JP2010255805A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2010255805A
JP2010255805A JP2009109208A JP2009109208A JP2010255805A JP 2010255805 A JP2010255805 A JP 2010255805A JP 2009109208 A JP2009109208 A JP 2009109208A JP 2009109208 A JP2009109208 A JP 2009109208A JP 2010255805 A JP2010255805 A JP 2010255805A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
layer
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009109208A
Other languages
Japanese (ja)
Inventor
Fumie Horihata
文枝 堀端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009109208A priority Critical patent/JP2010255805A/en
Publication of JP2010255805A publication Critical patent/JP2010255805A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material having excellent heat insulating performance for a long time. <P>SOLUTION: The vacuum heat insulating material 1 is formed by sealing in a decompressed state a core material 2 and an absorbent 3 between two rectangular outer covering materials 4 of which thermal welding layers 7 are arranged opposite to each other, and by thermal welding together the outer peripheral parts of three sides near the peripheral edges of the two outer covering materials 4 covering the core material 2. In a sealing part 8 where the outer peripheral parts of the outer covering materials 4 are thermal welded to each other, an irregular pattern 9 which the surface of one outer covering material 4 located in the sealing part 8 has is formed so that a cross section of the sealing part 8 which passes through a point on a recessed part also passes over a projected part. Since the thickness of the thermal welding layer 7 at the recessed part is thinner than that at the peripheral parts of the recessed part, crack generation and breakage at a thin part 11, which restricts the amount of atmospheric gas intruded from an end surface of the peripheral edge of the outer covering material 4 through the sealing part 8, rarely arise. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱溶着層同士が対向する2枚の外被材の間に芯材が減圧密封された真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material in which a core material is hermetically sealed between two outer cover materials facing each other with heat-welding layers.

近年、深刻な環境問題である地球温暖化への対策として、家電製品や設備機器並びに住宅などの建物の省エネルギー化を推進する動きが活発となっており、優れた断熱効果を長期的に有する真空断熱材が、これまで以上に求められている。   In recent years, as a measure against global warming, which is a serious environmental problem, there has been an active movement to save energy in home appliances, equipment and buildings such as houses, and a vacuum that has an excellent thermal insulation effect over the long term. Insulation is more demanded than ever.

真空断熱材とは、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外被材で覆い、外被材の内部を減圧密封したものである。真空断熱材は、その内空間を高真空に保ち、気相を伝わる熱量を出来る限り小さくすることにより、高い断熱効果の発現を可能としたものである。よって、その優れた断熱効果を長期にわたって発揮するためには、真空断熱材内部の高い真空度を維持する技術が極めて重要となる。   The vacuum heat insulating material is a material in which a core material having fine voids such as glass wool or silica powder is covered with a jacket material having gas barrier properties, and the inside of the jacket material is sealed under reduced pressure. A vacuum heat insulating material enables expression of a high heat insulating effect by keeping the inner space in a high vacuum and reducing the amount of heat transmitted through the gas phase as much as possible. Therefore, a technique for maintaining a high degree of vacuum inside the vacuum heat insulating material is extremely important in order to exhibit the excellent heat insulating effect over a long period of time.

真空断熱材内部の真空度を維持する方法として、気体吸着剤や水分吸着剤を芯材とともに真空断熱材内部に減圧密封する方法が、一般的に用いられている。これによって、真空包装後に芯材の微細空隙から真空断熱材中へ放出される残存水分や、外気から外被材を透過して経時的に真空断熱材内へ透過する水蒸気や酸素等の大気ガスを除去することが可能となる。   As a method for maintaining the degree of vacuum inside the vacuum heat insulating material, a method in which a gas adsorbent or a moisture adsorbent is sealed under reduced pressure inside the vacuum heat insulating material together with the core material is generally used. As a result, residual moisture released from the fine gaps in the core material into the vacuum insulation after vacuum packaging, or atmospheric gases such as water vapor and oxygen that permeate through the jacket material from the outside and permeate into the vacuum insulation over time. Can be removed.

しかし、現存の吸着剤の吸着能力を考慮すると、高い断熱効果を長期的に維持する真空断熱材を提供するには、吸着剤の使用だけでは不十分であるといえ、真空断熱材内部へ透過する大気ガス量自体を抑制する手段を講じる必要がある。   However, considering the adsorption capacity of existing adsorbents, it can be said that the use of adsorbents alone is not sufficient to provide vacuum insulation that maintains a high thermal insulation effect over the long term. It is necessary to take measures to control the amount of atmospheric gas that is generated.

ここで、外気から真空断熱材内部へ侵入するガス経路について述べる。   Here, a gas path entering from the outside air into the vacuum heat insulating material will be described.

真空断熱材は、通常、2枚の長方形の外被材を重ね合わせて外被材の3辺の周縁近傍の外周部同士を熱溶着して作製した3方シール袋内へ3方シール袋の開口部から芯材を挿入し、真空包装機を用いて外被材の袋内部を真空引きしながら、3方シール袋の開口部を熱溶着することによって製造される。   The vacuum heat insulating material is usually a three-way sealing bag that is formed by superposing two rectangular outer covering materials and heat-sealing the outer peripheral portions in the vicinity of the three sides of the outer covering material. It is manufactured by inserting the core material from the opening and thermally welding the opening of the three-side seal bag while evacuating the inside of the bag of the jacket material using a vacuum packaging machine.

外被材には、通常、最内層に低密度ポリエチレンなどの熱可塑性樹脂からなる熱溶着層、中間層にアルミニウム箔やアルミニウム蒸着フィルムなどのバリア性を有する材料からなるガスバリア層、そして最外層にはナイロンフィルムやポリエチレンテレフタレートフィルムなどの表面保護の役割を果たす表面保護層を、接着剤を介して積層したラミネートフィルムを用いる。   The outer cover material is usually a heat-welded layer made of a thermoplastic resin such as low density polyethylene in the innermost layer, a gas barrier layer made of a material having a barrier property such as an aluminum foil or an aluminum vapor deposited film in the intermediate layer, and an outermost layer in the outer layer. Uses a laminated film obtained by laminating a surface protective layer such as a nylon film or a polyethylene terephthalate film through an adhesive.

この場合、外気から真空断熱材内部へ透過する大気ガスは、外被材表面のアルミニウム箔のピンホールや蒸着層の隙間などを透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分との2つに分類される。   In this case, the atmospheric gas that permeates from the outside air into the vacuum heat insulating material is a component that permeates through the pinholes of the aluminum foil on the surface of the jacket material or the gaps between the vapor deposition layers, and the heat-welded layer on the edge surface of the jacket material. Are classified into two types, that is, a component that penetrates from the exposed portion to the inside through the sealing portion.

このうち、熱溶着層を構成している熱可塑性樹脂は、ガスバリア層と比べると気体透過度および透湿度が極めて高いことから、真空断熱材内部へ経時的に侵入する大気ガス量のうち、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過したものが大半を占める。   Of these, the thermoplastic resin constituting the heat-welded layer has extremely high gas permeability and moisture permeability compared to the gas barrier layer. Most of the material is transmitted through the sealing portion to the inside from the exposed portion of the heat-welded layer on the end surface of the peripheral edge of the workpiece.

よって、長期にわたって優れた断熱性能を有する真空断熱材の提供には、外被材周縁の端面の熱溶着層が露出している部分からの大気ガス浸透量抑制が不可欠であり、その効果的な手法が課題とされてきた。   Therefore, in order to provide a vacuum heat insulating material having excellent heat insulating performance over a long period of time, it is indispensable to suppress the amount of atmospheric gas permeation from the portion where the heat-welded layer on the edge surface of the outer jacket material is exposed. Techniques have been a challenge.

この課題に対して、封止部における熱溶着層の一部を薄肉にした薄肉部を設けた真空断熱材が報告されている(例えば、特許文献1参照)。   In response to this problem, there has been reported a vacuum heat insulating material provided with a thin portion in which a part of the heat-welded layer in the sealing portion is thin (see, for example, Patent Document 1).

図10は、特許文献1に開示された従来の真空断熱材の断面図であり、図11は、同特許文献1に開示された従来の真空断熱材の平面図である。   FIG. 10 is a cross-sectional view of a conventional vacuum heat insulating material disclosed in Patent Document 1, and FIG. 11 is a plan view of the conventional vacuum heat insulating material disclosed in Patent Document 1.

図10に示すように、特許文献1に開示された従来の真空断熱材101は、ガスバリア層102と熱溶着層103とを有する外被材104の封止部105に位置する熱溶着層103の一部が薄肉になっている。この薄肉部106は、図11に示すように、外被材104の全周を取り巻くように形成されている。   As shown in FIG. 10, the conventional vacuum heat insulating material 101 disclosed in Patent Document 1 includes a heat welding layer 103 positioned in a sealing portion 105 of an outer covering material 104 having a gas barrier layer 102 and a heat welding layer 103. Some are thin. As shown in FIG. 11, the thin-walled portion 106 is formed so as to surround the entire circumference of the jacket material 104.

従来の真空断熱材101の構成は、外被材104周縁の端面から熱溶着層103を通って侵入するガスの透過抵抗が薄肉部106において増大し、内部へのガス侵入を抑制することで長期に渡って優れた断熱性能を発揮できるとされている。   The structure of the conventional vacuum heat insulating material 101 is such that the permeation resistance of gas entering through the heat-welded layer 103 from the end surface of the outer periphery of the outer covering material 104 increases in the thin wall portion 106 and suppresses gas intrusion into the interior for a long time. It is said that excellent heat insulation performance can be demonstrated over a wide range.

実開昭62−141190号公報Japanese Utility Model Publication No. 62-141190

上記従来の真空断熱材101の構成では、平面からみた薄肉部106の形状について詳細には述べられていないものの、図11に示されるように、薄肉部106が真空断熱材101の端部に至るような略直線状に形成されている場合は、真空断熱材101取り扱い時に封止部105に略直線状の薄肉部106を含む平面に対して垂直な力が加わると、熱溶着層103が薄く強度が低い薄肉部106に沿って封止部105が屈曲しやすくなり、熱溶着層103より外層側に積層された層(通常はガスバリア層102)におけるクラックの発生や外被材104の破れが生じ易くなる。   In the configuration of the conventional vacuum heat insulating material 101, the shape of the thin wall portion 106 as viewed from above is not described in detail, but as shown in FIG. 11, the thin wall portion 106 reaches the end of the vacuum heat insulating material 101. In the case of being formed in such a substantially linear shape, when a force perpendicular to the plane including the substantially linear thin portion 106 is applied to the sealing portion 105 during handling of the vacuum heat insulating material 101, the heat-welded layer 103 becomes thin. The sealing portion 105 is easily bent along the thin-walled portion 106 having low strength, and cracks are generated in the layer (usually the gas barrier layer 102) laminated on the outer layer side from the heat-welded layer 103, and the covering material 104 is torn. It tends to occur.

このように、封止部105の断面のにおいて、薄肉部106のみ含む断面が存在する場合は、その断面に対して垂直な方向の荷重が薄肉部106に集中し、薄肉部106において外被材104にクラック発生や破れが生じ易くなり、薄肉部106にて大気ガス成分の真空断熱材101内部への侵入が促進され、真空断熱材101の高い断熱性能が維持できない、という課題があった。   As described above, in the cross section of the sealing portion 105, when there is a cross section including only the thin portion 106, the load in the direction perpendicular to the cross section concentrates on the thin portion 106, and the outer cover material in the thin portion 106. There is a problem that cracks and tears are likely to occur in 104, the penetration of atmospheric gas components into the vacuum heat insulating material 101 is promoted in the thin wall portion 106, and the high heat insulating performance of the vacuum heat insulating material 101 cannot be maintained.

本発明は、上記従来の課題に鑑み、封止部に設けた熱溶着層の薄肉部において、クラック発生や外被材破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供することを目的とする。   In view of the above-described conventional problems, the present invention provides a vacuum heat insulation that maintains excellent heat insulation performance over a long period of time, in which a thin portion of a heat-welded layer provided in a sealing portion hardly generates cracks or ruptures of a jacket material. The purpose is to provide materials.

