JP2002069592A - Cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability - Google Patents

Cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability

Info

Publication number
JP2002069592A
JP2002069592A JP2000270594A JP2000270594A JP2002069592A JP 2002069592 A JP2002069592 A JP 2002069592A JP 2000270594 A JP2000270594 A JP 2000270594A JP 2000270594 A JP2000270594 A JP 2000270594A JP 2002069592 A JP2002069592 A JP 2002069592A
Authority
JP
Japan
Prior art keywords
ferrite
slab
stainless steel
austenite
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000270594A
Other languages
Japanese (ja)
Other versions
JP3831184B2 (en
Inventor
Yusuke Oikawa
雄介 及川
Shigeo Fukumoto
成雄 福元
Mayumi Okimori
麻佑巳 沖森
Yoshinori Tada
好宣 多田
Yuji Inoue
裕磁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000270594A priority Critical patent/JP3831184B2/en
Publication of JP2002069592A publication Critical patent/JP2002069592A/en
Application granted granted Critical
Publication of JP3831184B2 publication Critical patent/JP3831184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly hot-workable cast stainless steel slab containing two phases of austenite and ferrite with which hot rolling of a continuously cast slab is made possible without using a slabbing stage while practically leaving the influence of ferrite content and S content out of consideration. SOLUTION: The cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability is an as-cast slab of stainless steel having ferritic phases in austenitic phases and has a composition containing, by mass, <=0.05% Al, 0.005-0.1% Ti, 0.0005-0.01% Mg and 0.01-0.1% N and satisfying either or both of Ti×N>=8×10-4 and Al/Mg<=4. Moreover, in the region between the surface layer of the cast slab and a position at a depth of 10 mm from the surface layer, in the case of an as-cast state, the area ratio of the ferritic phases is 5-75% and the maximum length of an arbitrary ferritic phase is <=0.7 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば溶接棒など
に使用される高デルタフェライトオーステナイト系ステ
ンレス鋼のような、オーステナイトとフェライトの2相
を有するステンレス鋼を製造する際の素材である鋳片に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab which is used as a material for producing a stainless steel having two phases of austenite and ferrite, such as a high delta ferrite austenitic stainless steel used for a welding rod or the like. It is about.

【0002】[0002]

【従来の技術】ステンレス鋼は、常温における相により
オーステナイト系やフェライト系等に分類されるが、そ
の中にオーステナイトとフェライトの二相を有するもの
もある。オーステナイト,フェライトが等量に近いもの
はオーステナイト−フェライト系と分類されるが、オー
ステナイト中にフェライトが10%前後含まれているS
USY308やSUSY309等はオーステナイト系に
分類される。
2. Description of the Related Art Stainless steels are classified into austenitic and ferritic based on phases at room temperature, and some of them have two phases of austenite and ferrite. An austenite and ferrite having almost equal amounts are classified as an austenite-ferrite system, and the austenite contains about 10% ferrite in S.
USY308, SUSY309, etc. are classified as austenitic.

【0003】溶接部がフェライト相(いわゆるデルタフ
ェライト)を多く含む組織であると溶接割れが生じ難く
なることから、溶接棒用の材料として鋳造組織に多量の
デルタフェライト相が生成するステンレス棒線材が広く
使用されている。溶接金属のフェライト相(デルタフェ
ライト)量は、例えば下記(1)式のような成分との関
係式で近似され、このδFe(cal)値の高い成分
系、具体的には前述のSUSY309などが溶接棒用の
材料として性能良好とされている。 δFe(cal)=3(Cr+Mo+1.5Si)−2.8{Ni+ 0.5Mn+30(C+N)}−19.8………(1)
[0003] If the weld has a structure containing a large amount of ferrite phase (so-called delta ferrite), welding cracks are unlikely to occur. Therefore, as a material for a welding rod, a stainless steel rod having a large amount of delta ferrite phase formed in a cast structure is used. Widely used. The amount of the ferrite phase (delta ferrite) of the weld metal is approximated by, for example, a relational expression with the following component (1), and a component system having a high δFe (cal) value, specifically, the above-mentioned SUSY309 or the like is used. It is considered to have good performance as a material for welding rods. δFe (cal) = 3 (Cr + Mo + 1.5Si) −2.8 {Ni + 0.5Mn + 30 (C + N)} − 19.8 (1)

【0004】しかし、このような組成の鋼の鋳片は多量
のフェライト相を含み、フェライト、オーステナイト相
の高温伸びの違いから相境界に歪みが集中することによ
り、熱間圧延において割れが発生しやすいので、小断面
の連続鋳造鋳片であってもそのまま熱間圧延することは
できなかった。したがって、従来は鋳片を分塊圧延した
のち表面疵を研削除去し、再加熱して熱間圧延を行って
いた。
[0004] However, steel slabs having such a composition contain a large amount of ferrite phase, and strain is concentrated on the phase boundary due to the difference in the high-temperature elongation of the ferrite and austenite phases. Therefore, even a continuous cast slab having a small cross section could not be directly hot-rolled. Therefore, conventionally, hot rolling was performed by subjecting a slab to slab rolling, grinding and removing surface flaws, and reheating.

【0005】これらの対策として、従来例えば特公昭5
6−25265号公報や特開平2−118052号公報
のように、オーステナイト−フェライト相境界に粒界偏
析するSの影響を極力排除すべく、S低減およびS固定
元素であるCa,REM等の添加が広く行われている。
しかしながらこれらの対策を行うと、溶接時に溶融金属
の溶け込み性、ひいては溶接作業性が悪化するため、溶
接棒用の材料には適用し難い。
[0005] As a countermeasure against these, conventionally, for example, Japanese Patent Publication No. Sho 5
As described in JP-A-6-25265 and JP-A-2-111852, in order to minimize the influence of S that segregates at the austenite-ferrite phase boundary at the grain boundary, S is reduced and S-fixing elements such as Ca and REM are added. Is widely practiced.
However, if these countermeasures are taken, the meltability of the molten metal at the time of welding and, consequently, the workability of welding deteriorate, so that it is difficult to apply the method to a material for a welding rod.

