JP2011185413A - Method for manufacturing vacuum heat insulation material - Google Patents

Method for manufacturing vacuum heat insulation material Download PDF

Info

Publication number
JP2011185413A
JP2011185413A JP2010054073A JP2010054073A JP2011185413A JP 2011185413 A JP2011185413 A JP 2011185413A JP 2010054073 A JP2010054073 A JP 2010054073A JP 2010054073 A JP2010054073 A JP 2010054073A JP 2011185413 A JP2011185413 A JP 2011185413A
Authority
JP
Japan
Prior art keywords
inner bag
welded
heat
layer
outer packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010054073A
Other languages
Japanese (ja)
Inventor
Yasuaki Kato
康昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010054073A priority Critical patent/JP2011185413A/en
Publication of JP2011185413A publication Critical patent/JP2011185413A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a vacuum heat insulation material, in which vacuum leak is reduced with reduced manufacturing man-hours. <P>SOLUTION: The method for manufacturing a vacuum heat insulation material includes: a core housing step for housing a core 2 as a spacer in a sac-like inner bag 10, through a first opening part 10b opened to the sac-like inner bag 10 of which the inner surface is formed of a first thermally-welded layer; an inner bag housing step for housing the inner bag 10 in a sac-like outer package material 20, through a second opening part 20b opened to the sac-like outer package material 20 of which the inner surface is formed of a second thermally welded layer 21; and a welding step welding the first opening part 10b and the second opening part 20b at the same time and sealing the inner bag 10 and the outer package material 20 at the same time, while pressure in the inner bag 10 and outer package material 20 is decreased. A welded part 10a of the first opening part 10b is disposed inside a welded part 20a of the second opening part 20b welded in the welding step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、芯材を覆う外包材の内部が真空に維持される真空断熱材の製造方法に関する。   The present invention relates to a method for manufacturing a vacuum heat insulating material in which the inside of an outer packaging material covering a core material is maintained in a vacuum.

冷蔵庫等の機器において熱を効率的に利用するために断熱材として真空断熱材が用いられる。図7は従来の真空断熱材の側面断面図を示している。真空断熱材1はスペーサとなる芯材2を外包材20で覆って形成される。外包材20は熱溶着層21、バリア層22及び保護層23を積層した袋状に形成される。   In order to efficiently use heat in a device such as a refrigerator, a vacuum heat insulating material is used as a heat insulating material. FIG. 7 shows a side sectional view of a conventional vacuum heat insulating material. The vacuum heat insulating material 1 is formed by covering a core material 2 serving as a spacer with an outer packaging material 20. The outer packaging material 20 is formed in a bag shape in which a heat welding layer 21, a barrier layer 22, and a protective layer 23 are laminated.

熱溶着層21は外包材20の内表面に配され、熱溶着により外包材20を密封する。バリア層22は中間層を形成し、ガスの透過を遮断する。保護層23は外包材20の最外面に配され、外力による傷等を防止する。そして、芯材2を挿入した外包材20の内部を減圧した状態で芯材2を挟む熱溶着層21の端部が熱溶着される。これにより、外包材20の端部が溶着部20aにより閉じられ、内部が真空に維持される。   The thermal welding layer 21 is disposed on the inner surface of the outer packaging material 20 and seals the outer packaging material 20 by thermal welding. The barrier layer 22 forms an intermediate layer and blocks gas permeation. The protective layer 23 is disposed on the outermost surface of the outer packaging material 20 and prevents damage or the like due to external force. And the edge part of the heat welding layer 21 which pinches | interposes the core material 2 in the state which pressure-reduced the inside of the outer packaging material 20 which inserted the core material 2 is heat-welded. Thereby, the edge part of the outer packaging material 20 is closed by the welding part 20a, and the inside is maintained in a vacuum.

しかしながら、溶着部20aはバリア層22で覆われずに外包材20の外面に露出する。このため、真空断熱材1を長年使用すると矢印Aに示すように溶着部20aから外包材20の内部にガスが侵入して真空漏れが発生する。これにより、真空断熱材1の断熱性能が低下する問題がある。   However, the welded portion 20 a is not covered with the barrier layer 22 and is exposed on the outer surface of the outer packaging material 20. For this reason, when the vacuum heat insulating material 1 is used for many years, as shown by the arrow A, gas enters the inside of the outer packaging material 20 from the welded portion 20a and a vacuum leak occurs. Thereby, there exists a problem that the heat insulation performance of the vacuum heat insulating material 1 falls.

