JPH01316439A - Stainless steel for extreme high vacuum apparatus - Google Patents

Stainless steel for extreme high vacuum apparatus

Info

Publication number
JPH01316439A
JPH01316439A JP26408588A JP26408588A JPH01316439A JP H01316439 A JPH01316439 A JP H01316439A JP 26408588 A JP26408588 A JP 26408588A JP 26408588 A JP26408588 A JP 26408588A JP H01316439 A JPH01316439 A JP H01316439A
Authority
JP
Japan
Prior art keywords
stainless steel
less
steel
gas
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26408588A
Other languages
Japanese (ja)
Inventor
Akira Toyama
晃 遠山
Yusuke Minami
雄介 南
Takemi Yamada
山田 武海
Hiroyasu Takizawa
滝沢 広保
Sadahiko Murase
村瀬 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26408588A priority Critical patent/JPH01316439A/en
Publication of JPH01316439A publication Critical patent/JPH01316439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To obtain the title stainless steel contg. extremely few deposits as well as nonmetallic inclusions and in which the drastical reduction of the gas to be released from a steel is permitted by regulating the compositional limit value of Ni, Cr, etc. CONSTITUTION:A stainless steel contg., by weight, <=0.010% P, <=0.010% S, <=0.4% Si, <=0.4% Mn, <=0.010% Al, <=0.005% O, <=0.008% C and <=0.015% N; where <=0.090% 10XC+N is regulated, contg. 9-35% Ni, 15-26% Cr, and the balance Fe with inevitable impurities is prepd. If required, one or more kinds among <=3% Mo, <=3% Cu and <=0.02% Sn are furthermore added to the above compsn. In this way, at the time of forming a vacuum apparatus by the use of the above stainless steel, the speed of the gas to be released from the steel can drastically be reduced because of extremely few nonmetallic inclusions and deposits, by which the capacity of the vacuum apparatus can exceedingly be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造用、或いは粒子加速器、医療機器
用等に用いられている超高真空(P〈10Pa)〜極高
真空(P< 10  Pa)装置を構成する配管・バル
ブ・弁・ティー・エルボ・ベローズ・容器等のステンレ
ス鋼に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is applicable to ultra-high vacuum (P < 10 Pa) to extremely high vacuum (P < 10 Pa) Concerning stainless steel for piping, valves, valves, tees, elbows, bellows, containers, etc. that make up the equipment.

〔従来の技術〕[Conventional technology]

超LSI等の半導体製造に用いられる製造装置や電子顕
微鏡・粒子加速器等の理科学機器等における真空装置を
構成する配管・ハルツ−弁・ティー・エルボ・ベローズ
・容器等には、SUS 316L% SUS 304等
のステンレス鋼、若しくはアルミニウム等の非鉄金属が
用いられている。
SUS 316L% SUS is used for piping, Harz valves, tees, elbows, bellows, containers, etc. that make up the vacuum equipment in manufacturing equipment used in the production of semiconductors such as VLSIs, and scientific equipment such as electron microscopes and particle accelerators. Stainless steel such as 304 or non-ferrous metal such as aluminum is used.

例えば、超LSI製造技術において、反応チャンバ表面
の耐食性及び耐イオン衝撃性を高めた超高真空装置に接
続した超りIJ−ンガス供給用配管には、SUS 31
6Lステンレス鋼が用いられている。このガス供給系や
反応チャンバ内面からの放出ガスを極小にするために、
接ガス部表面を電解研磨することにより、加工変質層を
伴わない鏡面に仕上げている。また最近では材料内の吸
蔵ガス自体を減少させるために、2度真空溶解を行った
SUS 316Lステンレス鋼を用いている。
For example, in VLSI manufacturing technology, SUS 31 is used for super IJ gas supply piping connected to ultra-high vacuum equipment with improved corrosion resistance and ion bombardment resistance on the reaction chamber surface.
6L stainless steel is used. In order to minimize the gas released from the gas supply system and the inside of the reaction chamber,
By electrolytically polishing the surface of the gas-contact area, it is finished to a mirror surface with no process-altered layer. Recently, SUS 316L stainless steel, which has been vacuum melted twice, is used in order to reduce the amount of occluded gas itself in the material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

