JP5470904B2 - TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate - Google Patents

TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate Download PDF

Info

Publication number
JP5470904B2
JP5470904B2 JP2009041737A JP2009041737A JP5470904B2 JP 5470904 B2 JP5470904 B2 JP 5470904B2 JP 2009041737 A JP2009041737 A JP 2009041737A JP 2009041737 A JP2009041737 A JP 2009041737A JP 5470904 B2 JP5470904 B2 JP 5470904B2
Authority
JP
Japan
Prior art keywords
less
crack propagation
fatigue crack
total elongation
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041737A
Other languages
Japanese (ja)
Other versions
JP2010196109A (en
Inventor
智之 横田
浩文 大坪
達己 木村
眞司 三田尾
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009041737A priority Critical patent/JP5470904B2/en
Publication of JP2010196109A publication Critical patent/JP2010196109A/en
Application granted granted Critical
Publication of JP5470904B2 publication Critical patent/JP5470904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、主に、船舶、海洋構造物、橋梁、建築物、タンクなど構造安全性が強く求められる溶接構造物用に適用される、疲労き裂伝播抵抗性に優れた厚鋼板の製造方法に関し、特に伸びの低下が問題となる板厚20mm以下の薄物の厚鋼板のオンライン製造方法として好適なものに関する。   The present invention is mainly applied to a welded structure such as a ship, an offshore structure, a bridge, a building, a tank, and the like, which has a strong demand for structural safety, and a method for producing a thick steel plate having excellent fatigue crack propagation resistance. In particular, the present invention relates to a method suitable as an on-line manufacturing method for a thin steel plate having a thickness of 20 mm or less, in which a decrease in elongation is a problem.

船舶、海洋構造物、橋梁、建築物、タンクなどの構造物に使用される鋼材は、強度、靭性などの機械的性質や溶接性に優れていることに加えて、常時稼動における繰返し荷重や風、地震等による震動に起因する繰返しに対して構造物の構造安全性を担保しなければならない。   Steel materials used in structures such as ships, offshore structures, bridges, buildings, tanks, etc. have excellent mechanical properties such as strength and toughness and weldability, as well as repeated loads and winds during normal operation. In addition, the structural safety of the structure must be ensured against repeated vibration caused by earthquakes.

繰返し荷重に対しては疲労特性に優れていることが要求され、特に部材の破断といった終局的な破壊を防止するためには、鋼材の有する疲労き裂の伝播抵抗性を向上することが効果的と考える。   It is required to have excellent fatigue characteristics for repeated loads. In order to prevent ultimate failure such as fracture of members, it is effective to improve the propagation resistance of fatigue cracks possessed by steel materials. I think.

一般的な溶接構造物の場合、溶接止端部は応力集中部になりやすく、溶接による引張残留応力も作用するため疲労き裂の発生源となることが多く、その防止策として、止端部をなめ付け溶接したり、ショットピーニングにより圧縮残留応力を導入することが知られている。   In the case of general welded structures, the weld toe tends to be a stress concentration part, and the tensile residual stress due to welding also acts and often becomes a source of fatigue cracks. It is known to introduce a compressive residual stress by tanning welding or shot peening.

しかしながら、溶接構造物には多数の溶接止端部があり、またコスト的にも負担が大きいため、これらの方法は工業的規模での実施には不適当で、溶接構造物の耐疲労特性は使用される鋼材自体の疲労き裂伝播特性の向上により図られることが多い。   However, since there are a large number of weld toes in the welded structure and the burden is high in cost, these methods are unsuitable for implementation on an industrial scale, and the fatigue resistance characteristics of the welded structure are It is often achieved by improving the fatigue crack propagation characteristics of the steel material used.

これら鋼構造物においては鋼板に対して様々な方向、例えば、圧延方向に対して様々な方向から自由に溶接施工される場合が多く、それゆえ疲労き裂発生・伝播の方向も様々であるため、鋼板の疲労き裂伝播抵抗性能も鋼中における方向を問わずに高い性能をもつことが望ましい。   In these steel structures, welding is often performed in various directions with respect to the steel sheet, for example, in various directions with respect to the rolling direction, and therefore the direction of fatigue crack initiation and propagation is also various. In addition, it is desirable that the fatigue crack propagation resistance performance of the steel plate is high regardless of the direction in the steel.

特許文献1はタンカー用鋼板に関し、その組織をフェライトの第一相ならびにベイナイトおよび/またはパーライトの第二相の混合組織からなり、前記フェライトの平均粒径が20μm以下とすることで湿潤硫化水素環境で耐疲労き裂進展特性に優れることが記載されている。   Patent Document 1 relates to a steel plate for a tanker, and the structure thereof is composed of a mixed structure of a first phase of ferrite and a second phase of bainite and / or pearlite. It is described that it has excellent fatigue crack growth characteristics.

特許文献2には組織を硬質部の素地とこの素地に分散した軟質部とで構成し、両者の硬度差がビッカース硬度で150以上であることを特徴とする疲労き裂進展抑制効果を有する鋼板が記載されている。   Patent Document 2 discloses a steel sheet having a fatigue crack growth-suppressing effect characterized in that the structure is composed of a base of a hard part and a soft part dispersed in the base, and the hardness difference between the two is 150 or more in terms of Vickers hardness. Is described.

