムにより凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層7より外層側に積層されたガスバリア層6のクラックの発生が極めて起きにくくなる。 In addition, when a cross-section when cutting at least a part of the sealing portion 8 where the peripheral portions of the jacket material 3 are heat-welded with each other is cut along a plane perpendicular to the peripheral portion, the protective layer is the surface protective layer 4 and the internal protection. Since it is composed of a plurality of films such as the layer 5, the gas barrier layer 6 laminated on the outer layer side of the heat welding layer 7 follows the shape of the heat welding layer 7 in the thin portion 9 of the sealing portion 8 and in the vicinity thereof. However, when an external force is applied when forming a recess by a plurality of films such as the surface protective layer 4 and the internal protective layer 5, the stress is gradually reduced as the inner layer is formed, and the stress is locally concentrated. It becomes difficult to generate cracks in the gas barrier layer 6 laminated on the outer layer side of the heat-welded layer 7.
さらに、熱溶着層7の薄肉部9においては、熱溶着層7の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層7の厚みが凹部に沿って徐々に滑らかに増減することに伴い、封止部8の強度(曲げ強度など)も位置が変わるにつれて連続的に滑らかに増減することから、熱溶着層7の薄肉部9において局所的に応力が集中することが起きにくく、熱溶着層7の薄肉部9及びその近傍の外被材3におけるクラック発生や封止部8の破断が極めて起きにくくなる。 Further, in the thin-walled portion 9 of the heat-welded layer 7, the thickness of the heat-welded layer 7 is thinner than the peripheral portion, and the strength is reduced by the thickness reduction, but the thickness of the heat-welded layer 7 gradually increases along the recess. Since the strength (bending strength, etc.) of the sealing portion 8 continuously increases and decreases smoothly as the position changes, the stress is locally concentrated in the thin portion 9 of the heat-welded layer 7. It is difficult to occur, and the occurrence of cracks in the thin-walled portion 9 of the heat-welded layer 7 and the jacket material 3 in the vicinity thereof and the breakage of the sealing portion 8 are extremely unlikely to occur.
以上により、封止部8に設けた熱溶着層7の薄肉部9及びその近傍において、クラック発生や封止部8破断が極めて起きにくい、長期に渡って優れた密封性能を維持する袋体1を提供できる。 By the above, in the thin part 9 of the heat welding layer 7 provided in the sealing part 8 and its vicinity, the crack 1 and the sealing part 8 breakage are hardly caused, and the bag body 1 maintaining excellent sealing performance for a long period of time. Can provide.
また、本実施の形態の袋体1は、封止部8の熱溶着層7は両面にガスバリア層6との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。 Further, in the bag 1 of the present embodiment, the heat welding layer 7 of the sealing portion 8 has a boundary surface with the gas barrier layer 6 on both surfaces, and the wave height of the undulation on one boundary surface of the recess is the other of the recesses. It is larger than the wave height of the swell of the boundary surface.
薄肉部9及びその近傍では、熱溶着層7よりも外層側にある外被材3(の各層6,5)が、少なくとも一つの凹部である熱溶着層7の形状に沿って歪曲することによる応力を受け、強度が低下する。 In the thin-walled portion 9 and the vicinity thereof, the covering material 3 (each layer 6, 5) on the outer layer side of the heat-welding layer 7 is distorted along the shape of the heat-welding layer 7 that is at least one recess. Under stress, the strength decreases.
よって、凹部の一方(図2では上側)の境界面のうねりの波高を、凹部の他方(図2では下側)の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側(図2では下側)の外被材3の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側(図2では上側)の外被材3と比べて僅かとなり、外被材3の封止部8では、強度低下が小さい(図2では下側の)外被材3がもう一方の(図2では上側の)外被材3を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部8の破断が極めて起きにくくなる。 Therefore, by making the wave height of the undulation of the boundary surface of one of the concave portions (upper side in FIG. 2) larger than the wave height of the undulation surface of the other concave portion (lower side of FIG. 2), the wave height is relatively small. The decrease in strength of the outer cover material 3 on the boundary surface side having the waviness (lower side in FIG. 2) is caused by the reduction in the strength of the outer cover material 3 on the boundary surface side (upper side in FIG. 2) having waviness with a relatively large wave height. In comparison with the sealing portion 8 of the outer covering material 3, the outer covering material 3 (on the lower side in FIG. 2) supports the other outer covering material 3 (on the upper side in FIG. 2). The rigidity is maintained in the shape, and the occurrence of cracks and breakage of the sealing portion 8 when receiving external force are extremely difficult.
薄肉部9があると、熱溶着層7の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材3の強度低下が起こる。 When the thin-walled portion 9 is present, not only the thickness of the heat-welded layer 7 is thin and the strength is reduced, but also the strength of the jacket material 3 is reduced due to the distortion due to the deepest portion of the recess being located.
本実施の形態では、凹部の一方の(図2では上側の)境界面の熱溶着層7側に凹となっている部分の最深部と、凹部の他方の(図2では下側の)境界面の熱溶着層7側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部8の強度低下が抑制され、封止部8が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層6の劣化の抑制効果もさらに高くなる。 In the present embodiment, the deepest portion of the concave portion on the heat welding layer 7 side of one boundary surface (upper side in FIG. 2) and the other boundary (lower side in FIG. 2) of the concave portion Since the deepest portion of the concave portion on the surface of the surface is not opposed to the deepest portion, a decrease in strength of the sealing portion 8 where the deepest portion of the concave portion is located is suppressed, and the sealing portion 8 has an external force. Scratches and breakage are less likely to occur. At the same time, the effect of suppressing the deterioration of the gas barrier layer 6 in the recesses is further enhanced.
また、図3に示す例のように、封止部8に薄肉部9を少なくとも2個以上有しているこ
とが好ましい。
Moreover, it is preferable that the sealing part 8 has at least two thin parts 9 as in the example shown in FIG.