□ 従来の超高真空装置に用いられている構造材料は、
ステンレス鋼とアルミニウム合金である。半導体製造装
置、核融合装置等の各種の先端技術関係の真空装置は、
この構造材料から放出されるガスの種類・量・放出率に
よってその性能に大きな影響を受ける。従って材料のガ
ス放出については多くの研究がなされてきた。その結果
、超高真空領域で放出されるガスの主役である水素の場
合、 ■材料中の溶解度はアルミニウムの方が、ステンレス鋼
に比べて固溶量が数オーダー少ない。
□ The structural materials used in conventional ultra-high vacuum equipment are:
Made of stainless steel and aluminum alloy. Vacuum equipment related to various advanced technologies such as semiconductor manufacturing equipment and nuclear fusion equipment,
Its performance is greatly affected by the type, amount, and rate of gas released from this structural material. Therefore, much research has been conducted on the outgassing of materials. As a result, in the case of hydrogen, which is the main gas released in the ultra-high vacuum region, the solubility in the material is several orders of magnitude lower in aluminum than in stainless steel.

■ステンレス鋼中の同浴水素は高温におけるベーキング
によっである程度は取り除くことができる、 ■アルミニウムは水素の固溶量は少ないが、再結晶温度
が合金で250〜35 Q ’Cと低いため高温ベーキ
ゾグができない、 等のことが判った。
■ Hydrogen in the same bath in stainless steel can be removed to some extent by baking at high temperatures. ■ Aluminum has a small amount of solid solution of hydrogen, but since the recrystallization temperature is low at 250 to 35 Q'C for alloys, high temperatures are required. I found out that I couldn't do Bakizog.

これらの研究結果から、現状の真空装置に用いられてい
る材料としては、 ■表面吸着の制御のために、接ガス部表面の電解研磨を
行ない、 0400℃以上の高温でプレベーキングした後、◎接ガ
ス部表面を酸化皮膜処理を行う等の表面処理を行なうこ
とにより、ステンレス鋼が使用されている。
From these research results, the materials currently used in vacuum equipment are as follows: ■ To control surface adsorption, the surfaces in contact with gas are electrolytically polished, and after pre-baking at a high temperature of 0400℃ or higher, ◎ Stainless steel is used by performing surface treatment such as oxidation film treatment on the surface of the gas contacting part.

しかし、装置の形状によっては高温プレベーキングが難
しい場合もあり、また表面処理を接ガス部全面に均一に
行うことが難しいため、必ずしも最良の条件を満たすこ
とはできない。
However, depending on the shape of the device, high-temperature prebaking may be difficult, and it is also difficult to perform surface treatment uniformly over the entire gas contact area, so it is not always possible to satisfy the best conditions.

更に、プレベーキング、表面処理といった作業は特別な
装置を必要とし、コストが上昇すると共に、時間も掛る
といった問題点がある。
Furthermore, operations such as prebaking and surface treatment require special equipment, which increases costs and takes time.

〔問題点を解決するための手段〕[Means for solving problems]

極高真空装置を構成するステンレス鋼からのガス放出、
特に問題となる水素について検討を重ねた結果、材料内
部の非金属介在物、更には析出物に深く関わることが判
明した。
Gas release from stainless steel that makes up ultra-high vacuum equipment,
As a result of repeated studies on hydrogen, which is a particular problem, it was found that it is deeply related to nonmetallic inclusions and even precipitates inside the material.

