JP2008082416A - Vacuum thermal insulation material and method of manufacturing the same - Google Patents

Vacuum thermal insulation material and method of manufacturing the same Download PDF

Info

Publication number
JP2008082416A
JP2008082416A JP2006261843A JP2006261843A JP2008082416A JP 2008082416 A JP2008082416 A JP 2008082416A JP 2006261843 A JP2006261843 A JP 2006261843A JP 2006261843 A JP2006261843 A JP 2006261843A JP 2008082416 A JP2008082416 A JP 2008082416A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum
insulating material
vacuum heat
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261843A
Other languages
Japanese (ja)
Inventor
Takahiro Omura
高弘 大村
Keiji Tsukahara
啓二 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2006261843A priority Critical patent/JP2008082416A/en
Publication of JP2008082416A publication Critical patent/JP2008082416A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum thermal insulation material usable in a high temperature area of 100 to 500 °C, and capable of surely adhering a joining part. <P>SOLUTION: This vacuum thermal insulation material 10 is provided by putting the inside of an external facing material in a vacuum state, by joining the joining part 2, after exhausting the inside in a vacuum, by wrapping a filler 3 of laminating an inorganic fiber sheet and stainless foil and a getter material 4 by the external facing material composed of a stainless sheet 1 having the thickness of 0.02 mm to 0.05 mm. The joining part 2 is formed by arranging an Ag/Cu-based brazing material 5 having the thickness of 0.01 to 0.1 mm between an electrolytic nickel plating layer 6, by applying the electrolytic nickel plating layer 6 having the thickness of 3 μm or more to an interface surface of the opposed stainless sheets 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に工業炉,焼却炉,発電所等で500℃迄の高温域で使用される真空断熱材および真空断熱材の製造方法に関するものである。   The present invention relates to a vacuum heat insulating material used in a high temperature range up to 500 ° C. mainly in an industrial furnace, an incinerator, a power plant or the like, and a method for manufacturing the vacuum heat insulating material.

断熱材の断熱性能は熱伝導率によって表され、熱伝導率が低いほど断熱効果は高い。熱伝導率を低下させる手法として、断熱材の内部を真空状態とすることにより、熱伝導率を低下させ高い断熱性能を発揮する「真空断熱材」が知られている。この真空断熱材は、金属箔積層または金属蒸着された樹脂製積層フィルムを外装材として、繊維質または無機粉末を内包、内部を真空排気した真空断熱材が広く知られており、冷蔵庫,保冷庫,保冷容器等で実用化されている(特許文献1)。
また、外装材をステンレススチール製の金属箔とし、金属箔を介する伝熱量を小さくすることを目的とした真空断熱材が特許文献2に記載されている。同様に、被覆材(外装材)を厚さ0.3mm以下のステンレス箔によって構成し、ステンレスの低い熱伝導率と、厚さ0.3mm以下としたことによる高い熱抵抗との相乗効果により、外周部を回り込む熱伝導率を抑制させる真空断熱材が特許文献3に記載されている。
さらに、100℃〜500℃における断熱又は保温を目的とした真空構造体が特許文献4に記載されている。
The heat insulating performance of the heat insulating material is expressed by thermal conductivity, and the lower the thermal conductivity, the higher the heat insulating effect. As a technique for reducing the thermal conductivity, there is known a “vacuum heat insulating material” that exhibits high heat insulating performance by reducing the thermal conductivity by making the inside of the heat insulating material into a vacuum state. This vacuum heat insulating material is widely known as a vacuum heat insulating material in which a metal foil laminated or metal-deposited resin laminated film is used as an exterior material, and a fiber or inorganic powder is included and the inside is evacuated. It has been put to practical use in a cold storage container or the like (Patent Document 1).
Further, Patent Document 2 describes a vacuum heat insulating material for the purpose of reducing the amount of heat transfer through the metal foil using a stainless steel metal foil as the exterior material. Similarly, the covering material (exterior material) is composed of a stainless steel foil having a thickness of 0.3 mm or less, and due to the synergistic effect of the low thermal conductivity of stainless steel and the high thermal resistance by having a thickness of 0.3 mm or less, Patent Document 3 describes a vacuum heat insulating material that suppresses the thermal conductivity around the outer periphery.
Furthermore, Patent Document 4 describes a vacuum structure for the purpose of heat insulation or heat retention at 100 ° C to 500 ° C.