特許文献3には断面の鋼組織がフェライトとベイナイトであって、フェライト相は面積率で38%以上52%以下で、そのフェライト相部分の硬さが80HV0.02〜150HV0.02であり、かつフェライト相とベイナイト相の境界が断面内任意の場所に引いた直線上において50〜300カ所/mmの密度で存在することを特徴とする、疲労き裂進展抵抗性に優れた引張り強さが55kgf/mm以上のフェライト・ベイナイト二相鋼が記載されている。 In Patent Document 3, the steel structure of the cross section is ferrite and bainite, the ferrite phase has an area ratio of 38% or more and 52% or less, the hardness of the ferrite phase portion is 80HV0.02-150HV0.02, and The tensile strength with excellent fatigue crack growth resistance is 55 kgf, characterized in that the boundary between the ferrite phase and the bainite phase exists at a density of 50 to 300 locations / mm on a straight line drawn at an arbitrary location in the cross section. Ferritic bainite duplex steel with a / mm 2 or more is described.

特許文献4には疲労き裂進展方向の第二相間の界面から次の第二相への界面との間隔が25μm以下であり、板厚方向の断面組織が面積率で60〜90%のフェライト母相と第二相からなり、第二相の硬さ:Hv(SP)とフェライトの硬さ:Hv(F)が特定の式で示される値を満足し、かつ第二相のアスペクト比:1(長軸長さ)/d(短軸長さ)が1/d>3.42であることを特徴とする疲労き裂伝播特性の優れた鋼材が記載されている。   Patent Document 4 discloses a ferrite in which the distance from the interface between the second phases in the fatigue crack propagation direction to the interface to the next second phase is 25 μm or less, and the cross-sectional structure in the plate thickness direction is 60 to 90% in area ratio. It consists of a parent phase and a second phase, the hardness of the second phase: Hv (SP) and the hardness of the ferrite: Hv (F) satisfy the value represented by a specific formula, and the aspect ratio of the second phase: A steel material having excellent fatigue crack propagation characteristics is described, wherein 1 (major axis length) / d (minor axis length) is 1 / d> 3.42.

特許文献5は延性と耐疲労き裂伝播特性に優れた鋼材の製造方法に関し、圧延後の加速冷却の途中で一時冷却を停止し、所定時間保持した後に再び加速冷却をすることにより、板厚方向に均質な微細なフェライトとミクロ組織中に分散した微細構造パーライトを主体とするミクロ組織とすることが記載されている。   Patent Document 5 relates to a method for producing a steel material having excellent ductility and fatigue crack propagation characteristics, by stopping temporary cooling in the middle of accelerated cooling after rolling, and holding accelerated cooling again after holding for a predetermined time, thereby increasing the thickness of the steel sheet. It is described that the microstructure is mainly composed of fine ferrite homogeneous in the direction and microstructure pearlite dispersed in the microstructure.

特許文献6は板厚方向の強度差が小さい疲労き裂伝播特性に優れた鋼材の製造方法に関し、特許文献5より高強度厚肉材の製造が可能なようにC量を0.10〜0.16%とし、加速冷却もAr点以上での熱間圧延終了後に一定時間空冷した後、高温から冷却開始することが記載されている。 Patent Document 6 relates to a method of manufacturing a steel material having excellent fatigue crack propagation characteristics with a small strength difference in the thickness direction, and from Patent Document 5, the amount of C is 0.10 to 0 so that a high-strength thick material can be manufactured. It is described that the accelerated cooling is started at a high temperature after air cooling for a certain time after completion of hot rolling at 3 or more points of Ar.

特許文献7は耐延性き裂発生特性と耐疲労き裂伝播特性に優れた高強度鋼材およびその製造方法に関し、ミクロ組織が微細フェライトを面積分率で10〜40%含む、ベイナイト、マルテンサイト若しくは両者の混合組織で、引張強度550MPa以上の厚肉材を、熱間圧延をAr点以上で終了後、一定時間空冷した後、直接焼入れにより製造することが記載されている。 Patent Document 7 relates to a high-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and a method for producing the same, and has a microstructure containing fine ferrite in an area fraction of 10 to 40%, bainite, martensite or It is described that a thick material having a tensile strength of 550 MPa or more is produced by direct quenching after hot rolling is completed at Ar 3 points or more and then air-cooled for a certain time with the mixed structure of both.

特許第2785643号公報Japanese Patent No. 2785643 特許第2962134号公報Japanese Patent No. 2962134 特許第3489243号公報Japanese Patent No. 3489243 特許第3434434号公報Japanese Patent No. 3434434 特開2005−314811号公報JP 2005-314811 A 特開2005−314812号公報JP 2005-314812 A 特開2007−197777号公報JP 2007-197777 A

ところで、特許文献1〜4、6,7記載の発明に係る鋼板はいずれも、疲労き裂伝播抵抗性を向上するために硬質相としてベイナイトあるいはマルテンサイトなどを導入しているが、これら硬質相の利用は全伸びの劣化をもたらす。   By the way, all of the steel sheets according to the inventions described in Patent Documents 1 to 4, 6, and 7 introduce bainite or martensite as a hard phase in order to improve fatigue crack propagation resistance. The use of will lead to degradation of total elongation.