即ち、第2図に模式的に示されるように、[有]接ガス
部表面に散在している非金属介在物(1)は、電解研磨
加工等の表面処理を受けることにより脱落するため、微
細なピンホール(2)となり吸着ガスの滞り場となる。
That is, as schematically shown in FIG. 2, the nonmetallic inclusions (1) scattered on the surface of the gas-contacted part are removed by surface treatment such as electrolytic polishing. This becomes a fine pinhole (2) and becomes a stagnation area for adsorbed gas.

■材料内部の非金属介在物(1)は、水素原子(3)を
トラップするため、非金属介在物(1)周囲の水素濃度
が高く拡散も速くなる。従って、真空溶解を2度繰り返
すことにより材料中のトータルな水素レベルを下げても
局部的に水素が集まるため、固溶度は実際は減少したこ
とにはならず、また、数100℃のベーキングを加えた
際放出される量も減少しない。
(2) Since the non-metallic inclusions (1) inside the material trap hydrogen atoms (3), the hydrogen concentration around the non-metallic inclusions (1) is high and the diffusion is fast. Therefore, even if the total hydrogen level in the material is lowered by repeating vacuum melting twice, hydrogen will collect locally, so the solid solubility will not actually decrease. The amount released when added also does not decrease.

0点線で示される粒界に炭素・窒素等のミクロ析出物(
4)が生じると、水素原子(3)のトラップさn、る場
所として作用されるため、上記と同様のガス放出の原因
となる。
Micro precipitates such as carbon and nitrogen (
When 4) occurs, it acts as a place where hydrogen atoms (3) are trapped, causing gas release similar to the above.

このような事実に基づき、本発明は鋼中の非金属介在物
及び析出物が極端に低減化し且つ微細分散することによ
り、材料内部からの放出ガスが極めて少なく、更に第2
発明では、耐食性にも優れた特性を有している極高真空
機器用ステンレス鋼を開発したものである。
Based on these facts, the present invention significantly reduces and finely disperses non-metallic inclusions and precipitates in steel, resulting in extremely low gas emissions from inside the material and
In the present invention, we have developed a stainless steel for ultra-high vacuum equipment that also has excellent corrosion resistance.

即ち、本願第1発明は、第1図に示すように非金属介在
物(1)とともに析出物も極めて少なくそれにより放出
ガス速度が極めて低くなる極高真空機器用ステンレス鋼
を提供するものである。
That is, the first invention of the present application provides a stainless steel for extremely high vacuum equipment, which has extremely few nonmetallic inclusions (1) and precipitates, and therefore has an extremely low gas release rate, as shown in FIG. .

又、本a第2発明は非金属介在物とともに析出物も極め
て少なくそれにより放出ガス速度が極めて低もなり、加
えて高度の耐食性を有する極高真空機器用ステンレス鋼
を提供するものである。
In addition, the second invention of the present invention provides a stainless steel for extremely high vacuum equipment, which has very few nonmetallic inclusions and precipitates, which results in an extremely low gas release rate, and which also has a high degree of corrosion resistance.

以下、本発明の構成を詳細lこ説明する。The configuration of the present invention will be explained in detail below.

鋼中の非金属介在物は、ガス放出に次のように関わって
いる。即ち、 l)電解研磨により脱落してピンホールとなる。
Nonmetallic inclusions in steel are involved in gas release in the following ways. That is, l) It falls off due to electrolytic polishing and becomes a pinhole.

2)非金属介在物の周囲に水素原子がトラップされ、見
かけ上の水素固溶度が低くなっても局部的な水素の滞り
湯が形成され、拡散も速い。
2) Hydrogen atoms are trapped around nonmetallic inclusions, and even if the apparent solid solubility of hydrogen is low, local hydrogen stagnation is formed and diffusion is rapid.

本発明はこのような点り)ら非金属介在物を制御すべく
、その組成を規定した。即ち、鋼中のp、s、oをでき
る限り低くし、又、Si。
In order to control non-metallic inclusions from such points, the present invention has specified the composition. That is, p, s, and o in the steel should be as low as possible, and Si.