この問題を解決するために、特許文献1には熱溶着層と物質透過特性の異なる樹脂により溶着部を覆う真空断熱材が開示される。この真空断熱材は、外包材の熱溶着層の端部を熱溶着して溶着部が外面に露出した中間品を形成する。そして、中間品を熱溶着層と異なる樹脂から成る2枚の樹脂シートで挟み、樹脂シートの周縁が熱溶着される。これにより、熱溶着層の溶着部が樹脂シートで覆われ、熱溶着層及び樹脂シートによって外包材の内部へのガスの侵入を防止することができる。   In order to solve this problem, Patent Document 1 discloses a vacuum heat insulating material that covers a welded portion with a resin having different material permeation characteristics from a heat welded layer. This vacuum heat insulating material forms an intermediate product in which the end portion of the heat-welded layer of the outer packaging material is heat-welded to expose the welded portion on the outer surface. Then, the intermediate product is sandwiched between two resin sheets made of a resin different from the heat welding layer, and the periphery of the resin sheet is heat welded. Thereby, the welding part of a heat welding layer is covered with a resin sheet, and the penetration | invasion of the gas to the inside of an outer packaging material can be prevented with a heat welding layer and a resin sheet.

また、特許文献2には芯材を収容した内袋を外包材に収容した真空断熱材が開示される。この真空断熱材は内袋内に芯材を収容して内袋の端部を熱溶着して溶着部を形成する。次に、内袋と同じ材質の熱溶着層を有する外包材に内袋を収容し、内袋の溶着部を挟んで外包材の端部が熱溶着される。これにより、外包材の熱溶着時に内袋の溶着部が溶着材を形成して外包材を確実に密封することができる。   Patent Document 2 discloses a vacuum heat insulating material in which an inner bag containing a core material is contained in an outer packaging material. This vacuum heat insulating material accommodates a core material in an inner bag and thermally welds the end portion of the inner bag to form a welded portion. Next, the inner bag is accommodated in an outer packaging material having a heat welding layer made of the same material as the inner bag, and the end portion of the outer packaging material is thermally welded with the welding portion of the inner bag interposed therebetween. Thereby, the welding part of an inner bag forms a welding material at the time of heat welding of an outer packaging material, and an outer packaging material can be sealed reliably.

特開2006−77790号公報(第5頁−第8頁、第6図)Japanese Patent Laying-Open No. 2006-77790 (pages 5-8, FIG. 6) 特許第4215701号公報(第5頁−第12頁、第6図)Japanese Patent No. 4215701 (pages 5-12, FIG. 6)

しかしながら、上記特許文献1に開示された真空断熱材によると、外包材を熱溶着した後に樹脂シートが熱溶着されるため、製造工数が大きくなる問題があった。また、上記特許文献2に開示された真空断熱材によると、上記と同様に、内袋を熱溶着した後に外包材が熱溶着されるため、製造工数が大きくなる問題があった。   However, according to the vacuum heat insulating material disclosed in Patent Document 1, since the resin sheet is thermally welded after the outer packaging material is thermally welded, there is a problem that the number of manufacturing steps is increased. Further, according to the vacuum heat insulating material disclosed in Patent Document 2, since the outer packaging material is thermally welded after the inner bag is thermally welded as described above, there is a problem that the number of manufacturing steps is increased.

本発明は、製造工数を削減して真空漏れを低減できる真空断熱材の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the vacuum heat insulating material which can reduce a manufacturing man-hour and can reduce a vacuum leak.

上記目的を達成するために本発明は、内表面を第1熱溶着層により形成された袋状の内袋に開口した第1開口部を介して前記内袋内にスペーサとなる芯材を挿入する芯材収容工程と、内表面を第2熱溶着層により形成された袋状の外包材に開口した第2開口部を介して前記外包材内に前記内袋を挿入する内袋収容工程と、前記内袋及び前記外包材の内部を減圧した状態で第1開口部と第2開口部とを同時に溶着して前記内袋及び前記外包材を同時に密封する溶着工程とを備え、前記溶着工程で溶着された第2開口部の溶着部の内側に第1開口部の溶着部が配されることを特徴としている。   In order to achieve the above object, the present invention inserts a core material serving as a spacer into the inner bag through a first opening that has an inner surface opened in a bag-shaped inner bag formed of a first heat-welded layer. A core material accommodating step, and an inner bag accommodating step of inserting the inner bag into the outer packaging material through a second opening having an inner surface opened to the bag-shaped outer packaging material formed by the second heat-welded layer. A welding step of simultaneously welding the first opening and the second opening in a state where the inside of the inner bag and the outer packaging material is decompressed, and simultaneously sealing the inner bag and the outer packaging material, the welding step The welded portion of the first opening is disposed on the inner side of the welded portion of the second opening that has been welded in (1).