特開2005−351405号公報JP-A-2005-351405 特開平07 −098091号公報Japanese Patent Application Laid-Open No. 07-098091 特開平08 −159376号公報JP 08-159376 A 特開2006−081608号公報JP 2006-081608 A

しかし、上記特許文献1〜4には、以下のような問題点を有している。
(1)特許文献1においては、前述の金属箔積層または金属蒸着された樹脂製積層フィルムを外装材として使用した真空断熱材では、樹脂製接着剤による封止であるため、100℃以上の高温域での使用ができない問題点がある。
(2)特許文献2においては、外郭部材の接合を金属箔どうしの溶接または低融点金属或いは低融点セラミックスによる接合では、溶接部の破損或いは低融点金属による接合不良が生じ易い問題点がある。
(3)特許文献3においては、被覆材(外装材)として使用するステンレス箔の厚さを「0.3mm以下、0.1mmが好適」とし(同明細書[0017])、「シーム溶接によって封止する」となっているが(同明細書[0018])、シーム溶接による封止には接合部材の厚さを少なくとも0.5〜0.8mm必要とするので、上記0.3mm以下のステンレス箔のシーム溶接は困難である。特に、接合部材の厚さが0.1mm以下である場合、シーム溶接時において外装材が溶解してしまう可能性が高く、シーム溶接は困難である。
(4)特許文献4においては、内側部材と外側部材からなる真空二重容器をステンレス鋼製とし内部に多層断熱材を設けた構造としているが、接合方法に関する記載はない。一般にステンレスの接合は、表面に不働態膜を形成しているため1000℃以下でのロウ付けが困難であり、ロウ付け接合を行う場合には、1000℃以上で不働態膜を還元して接合するか、又は還元性の高いフラックスを使用してロウ付け接合する方法が知られている。但し、1000℃以上の雰囲気下でロウ付け接合を行うと、内部に充填される断熱材に影響を与え、断熱材の持つ熱伝導率等の物性が変化してしまう可能性が高い。また、還元性の高いフラックスを用いた接合では、内部に充填される断熱材にフラックス成分が残留し、真空断熱材内部の真空度が低下するという問題点があった。
However, Patent Documents 1 to 4 have the following problems.
(1) In Patent Document 1, the vacuum heat insulating material using the above-described metal foil laminated or metal-deposited resin laminated film as an exterior material is sealed with a resin adhesive, and therefore has a high temperature of 100 ° C. or higher. There is a problem that cannot be used in the area.
(2) In Patent Document 2, when the outer members are joined by welding metal foils or joining with a low melting point metal or a low melting point ceramic, there is a problem that the welded portion is easily damaged or a joining failure due to the low melting point metal is likely to occur.
(3) In Patent Document 3, the thickness of the stainless steel foil used as the coating material (exterior material) is “0.3 mm or less, preferably 0.1 mm” (the same specification [0017]), (Same specification [0018]), but sealing by seam welding requires a thickness of the joining member of at least 0.5 to 0.8 mm. Stainless steel seam welding is difficult. In particular, when the thickness of the joining member is 0.1 mm or less, the exterior material is highly likely to be dissolved during seam welding, and seam welding is difficult.
(4) In patent document 4, although the vacuum double container which consists of an inner member and an outer member is made into the structure made from stainless steel, and the multilayer heat insulating material was provided inside, there is no description regarding the joining method. In general, joining of stainless steel is difficult to braze at 1000 ° C. or less because a passive film is formed on the surface. When performing brazing joining, the passive film is reduced and joined at 1000 ° C. or more. Or a method of brazing using a highly reducing flux is known. However, if brazing is performed in an atmosphere of 1000 ° C. or higher, there is a high possibility that the heat insulating material filled therein will be affected, and the physical properties such as the thermal conductivity of the heat insulating material will change. Further, in joining using a highly reducing flux, there is a problem that the flux component remains in the heat insulating material filled therein, and the degree of vacuum inside the vacuum heat insulating material is lowered.