【0006】一方本発明者らは、連続鋳造鋳片を分塊圧
延工程を経ずに熱間圧延可能とする製造法として、特開
平11−256234号公報に記載した発明を開示して
いる。この製造法は、溶接部におけるものと鋳片に熱処
理を施した際とでデルタフェライト量と成分の関係が若
干異なることを用い、熱処理後のフェライト量を示す前
述のδFe(cal)とは異なる推定式の値(以下YI
値と呼ぶ)を一定以下に規定し、かつ鋳片に一定の熱処
理を施した後圧延を行うことにより、圧延時におけるデ
ルタフェライト相の悪影響を極力排する方法である。
On the other hand, the present inventors have disclosed the invention described in Japanese Patent Application Laid-Open No. H11-256234 as a method for producing a continuous cast slab that can be hot-rolled without going through a slab rolling step. This manufacturing method is different from the above-mentioned δFe (cal), which indicates the amount of ferrite after heat treatment, by using the fact that the relationship between the amount of delta ferrite and the component is slightly different between that at the welded portion and that when the slab is subjected to heat treatment. The value of the estimation formula (hereinafter YI
This is a method in which the negative effect of the delta ferrite phase at the time of rolling is eliminated as much as possible by defining the slab to a certain value or less and subjecting the slab to a certain heat treatment before rolling.

【0007】[0007]

【発明が解決しようとする課題】溶接棒用の素材として
フェライト量の多いステンレス線材が要望されている
が、同材は従来熱延時の割れ発生を回避するため、分塊
圧延を省略することができなかった。そして分塊圧延工
程には高コストを要し、加熱のためのエネルギー消費、
さらに製造日数の増大といった問題を有していた。
There is a demand for a stainless steel wire having a large amount of ferrite as a material for a welding rod. However, in order to avoid the occurrence of cracks during hot rolling in the past, it is necessary to omit slab rolling. could not. And the slab rolling process requires high cost, energy consumption for heating,
In addition, there was a problem that the number of production days increased.

【0008】上記特開平11−256234号公報に開
示された方法によれば、上記分塊工程を省略することは
可能である。しかしながら前述のδFe(cal)とY
I値は1対1対応していないといえども、溶接特性を向
上させるべくδFe(cal)の値を高くするとYI値
も高まる傾向にあり、成分に完全な自由度を持って分塊
工程を省略し得るわけではない。
According to the method disclosed in JP-A-11-256234, it is possible to omit the lumping step. However, the aforementioned δFe (cal) and Y
Although the I value does not correspond one-to-one, the YI value tends to increase when the value of δFe (cal) is increased in order to improve the welding characteristics, and the lumping process is performed with complete freedom in the components. It cannot be omitted.

【0009】そこで本発明は、溶接棒用材料として好ま
しい、フェライト量を多くした成分系のオーステナイト
系ステンレス線材のような、オーステナイト−フェライ
トの2相を含むステンレス鋼について、そのフェライト
量やS量の影響をほとんど考慮することなく、連続鋳造
鋳片を分塊圧延工程を経ずに熱間圧延可能となる熱間加
工性良好なステンレス鋼鋳片を提供することを目的とす
る。
Accordingly, the present invention relates to a stainless steel containing two phases of austenite-ferrite, such as a component-type austenitic stainless steel wire having a large amount of ferrite, which is preferable as a material for a welding rod. An object of the present invention is to provide a stainless steel slab with good hot workability, which enables hot rolling of a continuously cast slab without going through a slab rolling step, with almost no influence being taken into account.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明の要旨は、熱間加工を行うための鋳片加熱直前
の時点で、任意の断面において鋳片表層から10mm深
さまで、鋳造ままの場合フェライト相の面積率が5%以
上75%以下、かつ任意のフェライト相の最大長さが
0.7mm以下とし、または熱処理後の場合フェライト
相の面積率が2%以上75%以下、かつ任意のフェライ
ト相の最大長さが0.4mm以下であることを特徴とす
る熱間加工性に優れたオーステナイト−フェライト二相
を有するステンレス鋼鋳片である。
The gist of the present invention to achieve the above object is to provide a method of casting a slab from any surface to a depth of 10 mm from the surface of the slab just before heating the slab for hot working. If the area ratio of the ferrite phase is 5% or more and 75% or less and the maximum length of any ferrite phase is 0.7 mm or less, or if the area ratio of the ferrite phase is 2% or more and 75% or less after heat treatment, A stainless steel slab having an austenite-ferrite two phase excellent in hot workability, characterized in that an arbitrary ferrite phase has a maximum length of 0.4 mm or less.

【0011】これを得るためには、非金属介在物の見地
からは任意の断面において鋳片表層から10mm深さま
で、Ti系窒化物とMg系酸化物の最大径0.05〜2
μmの複合非金属介在物が200個/mm2 以上存在し
ていれば良いし、成分的には質量%にて、Al:0.0
5%以下、Ti:0.005〜0.1%、Mg:0.0
005〜0.01%、N:0.01〜0.1%であり、
かつ(1)Ti×N≧8×10-4、(2)Al/Mg≦
4の何れかまたは両方を満たしていればよい。
To obtain this, from the viewpoint of nonmetallic inclusions, the maximum diameter of Ti-based nitride and Mg-based oxide is 0.05 to 2 mm at an arbitrary cross section to a depth of 10 mm from the surface layer of the slab.
It is only necessary that 200 μm / mm 2 or more of composite non-metallic inclusions having a thickness of μm exist.
5% or less, Ti: 0.005 to 0.1%, Mg: 0.0
005 to 0.01%, N: 0.01 to 0.1%,
And (1) Ti × N ≧ 8 × 10 −4 , (2) Al / Mg ≦
It suffices if one or both of the four conditions are satisfied.