薄肉部9においては、封止部8の他箇所に比べて熱溶着層7の厚みが薄く、熱溶着のシール強度が低下することにより、例えば、製造工程において充填物2を挟み込んだ状態で外被材3が熱溶着された場合に、薄肉部9において熱溶着不良が発生することが懸念される。 In the thin-walled portion 9, the thickness of the heat-welded layer 7 is thinner than that of other portions of the sealing portion 8, and the sealing strength of the heat-welding is reduced. When the workpiece 3 is heat-welded, there is a concern that a heat-welding failure occurs in the thin portion 9.
熱溶着不良が発生した箇所では樹脂が存在しないため、ガス侵入抑制効果が低下する。この対策として、少なくとも2個以上の薄肉部9を設けることにより、熱溶着不良に起因する袋体1内部への気体および水分侵入促進の影響が緩和される。 Since there is no resin at the location where the thermal welding failure occurs, the effect of suppressing gas intrusion decreases. As a countermeasure, by providing at least two or more thin-walled portions 9, the influence of gas and moisture penetration promotion into the bag body 1 due to poor heat welding is mitigated.
特に、ガラス繊維などのような細いものを用いた場合は、挟雑物として熱溶着の際に挟み込まれた充填物2物質が加熱変形し、薄肉部9にスルーホールを形成することが多々あることから、本発明の(本実施の形態の)効果がより顕著となる。 In particular, when a thin material such as glass fiber is used, there are many cases where the filler 2 material sandwiched during the heat welding as an interspersed material is deformed by heating and a through hole is formed in the thin portion 9. For this reason, the effect (of the present embodiment) of the present invention becomes more remarkable.
また、薄肉部9においては、外被材3の強度が周囲部よりも低くなり、外力を受けた際の荷重集中が懸念されるが、薄肉部9が複数個存在することにより、外力の荷重が分散され、薄肉部9におけるクラックの発生や封止部8の破断が極めて起きにくくなる。 Moreover, in the thin part 9, although the intensity | strength of the jacket material 3 becomes lower than a surrounding part and there is a concern about the load concentration at the time of receiving external force, the load of external force is due to the presence of a plurality of thin parts 9. Are dispersed, and the occurrence of cracks in the thin-walled portion 9 and the breakage of the sealing portion 8 are extremely difficult to occur.
また、薄肉部9を複数個有する場合は、薄肉部9が1個のみの場合と比べて、薄肉部9における熱溶着層7の厚みを増加させても同一の効果が得られるため、薄肉部9における外被材3強度やシール強度低下が緩和され、薄肉部9におけるクラック発生や封止部8の破断のリスクが低減される。 Further, when the plurality of thin portions 9 are provided, the same effect can be obtained even if the thickness of the thermal welding layer 7 in the thin portion 9 is increased as compared with the case where only one thin portion 9 is provided. 9 is reduced, and the risk of cracks in the thin-walled portion 9 and breakage of the sealing portion 8 is reduced.
また、本実施の形態では、充填物2は内袋2aに収納されており、外被材3の周縁部に沿って、三角波状の切り欠きを形成しているため、所定以上の引き裂き力を加えると応力集中を起こし、容易に外被材3を引き裂くことができ、外被材3の内部にある内袋2aに収納された充填物2を再利用しやすい状態で取り出すことができるので、真空断熱材へ再利用することができる。 Moreover, in this Embodiment, since the filling 2 is accommodated in the inner bag 2a and forms the triangular wave-shaped notch along the peripheral part of the jacket material 3, tearing force more than predetermined is given. If applied, stress concentration will occur, the outer jacket material 3 can be easily torn, and the filling 2 stored in the inner bag 2a inside the outer jacket material 3 can be taken out in a state where it can be easily reused. It can be reused for vacuum insulation.
なお、本実施の形態では、薄肉部9を有する封止部8を3辺としたが、封止部8全周の4辺に設けても良い。 In the present embodiment, the sealing portion 8 having the thin portion 9 has three sides, but may be provided on four sides of the entire circumference of the sealing portion 8.
なお、各薄肉部9における熱溶着層7の厚みは、同一でなくても良い。 In addition, the thickness of the heat welding layer 7 in each thin part 9 does not need to be the same.
なお、本実施の形態では、薄肉部9が直交しているが、薄肉部9は交差していなくてもよい。 In addition, in this Embodiment, although the thin part 9 is orthogonal, the thin part 9 does not need to cross | intersect.
なお、各薄肉部9に位置する境界面の凹部の幅は同一ある必要はなく、ガスバリア層6として使用している金属箔やフィルムが、劣化しない程度の幅を有しておればよい。 In addition, the width | variety of the recessed part of the interface located in each thin part 9 does not need to be the same, and the metal foil and film used as the gas barrier layer 6 should just have a width | variety which does not deteriorate.
なお、薄肉部9の間隔は特に指定するものではなく、また、図5のように、境界面が有する凹部同士の間隔が等しくなくてもよい。 In addition, the space | interval of the thin part 9 is not specified in particular, and as shown in FIG. 5, the space | interval of the recessed parts which a boundary surface does not need to be equal.
なお、本実施の形態では、薄肉部9の位置は特に指定するのもではないが、境界面の有する凹部位置が、外被材3の封止部8とそうでない部分との境目に存在している場合は、薄肉部9の片側の樹脂が十分に加熱されておらず、樹脂の流動性が悪いため薄肉化が困難となり、好ましくない。 In the present embodiment, the position of the thin-walled portion 9 is not particularly specified, but the position of the concave portion on the boundary surface exists at the boundary between the sealing portion 8 of the jacket material 3 and the portion that is not. In such a case, the resin on one side of the thin-walled portion 9 is not sufficiently heated, and the fluidity of the resin is poor.