上記目的を達成するために、本発明の真空断熱材は、熱溶着層同士が対向する2枚の外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材の外周部同士が熱溶着された封止部に位置する一方の外被材表面が有する凹凸模様は、凹部上の点を通る前記封止部の断面であれば凸部上の点をも通るように形成され、前記凹部に前記熱溶着層の厚みが前記凹部の周辺部よりも薄い薄肉部が位置していることを特徴としている。   In order to achieve the above-described object, the vacuum heat insulating material of the present invention includes two jacket materials that cover the core material by sealing the core material under reduced pressure between the two jacket materials facing the heat-welded layers. In the vacuum heat insulating material in which the outer peripheral portions in the vicinity of the peripheral edge are thermally welded, the concave / convex pattern on the surface of one outer jacket material located on the sealing portion in which the outer peripheral portions of the outer jacket material are thermally welded is If the cross section of the sealing portion passes through the point, it is formed so that it also passes through the point on the convex portion, and the thin portion where the thickness of the heat welding layer is thinner than the peripheral portion of the concave portion is located in the concave portion. It is characterized by being.

上記構成において、まず、外被材の外周部同士が熱溶着された封止部において、外被材表面熱溶着層の厚みが局所的に薄い薄肉部を設けることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、透過抵抗が増大することから、経時的に真空断熱材内部に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。   In the above configuration, first, in the sealing portion where the outer peripheral portions of the jacket material are thermally welded to each other, the thin portion of the heat-welded layer is provided by providing a thin-walled portion in which the thickness of the outer shell material surface heat-welded layer is locally thin. In this case, since the permeation area of gas and moisture entering from the end surface of the outer periphery of the jacket material is reduced and the permeation resistance is increased, the amount of gas and moisture permeating into the vacuum heat insulating material over time is suppressed, and it is excellent for a long time. Insulation performance can be demonstrated.

また、熱溶着層の薄肉化により、封止部の強度が薄肉部において局所的に低下するが、封止部に位置する一方の外被材表面に形成された凹凸模様は、凹部上の点を通る封止部の断面であれば凸部上をも通るように形成されていることから、薄肉部を含む平面で切断したどの封止部断面から見ても薄肉部は熱溶着層が厚く強度が高い封止部に隣接していることから、凹部に位置する薄肉部は近傍に位置する凸部に位置する封止部によって支持され取り扱い時に封止部に受けた外力が強度の弱い薄肉部へ集中しにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や破断が極めて起きにくくなる。   Further, the strength of the sealing portion is locally reduced in the thin portion due to the thinning of the heat-welded layer, but the uneven pattern formed on the surface of one outer jacket material located in the sealing portion is a point on the concave portion. If the cross section of the sealing portion passes through the convex portion, it is formed so as to pass over the convex portion. Because it is adjacent to the high strength sealing part, the thin part located in the concave part is supported by the sealing part located in the convex part located nearby, and the external force received by the sealing part during handling is thin. It is difficult to concentrate on the portion, and cracks and breaks in the thin-walled portion of the heat-welded layer and the jacket material in the vicinity thereof are extremely difficult to occur.

以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、外被材のクラック発生や破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   As described above, it is possible to provide a vacuum heat insulating material that maintains excellent heat insulating performance over a long period of time, in which the outer shell material is hardly cracked or broken in the thin portion of the heat-welded layer provided in the sealing portion and in the vicinity thereof. .

本発明によれば、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、外被材周縁の端面から侵入する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。また、封止部において封止部の強度が局所的に低下する薄肉部が外力の影響を受けにくく配置されていることから、熱溶着層の薄肉部に位置する外被材におけるクラック発生や破断が極めて起きにくくなる。   According to the present invention, by providing the thin portion where the thickness of the heat-welding layer of the sealing portion is locally thin, the gas and moisture amount entering from the end face of the outer periphery of the outer jacket material are suppressed, and the thermal insulation layer is excellent over a long period of time. Insulation performance can be demonstrated. In addition, since the thin portion where the strength of the sealing portion locally decreases in the sealing portion is not easily affected by external force, the occurrence of cracks or breakage in the jacket material located in the thin portion of the heat-welded layer Is extremely difficult to occur.

以上により、封止部に設けた熱溶着層の薄肉部において、外被材のクラック発生や破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   As described above, it is possible to provide a vacuum heat insulating material that maintains excellent heat insulating performance over a long period of time, in which the outer cover material is hardly cracked or broken in the thin portion of the heat-welded layer provided in the sealing portion.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention 同実施の形態の実施例1における真空断熱材の平面図The top view of the vacuum heat insulating material in Example 1 of the embodiment 同実施の形態の実施例2における真空断熱材の平面図The top view of the vacuum heat insulating material in Example 2 of the embodiment 同実施の形態における真空断熱材の他の例の平面図The top view of the other example of the vacuum heat insulating material in the embodiment 同実施の形態における真空断熱材の別の例の平面図The top view of another example of the vacuum heat insulating material in the embodiment 同実施の形態における真空断熱材のさらに別の例の平面図The top view of another example of the vacuum heat insulating material in the embodiment 同実施の形態の実施例1および実施例2における真空断熱材の薄肉部を含む封止部の断面図Sectional drawing of the sealing part containing the thin part of the vacuum heat insulating material in Example 1 and Example 2 of the embodiment 比較例2における真空断熱材の平面図The top view of the vacuum heat insulating material in the comparative example 2 比較例3における真空断熱材の平面図Plan view of vacuum heat insulating material in Comparative Example 3 従来の真空断熱材の断面図Cross section of conventional vacuum insulation 従来の真空断熱材の平面図Plan view of conventional vacuum insulation

第1の真空断熱材の発明は、熱溶着層同士が対向する2枚の外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材の外周部同士が熱溶着された封止部に位置する一方の外被材表面が有する凹凸模様が、凹部上の点を通る前記封止部の断面であれば凸部上の点をも通るように形成され、前記凹部に前記熱溶着層の厚みが前記凹部の周辺部よりも薄い薄肉部が位置していることを特徴としている。   The invention of the first vacuum heat insulating material is an outer peripheral portion in the vicinity of the peripheral edges of the two jacket materials that cover the core material with the core material sealed under reduced pressure between the two jacket materials facing the heat-welded layers. In the vacuum heat insulating material in which the outer peripheral portions of the outer cover material are heat-welded with each other, the uneven pattern of one outer cover material surface located in the sealing portion in which the outer peripheral portions of the outer cover materials are heat-welded is passed through the point on the concave portion. If it is a cross section of the stop portion, it is formed so as to pass through a point on the convex portion, and the thin portion where the thickness of the heat welding layer is thinner than the peripheral portion of the concave portion is located in the concave portion. .

上記構成において、まず、外被材の外周部同士が熱溶着された封止部において、外被材表面熱溶着層の厚みが局所的に薄い薄肉部を設けることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、透過抵抗が増大することから、経時的に真空断熱材内部に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。   In the above configuration, first, in the sealing portion where the outer peripheral portions of the jacket material are thermally welded to each other, the thin portion of the heat-welded layer is provided by providing a thin-walled portion in which the thickness of the outer shell material surface heat-welded layer is locally thin. In this case, since the permeation area of gas and moisture entering from the end surface of the outer periphery of the jacket material is reduced and the permeation resistance is increased, the amount of gas and moisture permeating into the vacuum heat insulating material over time is suppressed, and it is excellent for a long time Insulation performance can be demonstrated.

また、熱溶着層の薄肉化により、封止部の強度が薄肉部において局所的に低下するが、封止部に位置する一方の外被材表面に形成された凹凸模様は、凹部上の点を通る封止部の断面であれば凸部上をも通るように形成されていることから、薄肉部を含む平面で切断したどの封止部断面から見ても薄肉部は熱溶着層が厚く強度が高い封止部に隣接していることから、凹部に位置する薄肉部は近傍に位置する凸部に位置する封止部によって支持され取り扱い時に封止部に受けた外力が強度の弱い薄肉部へ集中しにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や破断が極めて起きにくくなる。   Further, the strength of the sealing portion is locally reduced in the thin portion due to the thinning of the heat-welded layer, but the uneven pattern formed on the surface of one outer jacket material located in the sealing portion is a point on the concave portion. If the cross section of the sealing portion passes through the convex portion, it is formed so as to pass over the convex portion. Because it is adjacent to the high strength sealing part, the thin part located in the concave part is supported by the sealing part located in the convex part located nearby, and the external force received by the sealing part during handling is thin. It is difficult to concentrate on the portion, and cracks and breaks in the thin-walled portion of the heat-welded layer and the jacket material in the vicinity thereof are extremely difficult to occur.

以上により、封止部に設けた熱溶着層の薄肉部において、クラック発生や破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   As described above, it is possible to provide a vacuum heat insulating material that maintains excellent heat insulating performance over a long period of time, in which the occurrence of cracks and breakage hardly occur in the thin portion of the heat-welded layer provided in the sealing portion.

次に真空断熱材の構成材料について説明する。   Next, constituent materials of the vacuum heat insulating material will be described.

外被材を構成する熱溶着層としては、特に指定されるものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、中密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂あるいはそれらの混合フィルム等が使用できる。   The heat welding layer constituting the jacket material is not particularly specified, but a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a medium density polyethylene film, a polypropylene film, a polyacrylonitrile film, etc. These thermoplastic resins or mixed films thereof can be used.

芯材は、その種類について特に指定するものではないが、気層比率90%前後の多孔体であり、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの連続気泡体や、グラスウールやロックウール、アルミナ繊維、シリカアルミナ繊維などの繊維体、パーライトや湿式シリカ、乾式シリカなどの粉体など、従来公知の芯材が利用できる。   The core material is not particularly specified for its type, but is a porous body having a gas layer ratio of about 90%, and is open-celled such as urethane foam, styrene foam, phenol foam, glass wool, rock wool, alumina fiber, Conventionally known core materials such as fiber bodies such as silica-alumina fibers, powders such as pearlite, wet silica, and dry silica can be used.

外被材に使用するラミネート接着剤については、特に指定するものではないが、2液硬化型ウレタン接着剤等の従来公知のラミネート用接着剤もしくはエポキシ系樹脂接着剤などのラミネート用接着剤が使用できる。   The laminate adhesive used for the jacket material is not particularly specified, but a conventionally known laminate adhesive such as a two-component curable urethane adhesive or an adhesive for laminate such as an epoxy resin adhesive is used. it can.

なお、2枚の外被材とは、外被材同士が熱溶着された封止部において2枚の外被材が合わさって熱溶着されてなり、かつ、芯材の両面ともに外被材が位置していることを意味しており、外被材の袋形状を指定するものではない。   The two jacket materials are the two jacket materials that are heat-sealed in the sealing portion where the jacket materials are thermally welded to each other. It means that it is located, and does not specify the bag shape of the jacket material.

ここで、外被材の袋形状は、特に指定するものではなく、四方シール袋、ガゼット袋、三方シール袋、ピロー袋など、従来公知の袋形状が使用できる。   Here, the bag shape of the jacket material is not particularly specified, and conventionally known bag shapes such as a four-side seal bag, a gusset bag, a three-side seal bag, and a pillow bag can be used.

なお、2枚の外被材とは、外被材同士が熱溶着された封止部において2枚の外被材が合わさって熱溶着されてなり、かつ、芯材の両面ともに外被材が位置していることを意味しており、外被材の袋形状を指定するものではない。   The two jacket materials are the two jacket materials that are heat-sealed in the sealing portion where the jacket materials are thermally welded to each other. It means that it is located, and does not specify the bag shape of the jacket material.

凹凸模様とは、封止部の少なくとも一部に熱溶着層の厚み差により形成された模様であり、封止部に位置する2面の外被材表面のうちの一方から見た時の模様を指す。   The concavo-convex pattern is a pattern formed on at least a part of the sealing portion due to a difference in thickness of the heat-welded layer, and is a pattern when viewed from one of the two outer cover material surfaces located in the sealing portion. Point to.

ここで、凹凸模様は、凹凸模様が位置する封止部の2面の外被材表面のうち、両方から見て同じ模様である必要はなく、どちらか一方の外被材表面で凹凸模様が形成されていればよい。   Here, the concavo-convex pattern does not need to be the same pattern as seen from both of the two outer cover material surfaces of the sealing portion where the concavo-convex pattern is located. It only has to be formed.

また、外被材表面とは、外被材最外層の表面部を指す。   Further, the surface of the jacket material refers to the surface portion of the outermost layer of the jacket material.