この構成によると、芯材収容工程で袋状の内袋の少なくとも一辺に設けた第1開口部から内袋内に芯材が挿入される。次に、内袋収容工程で袋状の外包材の少なくとも一辺に設けた第2開口部から外包材内に内袋が挿入される。次に、溶着工程で内袋及び外包材の内部が減圧され、第1開口部と第2開口部とが同時に加熱圧着される。これにより、内袋の第1熱溶着層及び外包材の第2熱溶着層が溶融して第1開口部及び第2開口部が溶着され、内袋及び外包材が同時に密封される。この時、第2開口部の溶着部の内側に第1開口部の溶着部が配され、これらによって外気の侵入が防止される。   According to this configuration, the core material is inserted into the inner bag from the first opening provided on at least one side of the bag-shaped inner bag in the core material accommodation step. Next, the inner bag is inserted into the outer packaging material from the second opening provided on at least one side of the bag-shaped outer packaging material in the inner bag housing step. Next, the inside of the inner bag and the outer packaging material is depressurized in the welding step, and the first opening and the second opening are simultaneously heat-pressed. Thereby, the 1st heat welding layer of an inner bag and the 2nd heat welding layer of an outer packaging material fuse | melt, a 1st opening part and a 2nd opening part are welded, and an inner bag and an outer packaging material are sealed simultaneously. At this time, the welded portion of the first opening is disposed inside the welded portion of the second opening, thereby preventing the intrusion of outside air.

また本発明は、上記構成の真空断熱材の製造方法において、第1熱溶着層の融点が第2熱溶着層の融点よりも低いことを特徴としている。この構成によると、溶着工程で内袋を覆う外包材の外側から加熱され、内袋の第1開口部が外包材の第2開口部よりも低温になる。これにより、第1熱溶着層及び第2熱溶着層を最適な温度で溶着することができる。   Moreover, the present invention is characterized in that, in the method for manufacturing a vacuum heat insulating material having the above-described configuration, the melting point of the first heat-welded layer is lower than the melting point of the second heat-welded layer. According to this structure, it heats from the outer side of the outer packaging material which covers an inner bag at a welding process, and the 1st opening part of an inner bag becomes low temperature rather than the 2nd opening part of an outer packaging material. Thereby, a 1st heat welding layer and a 2nd heat welding layer can be welded at optimal temperature.

また本発明は、上記構成の真空断熱材の製造方法において、第1熱溶着層及び第2熱溶着層の一方の水蒸気透過度が他方よりも低く、他方の酸素透過度が一方よりも低いことを特徴としている。この構成によると、第1開口部の溶着部及び第2開口部の溶着部の一方によって水蒸気の侵入が防止され、他方によって酸素の侵入が防止される。   In the method for producing a vacuum heat insulating material having the above-described configuration, the water vapor permeability of one of the first heat-welded layer and the second heat-welded layer is lower than the other, and the oxygen permeability of the other is lower than the other. It is characterized by. According to this configuration, the penetration of water vapor is prevented by one of the welded portion of the first opening and the welded portion of the second opening, and the penetration of oxygen is prevented by the other.

また本発明は、上記構成の真空断熱材の製造方法において、第1熱溶着層がポリエチレンにより形成され、第2熱溶着層がポリアクリロニトリルにより形成されることを特徴としている。この構成によると、ポリエチレンの融点がポリアクリロニトリルの融点よりも低く、第1熱溶着層及び第2熱溶着層が最適な温度で溶着される。また、第1開口部の溶着部によって水蒸気の侵入が防止され、第2開口部の溶着部によって酸素の侵入が防止される。   Further, the present invention is characterized in that, in the vacuum heat insulating material manufacturing method having the above-described configuration, the first heat-welded layer is formed of polyethylene and the second heat-welded layer is formed of polyacrylonitrile. According to this configuration, the melting point of polyethylene is lower than the melting point of polyacrylonitrile, and the first heat welding layer and the second heat welding layer are welded at an optimum temperature. Further, the penetration of water vapor is prevented by the welded portion of the first opening, and the penetration of oxygen is prevented by the welded portion of the second opening.

本発明によると、芯材を挿入する内袋の第1開口部及び内袋を挿入する外包材の第2開口部を同時に熱溶着して密封するので、真空断熱材の製造工数を削減することができる。また、第1開口部の溶着部が第2開口部の溶着部の内側に配されるので、外気の侵入を防止することができ、真空断熱材の真空漏れを低減することができる。   According to the present invention, since the first opening of the inner bag into which the core material is inserted and the second opening of the outer packaging material into which the inner bag is inserted are simultaneously heat-sealed and sealed, the number of manufacturing steps of the vacuum heat insulating material can be reduced. Can do. Moreover, since the welding part of a 1st opening part is distribute | arranged inside the welding part of a 2nd opening part, the penetration | invasion of external air can be prevented and the vacuum leak of a vacuum heat insulating material can be reduced.