本実施の形態の袋体1は、2枚の外被材3の周縁または周縁近傍の外周部同士が熱溶着
された充填物密封用の袋体1であって、外被材3が、外側から内側に向かって、表面保護層4、内部保護層5、ガスバリア層6、熱溶着層7の順でラミネートされたラミネートフィルムからなり、外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を外被材3の周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が少なくとも一つの凹部を有しており、凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されており、外被材3の周縁部の少なくとも一部に切り欠き3a又は切り込みが形成されており、充填物2が内袋2aに収納された状態で密封されている袋体1である。
The bag body 1 according to the present embodiment is a bag body 1 for filling sealing in which the peripheral edges of two outer cover materials 3 or the outer peripheral portions in the vicinity of the peripheral edges are thermally welded to each other. Sealing comprising a laminate film laminated in the order of a surface protective layer 4, an internal protective layer 5, a gas barrier layer 6, and a heat welding layer 7 from the inside to the inside, and the outer peripheral parts of the jacket material 3 being heat welded to each other When at least a part of the portion 8 is cut by a plane perpendicular to the periphery of the outer cover material 3, the heat-welded layer 7 located in the sealing portion 8 has at least one concave portion when viewed in a cross section. A thin-walled portion 9 is formed in the deepest portion of the recess where the thickness of the heat-welded layer 7 is thinner than the peripheral portion of the deepest portion, and a notch 3a or a cut is formed in at least a part of the peripheral portion of the jacket material 3 The bag 1 is sealed in a state in which the filling 2 is stored in the inner bag 2a.
上記構成において、まず、外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7の厚みが局所的に薄い薄肉部9を設けていることにより、熱溶着層7の薄肉部9において、外被材3周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。 In the above-described configuration, first, when a cross-section when cutting at least a part of the sealing portion 8 in which the outer peripheral portions of the jacket material 3 are thermally welded is cut by a plane perpendicular to the peripheral edge, the position is located in the sealing portion 8. By providing the thin-walled portion 9 where the thickness of the heat-welding layer 7 is locally thin, in the thin-walled portion 9 of the heat-welding layer 7, the permeation area of gas and moisture entering from the end surface of the outer periphery of the outer cover material 3 is reduced. Further, the permeation resistance of gas and moisture is increased, and the permeation rate of gas and moisture is reduced. Therefore, the amount of gas and moisture that permeate with time is suppressed, and excellent sealing performance can be exhibited over a long period of time.
また、外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、保護層は表面保護層4、内部保護層5といった複数のフィルムにより構成されているので、封止部8の薄肉部9およびその近傍において、熱溶着層7は少なくとも一つの凹部の形状に沿って曲がるが、表面保護層4、内部保護層5といった複数のフィルムにより凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層7より外層側に積層されたガスバリア層6の劣化の発生が極めて起きにくくなる。 Further, when the cross section when the outer peripheral portion of the outer cover material 3 is cut by a plane perpendicular to the peripheral edge is cut at least part of the sealing portion 8 where the outer peripheral portions are thermally welded, the protective layer is the surface protective layer 4 and the internal protection. Since it is composed of a plurality of films such as the layer 5, the heat welding layer 7 bends along the shape of at least one recess in the thin portion 9 of the sealing portion 8 and its vicinity. When an external force is applied when forming a recess by a plurality of films such as the layer 5, the stress is gradually reduced as the inner layer is formed, and the stress is less likely to be concentrated locally. Deterioration of the laminated gas barrier layer 6 is extremely difficult to occur.
さらに、熱溶着層7の薄肉部9においては、熱溶着層7の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層7の厚みが凹部形成に用いる加熱圧縮冶具10における突起部11に沿って徐々に滑らかに増減することに伴い、封止部8の強度も連続的に滑らかに増減することから、熱溶着層7の薄肉部8において局所的に応力が集中することが起きにくく、熱溶着層7の薄肉部9及びその近傍の外被材3におけるガスバリア層の劣化や封止部8の破断が極めて起きにくくなる。 Further, in the thin-walled portion 9 of the heat-welded layer 7, the thickness of the heat-welded layer 7 is thinner than the peripheral portion, and the strength is reduced by the thickness reduction, but the thickness of the heat-welded layer 7 is the heating used for forming the recess. As the strength of the sealing portion 8 increases or decreases continuously and smoothly along with the protrusion 11 in the compression jig 10, the stress locally increases in the thin portion 8 of the heat-welded layer 7. Are less likely to concentrate, and the gas barrier layer is not easily deteriorated or the sealing portion 8 is not easily broken in the thin-walled portion 9 of the heat-welded layer 7 and the jacket material 3 in the vicinity thereof.
さらに、外被材3の周縁部の少なくとも一部に切り欠き3a又は切り込みが形成されており、充填物2が内袋2aに収納された状態で密封されているので、外被材3を容易に引き裂いて、容易に充填物2を取り出すことができ、外被材3内部にある充填物2を取り出す時に、充填物2を内袋2aで保護して、内袋2a内の充填物2を傷つけることを防止できる。 Furthermore, since the notch 3a or the notch is formed in at least a part of the peripheral edge portion of the jacket material 3, and the filler 2 is sealed in a state of being housed in the inner bag 2a, the jacket material 3 can be easily The filling 2 can be easily taken out, and when the filling 2 inside the outer jacket material 3 is taken out, the filling 2 is protected by the inner bag 2a, and the filling 2 in the inner bag 2a is removed. It can be prevented from being damaged.
そして、充填物2として微細空隙を有する芯材を内袋2aに入れた状態で袋1内に減圧密封した場合は、長期に渡って優れた断熱性能を維持でき、真空断熱材をリサイクルするために、芯材を取り出す時に、芯材を容易に分離でき、芯材を内袋2aで保護しているので、内袋2a内の芯材を傷つけることを防止でき、芯材をそのままの状態、または、内袋2aのみを新しく変えて、真空断熱材の芯材に再利用することができ、且つ、再生エネルギーを減少することができる。 And when the core material which has a fine space | gap as the filling 2 is put in the bag 1 in the state which carried out the pressure reduction sealing in the bag 1, in order to maintain the heat insulation performance excellent over the long term, and to recycle a vacuum heat insulating material In addition, when the core material is taken out, the core material can be easily separated and the core material is protected by the inner bag 2a, so that the core material in the inner bag 2a can be prevented from being damaged, and the core material is left as it is. Alternatively, only the inner bag 2a can be newly changed and reused as the core material of the vacuum heat insulating material, and the regenerative energy can be reduced.