なお、凹部とは、外被材表面に形成された凹凸模様のうち、外被材表面が熱溶着層側に凹んでいる部分を指す。
また、凹凸模様が封止部の有する両面の外被材表面に形成されていた場合、薄肉部を有する凹部はどちらか一方の凹凸模様に有されているものであればよい。
In addition, a recessed part refers to the part which the outer covering material surface is dented in the heat welding layer side among the uneven | corrugated pattern formed in the outer covering material surface.
Moreover, when the uneven | corrugated pattern is formed in the jacket material surface of both surfaces which a sealing part has, the recessed part which has a thin part should just be included in any one uneven | corrugated pattern.

なお、凸部とは、外被材表面に形成された凹凸模様のうち、外被材表面が熱溶着層と反対側に凸となっている部分全体を指し、凹部に位置する薄肉部から熱溶着層の厚みが増していく厚み勾配のある部分を含む。   The convex portion refers to the entire portion of the uneven pattern formed on the surface of the jacket material where the surface of the jacket material is convex on the side opposite to the heat-welded layer. It includes a portion with a thickness gradient in which the thickness of the weld layer increases.

また、凹凸模様が、凹部上の点を通る前記封止部の断面であれば凸部上をも通るように形成されているとは、凹凸模様を形成している外被材表面上にある点群のうち、凹部に含まれる点群を通る平面で切断された封止部の断面は、同一外被材表面上にある、凸部に含まれる点群のいずれかを通過するという意味であり、凹部に含まれる点群を通る平面で切断された封止部のあらゆる断面には、凹部と凸部との両方の断面が含まれていることを指す。   Further, if the concavo-convex pattern is a cross-section of the sealing portion passing through a point on the concave portion, the concavo-convex pattern is formed so as to also pass over the convex portion. In the point group, the cross section of the sealing portion cut by a plane passing through the point group included in the concave portion means that it passes through any of the point groups included in the convex portion on the same jacket material surface. Yes, it means that every cross section of the sealing portion cut by a plane passing through the point group included in the concave portion includes both cross sections of the concave portion and the convex portion.

第2の真空断熱材の発明は、第1の発明における前記凹凸模様が、前記凸部に取り囲まれた前記凹部を有することを特徴としている。   The invention of the second vacuum heat insulating material is characterized in that the concavo-convex pattern in the first invention has the concave portion surrounded by the convex portion.

上記構成において、凸部に取り囲まれた凹部に位置する薄肉部は、その周囲の凸部に位置する比較的厚みのある熱溶着層によって支持されており、あらゆる方向からの外力に対しても薄肉部に力が集中しにくくなり、熱溶着層の薄肉部における外被材のクラック発生や破断が極めて起きにくくなる。   In the above configuration, the thin portion located in the concave portion surrounded by the convex portion is supported by the relatively thick heat-welded layer located in the peripheral convex portion, and is thin even with respect to external force from all directions. It is difficult for the force to concentrate on the portion, and cracking and breakage of the jacket material in the thin wall portion of the heat-welded layer are extremely difficult to occur.

なお、凸部に取り囲まれた凹部とは、封止部に位置する外被材表面が有する凹凸模様において、凹部と凸部との外被材上に存在する境界線が閉じた線となる凹部を指し、凹部の周囲全体に凸部が存在している状態を意味する。   In addition, the recessed part enclosed by the convex part is a recessed part from which the boundary line which exists on the outer covering material of a recessed part and a convex part becomes a closed line in the uneven | corrugated pattern which the outer jacket material surface located in a sealing part has And means a state in which a convex portion exists around the entire concave portion.

第3の真空断熱材の発明は、第1または第2の発明において、前記凹部上の点を通る前記封止部の前記外被材周縁に垂直な断面において、前記封止部が前記薄肉部を少なくとも2個以上有しているものである。   In the invention of the third vacuum heat insulating material, in the first or second invention, in the cross section perpendicular to the outer periphery of the outer cover material of the sealing portion passing through the point on the concave portion, the sealing portion is the thin-walled portion. Having at least two or more.

真空断熱材内部への大気ガスの侵入方向である外被材周縁に垂直な方向に薄肉部を複数有する場合は、薄肉部が1個のみの場合と比べて、各薄肉部における熱溶着層の厚みを厚くしても同一の効果が得られるため、熱溶着層の薄肉化による外被材強度やシール強度低下が緩和され、薄肉部におけるクラック発生や破断のリスクが低減される。   In the case of having a plurality of thin portions in the direction perpendicular to the outer periphery of the jacket material, which is the direction in which atmospheric gas penetrates into the vacuum heat insulating material, compared to the case where there is only one thin portion, the thermal weld layer in each thin portion Since the same effect can be obtained even if the thickness is increased, the decrease in the strength of the jacket material and the seal strength due to the thinned heat-welding layer is alleviated, and the risk of cracks and breakage in the thin portion is reduced.

さらに、薄肉部では封止部の他箇所に比べて熱溶着層の厚みが薄く、シール強度が低下することにより、例えば、製造工程において芯材物質であるガラス繊維やシリカ粉末等を挟み込んだ状態で外被材が熱溶着された場合、薄肉部において熱溶着不良が発生することが懸念される。   Furthermore, in the thin part, the thickness of the heat-welded layer is thin compared to other parts of the sealing part, and the sealing strength is reduced, for example, a state in which glass fiber or silica powder as a core material is sandwiched in the manufacturing process When the outer cover material is heat-welded, there is a concern that a heat-welding failure may occur in the thin portion.

熱溶着不良が発生した箇所ではガス透過を遮る樹脂が存在しないため、ガス侵入抑制効果が低下する。   Since there is no resin that blocks gas permeation at the location where the thermal welding failure has occurred, the effect of suppressing gas penetration is reduced.

この対策として、真空断熱材内部への大気ガスの侵入方向に少なくとも2個以上の薄肉部を設けることにより、熱溶着不良に起因する真空断熱材内部への気体および水分侵入促進の影響が緩和される。   As a countermeasure against this, by providing at least two or more thin portions in the direction of penetration of atmospheric gas into the vacuum heat insulating material, the influence of gas and moisture penetration promotion into the vacuum heat insulating material due to poor heat welding is mitigated. The

第4の真空断熱材の発明は、第1から3のいずれかの発明における前記凹凸模様が、格子模様であることを特徴としている。   The invention of the fourth vacuum heat insulating material is characterized in that the uneven pattern in any one of the first to third inventions is a lattice pattern.

凹凸模様が格子模様である場合、封止部において薄肉部と比較して熱溶着層の厚い凸部が凹凸模様を有する外被材表面から見て略直線状となり、かつ、格子状に交差し合っていることから、封止部の強度が高く保たれる。   When the concavo-convex pattern is a lattice pattern, the thick convex portion of the heat-welded layer is substantially straight when viewed from the surface of the jacket material having the concavo-convex pattern in the sealing portion, and intersects the lattice shape. Since it matches, the strength of the sealing portion is kept high.

これにより、強度の弱い薄肉部も外力の影響を受けにくく、封止部における外被材のクラック発生や破れが極めて起こりにくい。   As a result, the thin-walled portion having low strength is not easily affected by external force, and cracking or tearing of the jacket material in the sealing portion is extremely unlikely to occur.

また、凹部上の点を通る封止部の断面を見ると、周期的に薄肉部と薄肉部よりも熱溶着層の厚い封止部とが並んだ状態となっており、封止部断面に垂直な方向からの外力に対しての耐屈曲性がより高くなる。   Also, when looking at the cross section of the sealing portion passing through the point on the concave portion, the thin wall portion and the sealing portion having a thicker heat-sealed layer than the thin wall portion are periodically arranged, Bending resistance to external force from a vertical direction becomes higher.

加えて、封止部の高い強度が維持できると、薄肉部の総面積を封止部全体の面積に対して大きくすることが可能となり、真空断熱材内部へのガス侵入抑制効果が高まる。   In addition, if the high strength of the sealing portion can be maintained, the total area of the thin-walled portion can be increased with respect to the entire sealing portion, and the effect of suppressing gas intrusion into the vacuum heat insulating material is enhanced.

なお、格子模様とは、凹凸模様を有する外被材表面から見て略直線状の凸部と周期的に並列された同一形状の凹部よりなる模様のことを指し、凸部の幅や面積および凹部の形状や面積については特に指定するものではない。   The lattice pattern refers to a pattern composed of concave portions of the same shape periodically arranged in parallel with convex portions that are substantially linear when viewed from the surface of the outer jacket material having the concave and convex patterns, and the width and area of the convex portions. The shape and area of the recess are not particularly specified.

第5の真空断熱材の発明は、第1から4のいずれかの発明において、前記凹凸模様が有する前記凹部が前記凸部に取り囲まれてなることを特徴としている。   The invention of a fifth vacuum heat insulating material according to any one of the first to fourth inventions is characterized in that the concave portion of the concave-convex pattern is surrounded by the convex portion.

既に述べた通り、凸部に取り囲まれた凹部に位置する薄肉部は、あらゆる方向からの外力に対しても、外被材のクラック発生や破断が極めて起きにくくなる。   As already described, the thin-walled portion located in the concave portion surrounded by the convex portion is extremely unlikely to cause cracking or breaking of the outer jacket material even with respect to external force from any direction.

凹凸模様が有する全ての凹部において、上記構成を有する場合は、より効果が高くなる。   When all the concave portions of the concavo-convex pattern have the above-described configuration, the effect becomes higher.

また、凹凸模様に周囲を凸部に取り囲まれていない凹部が存在する場合、その凹部が封止部と非封止部との境目や外被材周縁に接している場合が考えられる。   Moreover, when the recessed part which is not surrounded by the convex part in the uneven | corrugated pattern exists, the case where the recessed part is in contact with the boundary of a sealing part and a non-sealing part, or the outer periphery of a jacket material is considered.

外被材の封止部と非封止部との境目において熱溶着層が薄くなっている場合は、その箇所における封止強度が低下し、製造時や取り扱い時に外被材の袋が破袋する恐れがある。   When the heat-welded layer is thin at the boundary between the sealed part and the non-sealed part of the jacket material, the sealing strength at that point decreases, and the bag of the jacket material breaks during manufacturing and handling There is a fear.

上記構成では、薄肉部が位置する凹部が封止部と非封止部との境界に接して存在することがなく、封止強度の低下が起こらないことから、製造時や取り扱い時に破袋が起きにくい。   In the above configuration, the concave portion where the thin portion is located does not exist in contact with the boundary between the sealing portion and the non-sealing portion, and the sealing strength does not decrease. It's hard to get up.

さらに、薄肉部が外被材周縁上に存在しなければ、封止部の最も外被材周縁側に位置する薄肉部であっても真空断熱材端部への衝撃によるクラック発生や破れなどが極めて受けにくくなる。   Furthermore, if the thin wall portion does not exist on the outer periphery of the outer jacket material, even the thin wall portion located on the outermost peripheral surface of the sealing member may cause cracking or tearing due to an impact on the end of the vacuum heat insulating material. It becomes extremely difficult to receive.

なお、外被材の非封止部とは、外被材がもう一方の外被材と熱溶着されていない箇所を指す。   In addition, the non-sealing part of a jacket material refers to the location where the jacket material is not heat-welded with the other jacket material.

第6の真空断熱材の発明は、第1から5のいずれかの発明において、隣接する前記凹部と前記凸部との境界部に位置する前記熱溶着層の厚み変化が略円弧状であることを特徴としている。   In the invention of the sixth vacuum heat insulating material, in any one of the first to fifth inventions, the thickness change of the heat-welded layer located at a boundary portion between the adjacent concave portion and the convex portion is substantially arc-shaped. It is characterized by.

隣接する凹部と凸部との境界部に位置する前記熱溶着層の厚み変化が略円弧状であれば、外被材は、封止部の薄肉部の近傍において、熱溶着層の形状に沿って、円弧状に曲がり、角部を形成することなく、外被材へのクラックの発生が極めて起きにくくなる。   If the change in thickness of the heat-welded layer located at the boundary between the adjacent concave and convex portions is substantially arc-shaped, the jacket material follows the shape of the heat-welded layer in the vicinity of the thin portion of the sealing portion. Thus, it is difficult to generate cracks in the jacket material without bending in an arc and forming corners.

ここで、当然ながら、熱溶着層の薄肉部及びその近傍に限らず、封止部全体において角部を形成していないことが望ましい。   Here, as a matter of course, it is desirable that corner portions are not formed in the whole sealing portion, not limited to the thin-walled portion and the vicinity thereof.