Mnも最少限に抑えることにより介在物の総数を減少さ
せる。更に、0に関しては鋼中の含有量を零にすること
は不可能であるため、Sl。
By minimizing Mn, the total number of inclusions is also reduced. Furthermore, regarding 0, it is impossible to reduce the content in steel to zero, so Sl.

Mn 、 Al の低減によってCr 、 Fe 系の
酸化物とし、微細分散するようにした。これによって介
在物が存在するにしても、最終的に装置を構成する製品
寸法において5μm以上の介在物をなくし、水素原子の
トラップ量を制限することができる。
By reducing Mn and Al, Cr and Fe-based oxides were created and finely dispersed. As a result, even if inclusions exist, it is possible to eliminate inclusions with a size of 5 μm or more in the final product size of the device, and to limit the amount of trapped hydrogen atoms.

又、C,Nを低減化することで炭化物、窒化物の粒界等
への析出を防止することにより、析出物による水素原子
のトラップを制限することとした。
Furthermore, by reducing C and N, the precipitation of carbides and nitrides at grain boundaries, etc. is prevented, thereby limiting the trapping of hydrogen atoms by the precipitates.

更に、第2発明ではMO、Cu 、 Snの各元素を1
種又は2種以上含有させることで耐食性を向上せしめて
いる。
Furthermore, in the second invention, each element of MO, Cu, and Sn is
Corrosion resistance is improved by containing a species or two or more species.

次に本発明鋼の成分組成の限定理由を説明する。Next, the reasons for limiting the composition of the steel of the present invention will be explained.

Ni:Niは、オーステナイト組織を安定化させる作用
があり、重要な元素である。このNiの含有量が9wt
チ未満であるとδ−F’e量が増大し、熱間加工性を阻
害する。一方、下記Cr量に対してNi量を過剰に添加
しても経済性の面で不利となるため、35wt4がその
添加量の限度となる。従って、Ni量は9〜35 wt
チとする。
Ni: Ni has the effect of stabilizing the austenite structure and is an important element. This Ni content is 9wt.
If it is less than 1, the amount of δ-F'e increases and hot workability is inhibited. On the other hand, adding an excessive amount of Ni to the amount of Cr described below is disadvantageous in terms of economic efficiency, so 35wt4 is the upper limit for the amount of Ni added. Therefore, the amount of Ni is 9 to 35 wt
Let's do it.

Cr : Crは耐食性を向上させるために必須の元素
である。15wt1未満の含有量では添加による効果が
十分得られないが、26 wtチを超えて添加するとオ
ーステナ−r ト単相を得るうえでの障害となる。この
ためCr量は15〜26wt%とする。
Cr: Cr is an essential element for improving corrosion resistance. If the content is less than 15wt1, the effect of addition cannot be obtained sufficiently, but if it is added in excess of 26wt1, it becomes an obstacle in obtaining an austenate single phase. Therefore, the amount of Cr is set to 15 to 26 wt%.

Si 、Mn : Si 、 Mnはいずれも脱酸元素
であるが、逆に鋼の清浄度を劣化させることになる。本
発明では、Si、Mnは共に、0.4 wt %以下に
規制することで介在物を減少させ、且つ微細分散させる
こととした。
Si, Mn: Both Si and Mn are deoxidizing elements, but they conversely deteriorate the cleanliness of steel. In the present invention, inclusions are reduced and finely dispersed by regulating both Si and Mn to 0.4 wt % or less.

p、s: p、sは共に不純物として清浄度を劣化させ
るため、可能な限り低いことが好咳しい。このためそれ
ぞれ0.010 wt %  以下に規制した。
p, s: Both p and s act as impurities and degrade cleanliness, so it is preferable that they be as low as possible. For this reason, each content was regulated to 0.010 wt % or less.

0:0は凝固時に非金属介在物として鋼中に残留し、清
浄度を害するため、可能な限り低いことが好ましい。こ
のため0.005 wt係以下に規制される。
Since 0:0 remains in the steel as nonmetallic inclusions during solidification and impairs cleanliness, it is preferably as low as possible. For this reason, it is regulated to 0.005 wt or less.