以上により、封止部8に設けた熱溶着層7の薄肉部9及びその近傍において、ガスバリア層6の劣化や封止部8破断が極めて起きにくい、長期に渡って優れた密封性能を維持でき、充填物2として微細空隙を有する芯材を内袋2aに入れた状態で減圧密封した場合に、長期に渡って優れた断熱性能を維持でき、芯材を容易に分離でき、芯材をそのままの状態、または、内袋2aのみを新しく変えて、真空断熱材の芯材に再利用することができるリサイクル性に優れた真空断熱材となる袋体1と、それを用いた真空断熱材を提供するこ
とができる。
As described above, excellent sealing performance can be maintained over a long period of time, in which the gas barrier layer 6 is hardly deteriorated and the sealing portion 8 is not easily broken at the thin portion 9 of the heat welding layer 7 provided in the sealing portion 8 and the vicinity thereof. When the core material having fine voids as the filler 2 is sealed under reduced pressure in the inner bag 2a, excellent heat insulation performance can be maintained over a long period of time, the core material can be easily separated, and the core material can be left as it is. Or a bag body 1 as a vacuum heat insulating material excellent in recyclability that can be reused as a core material of a vacuum heat insulating material by changing only the inner bag 2a, and a vacuum heat insulating material using the same Can be provided.
以下、本発明における袋体1の外被材3の材料構成とその効果について、実施例を用いて説明する。 Hereinafter, the material structure and the effect of the jacket 3 of the bag body 1 according to the present invention will be described using examples.
(実施例1)
実施の形態1において、熱溶着層7として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層6として厚み24μmを、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と、内部保護層5として厚み25μmのナイロンフィルム(Ny)を2層の保護層として積層してなる外被材3と、ガラス繊維からなる充填物2(内袋2aに収納された状態)から構成された袋体1を作製した。
Example 1
In Embodiment 1, a linear low density polyethylene film (LLDPE) having a thickness of 50 μm as the heat-welding layer 7, a thickness of 24 μm as the gas barrier layer 6, and a nylon film (Ny) having a thickness of 15 μm as the surface protective layer 4, The inner protective layer 5 is composed of a jacket material 3 formed by laminating a nylon film (Ny) having a thickness of 25 μm as two protective layers, and a filler 2 made of glass fibers (in a state of being housed in the inner bag 2a). A bag 1 was prepared.
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のアルミニウム箔6と熱溶着層7との)境界面の凹部の最深部における幅は1.5mmであり、(図3では上側のアルミニウム箔6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のアルミニウム箔6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 3, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in the direction perpendicular to the peripheral edge, and one of the thin-walled portions 9 (in FIG. 3, the upper aluminum foil 6 and the heat welding layer 7 are arranged). The width at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the undulation of the boundary surface (in FIG. 3 between the upper aluminum foil 6 and the thermal welding layer 7) is 0.2 mm, and The space | interval with the deepest part of an adjacent recessed part was 1.5 mm. Moreover, the maximum wave height of the recessed part which the other interface (in FIG. 3 with the lower aluminum foil 6 and the heat welding layer 7) has was 0.05 mm (refer FIG. 3).
この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとした。 At this time, the seal width (the width for thermally welding the jacket materials 3) was 20 mm, and the thickness of the thin portion 9 was 10 μm.
ここで、薄肉部9の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。 Here, the thickness of the thin-walled portion 9 is 200 times as long as at least a part of the sealing portion 8 in which the outer peripheral portions of the outer cover material 3 are thermally welded to each other by a microtome on a plane perpendicular to the peripheral edge. The magnification was measured with a microscope.
以上において、封止部8において、アルミニウム箔6にクラックの発生は確認されなかった。 In the above, the crack generation | occurrence | production was not confirmed in the aluminum foil 6 in the sealing part 8. FIG.
実施例1では、ナイロンフィルムを2層の保護層として積層したため、薄肉部9における各層の凹部形状も内層になるに従い徐々に緩和されていることが確認され、局所的に応力が集中することが起きにくくなっている本発明(の実施の形態1)による効果がより顕著に現れた。 In Example 1, since the nylon film was laminated as a two-layer protective layer, it was confirmed that the concave shape of each layer in the thin-walled portion 9 was gradually relaxed as it became the inner layer, and stress was concentrated locally. The effect of the present invention (Embodiment 1), which is less likely to occur, appears more remarkably.
(実施例2)
実施の形態1において、熱溶着層7として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層6として厚み24μmを、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と、内部保護層5として厚み25μmのポリエチレンテレフタレートフィルム(PET)を2層の保護層として積層してなる外被材3と、ガラス繊維からなる充填物2(内袋2aに収納された状態)から構成された袋体1を作製した。
(Example 2)
In Embodiment 1, a linear low density polyethylene film (LLDPE) having a thickness of 50 μm as the heat-welding layer 7, a thickness of 24 μm as the gas barrier layer 6, and a nylon film (Ny) having a thickness of 15 μm as the surface protective layer 4, Consists of an outer cover material 3 formed by laminating a polyethylene terephthalate film (PET) having a thickness of 25 μm as a protective layer of two layers as the inner protective layer 5 and a filler 2 made of glass fiber (contained in the inner bag 2a). A bag 1 was prepared.
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における幅は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の
(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。
On the peripheral side (outer peripheral portion) of the jacket material 3, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are arranged). The width at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The space | interval with the deepest part of an adjacent recessed part was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとした。 At this time, the seal width (the width for thermally welding the jacket materials 3) was 20 mm, and the thickness of the thin portion 9 was 10 μm.