さらに、薄肉部においては、熱溶着層の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、隣接する凹部と凸部との境界部にある薄肉部近傍の熱溶着層の厚みが円弧に沿って徐々に滑らかに増減することに伴い、封止部の強度も連続的に滑らかに増減することから、熱溶着層の薄肉部において局所的に外力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や破断が極めて起きにくくなる。   Furthermore, in the thin part, the thickness of the heat-welded layer is thinner than the peripheral part, and the strength is reduced by the thickness reduction, but the heat-welded layer near the thin part at the boundary part between the adjacent concave part and convex part. As the thickness of the seal gradually increases and decreases along the arc, the strength of the sealing portion also increases and decreases continuously and smoothly, and external forces concentrate locally in the thin portion of the heat-welded layer. It is difficult to generate cracks and breaks in the thin-walled portion of the heat-welded layer and the jacket material in the vicinity thereof.

なお、隣接する凹部と凸部との境界部とは、凹凸模様において隣接する凹部と凸部との境界線上およびその近傍に位置する封止部を指す。   In addition, the boundary part of an adjacent recessed part and a convex part points out the sealing part located on the boundary line of the adjacent recessed part and convex part in an uneven | corrugated pattern, and its vicinity.

なお、角部とは、薄肉部の境界及びその近傍に生じる、熱溶着層の厚み変化に伴い形成される角形状となった部位(曲率が大きい部位)を指す。   In addition, a corner | angular part refers to the site | part (part with a large curvature) used as the square shape formed with the thickness change of the heat welding layer which arises in the boundary of a thin part and its vicinity.

第7の真空断熱材の発明は、第1から6のいずれかの発明において、前記封止部の前記熱溶着層が両面に他の層との境界面を有し、前記凹凸模様が形成されている前記封止部の一方の前記境界面のうねりの波高が、他方の前記境界面のうねりの波高よりも大きいことを特徴とする。   The invention of a seventh vacuum heat insulating material is the invention according to any one of the first to sixth aspects, wherein the heat-welded layer of the sealing portion has a boundary surface with another layer on both sides, and the uneven pattern is formed. The wave height of the undulation of one of the boundary surfaces of the sealing portion is larger than the wave height of the undulation of the other boundary surface.

熱溶着層の厚み勾配が存在する凹凸模様形成部では、熱溶着層の形状に沿って歪曲による応力を受けて、熱溶着層よりも外層側にある外被材(通常、ガスバリア層)が劣化する場合が考えられる。   In the concavo-convex pattern forming part where the thickness gradient of the heat-welded layer exists, the jacket material (usually the gas barrier layer) on the outer layer side of the heat-welded layer is deteriorated due to stress due to distortion along the shape of the heat-welded layer. If you want to.

ここで、凹凸模様が形成されている封止部に位置する境界面のうねりの波高を、他方の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側の外被材の劣化は、もう一方の相対的に波高の大きいうねりを有する境界面側の外被材と比べて僅かとなり、封止部では、劣化が小さい外被材がもう一方の外被材を支持する形で剛性が保たれ、外力を受けた場合におけるクラックの発生および破断が極めて起きにくくなる。   Here, by making the wave height of the waviness of the boundary surface located at the sealing portion where the concavo-convex pattern is formed larger than the wave height of the waviness of the other boundary surface, the boundary surface having a relatively small wave height Deterioration of the outer cover material on the side is slight compared to the outer cover material on the side of the boundary surface, which has a relatively large wave height, and the outer cover material with less deterioration is sealed on the other outer surface. Rigidity is maintained in such a way as to support the workpiece, and generation of cracks and breakage are hardly caused when an external force is applied.

なお、境界面とは、封止部において、熱溶着層と、熱溶着層と隣接する他層との境界面を指す。   In addition, a boundary surface refers to the boundary surface of a heat welding layer and the other layer adjacent to a heat welding layer in a sealing part.

なお、波高とは、同一境界面上の、凹部に位置する薄肉部における熱溶着層の最薄部を含む平面と、隣接する凸部に位置する熱溶着層の最厚部を通る、最薄部を含む平面と平行な面との距離を指す。   Note that the wave height is the thinnest through the plane including the thinnest portion of the heat-welded layer in the thin portion located in the concave portion on the same boundary surface and the thickest portion of the heat-welded layer located in the adjacent convex portion. This refers to the distance between the plane including the part and the plane parallel to it.

第8の真空断熱材の発明は、第1から7のいずれかの発明において、連続する前記封止部に形成された隣り合う前記凹部間に形成された前記凸部に位置する一部の前記熱溶着層の厚みが、2枚以上の前記外被材の非封止部が有する前記熱溶着層の厚みの和よりも厚いものである。   The invention of the eighth vacuum heat insulating material is the invention according to any one of the first to seventh aspects, wherein a part of the convex portion formed between the concave portions adjacent to each other formed in the continuous sealing portion. The thickness of the heat-welded layer is thicker than the sum of the thicknesses of the heat-welded layers included in two or more unsealed portions of the jacket material.

通常、薄肉部を設けない場合、封止部の厚みは、2枚の外被材の非封止部が各々有する前記熱溶着層の厚みの総和に略等しくなる。   Usually, when the thin portion is not provided, the thickness of the sealing portion is substantially equal to the sum of the thicknesses of the heat welding layers respectively included in the non-sealing portions of the two jacket materials.

連続する封止部に複数個の薄肉部を形成する際、各薄肉部の位置にあった熱溶着層を構成していた樹脂は、薄肉部以外の封止部および封止部外へ移動する。   When forming a plurality of thin portions in a continuous sealing portion, the resin constituting the heat-welded layer at the position of each thin portion moves outside the sealing portion and the sealing portion other than the thin portion. .

連続する封止部に形成された凹凸模様において隣り合う凹部同士の間に位置する凸部における熱溶着層の厚みが、2枚の外被材の非封止部が有する熱溶着層の厚みの総和よりも薄いもしくは略等しい場合は、樹脂の移動箇所が設けられていないため、樹脂の流動による負荷により、薄肉部周辺に位置する外被材の熱溶着層に隣接する他層を破り、樹脂が外側へ流出するリスクが高くなる。   The thickness of the heat-welded layer in the convex portion located between the concave portions adjacent to each other in the concave-convex pattern formed in the continuous sealing portion is the thickness of the heat-welded layer included in the non-sealed portion of the two jacket materials If it is thinner than or substantially equal to the sum, there are no resin movement points, so the load caused by the flow of the resin breaks the other layer adjacent to the heat-welded layer of the outer cover material located around the thin-walled part. The risk of spilling out increases.

連続する封止部に設けた凹凸模様において、凹部間に形成された凸部に位置する熱溶着層の少なくとも一部に、2枚の外被材の非封止部が有する熱溶着層の厚みの総和よりも厚くなるよう予め設定しておくことにより、樹脂の逃げ部が設けられているため、薄肉部同士の間に位置する封止部の外被材が受ける負荷が緩和され、外被材の破れを極めて起きにくくする。   In the concavo-convex pattern provided in the continuous sealing portion, the thickness of the heat-sealing layer that the non-sealing portion of the two jacket materials has on at least a part of the heat-welding layer located on the convex portion formed between the concave portions Since the resin escape portion is provided in advance by setting the thickness to be thicker than the sum of the thickness, the load received by the outer cover material of the sealing portion located between the thin portions is reduced, and the outer cover is reduced. Makes material tearing extremely difficult.

また、連続する封止部の凹凸模様の有する一方の外被材表面において、凹凸模様を有する箇所と凹凸模様を有さない箇所との境界部側に位置する凹部との間にも、2枚の外被材の非封止部が有する熱溶着層の厚みの総和よりも厚い封止部を設けておくことがより望ましい。   In addition, on one surface of the outer cover material having the concavo-convex pattern of the continuous sealing portion, two sheets are also provided between the concave portion located on the boundary portion side between the portion having the concavo-convex pattern and the portion having no concavo-convex pattern. It is more desirable to provide a sealing portion that is thicker than the total thickness of the heat-welded layers of the non-sealing portion of the outer cover material.

以下、本発明の真空断熱材の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略するものとする。なお、この実施の形態によって、この発明が限定されるものではない。   Hereinafter, embodiments of the vacuum heat insulating material of the present invention will be described with reference to the drawings, but the same components as those described above are denoted by the same reference numerals, and detailed description thereof will be omitted. And In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図、図2〜図6は、同実施の形態の真空断熱材の平面図の各例を示す。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention, and FIGS. 2 to 6 show examples of plan views of the vacuum heat insulating material of the same embodiment.

図1において、真空断熱材1は、芯材2と芯材2内に配置された吸着剤3と、同一寸法に裁断された長方形の2枚の外被材4からなり、2枚の外被材4の間に芯材2と吸着剤3とが減圧密封され、芯材2を覆う2枚の外被材4の周縁近傍の外周部同士が熱溶着されている。   In FIG. 1, a vacuum heat insulating material 1 includes a core material 2, an adsorbent 3 disposed in the core material 2, and two rectangular outer cover materials 4 cut to the same size. The core material 2 and the adsorbent 3 are sealed under reduced pressure between the materials 4, and the outer peripheral portions in the vicinity of the peripheral edges of the two jacket materials 4 covering the core material 2 are heat-welded.

2枚の外被材4は、外層側から、表面保護層5と、ガスバリア層6と、熱溶着層7とが積層されてなる。また、外被材4の周囲辺(外周部)には、外被材の有する熱溶着層同士を溶融し貼り合わせた封止部8があり、封止部8には熱溶着層7の厚みの薄厚に差が設けられており、その厚みの差によって、封止部8に位置する一方の外被材表面に凹凸模様9が形成されている。   The two jacket materials 4 are formed by laminating a surface protective layer 5, a gas barrier layer 6, and a heat welding layer 7 from the outer layer side. Further, on the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers of the jacket material are melted and bonded together, and the sealing portion 8 has a thickness of the heat-welding layer 7. A difference is provided in the thickness, and the uneven pattern 9 is formed on the surface of one outer jacket material located in the sealing portion 8 due to the difference in thickness.

凹凸模様9が有する凹部10に位置する熱溶着層7の厚みは、凹部10の周辺部の熱溶着層7よりも薄くなる薄肉部11を形成している。   The thickness of the heat-welding layer 7 located in the concave portion 10 of the uneven pattern 9 forms a thin portion 11 that is thinner than the heat-welding layer 7 in the peripheral portion of the concave portion 10.

ここで、封止部8にある凹凸模様9の形状について説明する。   Here, the shape of the uneven pattern 9 in the sealing portion 8 will be described.

外被材4の表面から見て、凹部10上の点を通る封止部8の断面は凸部12上も通るように構成されている。   When viewed from the surface of the jacket material 4, the cross section of the sealing portion 8 that passes through the point on the concave portion 10 is also configured to pass on the convex portion 12.

また、隣接する凹部10と凸部12との境界部に位置する熱溶着層7の厚み変化が略円弧状である。   Moreover, the thickness change of the heat welding layer 7 located in the boundary part of the adjacent recessed part 10 and the convex part 12 is substantially circular arc shape.

また、封止部8の熱溶着層7は両面に隣接する他の層(ガスバリア層6)との境界面を有し、凹凸模様が形成されている封止部8の一方の境界面のうねりの波高が、他方の境界面のうねりの波高よりも大きくなるよう設定されている。   Moreover, the heat welding layer 7 of the sealing part 8 has a boundary surface with the other layer (gas barrier layer 6) adjacent to both surfaces, and the undulation of one boundary surface of the sealing part 8 on which the concavo-convex pattern is formed. Is set to be larger than the wave height of the undulation of the other boundary surface.

以上のように構成された真空断熱材1について、以下その動作、作用を説明する。   About the vacuum heat insulating material 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、芯材2は、真空断熱材1の骨材として微細空間を形成する役割を果たし、真空排気後の真空断熱材1の断熱部を形成するものである。   First, the core material 2 plays a role of forming a fine space as an aggregate of the vacuum heat insulating material 1 and forms a heat insulating portion of the vacuum heat insulating material 1 after evacuation.

吸着剤3は、真空包装後に芯材2の微細空隙から真空断熱材1中へ放出された残留ガス成分や、真空断熱材1内へ侵入する水分や気体を吸着除去する役割を果たすものである。   The adsorbent 3 serves to adsorb and remove residual gas components released into the vacuum heat insulating material 1 from the fine gaps of the core material 2 after vacuum packaging, and moisture and gas that enter the vacuum heat insulating material 1. .