そこで、本発明は、このような課題を解決して、100〜500℃の高温領域において外装材の接合部の接着を確実するとともに、低熱伝導率性を備えた断熱性の高い真空断熱材を提供することを目的としたものである。   Then, this invention solves such a subject, and while ensuring the adhesion | attachment of the junction part of an exterior material in a 100-500 degreeC high temperature area, the highly heat-insulating vacuum heat insulating material provided with low thermal conductivity is provided. It is intended to provide.

上記目的を達成するために、第1の発明は、断熱性を有する充填材と、充填材を覆い密封する外装材と、外装材の内部を真空空間とした真空断熱材において、外装材が金属シートからなりロウ付け接合されているとともに、外装材の接合部分がメッキ処理されていることを特徴とするものである。
第2の発明は、充填材がシリカ系無機繊維からなり、外装材が厚さ0.02〜0.05mm(好ましくは0.03〜0.04mm)のステンレスシートからなるとともに、メッキ処理が電解ニッケルメッキ処理であることを特徴とするものである。
第3の発明は、充填材がシリカ系無機繊維シートと金属箔とを積層した積層体からなり、外装材が厚さ0.02〜0.05mm(好ましくは0.03〜0.04mm)のステンレスシートからなるとともに、メッキ処理が電解ニッケルメッキ処理であることを特徴とするものである。
第4の発明は、真空断熱材内にジルコニウム/アルミニウム合金またはジルコニア/バナジウム合金を主成分とする添加剤が添加されていることを特徴とするものである。
第5の発明は、断熱性を有する充填材を外装材にて覆い密封し、外装材の内部を真空空間とする真空断熱材の製造方法において、外装材が金属シートからなるとともに、外装材の接合部分をメッキ処理した後ロウ付け接合することを特徴とするものである。
第6の発明は、充填材がシリカ系無機繊維からなり、外装材が厚さ0.02〜0.05mm(好ましくは0.03〜0.04mm)のステンレスシートからなるとともに、メッキ処理が電解ニッケルメッキ処理であることを特徴とするものである。
第7の発明は、充填材がシリカ系無機繊維シートと金属箔とを積層した積層体であり、外装材が厚さ0.02〜0.05mm(好ましくは0.03〜0.04mm)のステンレスシートからなるとともに、メッキ処理が電解ニッケルメッキ処理であることを特徴とするものである。
第8の発明は、外装材の接合部分を加圧した状態で真空炉内に搬送し、真空炉内にて使用温度条件よりも高い温度で外装材の接合部分を接合することを特徴とするものである。
第9の発明は、真空炉の内部を1Pa以下に保持し、真空炉内の温度を780〜820℃にして外装材の接合部分を接合することを特徴とするものである。
In order to achieve the above object, the first invention includes a filler having a heat insulating property, an exterior material that covers and seals the filler, and a vacuum thermal insulation material in which the interior of the exterior material is a vacuum space. It is made of a sheet and is brazed and joined, and the joint portion of the exterior material is plated.
In the second invention, the filler is made of silica-based inorganic fibers, the exterior material is made of a stainless steel sheet having a thickness of 0.02 to 0.05 mm (preferably 0.03 to 0.04 mm), and the plating treatment is electrolytic. It is a nickel plating process.
In the third invention, the filler is made of a laminate in which a silica-based inorganic fiber sheet and a metal foil are laminated, and the outer packaging material has a thickness of 0.02 to 0.05 mm (preferably 0.03 to 0.04 mm). It consists of a stainless steel sheet, and the plating process is an electrolytic nickel plating process.
The fourth invention is characterized in that an additive mainly composed of zirconium / aluminum alloy or zirconia / vanadium alloy is added to the vacuum heat insulating material.
According to a fifth aspect of the present invention, there is provided a vacuum heat insulating material manufacturing method in which a heat-insulating filler is covered and sealed with an exterior material, and the interior of the exterior material is a vacuum space. It is characterized in that the joint portion is plated and then brazed.
In the sixth aspect of the invention, the filler is made of silica-based inorganic fibers, the exterior material is made of a stainless steel sheet having a thickness of 0.02 to 0.05 mm (preferably 0.03 to 0.04 mm), and the plating treatment is electrolytic. It is a nickel plating process.
7th invention is a laminated body which the filler laminated | stacked the silica type inorganic fiber sheet | seat and metal foil, and an exterior material is 0.02-0.05 mm (preferably 0.03-0.04 mm) in thickness. It consists of a stainless steel sheet, and the plating process is an electrolytic nickel plating process.
The eighth invention is characterized in that it is conveyed into a vacuum furnace in a state where the joint portion of the exterior material is pressurized, and the joint portion of the exterior material is joined at a temperature higher than the operating temperature condition in the vacuum furnace. Is.
The ninth invention is characterized in that the inside of the vacuum furnace is maintained at 1 Pa or less, the temperature in the vacuum furnace is set to 780 to 820 ° C., and the joint portion of the exterior material is joined.