【0012】[0012]

【発明の実施の形態】本発明者らは、前述したようにこ
れまで熱間加工性を阻害するフェライト相の量を低減す
る方策について種々検討してきたが、高フェライト成分
系を維持しつつ鋳片のフェライト量を低減するのは自ず
から限界があった。そこで、フェライト相の量ではなく
形態を制御することにより、高フェライト成分系のまま
熱間加工性を向上させる方法を種々検討した結果、下記
に示すように、高フェライトであるにもかかわらず熱間
加工性の良好な鋳片を得ることが出来た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present inventors have studied various measures for reducing the amount of ferrite phase that hinders hot workability. There was naturally a limit in reducing the amount of ferrite in a piece. Therefore, as a result of various investigations to improve the hot workability while maintaining the high ferrite component system by controlling the morphology, not the amount of the ferrite phase, as shown below, despite the fact that the ferrite phase is high ferrite, A cast slab having good workability was obtained.

【0013】急冷凝固金属等ではない通常製法の鋳片で
は、オーステナイト相が柱状晶、フェライト相はオース
テナイト相の中に魚の骨状または面状の形態で存在して
いる。このような組織の場合は相境界に歪みが蓄積し、
限界を超えると割れを生じる。従って、フェライトを微
細分散形態にすれば相境界の歪みが分散されて熱間加工
性が向上すると考えた。
In a slab of a normal production method that is not a rapidly solidified metal or the like, the austenite phase exists in the form of columnar crystals, and the ferrite phase exists in the austenite phase in the form of a fish bone or a plane. In the case of such a structure, strain accumulates at the phase boundary,
If the limit is exceeded, cracks will occur. Therefore, it was considered that when the ferrite was made into a finely dispersed form, the strain at the phase boundary was dispersed and the hot workability was improved.

【0014】先ず、請求項1の限定理由について説明す
る。図1は、フェライト量10.5〜12%を有するS
USY309の鋳造ままの鋳片において、フェライト相
の最大長さと1000℃における破断絞り値との関係を
示したものである。フェライト相最大長さが小さくなる
に従って熱間加工性は向上し、0.7mm以下になる
と、通常問題なく圧延し得るとされる破断絞り値60%
を超えるまでになることが判る。
First, the reason for limitation in claim 1 will be described. FIG. 1 shows that S with a ferrite content of 10.5-12%
It shows the relationship between the maximum length of the ferrite phase and the rupture reduction at 1000 ° C. in the as-cast USY309 slab. As the maximum length of the ferrite phase becomes smaller, the hot workability improves.
It turns out that it becomes over.

【0015】フェライト相の最大長さは、以下のように
算出している。該鋳片のC断面のうち表層から深さ10
mm迄の領域で、村上試薬により着色後光学顕微鏡によ
り任意の20視野(合計約100mm2 )を観察した。
図2に示すように、一つに繋がっている(オーステナイ
ト相との境界線が閉じている)フェライト相領域それぞ
れについて最大距離(矢印)を求め、その最大値を最大
長さとした。100mm2 程度で任意の断面を代表しう
るかどうかについては問題もあろうが、後述の製法によ
るものでは全断面が均一的に同様の組織となるため、工
業的には問題なく目的を達成できた。
The maximum length of the ferrite phase is calculated as follows. Depth 10 from the surface layer in the C section of the slab
After coloring with Murakami's reagent, an arbitrary 20 visual fields (total about 100 mm 2 ) were observed with an optical microscope in the region up to mm.
As shown in FIG. 2, the maximum distance (arrow) was determined for each of the ferrite phase regions connected together (the boundary line with the austenite phase was closed), and the maximum value was defined as the maximum length. There may be a problem as to whether or not an arbitrary cross section can be represented by about 100 mm 2 , but with the production method described below, the entire cross section has the same structure uniformly, so that the objective can be achieved industrially without any problem. .

【0016】なおフェライト量については、それが5%
未満の場合は例えフェライト相が大きくとも、全体に占
める割合が少ないから元々熱間加工性良好であるため、
本発明では5%以上に限定した。また75%より大量の
場合も、元々の熱間加工性が良好であるために効果がな
く、本発明の範囲から外した。フェライト量は先述の組
織観察の際、フェライトが占める面積を画像解析により
求めればよいが、市販のフェライトメーターにより測定
する方法でも良い。
The amount of ferrite is 5%
If less than, even if the ferrite phase is large, since the proportion of the whole is small, the hot workability is originally good, so
In the present invention, it is limited to 5% or more. Also, when the amount is more than 75%, there is no effect because the original hot workability is good, and it is out of the scope of the present invention. The amount of ferrite may be obtained by image analysis of the area occupied by ferrite at the time of the above-described structure observation, but may be measured by a commercially available ferrite meter.

【0017】次に、請求項2の限定理由を述べる。高フ
ェライト材の場合、鋳片を一度熱処理しフェライトを低
減してから圧延に供することがあるが、その場合必要条
件が請求項1の鋳造ままの条件より若干変動する。実験
の結果、フェライト量は2%以上75%以下、フェライ
ト最大長さは0.4mm以下の時に、鋳造ままのものと
同様の効果が得られる事が判った。
Next, the reason for limitation of claim 2 will be described. In the case of a high ferrite material, the slab may be subjected to a heat treatment once to reduce the ferrite and then subjected to rolling. In this case, the necessary conditions slightly vary from the as-cast condition of the first aspect. As a result of the experiment, it was found that when the amount of ferrite was 2% or more and 75% or less and the maximum length of ferrite was 0.4 mm or less, the same effect as that of the as-cast product was obtained.