外被材4は、熱可塑性樹脂およびガスバリア性を有する金属箔や樹脂フィルム等をラミネート加工したものであり、外部から真空断熱材1内部への大気ガス侵入を抑制する役割を果たすものである。   The jacket material 4 is obtained by laminating a thermoplastic resin, a metal foil having a gas barrier property, a resin film, and the like, and plays a role of suppressing atmospheric gas intrusion into the vacuum heat insulating material 1 from the outside.

表面保護層5は、外被材が有する層のうち、ガスバリア層6よりも外層側に位置する、外力から外被材4、特にガスバリア層6の傷つきや破れを防ぐ役割を果たすものである。   The surface protective layer 5 serves to prevent the outer cover material 4, particularly the gas barrier layer 6 from being damaged or torn from an external force, located on the outer layer side of the gas barrier layer 6 among the layers of the outer cover material.

表面保護層5としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用でき、1種類でも2種類以上重ねて使用してもよい。   As the surface protective layer 5, a conventionally known material such as a nylon film, a polyethylene terephthalate film, or a polypropylene film can be used, and one type or two or more types may be used.

ガスバリア層6は、高いバリア性を有する1種類もしくは2種以上のフィルムから構成される層であり、外被材4に優れたガスバリア性を付与するものである。   The gas barrier layer 6 is a layer composed of one or more kinds of films having high barrier properties, and imparts excellent gas barrier properties to the jacket material 4.

ガスバリア層6としては、アルミニウム箔、銅箔、ステンレス箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルムへアルミニウムや銅等の金属原子もしくはアルミナやシリカ等の金属酸化物を蒸着したフィルムや、金属原子や金属酸化物を蒸着した面にコーティング処理を施したフィルム等が使用できる。   As the gas barrier layer 6, metal foil such as aluminum foil, copper foil, stainless steel foil, polyethylene terephthalate film, ethylene-vinyl alcohol copolymer film, metal atoms such as aluminum or copper, or metal oxide such as alumina or silica are used. A vapor-deposited film, a film in which a metal atom or metal oxide is vapor-deposited, or the like can be used.

熱溶着層7は、外被材4同士を溶着し、真空断熱材1内部の真空を保持する役割に加えて、芯材2や吸着剤3による真空断熱材1内部からの突刺し等からガスバリア層6を保護する役割を果たすものである。   The thermal welding layer 7 welds the jacket materials 4 to each other, and in addition to the role of maintaining the vacuum inside the vacuum heat insulating material 1, the gas barrier from the piercing from the inside of the vacuum heat insulating material 1 by the core material 2 and the adsorbent 3, etc. It serves to protect the layer 6.

封止部8は、外被材4の熱溶着層7同士を溶着することにより構成され、真空断熱材1内部と外部とを遮断する役割を果たしている。   The sealing portion 8 is configured by welding the heat welding layers 7 of the jacket material 4, and plays a role of blocking the inside and the outside of the vacuum heat insulating material 1.

凹部10は、凹凸模様9において、外被材4表面が熱溶着層7側に凹んでいる部分であり、封止部8の熱溶着層7の厚みを薄くして薄肉部11を形成する役割を果たすものである。   The concave portion 10 is a portion of the concave / convex pattern 9 where the surface of the outer covering material 4 is recessed toward the heat welding layer 7, and the thickness of the heat welding layer 7 of the sealing portion 8 is reduced to form the thin portion 11. To fulfill.

薄肉部11は、外被材4周縁の端面から封止部8を通って真空断熱材1内部へ侵入する大気ガスの透過速度を抑制し、真空断熱材1の真空度を維持する役割を果たしている。   The thin-walled portion 11 plays a role of maintaining the degree of vacuum of the vacuum heat insulating material 1 by suppressing the permeation rate of the atmospheric gas that enters the vacuum heat insulating material 1 from the end surface of the outer periphery of the jacket material 4 through the sealing portion 8. Yes.

凸部12は、凹凸模様9において、外被材4が真空断熱材1内部と反対側に凸となっている部分のことであり、薄肉部11が位置する凹部9を外力から保護し、かつ、薄肉部11から移動してきた熱溶着層7を構成する樹脂の逃げ部となる役割を果たしている。   The convex portion 12 is a portion of the concavo-convex pattern 9 where the covering material 4 is convex on the side opposite to the inside of the vacuum heat insulating material 1, and protects the concave portion 9 where the thin portion 11 is located from external force, and In addition, it plays a role of a resin escape portion constituting the heat-welded layer 7 that has moved from the thin-walled portion 11.

以上のように、本実施の形態においては、封止部8における一方の外被材4表面に形成された凹凸模様9のうちの凹部10位置に薄肉部11が設けられており、薄肉部11において外被材4周縁の端面から侵入する気体および水分の透過面積が縮小され、透過抵抗が増大することから、経時的に真空断熱材1内部に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。   As described above, in the present embodiment, the thin portion 11 is provided at the position of the concave portion 10 in the concave-convex pattern 9 formed on the surface of the one jacket material 4 in the sealing portion 8. Since the permeation area of the gas and moisture entering from the end surface of the outer periphery of the jacket material 4 is reduced and the permeation resistance is increased, the amount of gas and moisture that permeate into the vacuum heat insulating material 1 over time is suppressed over a long period. Excellent heat insulation performance can be demonstrated.

また、本実施の形態の真空断熱材1は、封止部8に位置する一方の外被材4表面に形成された凹凸模様9が、凹部10に含まれる外被材4表面上の点を通る封止部8断面は凸部11上の点も通るように構成されており、薄肉部11を通る平面で切断したどの封止部8断面を見ても薄肉部11は、熱溶着層7の厚みが薄肉部11に比べて厚い部分と隣接していることから、薄肉部11は厚肉の熱溶着層7によって支持されることで薄肉部11における封止部8の局所的な強度低下を補うことができ、封止部8の外被材におけるクラック発生や破断が極めて起きにくくなる。   Further, in the vacuum heat insulating material 1 according to the present embodiment, the concavo-convex pattern 9 formed on the surface of one outer jacket material 4 located in the sealing portion 8 is a point on the outer jacket material 4 surface included in the concave portion 10. The cross section of the sealing portion 8 that passes through is configured to pass through the points on the convex portion 11, and the thin portion 11 can be seen from the cross section of the sealing portion 8 cut by a plane passing through the thin portion 11. Is adjacent to a thicker portion than the thin-walled portion 11, and the thin-walled portion 11 is supported by the thick heat-welded layer 7, thereby locally reducing the strength of the sealing portion 8 in the thin-walled portion 11. Therefore, cracks and breaks in the jacket material of the sealing portion 8 are extremely difficult to occur.

また、本実施の形態の真空断熱材1は、隣接する凹部9と凸部12と境界部に位置する熱溶着層7の厚み変化が略円弧状となっており、外被材は、薄肉部11の近傍の熱溶着層7の厚み勾配が生じる箇所において、熱溶着層7の形状に沿って、円弧状に曲がり、角部を形成することなく、外被材4の角部における集中的な劣化が防止され、外被材へのクラック発生が極めて起きにくくなる。   Further, in the vacuum heat insulating material 1 according to the present embodiment, the thickness change of the heat welding layer 7 located at the boundary portion between the adjacent concave portion 9 and the convex portion 12 is substantially arcuate, and the jacket material is a thin portion. 11 where the thickness gradient of the heat-welded layer 7 is generated, bends in an arc shape along the shape of the heat-welded layer 7, and does not form corners, but concentrates on the corners of the jacket material 4. Deterioration is prevented, and cracks in the jacket material are extremely difficult to occur.

さらに、薄肉部11においては、熱溶着層7の厚みが周辺部よりも薄くがなり、その厚み減少分だけ封止部8の強度が低下するが、隣接する凹部10と凸部12との境界部にある薄肉部11近傍の熱溶着層7の厚みが円弧に沿って徐々に滑らかに増減することに伴い、封止部8の強度も連続的に滑らかに増減することから、境界部において局所的に封止部8の強度低下が起こらず、境界部に外力が集中しにくいため、薄肉部11およびその近傍の外被材のクラック発生や破断が極めて起きにくくなる。   Further, in the thin portion 11, the thickness of the heat welding layer 7 becomes thinner than the peripheral portion, and the strength of the sealing portion 8 is reduced by the thickness reduction, but the boundary between the adjacent concave portion 10 and the convex portion 12. As the thickness of the heat-welded layer 7 in the vicinity of the thin-walled portion 11 gradually increases and decreases along the arc, the strength of the sealing portion 8 also increases and decreases continuously and smoothly. In particular, since the strength of the sealing portion 8 does not decrease and the external force hardly concentrates on the boundary portion, the thin portion 11 and the covering material in the vicinity thereof are hardly cracked or broken.

また、本実施の形態の真空断熱材1は、封止部8の熱溶着層7は両面に他の層(ガスバリア層6)との境界面を有し、凹凸模様9が形成されている封止部8の一方の前記境界面のうねりの波高が、凹凸模様9の他方の境界面のうねりの波高よりも大きい。   Further, in the vacuum heat insulating material 1 of the present embodiment, the heat-welded layer 7 of the sealing portion 8 has a boundary surface with another layer (gas barrier layer 6) on both surfaces, and the uneven pattern 9 is formed. The wave height of the undulation of the one boundary surface of the stop portion 8 is larger than the wave height of the undulation of the other boundary surface of the uneven pattern 9.

熱溶着層7の厚み勾配が存在する箇所では、熱溶着層7よりも外層側にある外被材(ガスバリア層6および表面保護層5)が、熱溶着層7の形状に沿って歪曲による応力を受け、劣化が引き起こされる。   In the portion where the thickness gradient of the heat welding layer 7 exists, the jacket material (the gas barrier layer 6 and the surface protective layer 5) on the outer layer side of the heat welding layer 7 is subjected to stress caused by distortion along the shape of the heat welding layer 7. Will cause deterioration.

よって、凹凸模様9が形成されている封止部8に位置する境界面(図1では上側)のうねりの波高を、他方(図1では下側)の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側(図1では下側)の外被材4の劣化は、もう一方の相対的に波高の大きいうねりを有する境界面側(図1では上側)の外被材4と比べて僅かとなり、外被材4の封止部8では、劣化が小さい(図1では下側)の外被材4がもう一方の(図1では上側)外被材4を支持する形で剛性が保たれ、外力を受けた場合におけるクラックの発生および破断が極めて起きにくくなる。   Therefore, the wave height of the undulation of the boundary surface (upper side in FIG. 1) located at the sealing portion 8 where the uneven pattern 9 is formed is made larger than the wave height of the undulation of the other boundary surface (lower side in FIG. 1). As a result, the deterioration of the outer cover material 4 on the boundary surface side (lower side in FIG. 1) having undulations with a relatively small wave height is the other boundary surface side (in FIG. The outer cover material 4 is slightly smaller than the outer cover material 4, and the outer cover material 4 is less deteriorated (lower in FIG. 1) in the sealing portion 8 of the outer cover material 4 (upper in FIG. 1). Rigidity is maintained in a form that supports the workpiece 4, and cracks and breakage are hardly caused when an external force is applied.

また、本実施の形態の真空断熱材1は、封止部8が凹部10を少なくとも2個以上有していることが好ましい。   Moreover, it is preferable that the vacuum heat insulating material 1 of this Embodiment has the sealing part 8 at least 2 or more of the recessed parts 10. FIG.

薄肉部11においては、封止部8の他箇所に比べて熱溶着層7の厚みが薄く、シール強度が低下することにより、例えば、製造工程において芯材2物質であるガラス繊維やシリカ粉末等を挟み込んだ状態で外被材4が熱溶着された場合、薄肉部11において熱溶着不良が発生することが懸念される。   In the thin portion 11, the thickness of the heat-welded layer 7 is thinner than that of the other portion of the sealing portion 8, and the sealing strength is reduced. For example, glass fiber or silica powder that is the core material 2 in the manufacturing process When the outer cover material 4 is heat-welded in a state where the material is sandwiched, there is a concern that a poor heat-welding may occur in the thin portion 11.

熱溶着不良が発生した箇所では樹脂が存在しないため、ガス侵入抑制効果が低下する。   Since there is no resin at the location where the thermal welding failure occurs, the effect of suppressing gas intrusion decreases.