特に、本発明で対象としている、圧延と加速冷却制御によるオンラインプロセスにより、疲労き裂伝播抵抗性に優れた厚鋼板を製造する場合、このような硬質相を得るため、冷却停止温度を下げることが必要で、板厚20mm以下の薄物においては、冷却停止温度低下のために全伸びが顕著に低下する問題があった、すなわち、板厚20mm以下になると疲労き裂伝播抵抗性と全伸びの両立が困難であった。板厚20mm(18mm)超えでは、この両立は比較的容易である。   In particular, when producing a thick steel plate with excellent fatigue crack propagation resistance by an on-line process by rolling and accelerated cooling control, which is the subject of the present invention, in order to obtain such a hard phase, the cooling stop temperature is lowered. In a thin material with a plate thickness of 20 mm or less, there was a problem that the total elongation was remarkably lowered due to a decrease in the cooling stop temperature. That is, when the plate thickness was 20 mm or less, fatigue crack propagation resistance and total elongation were reduced. It was difficult to achieve both. When the plate thickness exceeds 20 mm (18 mm), this coexistence is relatively easy.

船舶、海洋構造物、橋梁、建築物、タンクなどの構造物に使用される鋼材では、規格において全伸び値が規定されることが多く、疲労き裂伝播抵抗性を向上させる場合も、全伸びが規格値を満たすことが前提であるが、従来、疲労き裂伝播抵抗性と全伸びの両者を制御できる製造指針は得られていない。尚、特許文献5〜7記載の発明は、板厚20mm以上も対象で、圧延後、冷却開始まで一定時間空冷を必要とし、板厚20mm以下の薄板材の製造方法として最適なものとは言い難い。このように、板厚20mm以下の板厚において、疲労き裂伝播抵抗性と全伸びの両立を適切に制御する技術が望まれている。   In steel materials used for structures such as ships, offshore structures, bridges, buildings, tanks, etc., the total elongation value is often specified in the standard, and even when improving fatigue crack propagation resistance, the total elongation is However, there is no production guideline that can control both fatigue crack propagation resistance and total elongation. The inventions described in Patent Documents 5 to 7 are also applicable to a sheet thickness of 20 mm or more, require air cooling for a certain period of time from rolling to the start of cooling, and are said to be optimal as a method for manufacturing a sheet material having a sheet thickness of 20 mm or less. hard. As described above, there is a demand for a technique for appropriately controlling both fatigue crack propagation resistance and total elongation in a plate thickness of 20 mm or less.

そこで、本発明は、全伸びに優れ、かつ疲労き裂伝播抵抗性に優れた板厚20mm以下、特に板厚18mm未満の薄物の厚鋼板の製造に好適な製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a manufacturing method suitable for manufacturing a thin steel plate having a thickness of 20 mm or less, particularly less than 18 mm, which is excellent in total elongation and excellent in fatigue crack propagation resistance. To do.

本発明者は、可逆式圧延機による圧延と搬送ライン上に設けた加速冷却装置で加速冷却を行うオンラインプロセスによって製造される厚鋼板を対象に、全伸びならびに疲労き裂伝播におよぼす化学成分と製造条件の影響を詳細に検討し、板厚20mm以下の厚鋼板を製造する場合は、C添加量を低くしてCeqを特定の範囲に制御し、冷却停止温度を低くすることで、圧延後加速冷却開始前に一定時間の空冷を必要とせずに、優れた伸びと疲労き裂伝播抵抗性とを両立させることを知見した。   The present inventor is directed to a thick steel plate manufactured by an on-line process in which an accelerated cooling is performed by an accelerating cooling device provided on a conveying line and rolling by a reversible rolling mill, and chemical components affecting the total elongation and fatigue crack propagation In the case of producing a thick steel plate having a thickness of 20 mm or less by examining the influence of production conditions in detail, the C addition amount is lowered to control Ceq within a specific range, and the cooling stop temperature is lowered to reduce the temperature after rolling. It was found that both excellent elongation and fatigue crack propagation resistance can be achieved without requiring air cooling for a certain period of time before the start of accelerated cooling.

本発明は、得られた知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.03%以上、0.10%未満、Si:0.05〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%)):0.3〜0.4、残部Feおよび不可避的不純物からなる鋼を、1000℃以上、1250℃以下に加熱し、Ar点以上での累積圧下率が50%以上となるように、Ar点以上の圧延終了温度で圧延後、引続きオンラインで、Ar点以上の温度域より600℃以下300℃以上まで、0℃/s以上で加速冷却することを特徴とする、TSが570MPa以上、全伸びが25%以上、ΔK=15MPa√mでの疲労き裂伝播速度8.75x10 −9 m/cycle以下の、全伸びと疲労き裂伝播抵抗性に優れた板厚20mm以下の厚鋼板の製造方法。
2.更に、鋼成分として、質量%で、Cu:0.4%以下、Ni:0.8%以下、Cr:0.4%以下、Mo:0.4%以下、Nb:0.05%以下、V:0.05%以下、Ti:0.03%以下、B:0.003%以下、Ca:0.005%以下の一種または二種以上を含有することを特徴とする1記載のTSが570MPa以上、全伸びが25%以上、ΔK=15MPa√mでの疲労き裂伝播速度8.75x10 −9 m/cycle以下の、全伸びと疲労き裂伝播抵抗性に優れた板厚20mm以下の厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention,
1. C: 0.03% or more, less than 0.10%, Si: 0.05 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02% or less, Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is contained (mass%)): 0.3 to 0.4 the steel balance consisting of Fe and unavoidable impurities, 1000 ° C. or higher, then heated to 1250 ° C. or less, as the cumulative rolling reduction at Ar 3 point or more is 50% or more, Ar 3 point or more rolling end temperature after rolling, subsequently online, up to 600 ° C. or less 300 ° C. or higher than the temperature range above 3 points Ar, 3 0, characterized in that accelerated cooling at ° C. / s or more, TS more than 570 MPa, a total elongation of 25% or more , ΔK = fatigue in 15MPa√m crack propagation velocity 8.75x10 -9 m / cyc The following, total elongation and manufacturing method of steel plate excellent thickness 20mm below the fatigue crack propagation resistance e.
2. Further, as a steel component, in mass%, Cu: 0.4% or less, Ni: 0.8% or less, Cr: 0.4% or less, Mo: 0.4% or less, Nb: 0.05% or less, 1. TS of 1 characterized by containing 1 type or 2 types or more of V: 0.05% or less, Ti: 0.03% or less, B: 0.003% or less, Ca: 0.005% or less. 570MPa or more, the total elongation of 25% or more, [Delta] K = fatigue crack propagation speed 8.75x10 -9 m / cycle follows in 15MPa√m, total elongation and excellent thickness 20mm below the fatigue crack propagation resistance Manufacturing method of thick steel plate.