上記発明によれば、以下のような効果を有する。
(1) ステンレスシートからなる外装材の接合部分をメッキ処理することにより、不導
態膜を還元する温度(約1000℃)以上に加熱することなく、780〜820℃でのロウ付け接合を可能としている。
(2)外装材が厚さ0.02〜0.05mmのステンレスシートであり、内部に充填される充填材がシリカ系無機繊維であるため、100〜500℃の温度領域での使用が可能であり、また被断熱体の形状にあわせて施工することが可能となる。また、外装材の接合時の温度が780〜820℃であるため、充填材の断熱特性も損なうことはない。
(3)内部に充填される充填材は、厚さが0.5〜2.0mmのシリカ系無機繊維シートと厚さが0.03〜0.04mmの金属箔とを積層した積層構造体であり、外装材が厚さ0.02〜0.05mmのステンレスシートであるため、厚さが20mm以下であっても0.005〜0.015W/(m・k)の低熱伝導率化を実現させた真空断熱材を提供できる。
(4)真空断熱材の内部に充填材とともに、ジルコニウム/アルミニウム合金またはジルコニア/バナジウム合金を主成分とする添加剤を添加することにより、真空断熱材の内部に発生する水分、酸素及び窒素等のガス成分を吸着させて真空度の低下を抑制し、長期に置ける使用を可能としている。
According to the said invention, it has the following effects.
(1) By plating the joints of exterior materials made of stainless steel, brazing at 780-820 ° C is possible without heating above the temperature at which the non-conductive film is reduced (about 1000 ° C) It is said.
(2) Since the exterior material is a stainless steel sheet having a thickness of 0.02 to 0.05 mm and the filler filled inside is a silica-based inorganic fiber, it can be used in a temperature range of 100 to 500 ° C. Yes, it can be constructed according to the shape of the object to be insulated. Moreover, since the temperature at the time of joining of an exterior material is 780-820 degreeC, the heat insulation characteristic of a filler is not impaired.
(3) The filler filled inside is a laminated structure in which a silica-based inorganic fiber sheet having a thickness of 0.5 to 2.0 mm and a metal foil having a thickness of 0.03 to 0.04 mm are laminated. Yes, since the exterior material is a stainless steel sheet with a thickness of 0.02 to 0.05 mm, a low thermal conductivity of 0.005 to 0.015 W / (m · k) has been achieved even if the thickness is 20 mm or less. It is possible to provide a vacuum insulation material.
(4) By adding an additive mainly composed of zirconium / aluminum alloy or zirconia / vanadium alloy together with the filler inside the vacuum heat insulating material, moisture, oxygen, nitrogen, etc. generated inside the vacuum heat insulating material The gas component is adsorbed to suppress a decrease in the degree of vacuum, and can be used for a long time.