本発明の実施形態の真空断熱材を示す側面断面図Side surface sectional drawing which shows the vacuum heat insulating material of embodiment of this invention 本発明の実施形態の真空断熱材の製造工程を示す工程図Process drawing which shows the manufacturing process of the vacuum heat insulating material of embodiment of this invention 本発明の実施形態の真空断熱材の芯材収容工程及び内袋収容工程を示す斜視図The perspective view which shows the core material accommodation process and inner bag accommodation process of the vacuum heat insulating material of embodiment of this invention. 本発明の実施形態の真空断熱材の内袋収容工程後の状態を示す斜視図The perspective view which shows the state after the inner bag accommodation process of the vacuum heat insulating material of embodiment of this invention. 図4のA−A’断面図A-A 'sectional view of FIG. 本発明の実施形態の真空断熱材の溶着工程を示す側面断面図Side surface sectional drawing which shows the welding process of the vacuum heat insulating material of embodiment of this invention 従来の真空断熱材を示す側面断面図Side sectional view showing a conventional vacuum heat insulating material

以下に本発明の実施形態を図面を参照して説明する。図1は一実施形態の真空断熱材を示す側面断面図である。説明の便宜上、前述の図7に示す従来例と同様の部分は同一の符号を付している。真空断熱材1は内袋10の内部に芯材2を収容し、外包材20の内部に内袋10を収容する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing a vacuum heat insulating material of one embodiment. For convenience of explanation, the same parts as those of the conventional example shown in FIG. The vacuum heat insulating material 1 accommodates the core material 2 inside the inner bag 10 and accommodates the inner bag 10 inside the outer packaging material 20.

芯材2は発泡樹脂、粉体、無機繊維、多孔質体、薄膜積層体等を用いることができ、具体的には、連通ウレタン、シリカ粉体、グラスファイバー等が用いられる。本実施形態ではグラスファイバーを用いている。   As the core material 2, foamed resin, powder, inorganic fiber, porous body, thin film laminate, and the like can be used. Specifically, continuous urethane, silica powder, glass fiber, and the like are used. In this embodiment, glass fiber is used.

内袋10は2つのフィルムの周縁を熱溶着した袋状に形成される。内袋10を形成するフィルムの材料として、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、無延伸ポリプロピレン、ポリアクリロニトリル、無延伸ポリエチレンテレフタレート等を用いることができる。本実施形態では厚みが20μmの低密度ポリエチレンを用いている。   The inner bag 10 is formed in a bag shape in which the peripheral edges of two films are thermally welded. As a material for the film forming the inner bag 10, low density polyethylene, linear low density polyethylene, high density polyethylene, unstretched polypropylene, polyacrylonitrile, unstretched polyethylene terephthalate, or the like can be used. In this embodiment, low-density polyethylene having a thickness of 20 μm is used.

尚、内袋10は1層のフィルムによって形成されるため、内表面を含む内袋10全体が熱溶着される熱溶着層(第1熱溶着層)を形成する。内袋10を積層フィルムにより形成して内表面に熱溶着層を設けてもよい。   In addition, since the inner bag 10 is formed of a single layer film, a heat-welding layer (first heat-welding layer) on which the entire inner bag 10 including the inner surface is heat-welded is formed. The inner bag 10 may be formed of a laminated film and a heat welding layer may be provided on the inner surface.

外包材20は熱溶着層21、バリア層22及び保護層23を積層した2つの積層フィルムの周縁を熱溶着した袋状に形成される。熱溶着層21は外包材20の内表面に配され、熱溶着により外包材20を密封する。熱溶着層21として低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、無延伸ポリプロピレン、ポリアクリロニトリル、無延伸ポリエチレンテレフタレート等を用いることができる。本実施形態では厚みが30μmのポリアクリロニトリルを用いている。   The outer packaging material 20 is formed in a bag shape in which the peripheral edges of two laminated films obtained by laminating a heat-welding layer 21, a barrier layer 22, and a protective layer 23 are heat-welded. The thermal welding layer 21 is disposed on the inner surface of the outer packaging material 20 and seals the outer packaging material 20 by thermal welding. As the heat welding layer 21, low density polyethylene, linear low density polyethylene, high density polyethylene, unstretched polypropylene, polyacrylonitrile, unstretched polyethylene terephthalate, or the like can be used. In this embodiment, polyacrylonitrile having a thickness of 30 μm is used.

バリア層22は中間層を形成し、水蒸気を含むガスの透過を遮断する。バリア層22としてアルミニウム箔やアルミニウムの蒸着膜等を用いることができる。本実施形態では厚みが6μmのアルミニウム箔を用い、有機溶剤系の接着剤により熱溶着層21に接合している。保護層23は外包材20の最外面に配され、外力による傷等を防止する。保護層23として、ポリアミドやPET等を用いることができる。本実施形態では厚みが15μmのポリアミドを用い、有機溶剤系の接着剤によりバリア層22に接合している。   The barrier layer 22 forms an intermediate layer and blocks the permeation of gas containing water vapor. As the barrier layer 22, an aluminum foil, an aluminum deposited film, or the like can be used. In the present embodiment, an aluminum foil having a thickness of 6 μm is used and bonded to the heat welding layer 21 with an organic solvent-based adhesive. The protective layer 23 is disposed on the outermost surface of the outer packaging material 20 and prevents damage or the like due to external force. As the protective layer 23, polyamide, PET, or the like can be used. In this embodiment, polyamide having a thickness of 15 μm is used and bonded to the barrier layer 22 by an organic solvent-based adhesive.