この対策として、少なくとも2個以上の薄肉部11を設けることにより、熱溶着不良に起因する真空断熱材1内部への気体および水分侵入促進の影響が緩和される。   As a countermeasure, by providing at least two or more thin portions 11, the influence of gas and moisture penetration into the vacuum heat insulating material 1 due to poor heat welding is mitigated.

特に、芯材2としてガラス繊維を用いた場合は、挟雑物として熱溶着の際に挟み込まれた芯材2物質が加熱変形し、薄肉部11にスルーホールを形成することが多々あることから、本発明の(本実施の形態の)効果がより顕著となる。   In particular, when glass fiber is used as the core material 2, the core material 2 material sandwiched at the time of heat welding as an interstitial material is often heat-deformed and forms a through hole in the thin portion 11. The effect (of the present embodiment) of the present invention becomes more remarkable.

また、薄肉部11を複数個有する場合は、薄肉部11が1個のみの場合と比べて、薄肉部11における熱溶着層7の厚みを増加させても同一の効果が得られるため、薄肉部11における外被材4強度やシール強度低下が緩和され、薄肉部11におけるクラック発生や封止部8の破断のリスクが低減される。   Further, in the case where a plurality of thin portions 11 are provided, the same effect can be obtained even if the thickness of the heat welding layer 7 in the thin portion 11 is increased as compared with the case where only one thin portion 11 is provided. 11 is reduced, and the risk of occurrence of cracks in the thin portion 11 and breakage of the sealing portion 8 is reduced.

なお、本実施の形態において、凹凸模様9が封止部8に位置する2面の外被材表面のうち一方に封止部8全体に渡って形成されていてもよいが、封止部8の一部分であってもよい。   In the present embodiment, the concavo-convex pattern 9 may be formed over the entire sealing portion 8 on one of the two outer cover material surfaces located on the sealing portion 8. It may be a part of

なお、封止部8が有する各薄肉部9における熱溶着層7の厚みは、同一でなくても良い。   In addition, the thickness of the heat welding layer 7 in each thin part 9 which the sealing part 8 has does not need to be the same.

なお、凹凸模様9において隣接する凹部10と凸部12との境界部に位置する熱溶着層の厚み変化に伴い形成された、熱溶着層7と他層との境界面の円弧の曲率半径は同一である必要はなく、ガスバリア層6として使用している金属箔やフィルムが、劣化しない程度の曲率半径を有しておればよい。   In addition, the curvature radius of the circular arc of the boundary surface between the heat-welding layer 7 and the other layer formed with the thickness change of the heat-welding layer located at the boundary portion between the concave portion 10 and the convex portion 12 adjacent in the concavo-convex pattern 9 is The metal foils and films used as the gas barrier layer 6 need only have a radius of curvature that does not deteriorate.

なお、凹凸模様9の構成、すなわち凹部10および凸部12の面積や形状は特に指定するものではなく、凹部の面積や形状は全て等しくある必要はない。   Note that the configuration of the uneven pattern 9, that is, the areas and shapes of the recesses 10 and the protrusions 12 are not particularly specified, and the areas and shapes of the recesses need not all be equal.

以下、本発明における凹凸模様9の詳細形状とその効果について、実施例を用いて説明する。   Hereafter, the detailed shape of the uneven | corrugated pattern 9 in this invention and its effect are demonstrated using an Example.

(実施例1)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
Example 1
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.

外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8に位置する溶融された2面の外被材表面のうちの一方(図7では上側)に、凹凸模様9が形成されている。   On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are fused and bonded together, and the two melted surfaces located in the sealing portion 8 A concave-convex pattern 9 is formed on one of the outer jacket material surfaces (upper side in FIG. 7).

凹凸模様9は、凹凸模様9位置にある熱溶着層7の厚み差によって形成されており、凹部10に位置する熱溶着層7の厚みはその周囲に位置する熱溶着層7よりも薄肉となっている。   The concavo-convex pattern 9 is formed by the thickness difference of the heat-welded layer 7 at the position of the concavo-convex pattern 9, and the thickness of the heat-welded layer 7 located in the concave portion 10 is thinner than the heat-welded layer 7 located in the periphery thereof. ing.

真空断熱材1の封止部8の幅を20mmとし、凹凸模様9は封止部8の外周側および内周側から1mmずつ内側の部分全体に渡って形成されているとする。   It is assumed that the width of the sealing portion 8 of the vacuum heat insulating material 1 is 20 mm, and the uneven pattern 9 is formed over the entire inner portion by 1 mm from the outer peripheral side and the inner peripheral side of the sealing portion 8.

また、凹凸模様9は図2に示すような格子模様であり、凹部10は全て凸部12に取り囲まれるよう形成されている。   The concave / convex pattern 9 is a lattice pattern as shown in FIG. 2, and the concave portions 10 are all surrounded by the convex portions 12.

さらに、外被材4表面における凹部10の形状は各対角線が6mmの正方形の全体およびその一部であり、凸部の幅は1.5mmであるとする。   Furthermore, it is assumed that the shape of the concave portion 10 on the surface of the jacket material 4 is an entire square having a diagonal of 6 mm and a part thereof, and the width of the convex portion is 1.5 mm.

(図7では上側のガスバリア層6と熱溶着層7との)境界面が形成する凹部10と凸部12との境界部に位置する円弧の曲率半径は1.5mmであり、(図7では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.2mmであった。また、もう一方の(図7では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図7参照)。   The radius of curvature of the arc located at the boundary portion between the concave portion 10 and the convex portion 12 formed by the boundary surface (in FIG. 7, between the upper gas barrier layer 6 and the thermal welding layer 7) is 1.5 mm (in FIG. 7, Each wave height of the undulation at the boundary surface between the upper gas barrier layer 6 and the thermal welding layer 7 was 0.2 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 7, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 7).

この際、薄肉部11の厚みを15μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、3.4×10-15mol/m2/s/Paであった。 At this time, when the thickness of the thin wall portion 11 is 15 μm, the amount of atmospheric gas entering through the sealing portion 8 from the end surface of the outer periphery of the outer cover material 4 of the vacuum heat insulating material 1 is 3.4 × 10 −15 mol / m 2 / s / Pa.

また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。   Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.

実施例1では、芯材2がガラス繊維からなる。   In Example 1, the core material 2 consists of glass fiber.

芯材2がガラス繊維である場合、ガラス繊維による真空断熱材1内部から外被材4への貫通ピンホールが発生しやすい。   When the core material 2 is a glass fiber, a penetrating pinhole from the inside of the vacuum heat insulating material 1 to the jacket material 4 due to the glass fiber is likely to occur.

通常、このピンホール発生を防止策として、真空断熱材1内部に面する外被材4の最内層にある熱溶着層7の厚みを厚くすることが有効とされているが、熱溶着層7の厚みを厚くすることにより、外被材4周縁の端面から封止部8を通って侵入するガス侵入経路の通路断面積が拡大するという懸念があった。   Usually, as a measure for preventing the occurrence of pinholes, it is effective to increase the thickness of the heat welding layer 7 in the innermost layer of the jacket material 4 facing the inside of the vacuum heat insulating material 1. By increasing the thickness, there is a concern that the passage cross-sectional area of the gas intrusion path that enters through the sealing portion 8 from the end face of the outer periphery of the outer cover material 4 increases.

実施の形態1(の実施例1)の真空断熱材1においては、薄肉部9においてガス侵入量を制御できるために、熱溶着層7の厚みを厚くしても、外被材4周縁の端面から封止部8を通って内部に侵入する気体および水分侵入量の増加が抑制される。   In the vacuum heat insulating material 1 of the first embodiment (Example 1), since the gas penetration amount can be controlled in the thin portion 9, the end surface of the outer periphery of the outer cover material 4 even if the thickness of the heat welding layer 7 is increased. Increase in the amount of gas and moisture entering from the inside through the sealing portion 8 to the inside is suppressed.

また、実施例1では、外被材4にガスバリア性を付与するためのガスバリア層として、アルミニウム箔(金属箔)を採用したが、金属箔は、樹脂フィルムに金属原子や金属酸化物分子を蒸着したガスバリアフィルムと比べてガスバリア性は優れるものの伸縮性や追従性に劣るため、クラックやピンホールが発生しやすくなり、本発明(の実施の形態1)による効果がより顕著に現れる。   Moreover, in Example 1, although aluminum foil (metal foil) was employ | adopted as a gas barrier layer for providing gas-barrier property to the jacket material 4, a metal foil vapor-deposits a metal atom and a metal oxide molecule on a resin film. Although the gas barrier property is excellent as compared with the gas barrier film, the stretchability and followability are inferior, so that cracks and pinholes are likely to occur, and the effect of the present invention (Embodiment 1) appears more remarkably.

(実施例2)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
(Example 2)
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.

外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8に位置する溶融された2面の外被材表面のうちの一方(図7では上側)に、凹凸模様9が形成されている。   On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are fused and bonded together, and the two melted surfaces located in the sealing portion 8 A concave-convex pattern 9 is formed on one of the outer jacket material surfaces (upper side in FIG. 7).

凹凸模様9は、凹凸模様9位置にある熱溶着層7の厚み差によって形成されており、凹部10に位置する熱溶着層7の厚みはその周囲に位置する熱溶着層7よりも薄肉となっている。   The concavo-convex pattern 9 is formed by the thickness difference of the heat-welded layer 7 at the position of the concavo-convex pattern 9, and the thickness of the heat-welded layer 7 located in the concave portion 10 is thinner than the heat-welded layer 7 located in the periphery thereof. ing.

真空断熱材1の封止部8の幅を20mmとし、凹凸模様9は封止部8の外周側および内周側から1mmずつ内側の部分全体に渡って形成されているとする。   It is assumed that the width of the sealing portion 8 of the vacuum heat insulating material 1 is 20 mm, and the uneven pattern 9 is formed over the entire inner portion by 1 mm from the outer peripheral side and the inner peripheral side of the sealing portion 8.

また、凹凸模様9は図2に示すような格子模様であり、凹部10は全て凸部12に取り囲まれるよう形成されている。   The concave / convex pattern 9 is a lattice pattern as shown in FIG. 2, and the concave portions 10 are all surrounded by the convex portions 12.

さらに、外被材4表面における凹部10の形状は各対角線が6mmの正方形の全体およびその一部であり、凸部の幅は1.5mmであるとする。   Furthermore, it is assumed that the shape of the concave portion 10 on the surface of the jacket material 4 is an entire square having a diagonal of 6 mm and a part thereof, and the width of the convex portion is 1.5 mm.

(図7では上側のガスバリア層6と熱溶着層7との)境界面が形成する凹部10と凸部12との境界部に位置する円弧の曲率半径は1.1mmであり、(図7では上側のガスバリア層6と熱溶着層7との)境界面のうねりの各波高は0.18mmであった。また、もう一方の(図7では下側のガスバリア層6と熱溶着層7との)境界面が有する凹部の最大波高は0.05mmであった(図7参照)。   The radius of curvature of the arc located at the boundary portion between the concave portion 10 and the convex portion 12 formed by the boundary surface (in FIG. 7, the upper gas barrier layer 6 and the thermal welding layer 7) is 1.1 mm (in FIG. 7, Each wave height of the undulation at the boundary surface between the upper gas barrier layer 6 and the thermal welding layer 7 was 0.18 mm. Further, the maximum wave height of the concave portion of the other interface (in FIG. 7, the lower gas barrier layer 6 and the heat-welded layer 7) was 0.05 mm (see FIG. 7).

この際、薄肉部11の厚みを30μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、4.9×10-15mol/m2/s/Paであった。 At this time, when the thickness of the thin portion 11 is 30 μm, the amount of atmospheric gas entering through the sealing portion 8 from the end surface of the outer periphery 4 of the vacuum heat insulating material 1 is 4.9 × 10 −15 mol / m 2 / s / Pa.

また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。   Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.

(実施例3)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
(Example 3)
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.

外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8に位置する溶融された2面の外被材表面のうちの一方に、凹凸模様9が形成されている。   On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are fused and bonded together, and the two melted surfaces located in the sealing portion 8 An uneven pattern 9 is formed on one of the outer cover material surfaces.