【0018】更に、評価すべき鋳片は、熱間加工を行う
ための鋳片加熱直前の時点のものとする。例えば表面を
研削除去した後に圧延に供する場合は、研削後の鋳片を
評価する。表層から10mmより内部のフェライトが微
細分散していない場合、如何様になるかについては、後
述の方法では10mmより内部も含めた鋳片全体が微細
分散するため評価していないが、経験上10mmより内
部で割れが生じても表層に開いて出たりせず、熱間圧延
中に再固着してしまうことが判っており、10mmより
内部は評価の必要が無い。
Further, the slab to be evaluated is a slab just before heating the slab for hot working. For example, when rolling is performed after the surface is removed by grinding, the cast slab after grinding is evaluated. When ferrite inside 10 mm from the surface layer is not finely dispersed, what happens is not evaluated in the method described later because the entire slab including the inside including 10 mm is finely dispersed. It has been found that even if cracks occur in the interior, they do not open to the surface layer and re-attach during hot rolling, and there is no need to evaluate the interior from 10 mm.

【0019】このような鋳片を得る方法の一つとして、
本発明者らはTi系窒化物とMg系酸化物が複合してい
る非金属介在物を分散させることで達成できることを見
出した。また、後述するような所定の成分範囲でTiと
Mgの微量添加を行うことにより、全く通常法の鋳造を
行っても、鋳片にこのような非金属介在物を分散させる
ことが出来、フェライト相が微細分散することをつかん
だ。
As one method of obtaining such a slab,
The present inventors have found that this can be achieved by dispersing nonmetallic inclusions in which a Ti-based nitride and a Mg-based oxide are combined. In addition, by adding a small amount of Ti and Mg in a predetermined component range as described later, even if casting is performed in a completely ordinary manner, such non-metallic inclusions can be dispersed in the cast slab, and ferrite can be obtained. The phase was finely dispersed.

【0020】非金属介在物のサイズは、その最大径が
0.05μm未満の場合にはフェライト微細化効果が少
なく、2.0μm超の場合には耐食性の低下等の別課題
が生じるため、0.05〜2.0μmの範囲とした。分
布密度は200個/mm2 で効果が認められる。なお、
Ti系窒化物とMg系酸化物は、窒素、酸素以外の成分
で最も多いものがそれぞれTi,Mgであるものとす
る。これら非金属介在物の成分、サイズ、分布を測定す
るには、鋳片や製品の任意の断面において、電子顕微鏡
とエネルギー分散型スペクトル法(EDS)あるいはX
線マイクロアナライザー(EPMA)等により調査する
方法が考えられる。
When the maximum diameter of the nonmetallic inclusions is less than 0.05 μm, the effect of miniaturizing the ferrite is small, and when it exceeds 2.0 μm, other problems such as a decrease in corrosion resistance occur. The range was 0.05 to 2.0 μm. The effect is recognized at a distribution density of 200 / mm 2 . In addition,
Among the Ti-based nitride and the Mg-based oxide, it is assumed that the largest components other than nitrogen and oxygen are Ti and Mg, respectively. To measure the component, size and distribution of these nonmetallic inclusions, an electron microscope and an energy dispersive spectroscopy (EDS) or X-ray
A method of investigating with a line microanalyzer (EPMA) or the like is considered.

【0021】これら非金属介在物がフェライト微細化効
果を発揮する原因としては、Ti系窒化物(TiN)が
フェライトと格子整合性が良いため、TiNが微細分散
することによりフェライト凝固核が多数生成し、その結
果フェライトが微細分散するものと推定している。しか
しながら、TiNのみを多数生成するように成分調整し
ても、粗大TiNを析出するのみで効果を発揮できな
い。Mg系酸化物(MgO)はTiNの析出核となり、
TiNを微細析出させるのに効果があると考えられる。
The reason why these nonmetallic inclusions exhibit the ferrite refining effect is that Ti-based nitride (TiN) has a good lattice matching with ferrite, so that fine dispersion of TiN produces many ferrite solidification nuclei. As a result, it is estimated that ferrite is finely dispersed. However, even if the components are adjusted so as to produce only a large amount of TiN, the effect cannot be exhibited only by depositing coarse TiN. Mg-based oxides (MgO) serve as precipitation nuclei for TiN,
It is thought that it is effective for finely depositing TiN.

【0022】これらの非金属介在物を生成するための方
策としては、以下の規定範囲に微量成分を制御すれば良
く、CrやNi等の量により、前述のδFe(cal)
等に沿った形で鋳片中に含有されるフェライトの量その
ものには特に影響されない。
As a measure for producing these nonmetallic inclusions, it is sufficient to control the trace components within the following specified range, and the above-mentioned δFe (cal) is controlled by the amount of Cr, Ni or the like.
It is not particularly affected by the amount of ferrite contained in the slab in a shape along the shape.

【0023】Al:Alは大量に添加するとAl酸化物
が生成され、MgOの生成を阻害するので、0.05%
を上限とした。
Al: When Al is added in a large amount, an Al oxide is formed, which inhibits the formation of MgO.
Was set as the upper limit.