ここで、薄肉部9の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。 Here, the thickness of the thin-walled portion 9 is such that at least a part of the sealing portion in which the outer peripheral portions of the outer cover material 3 are heat-welded to each other by a microtome is cut by a plane perpendicular to the peripheral edge, 200 times Measured with a microscope at magnification.
以上において、封止部8において、ガスバリア層6に劣化の発生は確認されなかった。 In the above, no deterioration of the gas barrier layer 6 was confirmed in the sealing portion 8.
(実施例3)
実施の形態1において、熱溶着層7として厚み50μmの高密度ポリエチレンフィルム(HDPE)を、ガスバリア層6として厚み24μmを、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と、内部保護層5として厚み25μmのナイロンフィルム(Ny)を2層の保護層として積層してなる外被材3と、ガラス繊維からなる充填物2(内袋2aに収納された状態)から構成された袋体1を作製した。
(Example 3)
In Embodiment 1, a high-density polyethylene film (HDPE) having a thickness of 50 μm is used as the heat welding layer 7, a 24 μm thickness is used as the gas barrier layer 6, a nylon film (Ny) having a thickness of 15 μm is used as the surface protective layer 4, and an internal protective layer 5 is a bag body composed of a jacket material 3 formed by laminating a 25 μm-thick nylon film (Ny) as a two-layer protective layer, and a filler 2 made of glass fibers (in a state of being housed in the inner bag 2a). 1 was produced.
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における幅は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 3, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are arranged). The width at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The space | interval with the deepest part of an adjacent recessed part was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとした。 At this time, the seal width (the width for thermally welding the jacket materials 3) was 20 mm, and the thickness of the thin portion 9 was 10 μm.
ここで、薄肉部9の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。 Here, the thickness of the thin-walled portion 9 is 200 times as long as at least a part of the sealing portion 8 in which the outer peripheral portions of the outer cover material 3 are thermally welded to each other by a microtome on a plane perpendicular to the peripheral edge. The magnification was measured with a microscope.
以上において、封止部8において、ガスバリア層6に劣化の発生は確認されなかった。 In the above, no deterioration of the gas barrier layer 6 was confirmed in the sealing portion 8.
(実施の形態2)
図6は、本発明の実施の形態2における真空断熱材の断面図を示す。
(Embodiment 2)
FIG. 6 shows a cross-sectional view of the vacuum heat insulating material in Embodiment 2 of the present invention.
図6において、真空断熱材12は、芯材13と芯材13内に配置された吸着剤14と、芯材13を収納する内袋13aと、同一寸法に裁断された長方形の2枚の外被材3よりなり、2枚の外被材3の間に内袋13aに収納された芯材13及び吸着剤14が減圧密封され、芯材13を覆う2枚の外被材3の周縁近傍の外周部同士が熱溶着されている。 In FIG. 6, the vacuum heat insulating material 12 includes a core material 13, an adsorbent 14 disposed in the core material 13, an inner bag 13 a for storing the core material 13, and two rectangular outer sheets cut into the same dimensions. The core material 13 and the adsorbent 14 that are made of the material 3 and are housed in the inner bag 13 a between the two outer material materials 3 are sealed under reduced pressure, and in the vicinity of the periphery of the two outer material materials 3 that cover the core material 13. The outer peripheries are thermally welded.
2枚の外被材3は、実施の形態1と同様の形態で、外層側から内層側に向かって、表面保護層4、内部保護層5、ガスバリア層6、熱溶着層7の順で積層されたラミネートフィルムである。また、外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの少なくとも3辺に薄肉部9を有している。 The two jacket materials 3 are laminated in the order of the surface protective layer 4, the internal protective layer 5, the gas barrier layer 6, and the thermal welding layer 7 from the outer layer side to the inner layer side in the same form as in the first embodiment. Laminated film. Further, on the peripheral side (outer peripheral part) of the jacket material 3, there is a sealing part 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together. The thin portion 9 is provided on at least three sides.
ここで、薄肉部9周辺の封止部8の形状についても、実施の形態1と同様である。 Here, the shape of the sealing portion 8 around the thin portion 9 is the same as that in the first embodiment.
図3において、熱溶着層7とガスバリア層6との境界面が有する凹部の波高の大きさには差が設けられており、波高の大きい凹部を有する境界面に設けられた凹部の最深部のみが薄肉部9に位置している。 In FIG. 3, there is a difference in the wave height of the concave portion of the boundary surface between the thermal welding layer 7 and the gas barrier layer 6, and only the deepest portion of the concave portion provided in the boundary surface having the concave portion having a large wave height. Is located in the thin portion 9.
次に、本実施の形態において、図6に示す本実施の形態の真空断熱材12の製造方法の一例を述べる。 Next, in the present embodiment, an example of a method for manufacturing the vacuum heat insulating material 12 of the present embodiment shown in FIG. 6 will be described.
まず、2枚の外被材3の熱溶着層7同士が対向するように配置し、外被材3の周囲辺の3辺を熱溶着して袋状とする。この熱溶着時に、金属製の加熱圧縮冶具10(図4参照)とシリコンゴムヒーター(図示せず)とで2枚の外被材3を挟むように加熱圧縮し、図3に示す形状の封止部8を形成する。この後、芯材13と吸着剤14とを内袋13aに収納してから袋内に挿入し、袋内部を約200Pa以下に減圧しながら、外被材3の袋の開口部を熱溶着させて密封することにより真空断熱材12を得る。 First, it arrange | positions so that the heat welding layers 7 of the two jacket materials 3 may oppose, and heat-welds the three sides of the jacket material 3 into a bag shape. At the time of this thermal welding, heat compression is performed so that the two outer cover materials 3 are sandwiched between a metal heating and compression jig 10 (see FIG. 4) and a silicon rubber heater (not shown), and the sealing of the shape shown in FIG. A stop 8 is formed. Thereafter, the core material 13 and the adsorbent 14 are accommodated in the inner bag 13a and then inserted into the bag, and the opening of the bag of the outer jacket material 3 is thermally welded while reducing the pressure inside the bag to about 200 Pa or less. The vacuum heat insulating material 12 is obtained by sealing.
