JP2004100027A - Steel for liquid-phase diffusion bonding having excellent resistance to low-temperature transformation crack - Google Patents

Steel for liquid-phase diffusion bonding having excellent resistance to low-temperature transformation crack Download PDF

Info

Publication number
JP2004100027A
JP2004100027A JP2002267023A JP2002267023A JP2004100027A JP 2004100027 A JP2004100027 A JP 2004100027A JP 2002267023 A JP2002267023 A JP 2002267023A JP 2002267023 A JP2002267023 A JP 2002267023A JP 2004100027 A JP2004100027 A JP 2004100027A
Authority
JP
Japan
Prior art keywords
steel
phase diffusion
diffusion bonding
joint
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002267023A
Other languages
Japanese (ja)
Other versions
JP3996824B2 (en
Inventor
Hiroshi Hasegawa
長谷川 泰士
Naoki Saito
斎藤 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002267023A priority Critical patent/JP3996824B2/en
Publication of JP2004100027A publication Critical patent/JP2004100027A/en
Application granted granted Critical
Publication of JP3996824B2 publication Critical patent/JP3996824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for liquid-phase diffusion bonding by which the hardening crack or reheat crack sensitivity of a joint to which refining heat treatment is applied after liquid-phase diffusion bonding can be reduced. <P>SOLUTION: The steel for liquid-phase diffusion bonding has a composition containing, by mass, 0.05 to 1.0% C, 0.01 to 1.0% Si, 0.05 to 3.0% Mn, 0.005 to 0.1% Ti and 0.01 to 0.2% Al, also containing P, S and O in the amounts limited to ≤0.01%, ≤0.003% and ≤0.01%, respectively, further containing As, Sn, Sb, Pb and Zn in the amounts each limited to ≤0.005% and satisfying the relation of inequality (As%+Sn%+Sb%+Pb%+Zn%)≤0.015%, and having the balance Fe with inevitable impurities. When liquid-phase diffusion bonded joints using the steel are reheated to a temperature not lower than the Ac<SB>3</SB>point and subjected to accelerated cooling at a rate of ≥0.1 °C/s or are tempered, after the accelerated cooling, to a temperature not higher than the Ac<SB>1</SB>transformation point, Charpy absorption energy at 0°C is ≥47J. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は液相拡散接合を用いた部品または装置などの接合構造体を可能ならしむる鋼材に関し、さらに詳しくは液相拡散接合を一部または全部に適用して製造した強度が600MPa以上、特に1000MPa以上の高強度構造体あるいは圧力容器を構成することのできる液相拡散接合用鋼材に関する。
【0002】
【従来の技術】
【特許文献1】特開2001−164332号公報