【0024】Ti:TiはTi系窒化物を形成し、Mg
と複合で添加することで本発明の課題である組織制御を
可能とする元素であり、その効果が発揮されるのは0.
005%以上であるのでこれを下限とした。しかし、
0.1%を超えて添加すると製造性、加工性等の問題が
生じるため、0.1%を上限とした。
Ti: Ti forms Ti-based nitride, and Mg
Is an element capable of controlling the structure, which is an object of the present invention, when added in a composite with the alloy.
005% or more, so this was set as the lower limit. But,
If added in excess of 0.1%, problems such as manufacturability and workability arise, so 0.1% was made the upper limit.

【0025】Mg:MgはMg系酸化物を形成すること
で、本発明の課題である組織制御を可能とする重要な元
素である。この効果を発揮するのは0.0005%であ
り、これを下限とした。また大量に添加してもその効果
は飽和し、耐食性低下等の問題を生じるため、0.01
%を上限とした。
Mg: Mg is an important element that enables the control of the structure, which is an object of the present invention, by forming an Mg-based oxide. 0.0005% exerts this effect, and this is defined as the lower limit. Even if added in a large amount, the effect is saturated and a problem such as a decrease in corrosion resistance is caused.
% As the upper limit.

【0026】N:NはTi系窒化物を形成することで重
要な元素である。この効果を発揮するのは0.01%で
あり、これを下限とした。また大量に添加すると硬くな
り、加工性を損ねるため0.1%を上限とした。
N: N is an important element in forming a Ti-based nitride. 0.01% exerts this effect, and this is set as the lower limit. Further, if added in a large amount, it becomes hard and impairs the workability, so the upper limit was made 0.1%.

【0027】更に、TiとNをTi×N≧8×10-4
制御すると、溶鋼の凝固前にTiNの固溶限界を超えT
iNが析出するため、フェライトの微細分散効果が得ら
れる。しかしながらTiNの固溶限界以下でも、Al/
Mgが4以下の場合には、微細なMgOが生成すること
によりそれを核にしてTiNが析出するため、同様の効
果が得られる。4を超える場合には粗大なAl−Mg複
合酸化物が形成され、このような効果は期待できない。
Ti,Mgの範囲は、Alを0.07%,Nを0.02
%一定とすると、図3の斜線で示すようになる。但し、
図3の斜線で示した範囲の境界線はAl,Nが変動する
ことにより変動する。
Further, when Ti and N are controlled to Ti × N ≧ 8 × 10 -4 , T exceeds the solid solution limit of TiN before solidification of molten steel, and T
Since iN precipitates, a fine dispersion effect of ferrite can be obtained. However, even below the solid solution limit of TiN, Al /
When Mg is 4 or less, fine MgO is generated and TiN is precipitated using the fine nucleus as a nucleus, so that the same effect can be obtained. If it exceeds 4, a coarse Al-Mg composite oxide is formed, and such an effect cannot be expected.
The ranges of Ti and Mg are as follows: Al is 0.07%, N is 0.02%.
Assuming that% is constant, it becomes as shown by oblique lines in FIG. However,
The boundary line of the range shown by the diagonal lines in FIG. 3 fluctuates as Al and N fluctuate.

【0028】[0028]

【実施例】表1に示す化学成分で、残部がFeおよび不
可避的不純物からなる No.AからVまでのステンレス鋼
について、直径170mmφの連続鋳造鋳片を1200
℃に加熱し、連続線材圧延ラインで5.5mmφまで熱
間圧延を行った。No.AからVそれぞれについて、鋳片
の非金属介在物およびフェライトの評価を行った結果を
表2に示す。各々の鋳片は、表層から深さ10mmまで
の任意の位置で、合計100mm2 の面積について顕微
鏡および電子顕微鏡による評価を行った。
EXAMPLE For stainless steels of Nos. A to V having the chemical components shown in Table 1 and the balance being Fe and unavoidable impurities, a continuous cast slab having a diameter of 170 mmφ was prepared from 1200 stainless steel.
C., and hot-rolled to 5.5 mmφ in a continuous wire rod rolling line. Table 2 shows the results of evaluation of non-metallic inclusions and ferrite in the cast slabs for Nos. A to V, respectively. Each cast piece was evaluated by a microscope and an electron microscope at an arbitrary position from the surface layer to a depth of 10 mm for a total area of 100 mm 2 .

【0029】非金属介在物は、電子顕微鏡+EDSによ
り任意の20個について組成分析を行い、組成と形状,
色彩の対応を付け、その上でMg系酸化物+Ti系窒化
物の複合非金属介在物であり、かつ最大径が0.5〜2
μmである非金属介在物の個数をカウントした。全非金
属介在物を分析したわけではないので、全ての非金属介
在物が同様の組成を持っているとは限らないが、先述の
20個についてはほぼ組成と形状、色彩間の対応が1対
1で付くことから、これでほぼ所要の条件を満たしてい
ると考える。
As for the nonmetallic inclusions, a composition analysis was performed on any 20 non-metallic inclusions using an electron microscope and EDS, and the composition, shape,
Colors are added, and composite non-metallic inclusions of Mg-based oxide + Ti-based nitride are added, and the maximum diameter is 0.5 to 2
The number of nonmetallic inclusions of μm was counted. Since not all non-metallic inclusions were analyzed, not all non-metallic inclusions have the same composition, but the correspondence between the composition, shape, and color of the above-mentioned 20 was almost one. It is considered that this almost satisfies the required condition because the information is provided in one-to-one correspondence.