本発明によれば、全伸びに優れ、かつ高い疲労き裂伝播抵抗性を有した、板厚20mm以下、最適には板厚18mm未満の薄物厚鋼板の製造方法が得られ、例え、応力集中部や溶接部等から疲労き裂が経年的に発生したとしても、その後の伝播を遅らせて、鋼構造物の安全性を高めることが可能であり、産業上極めて有用である。   According to the present invention, a method for producing a thin steel plate having a total thickness of 20 mm or less, and optimally less than 18 mm, having excellent fatigue crack propagation resistance, is obtained. Even if fatigue cracks occur over time from welds, welds, etc., it is possible to delay the subsequent propagation and increase the safety of the steel structure, which is extremely useful industrially.

片側切欠単純引張型疲労試験片の形状を示す図(板厚12mmの場合)。The figure which shows the shape of the one side notch simple tension type fatigue test piece (plate thickness of 12 mm).

本発明の成分組成、製造条件の規定について詳細に説明する。
[成分組成]説明において%は質量%とする。

Cは強度を確保するため0.03%以上添加する。0.10%以上添加すると、圧延・加速冷却制御によるオンラインプロセスにおいて、全伸びの劣化を伴うとともに、溶接性が劣化するため、0.03%以上0.10%未満を添加する。
The composition of the present invention and the definition of production conditions will be described in detail.
[Ingredient composition] In the description, “%” means “mass%”.
C
C is added in an amount of 0.03% or more to ensure strength. When 0.10% or more is added, in the on-line process by rolling / accelerated cooling control, along with deterioration of the total elongation, weldability deteriorates, so 0.03% or more and less than 0.10% is added.

Si
Siは脱酸作用と強度を確保するため0.05%以上添加する。0.50%を超えて添加すると溶接性、靭性が劣化するため、0.05〜0.50%(0.05%以上、0.50%以下)、好ましくは0.10〜0.40%とする。
Si
Si is added in an amount of 0.05% or more to ensure deoxidation and strength. If added over 0.50%, weldability and toughness deteriorate, so 0.05 to 0.50% (0.05% or more and 0.50% or less), preferably 0.10 to 0.40%. And

Mn
Mnは焼入れ性の増加により、強度、靭性を確保させるため、0.5%以上添加する。2.0%を超えると全伸びが低下するとともに溶接性を劣化させるため、0.5〜2.0%、好ましくは0.8〜1.6%を添加する。
Mn
Mn is added in an amount of 0.5% or more in order to ensure strength and toughness by increasing hardenability. If it exceeds 2.0%, the total elongation is lowered and the weldability is deteriorated, so 0.5 to 2.0%, preferably 0.8 to 1.6% is added.


Pは不可避的不純物で、靭性を劣化させるため、その含有量は少ないほど良く、製造コスト上、0.05%以下、好ましくは0.03%以下とする。
P
P is an unavoidable impurity and deteriorates toughness. Therefore, its content is preferably as small as possible, and is 0.05% or less, preferably 0.03% or less in terms of manufacturing cost.


Sは不可避的不純物で、靭性を劣化させるため、その含有量は少ないほど良く、製造コスト上、0.02%以下、好ましくは0.01%以下とする。
S
Since S is an inevitable impurity and deteriorates toughness, its content is preferably as small as possible, and is 0.02% or less, preferably 0.01% or less in terms of manufacturing cost.

Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%)):0.3〜0.4
Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5)は、本発明が対象とする、圧延と加速冷却制御を行うオンラインプロセスにより、疲労き裂伝播抵抗性に優れた厚鋼板を製造するに際し、570MPa級の強度を確保するために規定する。Ceqが0.3未満であると570MPa級の強度を確保するのが困難になり、一方0.4を超えると強度の不必要な上昇と全伸びの劣化を招くため、0.3〜0.4とする。
Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is contained (mass%)): 0.3 to 0.4
Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5) is a fatigue crack propagation resistance by an on-line process that performs rolling and accelerated cooling control targeted by the present invention. When manufacturing a thick steel plate having excellent strength, it is specified to ensure a strength of 570 MPa. If Ceq is less than 0.3, it is difficult to ensure a strength of 570 MPa class. On the other hand, if it exceeds 0.4, an unnecessary increase in strength and deterioration of the total elongation are caused. 4

以上が本発明に係る鋼の基本成分組成であるが、更に強度、靭性、溶接性および耐候性を向上させたり、付与する場合、Cu,Ni、Cr,Mo、Nb,V,Ti,B、Caの一種または二種以上を添加する。   The above is the basic component composition of the steel according to the present invention, but when further improving or imparting strength, toughness, weldability and weather resistance, Cu, Ni, Cr, Mo, Nb, V, Ti, B, One or more of Ca are added.