Al: Alは脱酸元素として有効であるが、必要以上
の添加は介在物の形状を大きくする。
Al: Al is effective as a deoxidizing element, but adding more than necessary increases the shape of inclusions.

このためo、o i Owt 1以下に規制される。Therefore, o, oi Owt is restricted to 1 or less.

C,N:C,Nは共に強度上昇に有効な元素であるが、
応力除去熱処理、高温プレベーキングによって、或いは
溶接熱影響部においてCr炭(窒)化物として主として
粒界に析出する。このためC,Nは各々o、o o s
 wt%、0.015wt %以下に規制されるが、各
々単独ではこの値以下であっても、C,Nがl0×C十
Nで0.090wtチ以上含有されるとCr炭窒化物が
粒界に析出する。このためC,NはC: 0.008w
t%以下、N: 0.015wtチ以下、阻し、10 
×C−)−N : 0.090 wt%以下に規制され
る。
C, N: Both C and N are effective elements for increasing strength,
Cr precipitates mainly at grain boundaries as Cr carbon(nitride) through stress relief heat treatment, high-temperature prebaking, or in the weld heat affected zone. Therefore, C and N are o and o o s, respectively.
wt%, regulated to 0.015wt% or less, but even if each individually is below this value, if C and N are contained at 0.090wt% or more in 10×C1N, Cr carbonitrides become grains. precipitates in the field. Therefore, C and N are C: 0.008w
t% or less, N: 0.015wt or less, inhibition, 10
×C-)-N: Regulated to 0.090 wt% or less.

MO=第2発明で必要とされるMOは、不動態を安定化
させて、耐食性を向上させ、耐酸化性、耐孔食性を改善
する最も効果的な元素である。しかし、3 wt %を
超えて添加すると加工性を阻害し、Niの増量を必要と
するため、3wt%以下の範囲で添加する。
MO=MO required in the second invention is the most effective element for stabilizing passivation, improving corrosion resistance, and improving oxidation resistance and pitting corrosion resistance. However, if it is added in an amount exceeding 3 wt %, processability will be inhibited and the amount of Ni will need to be increased, so it is added within a range of 3 wt % or less.

Cu 、 Sn :同じく第2発明で必要とされるCu
及びSnは、耐食性に有効であるが、 Cuについては
3wt%、Snについてはo、ozwt%をそれぞれ超
えて添加しても、その添加量に見合う効果が期待できず
、このためCuは3wtチ以下、Snは0.02wt%
以下の各範囲で添加する。
Cu, Sn: Cu also required in the second invention
Although Cu and Sn are effective for corrosion resistance, even if they are added in excess of 3wt% for Cu and o or ozwt% for Sn, an effect commensurate with the amount added cannot be expected, and for this reason, Cu is Below, Sn is 0.02wt%
Add in the following ranges.

尚、本発明の極高真空機器用ステンレス鋼は、通常真空
誘導炉(VIM)により溶解されるが、真空誘導炉で溶
解後、更に真空アーク炉(VAR)により再溶解する二
度溶解も行われる。
The stainless steel for ultra-high vacuum equipment of the present invention is normally melted in a vacuum induction furnace (VIM), but it can also be melted twice by melting in a vacuum induction furnace and then remelting in a vacuum arc furnace (VAR). be exposed.

〔実施例〕〔Example〕

以下本発明の具体的実施例につき説明する。 Specific examples of the present invention will be described below.

下記第1表に示す組成の鋼を真空誘導炉で溶解した後、
更に真空アーク炉で再溶解した。
After melting steel with the composition shown in Table 1 below in a vacuum induction furnace,
It was then remelted in a vacuum arc furnace.