【0030】フェライトは顕微鏡により各々の粒につい
て、図2で示した方法で最大長さを算出し、その中の最
大値を求めた。更に、圧延後の疵の状況を表2に○、
△、×で示した。○は成品として全く問題ない程度、△
は研削にて救済可能又は一部が成品に使用可能のもの、
×は全く使用不可又は圧延途中で切断したため圧延を中
止したものである。なお、表中の No.AとBは現行まま
かつ同じ成分の鋳片であるが、 No.Aは通常部の鋳片で
あるのに対し、 No.Bは表層部のフェライトが分断して
いた鋳片を抜き出して評価したものである。また、評価
材のうち No.A,C,D,G,I,J,Lの7種類につ
いては、1200℃×20時間の均熱処理を施した後、
フェライトの状況及び圧延結果について同様の評価を行
った。それらの結果を表2に各アルファベットに「’」
を付けた記号で示す。
The maximum length of each grain of ferrite was calculated by a microscope using the method shown in FIG. 2, and the maximum value was calculated. Table 2 shows the condition of the flaw after rolling.
Indicated by Δ and ×. ○ is to the extent that there is no problem as a product, △
Can be remedied by grinding or can be partially used for products,
× indicates that the rolling was stopped because it could not be used at all or was cut during the rolling. Nos. A and B in the table are cast pieces of the same composition as they are at present, but No. A is a cast piece of the normal part, while No. B is a fragment of ferrite in the surface layer. The cast slab was extracted and evaluated. Also, among the evaluation materials, seven types of No. A, C, D, G, I, J, and L were subjected to a soaking treatment at 1200 ° C. for 20 hours.
Similar evaluations were made on the state of ferrite and the rolling results. The results are shown in Table 2 in each alphabet with '
Indicated by the symbol with.

【0031】まず、鋳造まま材の22種類の中で、本発
明例に当たる No.B,I〜Mは圧延結果良好であった。
全実施例22種類のうち No.C,D以外について、フェ
ライト状況と圧延結果との関係を見てみると、面積率に
ついては○材で7.2〜14.5%、△×材で6.8〜
10.5%と違いは見いだせないが、フェライト相最大
長さは○材で0.09〜0.7mm、△×材で0.73
〜8.5mmと、最大長さ0.7mm以下で、良好な特
性が得られていることが判る。なお No.C,Dについて
は、フェライト面積率が本発明範囲外であるため、フェ
ライト相最大長さが0.7mmより大きくても圧延結果
良好である。
First, among the 22 types of as-cast materials, Nos. B and I to M according to the present invention showed good rolling results.
Looking at the relationship between the state of ferrite and the rolling results for all of the 22 examples other than Nos. C and D, the area ratio was 7.2 to 14.5% for the O material and 6 for the ΔX material. .8-
Although no difference can be found with 10.5%, the maximum length of the ferrite phase is 0.09 to 0.7 mm for the ○ material and 0.73 for the Δ × material.
It can be seen that good characteristics are obtained when the maximum length is 0.7 mm or less, that is, 8.5 mm or less. For Nos. C and D, since the area ratio of the ferrite is out of the range of the present invention, the rolling result is good even if the maximum length of the ferrite phase is larger than 0.7 mm.

【0032】No.Aと異なり No.I〜Mは、鋳片全長に
渡り安定してフェライトが分断されている。これらにつ
いて非金属介在物組成を見ると、評価した各20個のほ
とんど全てがMg系酸化物とTi系窒化物の複合非金属
介在物であった。本発明例の No.I,K,Lには、それ
以外にTi系窒化物の単独非金属介在物が多少あった
が、これは電子顕微鏡写真の色彩で区別できた。そこで
最大径0.5〜2μmで上記複合非金属介在物である個
数をカウントしたところ、表2に示すように245〜6
40個/mm2 であり、規定の200個/mm2 以上を
満たしていた。これらの熱間加工性は、図1に示すよう
に1000℃で60%以上をクリアしており、その結果
問題なく圧延できたと考えられる。
Unlike No. A, Nos. I to M have stable ferrite fragmentation over the entire length of the slab. Looking at the composition of the nonmetallic inclusions for these, almost all of the 20 evaluations were composite nonmetallic inclusions of Mg-based oxides and Ti-based nitrides. In Nos. I, K, and L of the examples of the present invention, there were some non-metallic single inclusions of Ti-based nitrides, which could be distinguished by the color of the electron micrograph. Therefore, when the number of the composite non-metallic inclusions having a maximum diameter of 0.5 to 2 μm was counted, as shown in Table 2, 245 to 6
It was 40 pieces / mm 2 , which satisfied the prescribed 200 pieces / mm 2 or more. As shown in FIG. 1, the hot workability of these materials exceeded 60% or more at 1000 ° C., and as a result, it is considered that rolling was possible without any problem.

【0033】一方、比較例であるTi,Mg無添加の N
o.EおよびTiのみ添加の No.Fは、非金属介在物が全
てそれぞれAl,Cr,Mn酸化物、Ti酸化物であ
り、その上ほとんどサイズが2μmを超えていた。その
ためフェライト最大長さはそれぞれ8.5mm、2.1
mmであり、熱間加工性は非常に不良であった。比較例
No.G,HはTi,Mgとも所定の条件に不足してお
り、一部狙いの複合非金属介在物が見られるものの数が
少なく、その結果フェライト最大長さが未だ大きく、熱
間加工性不足であった。
On the other hand, a comparative example of N and Ti
In No. F to which only o.E and Ti were added, the nonmetallic inclusions were all Al, Cr, Mn oxides and Ti oxides, respectively, and moreover, the size almost exceeded 2 μm. Therefore, the maximum length of ferrite is 8.5 mm and 2.1 mm, respectively.
mm, and the hot workability was very poor. Comparative example
Nos. G and H are inadequate under the specified conditions for both Ti and Mg, and the number of composite non-metallic inclusions that are partially aimed at is small. As a result, the maximum length of ferrite is still large, and hot workability is high. It was short.