本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る真空断熱材を示す断面図である。真空断熱材10は、厚さ0.5〜2.0mmの無機繊維シートと厚さ0.03〜0.04mmのステンレス箔とを積層した充填材3とゲッター材4とを、厚さ0.02mm〜0.05mmのステンレスシート1からなる外装材にて包み込み内部を真空引きした後、接合部分2を接合させて外装材の内部を真空状態としたものである。真空断熱材の厚さは約20mmである。ゲッター材4を添加する目的は、真空断熱材10が高温に晒されて内部に充填された充填材3から発生する水分、酸素及び窒素等のガス成分と反応して、真空断熱材10内部の真空度を維持し熱伝導率の上昇を防止するためのものである。ゲッター材4の材質及び添加量は充填材のサイズ、充填材の種類等により決定される。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a vacuum heat insulating material according to the present invention. The vacuum heat insulating material 10 includes a filler 3 and a getter material 4 obtained by laminating an inorganic fiber sheet having a thickness of 0.5 to 2.0 mm and a stainless steel foil having a thickness of 0.03 to 0.04 mm. After wrapping with an exterior material made of a stainless sheet 1 having a thickness of 02 mm to 0.05 mm and evacuating the inside, the joining portion 2 is joined to bring the interior of the exterior material into a vacuum state. The thickness of the vacuum heat insulating material is about 20 mm. The purpose of adding the getter material 4 is that the vacuum heat insulating material 10 is exposed to a high temperature and reacts with gas components such as moisture, oxygen, and nitrogen generated from the filling material 3 filled therein, and thereby the inside of the vacuum heat insulating material 10 This is to maintain the degree of vacuum and prevent an increase in thermal conductivity. The material and addition amount of the getter material 4 are determined by the size of the filler, the type of filler, and the like.

図2は、ステンレスシート1の接合部分2の詳細を示すものである。対向するステンレスシート1の接合面に厚さ3μm以上の電解ニッケルメッキ層6を施し、さらに電解ニッケルメッキ層6間に厚さ0.01〜0.1mmのAg/Cu系ロウ材5を配置したものである。電解ニッケルメッキ層6間にロウ材5を介在させることで、接合部分2のメッキ処理をしても厚さ0.02mm〜0.05mmのステンレスシート1を破損することなく、確実に接合させることができる。   FIG. 2 shows details of the joining portion 2 of the stainless steel sheet 1. An electrolytic nickel plating layer 6 having a thickness of 3 μm or more is applied to the joining surface of the opposing stainless steel sheet 1, and an Ag / Cu brazing material 5 having a thickness of 0.01 to 0.1 mm is disposed between the electrolytic nickel plating layers 6. Is. By interposing the brazing material 5 between the electrolytic nickel plating layers 6, the stainless steel sheet 1 having a thickness of 0.02 mm to 0.05 mm can be securely bonded without being damaged even if the bonding portion 2 is plated. Can do.

図3は、ロウ材の配置を示す説明図である。ステンレスシート1の接合部分2となる端部に約10mm幅の電解ニッケルメッキ層6を施し(図示省略)、この電解ニッケルメッキ層6に沿って前記ロウ材5が配置されるとともに、ステンレスシート1により形成された内部空間を真空引きする引き口にさらに厚さ0.05mmのロウ材7を配置したものである。すなわち、ロウ材7を配置することで、電解ニッケルメッキ層6とロウ材5の間に間隙を生じ、真空断熱材10を真空引きする引き口となり真空断熱材10を真空引きした後、真空炉内を加熱して真空断熱材10の接合を効率良く確実に行える。   FIG. 3 is an explanatory view showing the arrangement of the brazing material. An electrolytic nickel plating layer 6 having a width of about 10 mm is applied to the end portion of the stainless steel sheet 1 that serves as the joining portion 2 (not shown), the brazing material 5 is disposed along the electrolytic nickel plating layer 6, and the stainless steel sheet 1 The brazing material 7 having a thickness of 0.05 mm is further arranged at the drawing port for evacuating the internal space formed by the above. That is, by disposing the brazing material 7, a gap is formed between the electrolytic nickel plating layer 6 and the brazing material 5, and the vacuum heat insulating material 10 is evacuated to be a vacuum port. The inside can be heated and the vacuum heat insulating material 10 can be joined efficiently and reliably.