そして、造塊−分塊によりビレットとし、熱間押出によ
り製管した。その後、冷間圧延及び冷間伸管により、外
径9.53m、肉厚1.0mの細管とし、固溶化処理を
施した後、最後に内面を電解研磨した。これにより真空
装置を構成する配管として、材料の評価を行った。
Then, it was made into a billet by agglomeration and blooming, and was made into a pipe by hot extrusion. Thereafter, the tube was cold-rolled and cold-drawn to form a thin tube with an outer diameter of 9.53 m and a wall thickness of 1.0 m, subjected to solution treatment, and finally the inner surface was electrolytically polished. This allowed us to evaluate the materials used as the piping that constitutes the vacuum device.

もちろん、バルブ・弁・ティー・エルボ・ベローズ・容
器等の真空装置構成部品に対しても同様の評価が得られ
る。評価法としては、介在物評価・析出物評価及びガス
放出特性評価を行った。これらのうち、介在物評価は、
通常行われているJIS GO555r鋼の非金属介在
物の顕微鏡試験方法」と共に、400倍の顕微鏡によっ
て10■2の面積について実際に球状介在物と線状介在
物とを大きさ毎tこカウントし、1■2当たりの個数で
平均するカウント法によって行った。又析出物評価は、
400℃で24 hrの加熱を施した後薄膜を切り出し
、透過電子顕微鏡により粒界炭(窒)化物の析出の有無
を調べた。更に、最も重要な特性であるガス放出特性の
評価は、4mの供試管をプレベーキング(管内を10 
 %rrに減圧し、400℃で24時間加熱)後、超高
純度Heガスにてパージを行い、超高純度Heガス中の
N!。
Of course, similar evaluations can be obtained for vacuum device components such as valves, valves, tees, elbows, bellows, and containers. The evaluation methods were inclusion evaluation, precipitate evaluation, and gas release characteristics evaluation. Among these, inclusion evaluation is
In addition to the commonly performed JIS GO555R steel microscopic examination method for non-metallic inclusions, we actually counted spherical inclusions and linear inclusions per ton of size over an area of 10 x 2 using a 400x microscope. The counting method was used to average the number of samples per 1×2. In addition, the precipitate evaluation is
After heating at 400° C. for 24 hr, a thin film was cut out, and the presence or absence of precipitation of grain boundary carbonitrides was examined using a transmission electron microscope. Furthermore, to evaluate the gas release characteristics, which is the most important characteristic, a 4 m test tube was pre-baked (the inside of the tube was heated for 10 minutes).
%rr and heated at 400°C for 24 hours), purge with ultra-high purity He gas to remove N! .

co、 、 H,の分圧を時間変化と共に測定すること
で行なった。それらの結果を、次の第2表、第3表に示
す。
This was done by measuring the partial pressures of co, , and H over time. The results are shown in Tables 2 and 3 below.