Cu
Cuは固溶により強度を上昇させ、また耐候性を向上させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性が損なわれ、鋼材製造時に疵が生じやすくなるので添加する場合は、0.4%以下とし、好ましくは、0.3%以下とする。
Cu
Cu increases the strength by solid solution and improves the weather resistance, so it is added according to the desired properties. When added, if it exceeds 0.4%, the weldability is impaired, and flaws are likely to occur during the manufacture of the steel material. Therefore, when added, the content is made 0.4% or less, preferably 0.3% or less.

Ni
Niは低温靭性や耐候性を向上させ、またCuを添加した場合の熱間脆性を改善するので、所望する特性に応じて添加する。0.8%を超えると溶接性が損なわれ、鋼材コストが上昇するので添加する場合は、0.8%以下とし、好ましくは、0.6%以下とする。
Ni
Ni improves low-temperature toughness and weather resistance, and improves hot brittleness when Cu is added, so it is added according to desired characteristics. If it exceeds 0.8%, the weldability is impaired and the steel material cost increases, so when added, the content is made 0.8% or less, preferably 0.6% or less.

Cr
Crは強度を上昇させ、また耐候性を向上させるので、所望する特性に応じて添加する。0.4%を超えると溶接性と靭性が損なわれるので添加する場合は、0.4%以下とし、好ましくは、0.3%以下とする。
Cr
Cr increases the strength and improves the weather resistance, so it is added according to the desired properties. If over 0.4%, weldability and toughness are impaired, so when added, the content is made 0.4% or less, preferably 0.3% or less.

Mo
Moは強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性と靭性が損なわれるので添加する場合は0.4%以下とし、好ましくは、0.2%以下とする。
Mo
Since Mo increases strength, it is added according to desired characteristics. When added, if it exceeds 0.4%, weldability and toughness are impaired, so when added, the content is made 0.4% or less, preferably 0.2% or less.

Nb
Nbは圧延時のオーステナイト再結晶を抑制し細粒化を図ると同時に、加速冷却後の空冷時に析出し強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.05%を超えると靭性が損なわれるので0.05%以下とし、好ましくは0.03%以下とする。
Nb
Nb suppresses austenite recrystallization during rolling to achieve finer grains, and at the same time, precipitates during air cooling after accelerated cooling and increases strength. Therefore, Nb is added according to desired characteristics. When added, if it exceeds 0.05%, the toughness is impaired, so 0.05% or less, preferably 0.03% or less.


Vは、加速冷却後の空冷時に析出し強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.05%を超えると溶接性と靭性が損なわれるので0.05%以下、好ましくは0.03%以下とする。
V
V precipitates during air cooling after accelerated cooling and increases the strength, so it is added according to the desired characteristics. When added, if it exceeds 0.05%, weldability and toughness are impaired, so 0.05% or less, preferably 0.03% or less.

Ti
Tiは、強度を上昇させ、溶接部靭性を向上させるので、所望する特性に応じて添加する。添加する場合、0.03%を超えると鋼材コストが上昇するので0.03%%以下、好ましくは0.02%以下とする。
Ti
Ti increases strength and improves weld toughness, so it is added according to desired properties. When adding, if it exceeds 0.03%, the steel material cost increases, so 0.03% or less, preferably 0.02% or less.


Bは焼入れ性を高め、強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.003%を超えると溶接性が低下するので、0.003%以下、好ましくは0.002%以下とする。
B
B increases the hardenability and increases the strength, so it is added according to the desired properties. When adding, if it exceeds 0.003%, the weldability deteriorates, so 0.003% or less, preferably 0.002% or less.

Ca
Caは硫化物形態制御により鋼鈑の靭性を改善するので、所望する特性に応じて添加する。添加する場合、0.005%を超えるとその効果が飽和するため、上限を0.005%とする。
Ca
Since Ca improves the toughness of the steel sheet by controlling the sulfide form, it is added according to the desired characteristics. When adding, if the content exceeds 0.005%, the effect is saturated, so the upper limit is made 0.005%.

[製造条件]
本発明に係る鋼材は上記記載の成分の鋼を、1000℃以上、1250℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延後、Ar点以上の温度域より600℃以下300℃以上まで、10℃/s以上で加速冷却することにより得られる。
[Production conditions]
The steel material according to the present invention heats steel having the above-described components to 1000 ° C. or more and 1250 ° C. or less, and after rolling with an Ar 3 point or more and a cumulative reduction ratio of 50% or more, 600 ° C. from a temperature range of Ar 3 or more point. It is obtained by accelerated cooling to 10 ° C./s or higher up to 300 ° C. or lower.

本発明に係る鋼材は板厚20mm以下と薄く、圧延後、鋼板温度は直ちに低下するため、搬送ライン上に圧延装置、加速冷却装置を設けたオンラインプロセスを用いて製造することが好ましい。   The steel material according to the present invention is as thin as 20 mm or less, and the temperature of the steel sheet immediately decreases after rolling. Therefore, it is preferable to manufacture the steel material using an online process in which a rolling device and an accelerated cooling device are provided on the transport line.

1.加熱温度
加熱温度は圧延温度を確保するため1000℃以上とする。1250℃を超えると鋼の結晶粒が粗大化するので上限を1250℃とする。
1. Heating temperature The heating temperature is set to 1000 ° C. or higher in order to secure the rolling temperature. If the temperature exceeds 1250 ° C, the crystal grains of the steel become coarse, so the upper limit is set to 1250 ° C.