凹凸模様9は、凹凸模様9が位置している熱溶着層7の厚み差によって形成されており、凹部10に位置する熱溶着層7の厚みはその周囲に位置する熱溶着層7よりも薄肉となっている。   The concavo-convex pattern 9 is formed by a difference in thickness of the heat-welded layer 7 where the concavo-convex pattern 9 is located, and the thickness of the heat-welded layer 7 located in the recess 10 is thinner than the heat-welded layer 7 located in the periphery thereof. It has become.

真空断熱材1の封止部8の幅を20mmとし、凹凸模様9は封止部8の外周側および内周側から1mmずつ内側の部分全体に渡って形成されているとする。   It is assumed that the width of the sealing portion 8 of the vacuum heat insulating material 1 is 20 mm, and the uneven pattern 9 is formed over the entire inner portion by 1 mm from the outer peripheral side and the inner peripheral side of the sealing portion 8.

また、凹凸模様9は図3に示すような模様であり、凹部10は全て凸部12に取り囲まれるよう形成されている。   The concave / convex pattern 9 is a pattern as shown in FIG. 3, and the concave portions 10 are all surrounded by the convex portions 12.

さらに、外被材4表面における凹部10の形状は全て一辺6.75mmの直角二等辺三角形よりなり、凸部12の幅は1.5mmであるとする。   Furthermore, it is assumed that the shape of the concave portion 10 on the surface of the jacket material 4 is a right isosceles triangle having a side of 6.75 mm, and the width of the convex portion 12 is 1.5 mm.

熱溶着層7とガスバリア層6との境界面のうち、うねりの波高が大きい境界面が形成する凹部10と凸部12との境界部に位置する円弧の曲率半径は1.5mmであり、この境界面のうねりの各波高は0.2mmであった。また、もう一方の境界面が有する最大波高は0.05mmであった。   Of the boundary surface between the heat-welded layer 7 and the gas barrier layer 6, the radius of curvature of the arc located at the boundary portion between the concave portion 10 and the convex portion 12 formed by the boundary surface having a large wave height is 1.5 mm. Each wave height of the waviness of the boundary surface was 0.2 mm. The maximum wave height of the other boundary surface was 0.05 mm.

この際、薄肉部11の厚みを15μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、2.3×10-15mol/m2/s/Paであった。 At this time, when the thickness of the thin wall portion 11 is 15 μm, the amount of atmospheric gas entering through the sealing portion 8 from the end surface of the outer periphery of the outer cover material 4 of the vacuum heat insulating material 1 is 2.3 × 10 −15 mol / m 2 / s / Pa.

また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。   Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.

(実施例4)
実施の形態1において、熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
Example 4
In the first embodiment, a linear low density polyethylene film having a thickness of 50 μm is used as the heat welding layer 7, an aluminum foil having a thickness of 6 μm is used as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm are used as the surface protective layer 5. A vacuum heat insulating material 1 composed of a laminated jacket material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.

外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8に位置する溶融された2面の外被材表面のうちの一方に、凹凸模様9が形成されている。   On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are fused and bonded together, and the two melted surfaces located in the sealing portion 8 An uneven pattern 9 is formed on one of the outer cover material surfaces.

凹凸模様9は、凹凸模様9が位置している熱溶着層7の厚み差によって形成されており、凹部10に位置する熱溶着層7の厚みはその周囲に位置する熱溶着層7よりも薄肉となっている。   The concavo-convex pattern 9 is formed by a difference in thickness of the heat-welded layer 7 where the concavo-convex pattern 9 is located, and the thickness of the heat-welded layer 7 located in the recess 10 is thinner than the heat-welded layer 7 located in the periphery thereof. It has become.

真空断熱材1の封止部8の幅を20mmとし、凹凸模様9は封止部8の外周側および内周側から1mmずつ内側の部分全体に渡って形成されているとする。   It is assumed that the width of the sealing portion 8 of the vacuum heat insulating material 1 is 20 mm, and the uneven pattern 9 is formed over the entire inner portion by 1 mm from the outer peripheral side and the inner peripheral side of the sealing portion 8.

また、凹凸模様9は図3に示すような模様であり、凹部10は全て凸部12に取り囲まれるよう形成されている。   The concave / convex pattern 9 is a pattern as shown in FIG. 3, and the concave portions 10 are all surrounded by the convex portions 12.

さらに、外被材4表面における凹部10の形状は全て一辺6.75mmの直角二等辺三角形よりなり、凸部12の幅は1.5mmであるとする。   Furthermore, it is assumed that the shape of the concave portion 10 on the surface of the jacket material 4 is a right isosceles triangle having a side of 6.75 mm, and the width of the convex portion 12 is 1.5 mm.

熱溶着層7とガスバリア層6との境界面のうち、うねりの波高が大きい境界面が形成する凹部10と凸部12との境界部に位置する円弧の曲率半径は1.1mmであり、この境界面のうねりの各波高は0.18mmであった。また、もう一方の境界面が有する最大波高は0.05mmであった。   Of the boundary surface between the heat-welded layer 7 and the gas barrier layer 6, the radius of curvature of the arc located at the boundary portion between the concave portion 10 and the convex portion 12 formed by the boundary surface where the wave height of the undulation is large is 1.1 mm. Each wave height of the waviness of the boundary surface was 0.18 mm. The maximum wave height of the other boundary surface was 0.05 mm.

この際、薄肉部11の厚みを15μmとしたとき、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、3.6×10-15mol/m2/s/Paであった。 At this time, when the thickness of the thin portion 11 is 15 μm, the amount of atmospheric gas entering through the sealing portion 8 from the end surface of the outer periphery 4 of the vacuum heat insulating material 1 is 3.6 × 10 −15 mol / m 2 / s / Pa.

また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。   Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.

(比較例1)
熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材を作製した。
(Comparative Example 1)
An outer sheath formed by laminating a linear low-density polyethylene film having a thickness of 50 μm as the heat welding layer 7, an aluminum foil having a thickness of 6 μm as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm as the surface protective layer 5. A vacuum heat insulating material composed of a material 4, a core material 2 made of glass fiber, and an adsorbent 3 formed by enclosing calcium oxide in a ventilation wrapping material was produced.

封止部8における熱溶着層7の厚みが略均一の100μmの場合、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量は、2.0×10-14mol/m2/s/Paであった。 When the thickness of the heat-welding layer 7 in the sealing part 8 is substantially uniform 100 μm, the amount of atmospheric gas entering through the sealing part 8 from the end surface of the outer periphery 4 of the vacuum heat insulating material 1 is 2.0 ×. It was 10 −14 mol / m 2 / s / Pa.

また、封止部8において、アルミニウム箔にクラックの発生は確認されなかった。   Moreover, in the sealing part 8, generation | occurrence | production of the crack was not confirmed in the aluminum foil.

(比較例2)
熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
(Comparative Example 2)
An outer sheath formed by laminating a linear low-density polyethylene film having a thickness of 50 μm as the heat welding layer 7, an aluminum foil having a thickness of 6 μm as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm as the surface protective layer 5. The vacuum heat insulating material 1 comprised from the material 4, the core material 2 which consists of glass fiber, and the adsorbent 3 which encloses calcium oxide in a ventilation packaging material was produced.

外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8に位置する溶融された2面の外被材表面のうちの一方に、凹凸模様9が形成されている。   On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are fused and bonded together, and the two melted surfaces located in the sealing portion 8 An uneven pattern 9 is formed on one of the outer cover material surfaces.

凹凸模様9は、凹凸模様9が位置している熱溶着層7の厚み差によって形成されており、凹部10に位置する熱溶着層7の厚みはその周囲に位置する熱溶着層7よりも薄肉となっている。   The concavo-convex pattern 9 is formed by a difference in thickness of the heat-welded layer 7 where the concavo-convex pattern 9 is located, and the thickness of the heat-welded layer 7 located in the recess 10 is thinner than the heat-welded layer 7 located in the periphery thereof. It has become.

凹部10は、図8に示すように4辺の外被材4周縁に平行な溝状に真空断熱材1の端部に至るように形成されており、凹部10の幅は8.0mm、凸部の幅は各1.5mmである。   As shown in FIG. 8, the recess 10 is formed in a groove shape parallel to the periphery of the outer covering material 4 on the four sides so as to reach the end of the vacuum heat insulating material 1. The width of the recess 10 is 8.0 mm, Each part has a width of 1.5 mm.

熱溶着層7とガスバリア層6との境界面のうち、うねりの波高が大きい境界面が形成する凹部10と凸部12との境界部に位置する円弧の曲率半径は1.5mmであり、この境界面のうねりの各波高は0.2mmであった。また、もう一方の境界面が有する最大波高は0.05mmであった。   Of the boundary surface between the heat-welded layer 7 and the gas barrier layer 6, the radius of curvature of the arc located at the boundary portion between the concave portion 10 and the convex portion 12 formed by the boundary surface having a large wave height is 1.5 mm. Each wave height of the waviness of the boundary surface was 0.2 mm. The maximum wave height of the other boundary surface was 0.05 mm.

真空断熱材1の封止部8の幅を20mm、薄肉部11の厚みを15μmとすると、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量を試算すると、6.9×10-15mol/m2/s/Paであった。 When the width of the sealing portion 8 of the vacuum heat insulating material 1 is 20 mm and the thickness of the thin portion 11 is 15 μm, the amount of atmospheric gas that enters through the sealing portion 8 from the end surface of the outer periphery of the outer cover material 4 of the vacuum heat insulating material 1 is As a trial calculation, it was 6.9 × 10 −15 mol / m 2 / s / Pa.

ただし、凹部10位置においてアルミニウム箔にクラックの発生が確認された。   However, generation | occurrence | production of the crack was confirmed in the aluminum foil in the recessed part 10 position.

(比較例3)
熱溶着層7として厚み50μmの直鎖低密度ポリエチレンフィルムを、ガスバリア層6として厚み6μmのアルミニウム箔を、また表面保護層5として、厚み15μmと25μmのナイロンフィルム2層を積層してなる外被材4と、ガラス繊維からなる芯材2と、酸化カルシウムを通気包材に封入してなる吸着剤3から構成された真空断熱材1を作製した。
(Comparative Example 3)
An outer sheath formed by laminating a linear low-density polyethylene film having a thickness of 50 μm as the heat welding layer 7, an aluminum foil having a thickness of 6 μm as the gas barrier layer 6, and two nylon films having a thickness of 15 μm and 25 μm as the surface protective layer 5. The vacuum heat insulating material 1 comprised from the material 4, the core material 2 which consists of glass fiber, and the adsorbent 3 which encloses calcium oxide in the ventilation | gas_flowing packaging material was produced.

外被材4の周囲辺(外周部)には、外被材4の有する熱溶着層7同士を溶融し貼り合わせた封止部8があり、封止部8に位置する溶融された2面の外被材表面のうちの一方に、凹凸模様9が形成されている。   On the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers 7 of the jacket material 4 are fused and bonded together, and the two melted surfaces located in the sealing portion 8 An uneven pattern 9 is formed on one of the outer cover material surfaces.

凹凸模様9は、凹凸模様9が位置している熱溶着層7の厚み差によって形成されており、凹部10に位置する熱溶着層7の厚みはその周囲に位置する熱溶着層7よりも薄肉となっている。   The concavo-convex pattern 9 is formed by a difference in thickness of the heat-welded layer 7 where the concavo-convex pattern 9 is located, and the thickness of the heat-welded layer 7 located in the recess 10 is thinner than the heat-welded layer 7 located in the periphery thereof. It has become.

凹部10は、図9に示すように、4辺の外被材4周縁に垂直な方向に2つ並んでおり、かつ、外被材4周縁と平行な溝状に真空断熱材1の端部に至るように形成されており、凹部10の幅は各3.0mm、凸部の幅は各1.5mmである。
封止部8の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部9が形成されており、
熱溶着層7とガスバリア層6との境界面のうち、うねりの波高が大きい境界面が形成する凹部10と凸部12との境界部に位置する円弧の曲率半径は1.5mmであり、この境界面のうねりの各波高は0.2mmであった。また、もう一方の境界面が有する最大波高は0.05mmであった。
As shown in FIG. 9, two recesses 10 are arranged in a direction perpendicular to the periphery of the outer cover material 4 on the four sides, and end portions of the vacuum heat insulating material 1 in a groove shape parallel to the outer periphery of the cover material 4. The width of the concave portion 10 is 3.0 mm, and the width of the convex portion is 1.5 mm.
Four of the four sides of the sealing portion 8 are formed with a groove-like thin portion 9 parallel to the peripheral edge arranged in four directions perpendicular to the peripheral edge,
Of the boundary surface between the heat-welded layer 7 and the gas barrier layer 6, the radius of curvature of the arc located at the boundary portion between the concave portion 10 and the convex portion 12 formed by the boundary surface having a large wave height is 1.5 mm. Each wave height of the waviness of the boundary surface was 0.2 mm. The maximum wave height of the other boundary surface was 0.05 mm.