図4は、充填材3をステンレスシート1で挟み込み、更にステンレスシート1の接合部分2(ステンレスシート1端部,電解ニッケルメッキ層6,ロウ材5及びロウ材7)を押さえ込む加圧治具8,8を示す。図5は、加圧治具8,8を上下2枚のステンレス板9,9で押さえ、更にステンレス板9,9を締め込んだ状態(加圧状態)を示している。このとき接合部分2に加わる加圧力は10〜20N/cm2とすることが好ましい。 FIG. 4 shows a pressing jig 8 that sandwiches the filler 3 between the stainless steel sheets 1 and presses the joining portion 2 (the end of the stainless steel sheet 1, the electrolytic nickel plating layer 6, the brazing material 5 and the brazing material 7) of the stainless steel sheet 1. , 8 are shown. FIG. 5 shows a state in which the pressing jigs 8 and 8 are pressed by the upper and lower stainless plates 9 and 9 and the stainless plates 9 and 9 are further tightened (pressurized state). At this time, the pressure applied to the joint portion 2 is preferably 10 to 20 N / cm 2 .

図5に示されたように、ステンレスシート1の接合部分2を加圧治具8及びステンレス板9で押え付けた状態(加圧状態)で真空炉内に搬送し、真空炉内を1Pa以下に真空引きした後常温にて約90分間保持した。その後、真空炉内を常温から590℃まで240分かけて昇温させて約60分間保持した。更に、800℃まで約20分間で昇温させて60分間保持し、その後500℃まで冷却した後、窒素雰囲気中で室温まで冷却させた。   As shown in FIG. 5, the joining portion 2 of the stainless steel sheet 1 is conveyed into the vacuum furnace while being pressed by the pressurizing jig 8 and the stainless steel plate 9 (pressurized state), and the inside of the vacuum furnace is 1 Pa or less. And then held at room temperature for about 90 minutes. Thereafter, the inside of the vacuum furnace was heated from room temperature to 590 ° C. over 240 minutes and held for about 60 minutes. Furthermore, the temperature was raised to 800 ° C. in about 20 minutes, held for 60 minutes, then cooled to 500 ° C., and then cooled to room temperature in a nitrogen atmosphere.

このようにしてつくられた真空断熱材10の接合部分2は、接着不良が無く確実に接着されるとともに、内部に充填される充填材3の性質を損なうこともない。   The joint portion 2 of the vacuum heat insulating material 10 produced in this way is securely bonded without defective adhesion and does not impair the properties of the filling material 3 filled therein.

真空断熱材の構造を示す断面図。Sectional drawing which shows the structure of a vacuum heat insulating material. 外装材であるステンレスシート端部の接合方法を示す説明図。Explanatory drawing which shows the joining method of the stainless steel sheet edge part which is an exterior material. ステンレスシート端部へのロウ材配置図。The brazing material arrangement | positioning figure to a stainless steel sheet edge part. 真空断熱材の製造方法を示す説明図(その1)。Explanatory drawing which shows the manufacturing method of a vacuum heat insulating material (the 1). 真空断熱材の製造方法を示す説明図(その2)。Explanatory drawing which shows the manufacturing method of a vacuum heat insulating material (the 2).