【特許文献2】特開2001−131682号公報
【0003】
金属材料どうしの工業的な新しい接合技術として液相拡散接合が普及しつつある。液相拡散接合は、接合しようとする材料の接合面すなわち開先間に、拡散律速の等温凝固過程を経て継手を形成する能力を有する元素、例えばBあるいはPとこれらを開先間に介在させるために基材となるNiないしはFeからなる多元合金を介在させ、継手を挿入した低融点合金の融点以上の温度に加熱保持し、継手を形成する技術であって、通常の溶接技術と異なり、溶接残留応力が殆どないこと、あるいは溶接のような余盛りを発生しない平滑かつ精密な継手を形成できるなどの特徴を有する。特に、面接合であるため、接合面の面積によらず接合時間が一定でかつ比較的短時間で接合が完了する点は、従来溶接と全く異なっている。従って、開先さえ挿入した低融点金属以上の温度に所定の時間保持できれば、開先形状を選ばず、面どうしの接合を実現することができるという特徴を有する。
【0004】
しかし、開先間に介在させる低融点の合金(以降インサートメタルと称する)の融点は、その拡散元素がBまたはPである以上、900℃〜1300℃の温度であり、特にフェライト構造を有する鋼の変態点、AcあるいはAcを超える温度を開先で達成しなければならない。この時、工業的には拡散律速の等温凝固を早く終了させるためには実質的に接合温度が1000℃を超えることとなり、当然鋼材は変態点以上に加熱されることから、接合終了後は冷却時に再変態が生じ、材料の特性はこの時の変態組織で決定される。従って、後に熱処理を附加して調質処理を実施する場合がある。
【0005】
しかし、液相拡散接合で継手の等温凝固を達成する場合、BまたはPの拡散律速凝固が生起し、どうしても継手組織の粒界にはこれら元素が濃縮しやすく、場合によっては化合物として析出する場合もある。さらに、等温凝固部は母材の溶融と融合を伴っており、母在中に存在する不純物もまた一度再溶融し接合部組織の形成時に粒界に偏析しやすくなる傾向があることが本発明者らの詳細な研究で明らかとなった。
【0006】
特に強度を高めるべく焼入れ、焼準しなどの調質処理で低温変態組織、すなわちマルテンサイト組織やベイナイト組織を得る場合、それらの旧γ粒界への不純物元素とBあるいはPの濃化は避けられず、粒界は脆化し易くなり、場合によっては冷却時の変態膨張によって焼割れが発生したりする。あるいは冷媒を使用して加速冷却する際に生じる構造物の内部と外表面の温度差に起因した変態の時間差で、構造物の表面に引張り応力が残留する場合には続く焼き戻し過程において、炭化物や窒化物を粒界に析出して脆化する条件では粒界に沿った割れ、すなわち焼き戻し割れ(再熱割れ、SR割れとも称する)を生じたり、割れないまでも著しく衝撃値の低い脆い継手となってしまう場合がある。このような脆い性質を有する継手は構造部材に衝撃的な応力が室温以下の低温で付加されたとき、あるいは鋼中に水素が侵入した場合などにある程度経時もしくは経年してから割れを生起する場合があり、問題となっていた。
【0007】
これらは全て粒界破壊の様相を呈し、特に600MPa以上、場合によっては1000MPa以上の強度を必要とする、低温変態組織およびその焼き戻し組織からなる高強度鋼で顕著であり、粒界の脆化が材料の脆化を誘引していることから、粒界の性質改善が被接合材料に求められていた。
この現象はBまたはPを大量に拡散させる液相拡散接合に特徴的であって、通常の低合金鋼で生じる焼き戻し脆化とは異なり、BとPの粒界偏析が前提となる脆化現象であるため、その対策に関する類似技術は殆ど見あたらない。
【0008】
合金鋼の焼き戻し脆化対策技術は特開2001−164332号公報、あるいは特開2001−131682号公報等に最新の合金鋼における耐再熱割れ性向上技術が開示されているものの、これらの技術に液相拡散接合の継手に関する知見は全く認められない。したがって、液相拡散接合継手で生じる特徴的な焼き戻し脆化を有効に防止しうる技術の開示は、現時点では全くない。
【0009】
【発明が解決しようとする課題】
本発明は上記のような従来技術が抱える問題点を解決して、Bを拡散原子として用いて液相拡散接合した後に、600MPa以上、場合によっては1000MPa以上の高強度の継手を、調質熱処理で得ようとする場合に生じる焼割れ、あるいは焼き戻し割れ等の粒界脆化に対する耐性のある鋼材を、主に鋼材不純物成分の限定によって得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記のような課題に対して、鋼材の粒界脆化に寄与する化学成分を限定し、特に脆化因子として影響の大きいAs,Sn,Sb,Pb,Znの個別および総合含有量を規定して粒界の脆化が液相拡散接合継手に生じないように設計した鋼材であり、具体的には以下に示すとおりである。
▲1▼ 請求項1に記載の発明は、質量%で、C:0.05〜1.0%,Si:0.01〜1.0%,Mn:0.05〜3.0%,Ti:0.005〜0.1%,Al:0.01〜0.2%を含有し、かつP:0.01%以下,S:0.003%以下,O:0.01%以下に制限し、加えてAs,Sn,Sb,Pb,Znの何れも0.005%以下に制限し、かつ(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下、残部が不可避的不純物およびFeからなる液相拡散接合用鋼材であって、この鋼材を液相拡散接合した継手をAc変態点以上に再加熱してから冷却速度0.1℃/s以上で加速冷却するか、前記加速冷却後Ac変態点以下に焼き戻したときの0℃におけるシャルピー吸収エネルギーを47J以上として、焼割れまたは再熱割れ感受性を低くしたことを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0011】