これによれば、本発明鋼は比較鋼に比べて介在物が明ら
かに少なく、才だ粗大な介在物も存在していない。才た
粒界への析出物も、本発明鋼には認められない。このた
め、本発明鋼からの放出ガスは、比較鋼と比較して、極
めて減少速度が速く、優れた性能を示した。
According to this, the steel of the present invention clearly has fewer inclusions than the comparative steel, and there are no coarse inclusions. Precipitates at grain boundaries are also not observed in the steel of the present invention. Therefore, the gas released from the steel of the present invention decreased at a much faster rate than the comparative steel, and exhibited excellent performance.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明の極高真空機器用ステンレス鋼を用い
て真空装置を構成すれば、非金属介在物及び析出物が極
端に少ないため、鋼中から放出されるガスを極めて低減
化することが可能となり、真空装置の性能を著しく向上
させることができる。このような利点に加え、プレベー
キング条件を緩和することができるため、製作コストも
低くすることができると共に、ベーキングを制約される
形状の部品の性能も向上せしめることができるため、真
空系全体の性能向上が期待できる。
If a vacuum device is constructed using the above-mentioned stainless steel for ultra-high vacuum equipment of the present invention, the amount of gas released from the steel can be extremely reduced because there are extremely few nonmetallic inclusions and precipitates. This makes it possible to significantly improve the performance of vacuum equipment. In addition to these advantages, the pre-baking conditions can be relaxed, which reduces manufacturing costs and improves the performance of parts with shapes that restrict baking, making it possible to improve the overall vacuum system. Performance can be expected to improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のステンレス鋼内部における非金属介在
物及び析出物の状態を模式的に示す説明図、第2図は従
来のステンレス鋼内部における非金属介在物及び析出物
の状態を同じく模式的に示す説明図である。 図中、(1)は非金属介在物、(2)はピンホール、(
3)は水素原子、(4)は介在物を各示す。 特許出願人  日本鋼管株式会社 発  明  者   遠   山        見間
        南       雄   弁間   
      山   1)  武   海開     
    滝   沢   広   保間       
  村   瀬   貞   彦代理人弁理士   吉
   原   省   玉量 同  苫米地 正 敏 第2図 第 1  図
Fig. 1 is an explanatory diagram schematically showing the state of nonmetallic inclusions and precipitates inside the stainless steel of the present invention, and Fig. 2 is a schematic diagram showing the state of nonmetallic inclusions and precipitates inside the conventional stainless steel. FIG. In the figure, (1) is a nonmetallic inclusion, (2) is a pinhole, (
3) indicates a hydrogen atom, and (4) indicates an inclusion. Patent applicant Nippon Kokan Co., Ltd. Inventor Toyama Mima Yu Minami Benma
Mountain 1) Kaikai Takeshi
Hiroshi Takizawa Homa
Sadahiko Murase Patent Attorney Masatoshi Yoshihara Masatoshi Tomabechi Figure 2 Figure 1

Claims (1)

【特許請求の範囲】 1、P:0.010wt%以下、S:0.010wt%
以下、Si:0.4wt%以下、Mn:0.4wt%以
下、Al:0.010wt%以下、O:0.005wt
%以下、C:0.008wt%以下、N:0.015w
t%以下、但し、10×C+N:0.090wt%以下
、Ni:9〜35wt%、Cr:15〜26wt%を含
有し、残部Fe及び不可避的不純物 からなる極高真空機器用ステンレス鋼。 2、P:0.010wt%以下、S:0.010wt%
以下、Si:0.4wt%以下、Mn:0.4wt%以
下、Al:0.010wt%以下、O:0.005wt
5以下、C:0.008wt%以下、N:0.015w
t%以下、但し、10×C+N:0.090wt%以下
、Ni:9〜35wt%、Cr:15〜26wt%を含
有し、更にMo:3wt%以下、Cu:3wt%以下、
Sn:0.02wt%以下の1種または2種以上を含ん
で、残部Fe及び不可避的不純物からなる極高真空機器
用ステンレス鋼。
[Claims] 1. P: 0.010wt% or less, S: 0.010wt%
Below, Si: 0.4wt% or less, Mn: 0.4wt% or less, Al: 0.010wt% or less, O: 0.005wt%
% or less, C: 0.008wt% or less, N: 0.015w
Stainless steel for extremely high vacuum equipment, containing 10×C+N: 0.090 wt% or less, Ni: 9 to 35 wt%, Cr: 15 to 26 wt%, and the balance being Fe and inevitable impurities. 2, P: 0.010wt% or less, S: 0.010wt%
Below, Si: 0.4wt% or less, Mn: 0.4wt% or less, Al: 0.010wt% or less, O: 0.005wt%
5 or less, C: 0.008wt% or less, N: 0.015w
t% or less, but contains 10×C+N: 0.090wt% or less, Ni: 9 to 35wt%, Cr: 15 to 26wt%, further Mo: 3wt% or less, Cu: 3wt% or less,
Stainless steel for ultra-high vacuum equipment, containing one or more Sn: 0.02 wt% or less, and the balance being Fe and unavoidable impurities.
JP26408588A 1987-11-10 1988-10-21 Stainless steel for extreme high vacuum apparatus Pending JPH01316439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26408588A JPH01316439A (en) 1987-11-10 1988-10-21 Stainless steel for extreme high vacuum apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-282252 1987-11-10
JP28225287 1987-11-10
JP26408588A JPH01316439A (en) 1987-11-10 1988-10-21 Stainless steel for extreme high vacuum apparatus