真空断熱材1の封止部8の幅を20mm、薄肉部11の厚みを30μmとすると、真空断熱材1の外被材4周縁の端面から封止部8を通って侵入する大気ガス量を試算すると、3.6×10-15mol/m2/s/Paであった。 When the width of the sealing part 8 of the vacuum heat insulating material 1 is 20 mm and the thickness of the thin part 11 is 30 μm, the amount of atmospheric gas that enters through the sealing part 8 from the end surface of the outer periphery of the outer cover material 4 of the vacuum heat insulating material 1 is As a trial calculation, it was 3.6 × 10 −15 mol / m 2 / s / Pa.

ただし、凹部10位置においてアルミニウム箔にクラックの発生が確認された。   However, generation | occurrence | production of the crack was confirmed in the aluminum foil in the recessed part 10 position.

以上、本発明における実施例および比較例を(表1)に示す。   As mentioned above, the Example and the comparative example in this invention are shown in (Table 1).

Figure 2010255805
ただし、(表1)における外被材4の劣化に関しては、下記の基準で判定した。
Figure 2010255805
However, the deterioration of the jacket material 4 in (Table 1) was determined according to the following criteria.

○:劣化なし(10個の真空断熱材サンプルに対して所定の取り扱い作業を実施後において、凹部に位置するアルミニウム箔にピンホール増加が確認されず)。   ○: No deterioration (after a predetermined handling operation was performed on 10 vacuum heat insulating material samples, no increase in pinholes was confirmed in the aluminum foil located in the recess).

×:劣化あり(10個の真空断熱材サンプルに対して所定の取り扱い作業を実施後に、凹部に位置するアルミニウム箔にピンホール増加が確認された)。   X: Deteriorated (after a predetermined handling operation was performed on 10 vacuum heat insulating material samples, an increase in pinholes was confirmed in the aluminum foil located in the recess).

(表1)の結果より、実施の形態1に示す真空断熱材1は、凹凸模様9の構成や薄肉部11の厚みにより効果差は見られたものの、薄肉部11を設けない真空断熱材1よりも常にガス侵入量に有意差が見られた。また、外被材4に劣化が見られなかった。   From the results of (Table 1), the vacuum heat insulating material 1 shown in the first embodiment has a difference in effect depending on the configuration of the concavo-convex pattern 9 and the thickness of the thin wall portion 11, but the vacuum heat insulating material 1 in which the thin wall portion 11 is not provided. There was always a significant difference in the amount of gas intrusion. Further, no deterioration was seen in the jacket material 4.

本発明にかかる真空断熱材は、長期にわたる使用にも耐えうる断熱性能を有しているものであり、冷蔵庫用断熱材や自動販売機、建造物用断熱材、自動車用断熱材、保冷ボックスなどにも適用できる。   The vacuum heat insulating material according to the present invention has a heat insulating performance that can withstand long-term use, such as a refrigerator heat insulating material, a vending machine, a building heat insulating material, an automotive heat insulating material, a cold insulation box, and the like. It can also be applied to.

1 真空断熱材
2 芯材
4 外被材
6 ガスバリア層
7 熱溶着層
8 封止部
9 凹凸模様
10 凹部
11 薄肉部
12 凸部
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 4 Cover material 6 Gas barrier layer 7 Heat welding layer 8 Sealing part 9 Concave-convex pattern 10 Concave part 11 Thin part 12 Convex part

Claims (8)

熱溶着層同士が対向する2枚の外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材の外周部同士が熱溶着された封止部に位置する一方の外被材表面が有する凹凸模様は、凹部上の点を通る前記封止部の断面であれば凸部上の点をも通るように形成され、前記凹部に前記熱溶着層の厚みが前記凹部の周辺部よりも薄い薄肉部が位置していることを特徴とする真空断熱材。 In a vacuum heat insulating material in which a core material is sealed under reduced pressure between two outer cover materials facing each other with a thermal welding layer, and outer peripheral portions in the vicinity of the peripheral edges of the two outer cover materials covering the core material are heat-welded. The concavo-convex pattern on the surface of one outer jacket material located at the sealing portion where the outer peripheral portions of the outer jacket material are heat-welded is on the convex portion if the cross-section of the sealing portion passes through a point on the concave portion. The vacuum heat insulating material is characterized in that a thin-walled portion is formed in the recess so that the thickness of the heat-welded layer is thinner than the peripheral portion of the recess. 前記凹凸模様が、前記凸部に取り囲まれた前記凹部を有することを特徴とする請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the concavo-convex pattern has the concave portion surrounded by the convex portion. 前記凹部上の点を通る前記封止部の前記外被材周縁に垂直な断面において、前記封止部が前記薄肉部を少なくとも2個以上有している請求項1または2に記載の真空断熱材。 The vacuum heat insulation according to claim 1 or 2, wherein the sealing portion has at least two thin-walled portions in a cross section perpendicular to the outer periphery of the jacket material of the sealing portion passing through a point on the concave portion. Wood. 前記凹凸模様が格子模様であることを特徴とする請求項1から3のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 3, wherein the uneven pattern is a lattice pattern. 前記凹凸模様が有する前記凹部が前記凸部に取り囲まれてなることを特徴とする請求項1から4のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the concave portion of the concavo-convex pattern is surrounded by the convex portion. 隣接する前記凹部と前記凸部との境界部に位置する前記熱溶着層の厚み変化が略円弧状であることを特徴とする請求項1から5のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 5, wherein a thickness change of the thermal welding layer located at a boundary portion between the adjacent concave portion and the convex portion is substantially arcuate. 前記封止部の前記熱溶着層は両面に他の層との境界面を有し、前記凹凸模様が形成されている前記封止部の一方の前記境界面のうねりの波高が、他方の前記境界面のうねりの波高よりも大きいことを特徴とする請求項1から6のいずれか一項に記載の真空断熱材。 The heat-sealed layer of the sealing portion has a boundary surface with another layer on both surfaces, and the wave height of the undulation of one of the boundary surfaces of the sealing portion where the uneven pattern is formed is The vacuum heat insulating material according to any one of claims 1 to 6, wherein the vacuum heat insulating material is larger than a wave height of the undulation of the boundary surface. 連続する前記封止部に形成された隣り合う前記凹部間に形成された前記凸部に位置する一部の前記熱溶着層の厚みが、2枚以上の前記外被材の非封止部が有する前記熱溶着層の厚みの和よりも厚くなっている請求項1から7のいずれか一項に記載の真空断熱材。 The thickness of a part of the heat welding layer located in the convex part formed between the adjacent concave parts formed in the continuous sealing part has two or more non-sealed parts of the jacket material. The vacuum heat insulating material as described in any one of Claim 1 to 7 which is thicker than the sum total of the thickness of the said heat welding layer which has.
JP2009109208A 2009-04-28 2009-04-28 Vacuum heat insulating material Pending JP2010255805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109208A JP2010255805A (en) 2009-04-28 2009-04-28 Vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109208A JP2010255805A (en) 2009-04-28 2009-04-28 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2010255805A true JP2010255805A (en) 2010-11-11

Family

ID=43316939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109208A Pending JP2010255805A (en) 2009-04-28 2009-04-28 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2010255805A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514601A (en) * 2012-02-20 2015-05-21 ケーシーシー コーポレーション Sealing material for vacuum insulation panels with excellent impact resistance and non-flammability
JP2016011697A (en) * 2014-06-27 2016-01-21 凸版印刷株式会社 Packaging material for vacuum heat insulation material and vacuum heat insulation material with packaging material
JP2016064845A (en) * 2014-09-24 2016-04-28 積水フィルム株式会社 Bag body and vacuum heat insulation material using the bag body
JP2018502259A (en) * 2014-12-23 2018-01-25 サン−ゴバン イゾベール Vacuum insulation panel with improved sealing joint
JP2020100431A (en) * 2018-12-25 2020-07-02 グンゼ株式会社 Film used for packaging bag of fruits and vegetables
JPWO2021124555A1 (en) * 2019-12-20 2021-06-24
CN114440117A (en) * 2020-11-06 2022-05-06 中太海事技术(上海)有限公司 Standard template for storage structure and liquefied natural gas storage structure
CN114623372A (en) * 2020-11-06 2022-06-14 中太海事技术(上海)有限公司 Land storage container for storing liquefied gas
US11833791B2 (en) 2019-09-05 2023-12-05 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141190U (en) * 1986-02-28 1987-09-05
JPH05269854A (en) * 1981-10-08 1993-10-19 Tetra Pak Internatl Ab Heat sealing apparatus for packing laminate
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269854A (en) * 1981-10-08 1993-10-19 Tetra Pak Internatl Ab Heat sealing apparatus for packing laminate
JPS62141190U (en) * 1986-02-28 1987-09-05
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514601A (en) * 2012-02-20 2015-05-21 ケーシーシー コーポレーション Sealing material for vacuum insulation panels with excellent impact resistance and non-flammability
JP2016011697A (en) * 2014-06-27 2016-01-21 凸版印刷株式会社 Packaging material for vacuum heat insulation material and vacuum heat insulation material with packaging material
JP2016064845A (en) * 2014-09-24 2016-04-28 積水フィルム株式会社 Bag body and vacuum heat insulation material using the bag body
JP2018502259A (en) * 2014-12-23 2018-01-25 サン−ゴバン イゾベール Vacuum insulation panel with improved sealing joint
JP2020100431A (en) * 2018-12-25 2020-07-02 グンゼ株式会社 Film used for packaging bag of fruits and vegetables
US11833791B2 (en) 2019-09-05 2023-12-05 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same
WO2021124555A1 (en) * 2019-12-20 2021-06-24 三菱電機株式会社 Vacuum insulation material and insulation box
CN114829828A (en) * 2019-12-20 2022-07-29 三菱电机株式会社 Vacuum heat insulating material and heat insulating box
JP7241919B2 (en) 2019-12-20 2023-03-17 三菱電機株式会社 Vacuum insulation material and insulation box
CN114829828B (en) * 2019-12-20 2023-10-03 三菱电机株式会社 Vacuum heat insulating material and heat insulating box
JPWO2021124555A1 (en) * 2019-12-20 2021-06-24
CN114440117A (en) * 2020-11-06 2022-05-06 中太海事技术(上海)有限公司 Standard template for storage structure and liquefied natural gas storage structure
CN114623372A (en) * 2020-11-06 2022-06-14 中太海事技术(上海)有限公司 Land storage container for storing liquefied gas

Similar Documents

Publication Publication Date Title
JP5333038B2 (en) Vacuum insulation and manufacturing method thereof
JP2010255805A (en) Vacuum heat insulating material
JP4893728B2 (en) Vacuum insulation
KR101301504B1 (en) Vacuum heat insulation material and method for production thereof
JP3234649U (en) Vacuum insulated panel with improved sealing joint
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2007155135A (en) Vacuum insulation material and manufacturing method thereof
JP2010260619A (en) Bag and method of manufacturing the same
JP2011208763A (en) Vacuum heat insulating material
JP2011094637A (en) Vacuum heat insulating material
JP2012026512A (en) Bag body and vacuum heat insulating material
JP2010139006A (en) Vacuum heat insulating material
JP5381306B2 (en) Bag body and vacuum insulation
JP2011094638A (en) Vacuum bag body and vacuum heat insulating material
JP2011094639A (en) Vacuum bag body and vacuum heat insulating material
JP2010174997A (en) Vacuum heat insulation material
JP5517150B2 (en) Vacuum insulation panel packaging material and vacuum insulation panel
JP2010173700A (en) Bag body and method for manufacturing the same
JP2007155083A (en) Vacuum thermal-insulating material
JP2010139005A (en) Vacuum heat insulating material
JP2014109334A (en) Vacuum insulation material and external capsule material for the same
JP2012026511A (en) Bag, and vacuum heat insulating material
JP6874529B2 (en) Vacuum heat insulating material
JP2012026513A (en) Bag body, and vacuum heat insulating material
JP2011208762A (en) Vacuum heat insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022