内袋10及び外包材20の内部は真空に維持され、一端の溶着部10a、20aでそれぞれ熱溶着される。詳細を後述するように、内袋10の溶着部10aと外包材20の溶着部20aとは同時に熱溶着され、溶着部20aの内側に溶着部10aが配置される。   The inside of the inner bag 10 and the outer packaging material 20 is maintained in a vacuum, and is thermally welded at the welded portions 10a and 20a at one end. As will be described in detail later, the welded portion 10a of the inner bag 10 and the welded portion 20a of the outer packaging material 20 are thermally welded simultaneously, and the welded portion 10a is arranged inside the welded portion 20a.

図2は真空断熱材1の製造工程を示す工程図である。真空断熱材1は芯材乾燥工程、芯材収容工程、内袋収容工程、溶着工程及び検査工程により作成される。芯材乾燥工程は芯材2を乾燥させる。具体的には、グラスファイバーから成る芯材2を200℃の雰囲気に20分配置して乾燥させる。   FIG. 2 is a process diagram showing a manufacturing process of the vacuum heat insulating material 1. The vacuum heat insulating material 1 is created by a core material drying process, a core material housing process, an inner bag housing process, a welding process, and an inspection process. In the core material drying step, the core material 2 is dried. Specifically, the core material 2 made of glass fiber is placed in an atmosphere of 200 ° C. for 20 minutes and dried.

図3は芯材収容工程及び内袋収容工程を示す斜視図である。内袋10は一辺に開口部10b(第1開口部)を開口した袋状に形成され、芯材収容工程で矢印B1に示すように開口部10bから内袋10内に芯材2が挿入される。これにより、芯材2が内袋10に収容される。   FIG. 3 is a perspective view showing a core material accommodation step and an inner bag accommodation step. The inner bag 10 is formed in a bag shape having an opening 10b (first opening) on one side, and the core material 2 is inserted into the inner bag 10 from the opening 10b as indicated by an arrow B1 in the core material housing step. The Thereby, the core material 2 is accommodated in the inner bag 10.

外包材20は一辺に開口部20b(第2開口部)を開口した袋状に形成され、内袋収容工程で矢印B2に示すように開口部20bから外包材20内に内袋10が挿入される。図4はこの状態の斜視図を示し、図5は図4のA−A’断面図を示している。芯材2は開口部10bを開放した内袋10内に配され、内袋10は開口部20bを開放した外包材20内に配される。   The outer packaging material 20 is formed in a bag shape having an opening 20b (second opening) on one side, and the inner bag 10 is inserted into the outer packaging material 20 from the opening 20b as indicated by an arrow B2 in the inner bag housing step. The 4 shows a perspective view of this state, and FIG. 5 shows a cross-sectional view taken along the line A-A ′ of FIG. 4. The core material 2 is arranged in the inner bag 10 with the opening 10b opened, and the inner bag 10 is arranged in the outer packaging material 20 with the opening 20b opened.

図6は溶着工程の側面断面図を示している。芯材2及び内袋20を内包した外包材20はチャンバー内に配され、チャンバー内を例えば、0.015Torrまで減圧する。そして、シリコンヒータ30により外包材20の保護層23の外側の二方向から開口部20b(図5参照)を挟み込んで加圧加熱する。   FIG. 6 shows a side sectional view of the welding process. The outer packaging material 20 including the core material 2 and the inner bag 20 is disposed in the chamber, and the pressure in the chamber is reduced to, for example, 0.015 Torr. And the opening part 20b (refer FIG. 5) is inserted | pinched from the two directions of the outer side of the protective layer 23 of the outer packaging material 20 with the silicon heater 30, and it heats by pressure.

この時、内袋10の開口部10b(図5参照)がシリコンヒータ30により挟み込まれる。これにより、内袋10の開口部10b及び外包材20の開口部20bが同時に熱溶着され、内袋10及び外包材20が内部を真空に維持して同時に密封される。また、開口部20bを熱溶着した溶着部20aの内側(芯材2側)に開口部10bを熱溶着した溶着部10aが配置される。   At this time, the opening 10 b (see FIG. 5) of the inner bag 10 is sandwiched by the silicon heater 30. Thereby, the opening part 10b of the inner bag 10 and the opening part 20b of the outer packaging material 20 are heat-sealed simultaneously, and the inner bag 10 and the outer packaging material 20 are simultaneously sealed while maintaining the inside in a vacuum. Moreover, the welding part 10a which heat-welded the opening part 10b is arrange | positioned inside the welding part 20a which heat-welded the opening part 20b (core material 2 side).

そして、検査工程で密封不良や傷等が検査される。これにより、前述の図1に示す真空断熱材1が得られる。   Then, sealing defects and scratches are inspected in the inspection process. Thereby, the vacuum heat insulating material 1 shown in FIG. 1 is obtained.