2.圧延条件
圧延終了温度がAr点を下回る場合、二相域圧延となり、全伸びが劣化するため、Ar点以上とする。また、Ar点以上での累積圧下率は、50%を下回る場合、オーステナイト粒の微細化を通じたフェライト粒の微細化や組織微細化が不十分となり鋼板の基本性能である靭性が劣化するため、50%以上とする。
2. If rolling conditions rolling end temperature is lower than 3 points Ar, becomes a two-phase region rolling, since the total elongation is deteriorated, and Ar 3 point or more. In addition, when the cumulative rolling reduction at 3 or more points of Ar is less than 50%, the refinement of the ferrite grains and the refinement of the structure through the refinement of the austenite grains become insufficient, and the toughness that is the basic performance of the steel sheet deteriorates. 50% or more.

3.加速冷却条件
加速冷却開始温度は、過剰なフェライト析出による強度低下を避けるため、その下限をAr点とする。
3. Accelerated cooling condition The accelerated cooling start temperature has a lower limit of Ar 3 in order to avoid a decrease in strength due to excessive ferrite precipitation.

加速冷却停止温度は、未変態オーステナイトを硬質相に変態させるため、600℃以下、300℃以上とする。加速冷却停止温度が600℃を超える場合、疲労き裂伝播抵抗性が劣化するようになり、十分な強度、具体的には570MPa以上の強度が得られない場合がある。   The accelerated cooling stop temperature is set to 600 ° C. or lower and 300 ° C. or higher in order to transform untransformed austenite into a hard phase. When the accelerated cooling stop temperature exceeds 600 ° C., fatigue crack propagation resistance deteriorates, and sufficient strength, specifically, strength of 570 MPa or more may not be obtained.

一方、加速冷却停止温度が300℃を下回る場合、上述した成分系の鋼板では十分な全伸び、具体的には全厚引張試験(試験片形状JIS5号)で25%の伸びが得られなくなる。   On the other hand, when the accelerated cooling stop temperature is lower than 300 ° C., the above-described component steel sheet cannot obtain a sufficient total elongation, specifically, 25% elongation in the full thickness tensile test (test piece shape JIS No. 5).

冷却速度は、冷却中に疲労き裂伝播特性を劣化させるフェライトの粗大化やこれを通じた組織の粗大化を防ぐために10℃/s以上とする。   The cooling rate is set to 10 ° C./s or more in order to prevent coarsening of ferrite that deteriorates fatigue crack propagation characteristics during cooling and coarsening of the structure through this.

冷却速度の好適範囲は、十分な粗大化抑制効果を得るために30℃/s以上、鋼板の残留応力低減のため60℃/s以下である。   The preferable range of the cooling rate is 30 ° C./s or more for obtaining a sufficient coarsening suppression effect, and 60 ° C./s or less for reducing the residual stress of the steel sheet.

なお、上記規定において温度は鋼材の表面温度とし、冷却速度は鋼材の厚さ方向の平均冷却速度とする。また、Ar点はAr(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo(但し、元素記号は鋼材中の各元素の質量%での含有量)等で求めることができる。 In the above rules, the temperature is the surface temperature of the steel material, and the cooling rate is the average cooling rate in the thickness direction of the steel material. The Ar 3 point can be determined by Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (where the element symbol is the content in mass% of each element in the steel). .

上述した成分組成と製造条件の組合わせにより、全伸びに優れ、かつ高い疲労き裂伝播抵抗性を有した板厚20mm以下、特に板厚18mm未満の薄物の厚鋼鈑であっても、TSが570MPa以上、全伸びが25%以上(JIS5号)でΔK=15MPa√mでの疲労き裂伝播速度8.75x10−9m/cycle以下である、疲労き裂伝播抵抗性に優れた加速冷却型厚鋼板が得られる。 The combination of the above-described component composition and manufacturing conditions enables the use of a steel plate having a thickness of 20 mm or less, particularly a thickness of less than 18 mm, which is excellent in total elongation and has high fatigue crack propagation resistance. Acceleration cooling excellent in fatigue crack propagation resistance, with an elongation of 570 MPa or more, a total elongation of 25% or more (JIS No. 5), and a fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less A die-thick steel plate is obtained.

表1に示す成分組成の鋼片から、表2に示す製造条件にて板厚12mmから17mmの鋼板を作成し、得られた鋼板の機械的性質を調査した。   Steel sheets having a thickness of 12 mm to 17 mm were prepared from the steel pieces having the composition shown in Table 1 under the manufacturing conditions shown in Table 2, and the mechanical properties of the obtained steel sheets were investigated.

疲労き裂伝播特性は、図1に示す片側切欠単純引張型疲労試験片にて、板厚方向にき裂が進展する時の疲労き裂伝播挙動を調査した。試験条件は、ASTM E647に準拠し、応力比0.1、周波数15Hz,室温大気中にて実施した。   With regard to fatigue crack propagation characteristics, the fatigue crack propagation behavior when a crack propagates in the plate thickness direction was investigated using a single-side notched simple tensile fatigue test piece shown in FIG. The test conditions were based on ASTM E647, and the stress ratio was 0.1, the frequency was 15 Hz, and the room temperature atmosphere was used.