また、図3に示す例では、封止部8に薄肉部9を少なくとも2個以上(4つ)有している。 In the example shown in FIG. 3, the sealing portion 8 has at least two thin portions 9 (four).
以上のように構成された真空断熱材12について、以下その動作、作用を説明する。 About the vacuum heat insulating material 12 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
まず、芯材13は、真空断熱材12の骨材として微細空間を形成する役割を果たし、真空排気後の真空断熱材12の断熱部を形成するものであり、ガラス繊維からなる。 First, the core material 13 plays a role of forming a fine space as an aggregate of the vacuum heat insulating material 12, forms a heat insulating portion of the vacuum heat insulating material 12 after evacuation, and is made of glass fiber.
吸着剤14は、真空包装後に芯材13の微細空隙から真空断熱材12中へ放出された残留ガス成分や、真空断熱材12内へ侵入する水分や気体を吸着除去する役割を果たすものである。 The adsorbent 14 plays a role in adsorbing and removing residual gas components released into the vacuum heat insulating material 12 from the fine gaps of the core material 13 after vacuum packaging, and moisture and gas entering the vacuum heat insulating material 12. .
外被材3は、実施の形態1と同様の形態で、外部から真空断熱材1内部への大気ガス侵入を抑制する役割を果たすものである。そのため、本実施の形態においては、真空断熱材12内部への経時的な大気ガス侵入が抑制され、長期にわたって優れた断熱性能を発揮できる。 The outer covering material 3 has the same form as that of the first embodiment, and plays a role of suppressing atmospheric gas intrusion into the vacuum heat insulating material 1 from the outside. Therefore, in the present embodiment, the passage of atmospheric gas into the vacuum heat insulating material 12 over time is suppressed, and excellent heat insulating performance can be exhibited over a long period of time.
また、保護層は表面保護層4、内部保護層5といった複数のフィルムにより構成されているので、凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層7より外層側に積層されたガスバリア層6の劣化の発生が極めて起きにくくなる。 Further, since the protective layer is composed of a plurality of films such as the surface protective layer 4 and the internal protective layer 5, when an external force is applied at the time of forming the recess, the stress is gradually reduced as it becomes the inner layer, and locally It becomes difficult for stress to concentrate, and the occurrence of deterioration of the gas barrier layer 6 laminated on the outer layer side from the heat welding layer 7 becomes extremely difficult.
さらに、熱溶着層7の薄肉部9においては、熱溶着層7の厚みが凹部に沿って徐々に滑らかに増減することに伴い、熱溶着層7の薄肉部9において局所的に応力が集中することが起きにくく、熱溶着層7の薄肉部9及びその近傍の外被材3におけるクラック発生や封止部8の破断が極めて起きにくくなる。 Furthermore, in the thin part 9 of the heat welding layer 7, stress concentrates locally in the thin part 9 of the heat welding layer 7 as the thickness of the heat welding layer 7 gradually increases and decreases along the concave portion. This is unlikely to occur, and the occurrence of cracks in the thin-walled portion 9 of the heat-welded layer 7 and the jacket material 3 in the vicinity thereof and the breakage of the sealing portion 8 are extremely difficult to occur.
以上により、封止部8に設けた熱溶着層7の薄肉部9及びその近傍において、クラック発生や封止部8破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材12を提供できる。 By the above, the vacuum heat insulating material which maintains the heat insulation performance excellent in the long term in which the crack generation | occurrence | production and the fracture | rupture of the sealing part 8 do not occur easily in the thin part 9 of the heat welding layer 7 provided in the sealing part 8 and its vicinity. 12 can be provided.
本実施の形態の真空断熱材12は、実施の形態1と同様の構成の袋体1内に、充填物として微細空隙を有する芯材13を減圧密封した真空断熱材12であり、長期に渡って優れ
た断熱性能を維持でき、芯材13を容易に分離できる、リサイクル性に優れた真空断熱材12を提供することができる。
The vacuum heat insulating material 12 according to the present embodiment is a vacuum heat insulating material 12 in which a core material 13 having a fine gap as a filling material is sealed under reduced pressure in a bag body 1 having the same configuration as that of the first embodiment. Therefore, it is possible to provide a vacuum heat insulating material 12 that can maintain excellent heat insulating performance and can easily separate the core material 13 and is excellent in recyclability.
以下、本発明における真空断熱材12の外被材3の材料構成とその効果について、実施例を用いて説明する。 Hereinafter, the material structure and the effect of the jacket 3 of the vacuum heat insulating material 12 in the present invention will be described using examples.
(実施例4)
実施の形態2において、熱溶着層7として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層6として厚み24μmを、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と、内部保護層5として厚み25μmのナイロンフィルム(Ny)を2層の保護層として積層してなる外被材3と、ガラス繊維からなる芯材13と、酸化カルシウムからなる吸着剤14と、芯材13と吸着剤14を収納する内袋13aとから構成された真空断熱材12を作製した。
Example 4
In the second embodiment, a linear low density polyethylene film (LLDPE) having a thickness of 50 μm as the heat welding layer 7, a thickness of 24 μm as the gas barrier layer 6, and a nylon film (Ny) having a thickness of 15 μm as the surface protective layer 4, As the internal protective layer 5, a jacket material 3 formed by laminating a nylon film (Ny) having a thickness of 25 μm as two protective layers, a core material 13 made of glass fiber, an adsorbent 14 made of calcium oxide, and a core material The vacuum heat insulating material 12 comprised from 13 and the inner bag 13a which accommodates the adsorption agent 14 was produced.
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における幅は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 3, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are arranged). The width at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The space | interval with the deepest part of an adjacent recessed part was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとしたとき、真空断熱材12の外被材3周縁の端面から封止部8を通って侵入する大気ガス量は、7.8×10-15mol/m2/s/Paであった。 At this time, when the seal width (width for thermally welding the jacket materials 3) is 20 mm and the thickness of the thin portion 9 is 10 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the jacket material 3 of the vacuum heat insulating material 12. The amount of atmospheric gas entering through was 7.8 × 10 −15 mol / m 2 / s / Pa.