真空断熱材1は芯材2を挿入する開口部10a及び内袋10を挿入する開口部20aが同時に熱溶着して密封されるので、真空断熱材1の製造工数を削減することができる。また、開口部20bの溶着部20aの内側に開口部10bの溶着部10aが配されるため、矢印A(図1参照)に示すように侵入する外気が溶着部10a及び溶着部20aによって二重に遮蔽される。従って、真空断熱材1の真空漏れを低減することができる。   Since the opening 10a for inserting the core material 2 and the opening 20a for inserting the inner bag 10 are simultaneously heat-sealed and sealed in the vacuum heat insulating material 1, the number of manufacturing steps for the vacuum heat insulating material 1 can be reduced. Further, since the welded portion 10a of the opening 10b is arranged inside the welded portion 20a of the opening 20b, the intruding outside air is doubled by the welded portion 10a and the welded portion 20a as shown by the arrow A (see FIG. 1). Shielded by. Therefore, the vacuum leak of the vacuum heat insulating material 1 can be reduced.

この時、溶着部10a及び溶着部20aは水蒸気透過度及び酸素透過度が低いほど望ましい。しかし、一般に汎用樹脂は酸素透過度が低いと他のガスの透過度も低いが水蒸気透過度が高くなり、水蒸気透過度が低いと水蒸気以外のガス(酸素を含む)の透過度が高くなる特性を有する。   At this time, it is desirable that the welded portion 10a and the welded portion 20a have lower water vapor permeability and oxygen permeability. In general, however, general-purpose resins have low oxygen permeability and low gas permeability but high water vapor permeability, and low water vapor permeability and high gas permeability (including oxygen) other than water vapor. Have

このため、溶着部10aで熱溶着した熱溶着層を形成する内袋10と、溶着部20aで熱溶着する外包材20の熱溶着層21との一方に水蒸気透過度の低い材料を用い、他方に酸素透過度の低い材料を用いると水蒸気を含むガスの侵入を低減することができる。   For this reason, a material having a low water vapor transmission rate is used for one of the inner bag 10 that forms the heat-welded layer thermally welded by the welded portion 10a and the heat-welded layer 21 of the outer packaging material 20 that is heat-welded by the welded portion 20a. If a material having a low oxygen permeability is used, the invasion of gas containing water vapor can be reduced.

低密度ポリエチレンフィルム(厚さ25μm)の水蒸気透過度は、40℃、90%RHにおいて約18g/m2・day(2.08×10-8g/cm2・sec)である。また、低密度ポリエチレンフィルムの酸素透過度は、20℃、90%RHにおいて約4000cc/m2・day・atm(4.57×10-11cm3/cm2・sec・Pa)である。 The water vapor permeability of the low density polyethylene film (thickness 25 μm) is about 18 g / m 2 · day (2.08 × 10 −8 g / cm 2 · sec) at 40 ° C. and 90% RH. The low-density polyethylene film has an oxygen permeability of about 4000 cc / m 2 · day · atm (4.57 × 10 −11 cm 3 / cm 2 · sec · Pa) at 20 ° C. and 90% RH.

一方、ポリアクリロニトリルフィルム(厚さ25μm)の酸素透過度は低密度ポリエチレンフィルムよりも低く、20℃、90%RHにおいて約13cc/m2・day・atm(1.48×10-13cm3/cm2・sec・Pa)である。また、ポリアクリロニトリルフィルムの水蒸気透過度は低密度ポリエチレンフィルムよりも高く、40℃、90%RHにおいて約82g/m2・day(9.49×10-8g/cm2・sec)である。 On the other hand, the oxygen permeability of the polyacrylonitrile film (thickness 25 [mu] m) is lower than the low density polyethylene film, 20 ° C., in 90% RH to about 13cc / m 2 · day · atm (1.48 × 10 -13 cm 3 / cm 2 · sec · Pa). The water vapor permeability of the polyacrylonitrile film is higher than that of the low density polyethylene film, and is about 82 g / m 2 · day (9.49 × 10 −8 g / cm 2 · sec) at 40 ° C. and 90% RH.

このため、外包材20の熱溶着層21及び内袋10にそれぞれポリアクリロニトリル及び低密度ポリエチレンフィルムを用いることで水蒸気及び酸素の侵入を低減できる。内袋10を低密度ポリエチレンフィルムと同様の特性を有する直鎖状低密度ポリエチレンや高密度ポリエチレンにしてもよい。   For this reason, the penetration | invasion of water vapor | steam and oxygen can be reduced by using a polyacrylonitrile and a low density polyethylene film for the heat welding layer 21 and the inner bag 10 of the outer packaging material 20, respectively. The inner bag 10 may be a linear low density polyethylene or high density polyethylene having the same characteristics as the low density polyethylene film.