符号の説明Explanation of symbols

1 ステンレスシート
2 ステンレスシート接合部分
3 充填材
4 ゲッター材
5 ロウ材
6 電解ニッケルメッキ層
7 ロウ材
8 加圧治具
9 ステンレス板
10 真空断熱材
DESCRIPTION OF SYMBOLS 1 Stainless steel sheet 2 Stainless steel sheet junction part 3 Filler 4 Getter material 5 Brazing material 6 Electrolytic nickel plating layer 7 Brazing material 8 Pressurizing jig 9 Stainless steel plate 10 Vacuum heat insulating material

Claims (9)

断熱性を有する充填材と、該充填材を覆い密封する外装材と、該外装材の内部を真空空間とした真空断熱材において、該外装材が金属シートからなり、該外装材の接合部分がロウ付け接合されているとともに、該外装材の接合部分がメッキ処理されていることを特徴とする真空断熱材。   In a heat-insulating filler, an exterior material that covers and seals the filler, and a vacuum heat-insulating material in which the interior of the exterior material is a vacuum space, the exterior material is made of a metal sheet, and a joint portion of the exterior material is A vacuum heat insulating material characterized in that it is brazed and the joint portion of the exterior material is plated. 前記充填材がシリカ系無機繊維からなり、前記外装材が厚さ0.02〜0.05mmのステンレスシートからなるとともに、前記メッキ処理が電解ニッケルメッキ処理であることを特徴とする請求項1記載の真空断熱材。   2. The filler is made of silica-based inorganic fibers, the exterior material is made of a stainless steel sheet having a thickness of 0.02 to 0.05 mm, and the plating process is an electrolytic nickel plating process. Vacuum insulation material. 前記充填材がシリカ系無機繊維シートと金属箔とを積層した積層体からなり、前記外装材が厚さ0.02〜0.05mmのステンレスシートからなるとともに、前記メッキ処理が電解ニッケルメッキ処理であることを特徴とする請求項1記載の真空断熱材。   The filler is made of a laminate in which a silica-based inorganic fiber sheet and a metal foil are laminated, the exterior material is made of a stainless steel sheet having a thickness of 0.02 to 0.05 mm, and the plating process is an electrolytic nickel plating process. The vacuum heat insulating material according to claim 1, wherein the vacuum heat insulating material is provided. 前記真空断熱材内にジルコニウム/アルミニウム合金またはジルコニア/バナジウム合金を主成分とする添加剤が添加されていることを特徴とする請求項1乃至3のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein an additive mainly comprising a zirconium / aluminum alloy or a zirconia / vanadium alloy is added to the vacuum heat insulating material. 断熱性を有する充填材を外装材にて覆い密封し、該外装材の内部を真空空間とする真空断熱材の製造方法において、前記外装材が金属シートからなるとともに、前記外装材の接合部分をメッキ処理した後ロウ付け接合することを特徴とする真空断熱材の製造方法。   In a method for manufacturing a vacuum heat insulating material in which a filler having a heat insulating property is covered and sealed with an external material, and the inside of the external material is a vacuum space, the external material is made of a metal sheet, and a joint portion of the external material is A method for producing a vacuum heat insulating material, characterized by performing brazing after plating. 前記充填材がシリカ系無機繊維からなり、前記外装材が厚さ0.02〜0.05mmのステンレスシートからなるとともに、前記メッキ処理が電解ニッケルメッキ処理であることを特徴とする請求項5記載の真空断熱材の製造方法。   6. The filler is made of silica-based inorganic fibers, the exterior material is made of a stainless steel sheet having a thickness of 0.02 to 0.05 mm, and the plating process is an electrolytic nickel plating process. Of manufacturing vacuum insulation material. 前記充填材がシリカ系無機繊維シートと金属箔とを積層した積層体であり、前記外装材が厚さ0.02〜0.05mmのステンレスシートからなるとともに、前記メッキ処理が電解ニッケルメッキ処理であることを特徴とする請求項5記載の真空断熱材の製造方法。   The filler is a laminate obtained by laminating a silica-based inorganic fiber sheet and a metal foil, the exterior material is a stainless steel sheet having a thickness of 0.02 to 0.05 mm, and the plating process is an electrolytic nickel plating process. 6. The method for producing a vacuum heat insulating material according to claim 5, wherein: 前記外装材の接合部分を加圧した状態で真空炉内に搬送し、該真空炉内にて使用温度条件よりも高い温度で外装材の接合部分を接合することを特徴とする請求項5乃至7のいずれかに記載の真空断熱材の製造方法。   6. The joint portion of the exterior material is conveyed into a vacuum furnace in a pressurized state, and the joint portion of the exterior material is joined at a temperature higher than the operating temperature condition in the vacuum furnace. 8. A method for producing a vacuum heat insulating material according to any one of 7 above. 前記真空炉の内部を1Pa以下に保持し、該真空炉内の温度を780〜820℃にして前記外装材の接合部分を接合することを特徴とする請求項5乃至8のいずれかに記載の真空断熱材の製造方法。   The interior of the vacuum furnace is maintained at 1 Pa or less, the temperature in the vacuum furnace is set to 780 to 820 ° C, and the joint portion of the exterior material is joined. Manufacturing method of vacuum heat insulating material.
JP2006261843A 2006-09-27 2006-09-27 Vacuum thermal insulation material and method of manufacturing the same Pending JP2008082416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261843A JP2008082416A (en) 2006-09-27 2006-09-27 Vacuum thermal insulation material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261843A JP2008082416A (en) 2006-09-27 2006-09-27 Vacuum thermal insulation material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008082416A true JP2008082416A (en) 2008-04-10