ここで、薄肉部9の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。 Here, the thickness of the thin-walled portion 9 is 200 times as long as at least a part of the sealing portion 8 in which the outer peripheral portions of the outer cover material 3 are thermally welded to each other by a microtome on a plane perpendicular to the peripheral edge. The magnification was measured with a microscope.
以上において、封止部8において、ガスバリア層6に劣化の発生は確認されなかった。 In the above, no deterioration of the gas barrier layer 6 was confirmed in the sealing portion 8.
実施例4では、実施の形態1同様、ナイロンフィルムを2層の保護層として積層したため、薄肉部9における各層の凹部形状も内層になるに従い徐々に緩和されていることが確認され、局所的に応力が集中することが起きにくくなっている本発明(の実施の形態2)による効果がより顕著に現れた。 In Example 4, since the nylon film was laminated as a two-layer protective layer as in Embodiment 1, it was confirmed that the concave shape of each layer in the thin-walled portion 9 was gradually relaxed as it became an inner layer, and locally The effect of the present invention (Embodiment 2), in which stress concentration is less likely to occur, is more noticeable.
(実施例5)
実施の形態2において、熱溶着層7として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層6として厚み24μmを、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と、内部保護層5として厚み25μmのポリエチレンテレフタレートフィルム(PET)を2層の保護層として積層してなる外被材3と、ガラス繊維からなる芯材13と、酸化カルシウムからなる吸着剤14と、芯材13と吸着剤14を収納する内袋13aから構成された真空断熱材12を作製した。
(Example 5)
In the second embodiment, a linear low density polyethylene film (LLDPE) having a thickness of 50 μm as the heat welding layer 7, a thickness of 24 μm as the gas barrier layer 6, and a nylon film (Ny) having a thickness of 15 μm as the surface protective layer 4, As the inner protective layer 5, a jacket material 3 formed by laminating a polyethylene terephthalate film (PET) having a thickness of 25 μm as two protective layers, a core material 13 made of glass fiber, an adsorbent 14 made of calcium oxide, and a core The vacuum heat insulating material 12 comprised from the inner bag 13a which accommodates the material 13 and the adsorption agent 14 was produced.
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における幅は1.5mmであ
り、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。
On the peripheral side (outer peripheral portion) of the jacket material 3, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are arranged). The width at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The space | interval with the deepest part of an adjacent recessed part was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとしたとき、真空断熱材12の外被材3周縁の端面から封止部8を通って侵入する大気ガス量は、8.1×10-15mol/m2/s/Paであった。 At this time, when the seal width (width for thermally welding the jacket materials 3) is 20 mm and the thickness of the thin portion 9 is 10 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the jacket material 3 of the vacuum heat insulating material 12. The amount of atmospheric gas entering through was 8.1 × 10 −15 mol / m 2 / s / Pa.
ここで、薄肉部9の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。 Here, the thickness of the thin-walled portion 9 is 200 times as long as at least a part of the sealing portion 8 in which the outer peripheral portions of the outer cover material 3 are thermally welded to each other by a microtome on a plane perpendicular to the peripheral edge. The magnification was measured with a microscope.
以上において、封止部8において、ガスバリア層6に劣化の発生は確認されなかった。 In the above, no deterioration of the gas barrier layer 6 was confirmed in the sealing portion 8.
(実施例6)
実施の形態2において、熱溶着層7として厚み50μmの高密度ポリエチレンフィルム(HDPE)を、ガスバリア層6として厚み24μmを、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と、内部保護層5として厚み25μmのナイロンフィルム(Ny)を2層の保護層として積層してなる外被材3と、ガラス繊維からなる芯材13と、酸化カルシウムからなる吸着剤14と、芯材13と吸着剤14を収納する内袋13aから構成された真空断熱材12を作製した。
(Example 6)
In Embodiment 2, a high-density polyethylene film (HDPE) having a thickness of 50 μm is used as the thermal welding layer 7, a thickness of 24 μm is used as the gas barrier layer 6, and a nylon film (Ny) having a thickness of 15 μm is used as the surface protective layer 4. 5, a jacket material 3 formed by laminating a nylon film (Ny) having a thickness of 25 μm as two protective layers, a core material 13 made of glass fiber, an adsorbent 14 made of calcium oxide, and a core material 13 and adsorbing The vacuum heat insulating material 12 comprised from the inner bag 13a which accommodates the agent 14 was produced.
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、各薄肉部9に位置する一方の(図3では上側のガスバリア層6と熱溶着層7との)境界面の凹部の最深部における幅は1.5mmであり、(図3では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。また、もう一方の(図3では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。 On the peripheral side (outer peripheral portion) of the jacket material 3, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 3 are melted and bonded together, and three of the four sides of the sealing portion 8. Four groove-shaped thin portions 9 parallel to the peripheral edge are formed in a direction perpendicular to the peripheral edge, and one of the thin wall portions 9 (in FIG. 3, the upper gas barrier layer 6 and the thermal welding layer 7 are arranged). The width at the deepest part of the concave portion of the boundary surface is 1.5 mm, each wave height of the waviness of the boundary surface (in FIG. 3 between the upper gas barrier layer 6 and the thermal welding layer 7) is 0.2 mm, and The space | interval with the deepest part of an adjacent recessed part was 1.5 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 3, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 3).
この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部9の厚みを10μmとしたとき、真空断熱材12の外被材3周縁の端面から封止部8を通って侵入する大気ガス量は、1.5×10-15mol/m2/s/Paであった。 At this time, when the seal width (width for thermally welding the jacket materials 3) is 20 mm and the thickness of the thin portion 9 is 10 μm, the sealing portion 8 is removed from the end surface of the outer periphery of the jacket material 3 of the vacuum heat insulating material 12. The amount of atmospheric gas entering through was 1.5 × 10 −15 mol / m 2 / s / Pa.