引張強度は板幅方向に採取したJISZ22015号の全厚試験片を用いた引張試験により求めた。靭性はシャルピー衝撃試験により0℃の吸収エネルギー:vE(J)を求めた。シャルピー衝撃試験片(JISZ2202)は板厚中心より、圧延方向に平行に採取した。 The tensile strength was obtained by a tensile test using a full thickness test piece of JISZ22015 collected in the plate width direction. As for toughness, an absorbed energy at 0 ° C .: vE 0 (J) was determined by a Charpy impact test. A Charpy impact test piece (JISZ2202) was taken in parallel to the rolling direction from the center of the plate thickness.

引張、シャルピー、疲労き裂伝播試験結果を表2に製造条件と共に示す。成分組成、製造方法を本発明規定範囲内とした板番No.3〜No.6、No.15、17、18、No.20〜No.23の鋼板は、いずれにおいてもΔK=15MPa√mでの疲労き裂伝播速度8.75x10−9m/cycle以下であり、疲労き裂伝播抵抗性に優れる。 Table 2 shows the results of tensile, Charpy, and fatigue crack propagation tests together with the manufacturing conditions. The plate number No. in which the component composition and the production method are within the scope of the present invention. 3-No. 6, no. 15, 17, 18, no. 20-No. Each of the 23 steel plates has a fatigue crack propagation rate of 8.75 × 10 −9 m / cycle or less at ΔK = 15 MPa√m, and is excellent in fatigue crack propagation resistance.

また、TSが570MPa以上、伸びが25%以上、また構造用鋼板の基本特性としてvE(J)が200J以上を満足し、優れた全伸びと疲労き裂伝播抵抗性を示し、かつ、構造用鋼として適当な強度、靭性を確保していることが認められた。 Further, TS is 570 MPa or more, elongation is 25% or more, and vE 0 (J) is 200 J or more as a basic characteristic of the structural steel sheet, and exhibits excellent total elongation and fatigue crack propagation resistance, It was confirmed that the steel had adequate strength and toughness.

一方、C添加量が本発明範囲を超える鋼種A、Bを使った実施例No.1、2の鋼板は、疲労き裂伝播速度は本発明例程度と優れているものの、全伸びが低い。   On the other hand, Example No. using steel types A and B in which the addition amount of C exceeds the range of the present invention. The steel sheets 1 and 2 have excellent fatigue crack propagation speeds of the order of the present invention, but the total elongation is low.

Ceqが本発明範囲に満たない鋼種Gを使った実施例No.7の鋼板は、570MPa級鋼として必要な強度が得られていない。Ceqが本発明範囲を超える鋼種Hを使った実施例No.8の鋼板は、強度が高すぎて全伸びが劣化する。   Example No. using steel grade G with Ceq less than the scope of the present invention. The steel plate No. 7 does not have the required strength as a 570 MPa grade steel. Example No. using steel grade H with Ceq exceeding the range of the present invention. The steel plate No. 8 has too high strength and deteriorates in total elongation.

Mn添加量が本発明範囲を超える鋼種Iを使った実施例No.9の鋼板も、強度が高すぎて全伸びが劣化する。   Example No. using steel type I in which the amount of Mn added exceeds the range of the present invention. The steel plate of No. 9 is too strong and deteriorates in total elongation.

実施例No10から14は、鋼種Eをさまざまな製造条件で製造したものである。実施例10は、スラブ加熱温度が本発明範囲を超えており、オーステナイト粒径が粗大化したため、圧延後鋼板の靭性が劣化している。   In Examples Nos. 10 to 14, the steel type E is manufactured under various manufacturing conditions. In Example 10, the slab heating temperature exceeded the range of the present invention, and the austenite grain size was coarsened, so that the toughness of the steel sheet after rolling was deteriorated.

Ar点以上の圧下率が本発明規定値:50%を下回るNo.11の鋼板も、オーステナイトの再結晶が十分でなく、冷却後に粗い組織となっているため、靭性が劣化している。 Ar No. 3 Rolling rate of 3 points or more is less than the specified value of the present invention: 50%. Steel No. 11 also has poor toughness because austenite is not sufficiently recrystallized and has a rough structure after cooling.

圧延終了温度がAr点を下回る(二相域圧延)No.12の鋼板は、全伸びが劣化している。加速冷却開始温度がAr点を上回るNo.13の鋼板は水冷開始前に初析フェライトが析出してフェライトが過剰となったため、570MPa級鋼として必要な強度が得られていない。 Rolling finish temperature is below Ar 3 point (two-phase rolling) No. 12 steel plate has deteriorated in total elongation. The accelerated cooling start temperature is higher than the Ar 3 point. In Steel No. 13, proeutectoid ferrite was precipitated before the start of water cooling, and the ferrite was excessive. Therefore, the strength required for 570 MPa grade steel was not obtained.

冷却速度が本発明範囲から外れるNo.14の鋼板は、強度が低下するとともに、組織の粗大化により靭性が劣化、また疲労き裂伝播抵抗性も低下している。加速冷却時の停止温度が本発明範囲を超えるNo.16の鋼板は、優れた全伸びを示すものの、570MPa級鋼として必要な強度が得られておらず、疲労き裂伝播抵抗性も劣る。   The cooling rate deviates from the scope of the present invention. The steel plate No. 14 has a reduced strength, a deteriorated toughness due to coarsening of the structure, and a fatigue crack propagation resistance. No. in which the stop temperature during accelerated cooling exceeds the range of the present invention. Although steel plate No. 16 exhibits excellent total elongation, the strength required for 570 MPa grade steel has not been obtained, and fatigue crack propagation resistance is also inferior.