【0034】更に No.E〜L,N〜Vについて、圧延結
果(○△×)を横軸Ti,縦軸Mgで整理したものを図
4に示す。図中の No.E,F,N〜Tのうち、 No.E,
F,O,P,Q,Rは図4の矢印で示した範囲を外れて
いる。その中で No.Rだけは圧延結果は良好だが、耐食
性が非常に悪化する。 No.NはAl、 No.T,SはNが
発明範囲外のため、特性が悪化した。 No.Tは圧延結果
は良好だが、大量の窒素のため硬く、冷間加工性が悪化
した。
Further, for Nos. E to L and N to V, the rolling results (△ Δ ×) are arranged on the horizontal axis Ti and the vertical axis Mg in FIG. Of No. E, F, N to T in the figure, No. E,
F, O, P, Q, and R are out of the range indicated by the arrows in FIG. Among them, No. R alone has a good rolling result, but has extremely poor corrosion resistance. Since No. N was Al and No. T and S were N outside the range of the invention, the characteristics were deteriorated. No. T had good rolling results, but was hard due to a large amount of nitrogen, and the cold workability deteriorated.

【0035】図4に示す No.G〜L、U,Vについて
は、Ti量、Mg量だけで見ると○と△の違いは明確で
ないが、今回規定しているTixNおよびAl/Mgで
整理すると、図5に示すように本発明範囲内の No.I,
J,K,Lは良好であり、本発明範囲外の No.G,H,
U,Vは若干不良であるのが明確に判る。
With respect to Nos. G to L, U, and V shown in FIG. 4, the difference between ○ and Δ is not clear when only the Ti amount and the Mg amount are viewed, but are arranged by TixN and Al / Mg specified this time. Then, as shown in FIG.
J, K, and L were good, and Nos. G, H, and
It is clear that U and V are slightly defective.

【0036】熱処理材については、圧延結果は熱処理前
と同様で、 No.I’,J’,L’が良好であった。その
際のフェライト最大長さは表2の通りであり、0.4m
m以下であれば熱間加工性良好である。なお、 No.
C’,D’については、フェライト面積率が本発明範囲
外であるため、フェライト相最大長さが0.4mmより
大きくても圧延結果良好である。
With respect to the heat-treated material, the results of rolling were the same as before the heat treatment, and No. I ', J', and L 'were good. The maximum length of ferrite at that time is as shown in Table 2 and is 0.4 m
m or less, the hot workability is good. No.
Regarding C ′ and D ′, since the ferrite area ratio is out of the range of the present invention, the rolling result is good even if the maximum length of the ferrite phase is larger than 0.4 mm.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明法により、溶接棒用材料として好
ましい、溶接金属のフェライト量を多くした成分系のオ
ーステナイト系ステンレス鋼のような、オーステナイト
中にフェライトを含有した難熱間加工性のステンレス鋼
についても、連続鋳造鋳片を分塊圧延工程を経ずに、熱
間圧延により工業的に安定して製品を製造することがで
きる。したがって、分塊圧延省略により製造コスト低
減、製造時間短縮、消費エネルギー低減といった効果が
発揮される。
According to the method of the present invention, a hot-workable stainless steel containing ferrite in austenite, such as austenitic stainless steel of a component type having a high ferrite content in a weld metal, which is preferable as a material for a welding rod. As for steel, a product can be manufactured industrially stably by hot rolling without going through a slab rolling step of a continuously cast slab. Therefore, the effects of reducing the production cost, the production time, and the energy consumption can be exhibited by omitting the bulk rolling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フェライト最大長さと熱間加工性との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the maximum length of ferrite and hot workability.

【図2】フェライト最大長さの求め方を示す図である。FIG. 2 is a diagram showing a method of obtaining a maximum length of ferrite.

【図3】本発明法における必要Ti量とMg量の関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the required Ti amount and the Mg amount in the method of the present invention.

【図4】実施例の各供試材について、Ti,Mg量と圧
延結果との関係をまとめたグラフである。
FIG. 4 is a graph summarizing the relationship between the amounts of Ti and Mg and the rolling results for each test material of the example.