ここで、薄肉部9の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。 Here, the thickness of the thin-walled portion 9 is 200 times as long as at least a part of the sealing portion 8 in which the outer peripheral portions of the outer cover material 3 are thermally welded to each other by a microtome on a plane perpendicular to the peripheral edge. The magnification was measured with a microscope.
以上において、封止部8において、ガスバリア層6に劣化の発生は確認されなかった。 In the above, no deterioration of the gas barrier layer 6 was confirmed in the sealing portion 8.
本発明にかかる袋体は、長期にわたる使用にも耐えうる密封性能を有しているものであり、菓子、飲料、レトルト食品、液体や固体状の薬品、あるいは洗剤、入浴剤、シャンプーなどの生活雑貨の密封袋などにも適用できる。 The bag according to the present invention has a sealing performance that can withstand long-term use, and is used in daily life such as confectionery, beverages, retort foods, liquid or solid chemicals, detergents, bathing agents, shampoos, etc. It can also be applied to general-purpose sealed bags.
また、本発明にかかる真空断熱材は、長期にわたる使用にも耐えうる断熱性能を有しており、芯材を再利用しやすいものであり、冷蔵庫用断熱材や自動販売機、建造物用断熱材、自動車用断熱材、保冷ボックスなどにも適用できる。 In addition, the vacuum heat insulating material according to the present invention has heat insulating performance that can withstand long-term use, and is easy to reuse the core material, such as a refrigerator heat insulating material, a vending machine, and a building heat insulating material. It can also be applied to materials, automotive insulation, and cold storage boxes.
1 袋体
2 充填物
2a 内袋
3 外被材
3a 切り欠き
4 表面保護層
5 内部保護層
6 ガスバリア層
7 熱溶着層
8 封止部
9 薄肉部
12 真空断熱材
13 芯材
13a 内袋
DESCRIPTION OF SYMBOLS 1 Bag body 2 Filling material 2a Inner bag 3 Cover material 3a Notch 4 Surface protective layer 5 Internal protective layer 6 Gas barrier layer 7 Thermal welding layer 8 Sealing part 9 Thin part 12 Vacuum heat insulating material 13 Core material 13a Inner bag
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010165645A JP2012026512A (en) | 2010-07-23 | 2010-07-23 | Bag body and vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010165645A JP2012026512A (en) | 2010-07-23 | 2010-07-23 | Bag body and vacuum heat insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012026512A true JP2012026512A (en) | 2012-02-09 |
Family
ID=45779689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010165645A Pending JP2012026512A (en) | 2010-07-23 | 2010-07-23 | Bag body and vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012026512A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190348A1 (en) | 2012-06-19 | 2013-12-27 | Mag-Isover K.K. | Vacuum heat insulation panel |
WO2014133037A1 (en) | 2013-02-26 | 2014-09-04 | マグ・イゾベール株式会社 | Vacuum thermal insulation material |
CN104048837A (en) * | 2013-03-17 | 2014-09-17 | 青岛中拓塑业有限公司 | Method for predicting service life of vacuum insulated panel (ZKB) |
-
2010
- 2010-07-23 JP JP2010165645A patent/JP2012026512A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190348A1 (en) | 2012-06-19 | 2013-12-27 | Mag-Isover K.K. | Vacuum heat insulation panel |
WO2014133037A1 (en) | 2013-02-26 | 2014-09-04 | マグ・イゾベール株式会社 | Vacuum thermal insulation material |
KR20150122137A (en) | 2013-02-26 | 2015-10-30 | 마그-이조베르 가부시키가이샤 | Vacuum thermal insulation material |
US9855717B2 (en) | 2013-02-26 | 2018-01-02 | Mag-Isover K.K. | Vacuum thermal insulation material technical field |
CN104048837A (en) * | 2013-03-17 | 2014-09-17 | 青岛中拓塑业有限公司 | Method for predicting service life of vacuum insulated panel (ZKB) |
CN104048837B (en) * | 2013-03-17 | 2016-07-06 | 青岛中拓塑业有限公司 | A kind of Forecasting Methodology in vacuum heat-insulating plate (ZKB) service life |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333038B2 (en) | Vacuum insulation and manufacturing method thereof | |
JP4893728B2 (en) | Vacuum insulation | |
JP2010255805A (en) | Vacuum heat insulating material | |
JP2006329419A (en) | Manufacturing method of vacuum heat insulation material, and vacuum heat insulation material manufactured by the method | |
JP2011089740A (en) | Bag body and vacuum heat insulating material | |
JP2010065711A (en) | Vacuum heat insulating material and refrigerator using the same | |
JP2012026512A (en) | Bag body and vacuum heat insulating material | |
JP2010260619A (en) | Bag and method of manufacturing the same | |
WO2017029727A1 (en) | Vacuum heat insulation material and heat insulation box | |
JP2011094639A (en) | Vacuum bag body and vacuum heat insulating material | |
JP2010138956A (en) | Vacuum heat insulating material | |
JP2012026511A (en) | Bag, and vacuum heat insulating material | |
JP5381306B2 (en) | Bag body and vacuum insulation | |
JP2011208763A (en) | Vacuum heat insulating material | |
JP2011094638A (en) | Vacuum bag body and vacuum heat insulating material | |
JP4944567B2 (en) | Vacuum insulation article and method for manufacturing the same | |
JP2010173700A (en) | Bag body and method for manufacturing the same | |
JP2010139006A (en) | Vacuum heat insulating material | |
JP2010285219A (en) | Bag | |
JP2011208762A (en) | Vacuum heat insulating material | |
JP2011094637A (en) | Vacuum heat insulating material | |
JP2014109334A (en) | Vacuum insulation material and external capsule material for the same | |
JP2012026513A (en) | Bag body, and vacuum heat insulating material | |
JP5788714B2 (en) | Vacuum insulation panel and refrigerator using the same | |
JP2011185413A (en) | Method for manufacturing vacuum heat insulation material |