Family

ID=39353494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261843A Pending JP2008082416A (en) 2006-09-27 2006-09-27 Vacuum thermal insulation material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008082416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10001320B2 (en) 2014-12-26 2018-06-19 Samsung Electronics Co., Ltd. Laminated structure and vacuum insulating material including the same
CN113074494A (en) * 2020-01-06 2021-07-06 青岛海尔电冰箱有限公司 Method for manufacturing vacuum heat insulator and refrigerator
WO2023101475A1 (en) * 2021-12-03 2023-06-08 Lg Electronics Inc. Vacuum adiabatic body, method for manufacturing same, and apparatus for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10001320B2 (en) 2014-12-26 2018-06-19 Samsung Electronics Co., Ltd. Laminated structure and vacuum insulating material including the same
CN113074494A (en) * 2020-01-06 2021-07-06 青岛海尔电冰箱有限公司 Method for manufacturing vacuum heat insulator and refrigerator
WO2023101475A1 (en) * 2021-12-03 2023-06-08 Lg Electronics Inc. Vacuum adiabatic body, method for manufacturing same, and apparatus for manufacturing same

Similar Documents

Publication Publication Date Title
JP5333038B2 (en) Vacuum insulation and manufacturing method thereof
JP5373202B2 (en) Method of sealing tempered vacuum glass and tempered vacuum glass
JP2008249003A (en) Vacuum insulation panel and appliance provided with it
WO2012058938A1 (en) Vacuum glass sealing method and vacuum glass product
JP4893728B2 (en) Vacuum insulation
JP5377763B2 (en) Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
JP5049468B2 (en) Insulated container and manufacturing method thereof
JP2015525860A (en) Insulating panel manufacturing method
JP2008082416A (en) Vacuum thermal insulation material and method of manufacturing the same
CN102341884A (en) Method for assembling electron exit window and electron exit window assembly
JP4746898B2 (en) Insulated container and manufacturing method thereof
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2011094639A (en) Vacuum bag body and vacuum heat insulating material
JP2010173700A (en) Bag body and method for manufacturing the same
JP2011208763A (en) Vacuum heat insulating material
JP2016191468A (en) External capsule material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material
JP2011094637A (en) Vacuum heat insulating material
JP2010139006A (en) Vacuum heat insulating material
JP2011094638A (en) Vacuum bag body and vacuum heat insulating material
JP4746899B2 (en) Method for manufacturing an insulated container
JP6801726B2 (en) Vacuum insulation panel and its manufacturing method
JP2014080313A (en) Double glass, and manufacturing method of double glass
JP2010174997A (en) Vacuum heat insulation material
JP5381306B2 (en) Bag body and vacuum insulation
JP3983783B2 (en) Manufacturing method of vacuum insulation