【図5】実施例の各供試材について、Ti×N,Al/
Mgと圧延結果との関係をまとめたグラフである。
FIG. 5 shows Ti × N, Al /
It is the graph which put together the relationship between Mg and the rolling result.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖森 麻佑巳 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 (72)発明者 多田 好宣 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 (72)発明者 井上 裕磁 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Mayumi Okimori 3434 Shimada, Hikari-shi, Nippon Steel Corporation Inside the Hikari Works (72) Inventor Yoshinobu Tada 3434 Shimada, Hikari-shi, Hikari-shi New Japan (72) Inventor Hiroyuki Inoue 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト相中にフェライト相を有
する熱間圧延用ステンレス鋼の鋳造ままの鋳片であっ
て、前記鋳片の表層から10mm深さまでの領域におい
て、鋳造ままの場合フェライト相の面積率が5%以上7
5%以下、かつ任意のフェライト相の最大長さが0.7
mm以下であることを特徴とする熱間加工性に優れたオ
ーステナイト−フェライト二相を有するステンレス鋼鋳
片。
1. An as-cast slab of hot-rolled stainless steel having a ferrite phase in an austenite phase, wherein the area of the as-cast ferrite phase in a region from the surface layer of the slab to a depth of 10 mm. Rate is 5% or more 7
5% or less, and the maximum length of any ferrite phase is 0.7
mm, a stainless steel slab having an austenite-ferrite dual phase excellent in hot workability.
【請求項2】 オーステナイト相中にフェライト相を有
する熱間圧延用ステンレス鋼の鋳片を熱処理した鋳片で
あって、前記鋳片の表層から10mm深さまでの領域に
おいて、フェライト相の面積率が2%以上75%以下、
かつ任意のフェライト相の最大長さが0.4mm以下で
あることを特徴とする熱間加工性に優れたオーステナイ
ト−フェライト二相を有するステンレス鋼鋳片。
2. A slab obtained by heat-treating a slab of hot-rolled stainless steel having a ferrite phase in an austenite phase, wherein the area ratio of the ferrite phase in a region from the surface layer of the slab to a depth of 10 mm is reduced. 2% or more and 75% or less,
A stainless steel slab having an austenite-ferrite dual phase excellent in hot workability, wherein the maximum length of any ferrite phase is 0.4 mm or less.
【請求項3】 前記鋳片表層から10mm深さまでの領
域において、Ti系窒化物とMg系酸化物の最大径0.
05〜2μmの複合非金属介在物が200個/mm2
上存在することを特徴とする請求項1または2に記載の
熱間加工性に優れたオーステナイト−フェライト二相を
有するステンレス鋼鋳片。
3. The maximum diameter of Ti-based nitride and Mg-based oxide in the region from the surface layer of the slab to a depth of 10 mm.
Composite non-metallic inclusions is 200 / mm 2 or more, characterized in that there claim 1 or 2 austenite has excellent hot workability according to the 05~2Myuemu - stainless steel slab having a ferrite two-phase.
【請求項4】 質量%にて、 Al:0.05%以下、 Ti:0.005〜0.1%、 Mg:0.0005〜0.01%、 N :0.01〜0.1% であり、かつTi×N≧8×10−4、Al/Mg≦4
の何れかまたは両方を満たすことを特徴とする請求項1
〜3のいずれか1項に記載の熱間加工性に優れたオース
テナイト−フェライト二相を有するステンレス鋼鋳片。
4. In mass%, Al: 0.05% or less, Ti: 0.005 to 0.1%, Mg: 0.0005 to 0.01%, N: 0.01 to 0.1% And Ti × N ≧ 8 × 10−4, Al / Mg ≦ 4
2. The method according to claim 1, wherein one or both of the following conditions are satisfied.
4. A stainless steel slab having an austenite-ferrite dual phase excellent in hot workability according to any one of items 3 to 3.
JP2000270594A 2000-09-06 2000-09-06 Stainless steel slab having austenite-ferrite two-phase excellent in hot workability Expired - Lifetime JP3831184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270594A JP3831184B2 (en) 2000-09-06 2000-09-06 Stainless steel slab having austenite-ferrite two-phase excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270594A JP3831184B2 (en) 2000-09-06 2000-09-06 Stainless steel slab having austenite-ferrite two-phase excellent in hot workability

Publications (2)

Publication Number Publication Date
JP2002069592A true JP2002069592A (en) 2002-03-08
JP3831184B2 JP3831184B2 (en) 2006-10-11

Family

ID=18757009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270594A Expired - Lifetime JP3831184B2 (en) 2000-09-06 2000-09-06 Stainless steel slab having austenite-ferrite two-phase excellent in hot workability

Country Status (1)

Country Link
JP (1) JP3831184B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018242A1 (en) 2006-08-08 2008-02-14 Nippon Steel & Sumikin Stainless Steel Corporation Two-phase stainless steel
WO2013058274A1 (en) 2011-10-21 2013-04-25 新日鐵住金ステンレス株式会社 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
WO2016105081A1 (en) * 2014-12-26 2016-06-30 (주)포스코 Lean duplex stainless steel having superb drawing property and method for producing same
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
KR20180081582A (en) 2015-11-17 2018-07-16 가부시키가이샤 고베 세이코쇼 Two-phase stainless steel material and two-phase stainless steel pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018242A1 (en) 2006-08-08 2008-02-14 Nippon Steel & Sumikin Stainless Steel Corporation Two-phase stainless steel
US8778260B2 (en) 2006-08-08 2014-07-15 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
WO2013058274A1 (en) 2011-10-21 2013-04-25 新日鐵住金ステンレス株式会社 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR20140064941A (en) 2011-10-21 2014-05-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR20160028514A (en) 2011-10-21 2016-03-11 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
WO2016105081A1 (en) * 2014-12-26 2016-06-30 (주)포스코 Lean duplex stainless steel having superb drawing property and method for producing same
CN107109584A (en) * 2014-12-26 2017-08-29 Posco公司 The excellent economizing type two phase stainless steel of drawing and its manufacture method
KR20180081582A (en) 2015-11-17 2018-07-16 가부시키가이샤 고베 세이코쇼 Two-phase stainless steel material and two-phase stainless steel pipe

Also Published As

Publication number Publication date
JP3831184B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US4883544A (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
JP2004360003A (en) Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
US10513756B2 (en) Nickel-based alloy
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
EP3722448A1 (en) High-mn steel and method for manufacturing same
JP2001294991A (en) Ferritic stainless steel sheet excellent in formability and ridging characteristic, and its manufacturing method
KR100547536B1 (en) Cast member and steel plate of ferritic stainless steel and manufacturing method thereof
JP4516924B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
JP2002069592A (en) Cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability
US5676771A (en) Non-oriented silicon steel sheet and method
JP3288626B2 (en) High workability ferritic stainless steel sheet excellent in ridging characteristics and method for producing the same
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
KR101851245B1 (en) Ferritic stainless steel having excellent low temperature toughness of welded joint
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
EP4317467A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
WO2022145070A1 (en) Steel material
JP5424917B2 (en) Duplex stainless steel with excellent crack resistance and hot workability
JP2002275596A (en) Fe-Cr BASED STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE AND PRODUCTION METHOD THEREFOR
WO2020121817A1 (en) Ferritic stainless steel sheet and method for producing same
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JPH01259143A (en) Cr-ni stainless steel hard to crack in casting stage or hot rolling stage thereafter
JPH11286742A (en) Manufacture of tapered steel plate
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3831184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term