Publications (1)

Publication Number Publication Date
JPH01316439A true JPH01316439A (en) 1989-12-21

Family

ID=26546342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26408588A Pending JPH01316439A (en) 1987-11-10 1988-10-21 Stainless steel for extreme high vacuum apparatus

Country Status (1)

Country Link
JP (1) JPH01316439A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478524A (en) * 1992-08-24 1995-12-26 Nissan Motor Co., Ltd. Super high vacuum vessel
EP2770076A4 (en) * 2011-10-21 2016-03-09 Nippon Steel & Sumikin Sst Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR20160082137A (en) * 2014-12-31 2016-07-08 포항공과대학교 산학협력단 Vaccum chamber and manufacturing method thereof
JP2016199782A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Austenite stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
KR20230156692A (en) 2021-03-12 2023-11-14 니폰야긴고오교오가부시기가이샤 Fe-Ni alloy with excellent outgassing properties and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161145A (en) * 1986-12-25 1988-07-04 Nkk Corp Steel pipe for clean room

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161145A (en) * 1986-12-25 1988-07-04 Nkk Corp Steel pipe for clean room

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478524A (en) * 1992-08-24 1995-12-26 Nissan Motor Co., Ltd. Super high vacuum vessel
US5683523A (en) * 1992-08-24 1997-11-04 Nissan Motor Co., Ltd. Titanium alloy for super high vacuum vessels
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
EP2770076A4 (en) * 2011-10-21 2016-03-09 Nippon Steel & Sumikin Sst Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR20160082137A (en) * 2014-12-31 2016-07-08 포항공과대학교 산학협력단 Vaccum chamber and manufacturing method thereof
JP2016199782A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Austenite stainless steel
KR20230156692A (en) 2021-03-12 2023-11-14 니폰야긴고오교오가부시기가이샤 Fe-Ni alloy with excellent outgassing properties and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4221518B2 (en) Ferritic heat resistant steel
US2564498A (en) Preparation of alloys
CA1066922A (en) Heat-resistant allow for welded structures
CN115233113B (en) Stainless steel alloy containing tantalum element, stainless steel product and preparation method thereof
Ikeda et al. Effect of molybdenum addition on solidification structure, mechanical properties and wear resistivity of high chromium cast irons
JPH01316439A (en) Stainless steel for extreme high vacuum apparatus
RU2751629C1 (en) Low temperature resistant oil casing pipe with high strength and high viscosity, as well as method for its manufacture
US4086107A (en) Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels
US3111405A (en) Aluminum-manganese-iron alloys
JPH1017985A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS63161145A (en) Steel pipe for clean room
WO2021221003A1 (en) Alloy material and method for producing same
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
CA3080706A1 (en) Duplex stainless steel and method for producing duplex stainless steel
JPS6050869B2 (en) Method for manufacturing zirconium alloy structural members for boiling water reactors
JP3933089B2 (en) Low alloy steel
JPH02258956A (en) Highly corrosion resistant duplex phase stainless steel excellent in hot workability
JPH0148345B2 (en)
JPH0114991B2 (en)
JP3265610B2 (en) Nickel-base heat-resistant alloy with excellent workability
JP3196587B2 (en) High Cr ferritic heat resistant steel
JP4465490B2 (en) Precipitation hardened ferritic heat resistant steel
JP3230269B2 (en) Nickel-base heat-resistant alloy with excellent workability
JP3475927B2 (en) Low Cr ferritic heat-resistant steel and its manufacturing method
JPH0577727B2 (en)