この時、熱溶着層21を形成するポリアクリロニトリルの融点は約140℃であり、内袋10を形成する低密度ポリエチレンの融点は約110℃である。溶着工程では内袋10を覆う外包材20の外側から加熱されるため、内袋10の開口部10bが外包材20の開口部20bよりも低温になる。このため、内袋10の融点を熱溶着層21の融点よりも低くすることにより、溶着部10a及び溶着部20aを最適な温度で溶着することができる。   At this time, the melting point of polyacrylonitrile forming the heat-welded layer 21 is about 140 ° C., and the melting point of low-density polyethylene forming the inner bag 10 is about 110 ° C. In the welding process, since the outer packaging material 20 that covers the inner bag 10 is heated from the outside, the opening 10 b of the inner bag 10 becomes cooler than the opening 20 b of the outer packaging material 20. For this reason, by making the melting point of the inner bag 10 lower than the melting point of the heat welding layer 21, the welding part 10a and the welding part 20a can be welded at an optimum temperature.

本実施形態によると、芯材2を挿入する内袋10の開口部10b(第1開口部)及び内袋10を挿入する外包材20の開口部20b(第2開口部)を同時に熱溶着して密封するので、真空断熱材1の製造工数を削減することができる。また、開口部10bの溶着部10aが開口部20bの溶着部20aの内側に配されるので、外気の侵入を防止することができ、真空断熱材1の真空漏れを低減することができる。   According to the present embodiment, the opening 10b (first opening) of the inner bag 10 into which the core material 2 is inserted and the opening 20b (second opening) of the outer packaging material 20 into which the inner bag 10 is inserted are heat-sealed simultaneously. Therefore, the number of manufacturing steps for the vacuum heat insulating material 1 can be reduced. Moreover, since the welding part 10a of the opening part 10b is distribute | arranged inside the welding part 20a of the opening part 20b, the penetration | invasion of external air can be prevented and the vacuum leak of the vacuum heat insulating material 1 can be reduced.

また、熱溶着層を形成する内袋10(第1熱溶着層)の融点が外包材20の熱溶着層21(第2熱溶着層)の融点よりも低いので、外包材20の外側から加熱した際に溶着部10a及び溶着部20aを最適な温度で溶着することができる。   Further, since the melting point of the inner bag 10 (first heat welding layer) forming the heat welding layer is lower than the melting point of the heat welding layer 21 (second heat welding layer) of the outer packaging material 20, heating is performed from the outside of the outer packaging material 20. In this case, the welded portion 10a and the welded portion 20a can be welded at an optimum temperature.

また、熱溶着層を形成する内袋10(第1熱溶着層)及び外包材20の熱溶着層21(第2熱溶着層)の一方の水蒸気透過度が他方よりも低く、他方の酸素透過度が一方よりも低いので、水蒸気及び酸素を含むガスの侵入を防止することができる。   Further, the water vapor permeability of one of the inner bag 10 (first heat-welded layer) and the heat-welded layer 21 (second heat-welded layer) of the outer packaging material 20 forming the heat-welded layer is lower than the other, and the other oxygen-permeable Since the degree is lower than that of one, the invasion of gas containing water vapor and oxygen can be prevented.

また、熱溶着層を形成する内袋10(第1熱溶着層)がポリエチレンにより形成され、外包材20の熱溶着層21(第2熱溶着層)がポリアクリロニトリルにより形成されるので、熱溶着層21よりも内袋10の融点及び水蒸気透過度が低く、内袋10よりも熱溶着層21の酸素透過度が低い真空断熱材1を容易に実現することができる。   Further, since the inner bag 10 (first heat-welding layer) that forms the heat-welding layer is formed of polyethylene and the heat-welding layer 21 (second heat-welding layer) of the outer packaging material 20 is formed of polyacrylonitrile, the heat-welding is performed. The vacuum heat insulating material 1 in which the melting point and water vapor permeability of the inner bag 10 are lower than that of the layer 21 and the oxygen permeability of the heat welding layer 21 is lower than that of the inner bag 10 can be easily realized.

本発明によると、芯材を覆う外包材の内部が真空に維持される真空断熱材に利用することができる。   According to this invention, it can utilize for the vacuum heat insulating material by which the inside of the outer packaging material which covers a core material is maintained at a vacuum.

1 真空断熱材
2 芯材
10 内袋
10a、20a 溶着部
10b、20b 開口部
20 外包材
21 熱溶着層
22 バリア層
23 保護層
30 シリコンヒータ
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 10 Inner bag 10a, 20a Welding part 10b, 20b Opening part 20 Outer packaging material 21 Thermal welding layer 22 Barrier layer 23 Protective layer 30 Silicon heater

Claims (4)