加速冷却時の停止温度が本発明範囲よりも低いNo.19の鋼板は、優れた疲労き裂伝播抵抗性を示すものの、全伸びに劣る。   No. in which the stop temperature during accelerated cooling is lower than the range of the present invention. No. 19 steel plate exhibits excellent fatigue crack propagation resistance but is inferior in total elongation.

Figure 0005470904
Figure 0005470904

Figure 0005470904
Figure 0005470904

Claims (2)

質量%で、C:0.03%以上、0.10%未満、Si:0.05〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%)):0.3〜0.4、残部Feおよび不可避的不純物からなる鋼を、1000℃以上、1250℃以下に加熱し、Ar点以上での累積圧下率が50%以上となるように、Ar点以上の圧延終了温度で圧延後、引続きオンラインで、Ar+11℃)以上の温度域より600℃以下300℃以上まで、30℃/s以上で加速冷却することを特徴とする、TSが570MPa以上、全伸びが25%以上、ΔK=15MPa√mでの疲労き裂伝播速度8.75x10−9m/cycle以下の、全伸びと疲労き裂伝播抵抗性に優れた板厚20mm以下の厚鋼板の製造方法。 C: 0.03% or more, less than 0.10%, Si: 0.05 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02% or less, Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is contained (mass%)): 0.3 to 0.4 the steel balance consisting of Fe and unavoidable impurities, 1000 ° C. or higher, then heated to 1250 ° C. or less, as the cumulative rolling reduction at Ar 3 point or more is 50% or more, Ar 3 point or more rolling end temperature After rolling, on-line, it is accelerated cooling at 30 ° C / s or more from 600 ° C or less to 300 ° C or more from a temperature range of ( Ar 3 points + 11 ° C) or more, TS is 570 MPa or more, and total elongation is more than 25%, ΔK = fatigue in 15MPa√m crack propagation velocity 8.75x10 - m / cycle or less of the total elongation and a manufacturing method of steel plate excellent thickness 20mm below the fatigue crack propagation resistance. 更に、鋼成分として、質量%で、Cu:0.4%以下、Ni:0.8%以下、Cr:0.4%以下、Mo:0.4%以下、Nb:0.05%以下、V:0.05%以下、Ti:0.03%以下、B:0.003%以下、Ca:0.005%以下の一種または二種以上を含有することを特徴とする請求項1記載のTSが570MPa以上、全伸びが25%以上、ΔK=15MPa√mでの疲労き裂伝播速度8.75x10−9m/cycle以下の、全伸びと疲労き裂伝播抵抗性に優れた板厚20mm以下の厚鋼板の製造方法。 Further, as a steel component, in mass%, Cu: 0.4% or less, Ni: 0.8% or less, Cr: 0.4% or less, Mo: 0.4% or less, Nb: 0.05% or less, 2. V: 0.05% or less; Ti: 0.03% or less; B: 0.003% or less; Ca: 0.005% or less. TS of 570 MPa or more, total elongation of 25% or more, and a fatigue crack propagation rate of 8.75 × 10 −9 m / cycle or less at ΔK = 15 MPa√m, a plate thickness of 20 mm excellent in total elongation and fatigue crack propagation resistance The manufacturing method of the following thick steel plates.
JP2009041737A 2009-02-25 2009-02-25 TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate Active JP5470904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041737A JP5470904B2 (en) 2009-02-25 2009-02-25 TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041737A JP5470904B2 (en) 2009-02-25 2009-02-25 TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate

Publications (2)

Publication Number Publication Date
JP2010196109A JP2010196109A (en) 2010-09-09
JP5470904B2 true JP5470904B2 (en) 2014-04-16

Family

ID=42821125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041737A Active JP5470904B2 (en) 2009-02-25 2009-02-25 TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate

Country Status (1)

Country Link
JP (1) JP5470904B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070814B1 (en) 2020-09-14 2022-05-18 Jfeスチール株式会社 Thick steel plate and its manufacturing method
CN113584408B (en) * 2021-09-29 2021-12-31 江苏省沙钢钢铁研究院有限公司 Structural steel plate for wind power and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217418A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JPH05112823A (en) * 1991-10-18 1993-05-07 Kobe Steel Ltd Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2785643B2 (en) * 1993-05-11 1998-08-13 住友金属工業株式会社 Steel plate for tanker with excellent fatigue crack growth resistance in wet hydrogen sulfide environment
JP4309946B2 (en) * 2007-03-05 2009-08-05 新日本製鐵株式会社 Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5157220B2 (en) * 2007-03-30 2013-03-06 Jfeスチール株式会社 Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance

Also Published As

Publication number Publication date
JP2010196109A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
JP4892978B2 (en) Method for producing high-tensile steel plate with excellent SSC resistance
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP4770235B2 (en) Manufacturing method of steel with excellent ductility and fatigue crack propagation characteristics
JP4687122B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP5151079B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP2005298877A (en) Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5050423B2 (en) Steel with excellent fatigue crack propagation resistance
JP5266836B2 (en) Method of manufacturing a steel material excellent in fatigue crack propagation resistance and ductility
JP2009256780A (en) 780 MPa CLASS LOW YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP5157220B2 (en) Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP4314962B2 (en) Composite steel sheet with excellent fatigue characteristics and method for producing the same
JP2007197778A (en) High-strength steel material having low strength-dependency and superior fatigue-crack propagation resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5470904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250