内表面を第1熱溶着層により形成された袋状の内袋に開口した第1開口部を介して前記内袋内にスペーサとなる芯材を挿入する芯材収容工程と、内表面を第2熱溶着層により形成された袋状の外包材に開口した第2開口部を介して前記外包材内に前記内袋を挿入する内袋収容工程と、前記内袋及び前記外包材の内部を減圧した状態で第1開口部と第2開口部とを同時に溶着して前記内袋及び前記外包材を同時に密封する溶着工程とを備え、前記溶着工程で溶着された第2開口部の溶着部の内側に第1開口部の溶着部が配されることを特徴とする真空断熱材の製造方法。   A core material containing step of inserting a core material serving as a spacer into the inner bag through a first opening portion whose inner surface is opened in a bag-shaped inner bag formed by the first heat-welded layer; (2) an inner bag accommodating step of inserting the inner bag into the outer packaging material through a second opening portion opened in the bag-shaped outer packaging material formed by the heat-welded layer, and the inner bag and the outer packaging material. A welding step of simultaneously welding the first opening and the second opening in a decompressed state and simultaneously sealing the inner bag and the outer packaging material, and a welded portion of the second opening welded in the welding step A method for manufacturing a vacuum heat insulating material, characterized in that a welded portion of the first opening is disposed on the inside. 第1熱溶着層の融点が第2熱溶着層の融点よりも低いことを特徴とする請求項1に記載の真空断熱材の製造方法。   The method for producing a vacuum heat insulating material according to claim 1, wherein the melting point of the first heat welding layer is lower than the melting point of the second heat welding layer. 第1熱溶着層及び第2熱溶着層の一方の水蒸気透過度が他方よりも低く、他方の酸素透過度が一方よりも低いことを特徴とする請求項1または請求項2に記載の真空断熱材の製造方法。   3. The vacuum heat insulation according to claim 1, wherein the water vapor permeability of one of the first heat-welded layer and the second heat-welded layer is lower than the other, and the oxygen permeability of the other is lower than the other. A method of manufacturing the material. 第1熱溶着層がポリエチレンにより形成され、第2熱溶着層がポリアクリロニトリルにより形成されることを特徴とする請求項2または請求項3に記載の真空断熱材の製造方法。   The method for producing a vacuum heat insulating material according to claim 2 or 3, wherein the first heat-welded layer is formed of polyethylene and the second heat-welded layer is formed of polyacrylonitrile.
JP2010054073A 2010-03-11 2010-03-11 Method for manufacturing vacuum heat insulation material Withdrawn JP2011185413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054073A JP2011185413A (en) 2010-03-11 2010-03-11 Method for manufacturing vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054073A JP2011185413A (en) 2010-03-11 2010-03-11 Method for manufacturing vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2011185413A true JP2011185413A (en) 2011-09-22

Family

ID=44791936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054073A Withdrawn JP2011185413A (en) 2010-03-11 2010-03-11 Method for manufacturing vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2011185413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169155A (en) * 2018-08-01 2018-11-01 東芝ライフスタイル株式会社 refrigerator
JP2020139567A (en) * 2019-02-28 2020-09-03 タイガー魔法瓶株式会社 Vacuum heat insulation panel and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169155A (en) * 2018-08-01 2018-11-01 東芝ライフスタイル株式会社 refrigerator
JP2020139567A (en) * 2019-02-28 2020-09-03 タイガー魔法瓶株式会社 Vacuum heat insulation panel and manufacturing method thereof
WO2020174734A1 (en) * 2019-02-28 2020-09-03 タイガー魔法瓶株式会社 Vacuum insulated panel and manufacturing method therefor
US11686421B2 (en) 2019-02-28 2023-06-27 Tiger Corporation Vacuum thermal insulation panel and method of producing the same

Similar Documents

Publication Publication Date Title
US10472158B2 (en) Double bag vacuum insulation panel
KR101301504B1 (en) Vacuum heat insulation material and method for production thereof
JP6214648B2 (en) Vacuum insulation material with improved rupture failure and manufacturing method thereof
JP2008106532A (en) Vacuum heat insulation material
JP4534638B2 (en) Vacuum insulation
JP2016084833A (en) Vacuum heat insulating material and heat insulating box
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2011185413A (en) Method for manufacturing vacuum heat insulation material
WO2017029727A1 (en) Vacuum heat insulation material and heat insulation box
JP2007155135A (en) Vacuum insulation material and manufacturing method thereof
JPH0886394A (en) Vacuum heat insulation material and its manufacture
JP2012026512A (en) Bag body and vacuum heat insulating material
JP2008196572A (en) Vacuum heat insulating material and refrigerator
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
CN112313491B (en) Apparatus and method for thermal isolation of high temperature pressure sensors
CN111801525B (en) Vacuum heat insulating material and heat insulating box
JP2010173700A (en) Bag body and method for manufacturing the same
TWI767409B (en) Manufacturing method of heat insulating member, heat insulating member, cooling/heating machine using the same, and manufacturing method of the cooling/heating machine
JP2014109334A (en) Vacuum insulation material and external capsule material for the same
JP3983783B2 (en) Manufacturing method of vacuum insulation
JP2013194885A (en) Vacuum heat insulating material and manufacturing method thereof
CN114829828B (en) Vacuum heat insulating material and heat insulating box
JP2011208762A (en) Vacuum heat insulating material
JP5309366B2 (en) Vacuum heat insulating material, heat insulating box, and manufacturing method of vacuum heat insulating material
JP6775585B2 (en) Vacuum heat insulating material and heat insulating box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130124