▲2▼ 請求項2の発明は、請求項1に記載の鋼であって、更にB:0.0003〜0.005%,N:0.01%以下を含有することを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0012】
▲3▼ 請求項3の発明は、請求項1または2に記載の鋼であって、更にCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上を含有することを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0013】
▲4▼ 請求項4の発明は、請求項1〜3の何れかに記載の鋼であって,更にNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0014】
▲5▼ 請求項5の発明は、請求項1〜4の何れかに記載の鋼であって、更にNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0015】
【発明の実施の形態】
最初に、本発明に記載の液相拡散接合用鋼材の化学成分を限定した理由について以下に述べる。
Cは鋼の焼き入れ性と強度を制御する最も基本的な元素である。0.01%未満では強度が確保できず、1.0%を超えて添加すると強度は向上するものの、焼戻し後においても継手の靱性を確保することができないことから0.01〜1.0%に限定した。
【0016】
Siは鋼材の脱酸元素であり、通常Mnとともに鋼の酸素濃度を低減する目的で添加される。同時に粒内強化に必要な元素であって、その不足は強度低下をきたす。本発明でも同様に、脱酸と粒内強化を主目的として添加し、0.01%以上で効果を発揮し、1.0%を超えて添加した場合には鋼材の脆化を招く場合があることから、その添加範囲を0.01〜1.0%に限定した。
【0017】
MnはSiとともに脱酸にも効用があるが、鋼中にあって材料の焼き入れ性を高め、強度向上に寄与する。その効果は0.05%より発現し、3.0%を超えると粗大なMnO系酸化物を晶出し、かえって靱性を低下させる場合があることからその添加範囲を0.05〜3.0%に限った。
【0018】
Tiは微細な炭化物を析出して結晶粒を微細化し鋼の靭性を高める。この目的のためには0.005%以上の添加が必要であるが、0.1%を超えると炭化物が粗大化して靭性の低下を招く。したがって、Tiの範囲を0.005〜0.1%に限定した。
【0019】
AlはNと結合してAlNとして析出し、液相拡散接合の温度範囲においても溶解せず、γ粒の移動を抑制する効果を有する。多く添加しても炭化物を形成しないことから、根本的にTiやZr等の窒化物形成元素とは挙動が異なり、鋼の靱性低下をきたさない。従って、効果を発揮する最低量として0.01%の添加が必要であり、0.2%を超えて添加した場合にはAlNそのものが粗大化して靱性に影響があることから、接合温度に応じて0.01〜0.2%の範囲で適宜添加することとした。
【0020】
なお、本鋼のような高強度鋼において靱性を高めるには、粒界への不純物濃化は極力これを回避する必要があり、PおよびSは、この目的のためにそれぞれ0.01%およぴ0.003%以下に制限した。また、Alを効率よくNと結合させるためにOは0.01%以下に制限されなければならない。
【0021】
また、As,Sn,Sb,Pb,Znはいずれも本発明においては不純物に分類する。これらは全て液相拡散接合継手の粒界に偏析しやすく、焼き戻し割れの原因となるため、これらを低減する必要があるが、その範囲は各個に0.005%が上限であり、たとえ一元素であってもこれを超えて添加すると焼き戻し割れを誘引する。同時に、これら元素の総和が0.015%を超えることもまた同様に焼き戻し割れを助長する事が、本発明者らの研究で明らかとなった。すなわち質量%で、
(As%+Sn%+Sb%+Pb%+Zn%)≦0.015%
が接合継手で達成されている必要がある。しかも、これは同様に焼き戻し脆性に有害なSを0.003%以下に制限した鋼材で同時に達成されなければならない。
【0022】
これらの不純物元素の制限範囲は以下のような実験によって求めた。
実験室規模真空溶解、あるいは実機鋼板製造設備において、100kg, 300kg, 2ton, 10ton, 100ton, 300tonの真空溶解、あるいは通常の高炉−転炉−炉外精錬−脱ガス/微量元素添加−連続鋳造−熱間圧延によって製造した、請求項1〜5に記載の化学成分範囲鋼材を含む種々の炭素鋼、低合金鋼、合金鋼を、圧延方向と平行な方向から10mmΦあるいは20mm角で長さ50mmの簡易小型試験片に加工した。試験片の端面をRmax<100μmに研削加工して脱脂洗浄し、その端面を2つ突き合わせて接合試験片対となし、150kWの出力を有する高周波誘導加熱装置を備えた引っ張り/圧縮試験機を用い、接合面間には液相拡散接合を1000〜1300℃において実現可能なNi基−B系、Fe基−B系、Ni基−P系、Fe基−P系の、実質的に体積分率で50%以上が非晶質である厚み20〜50μmのアモルファス箔を介在させ、必要な接合温度まで試験片全体を加熱し、30秒から60分の間、1〜20MPaの応力下で液相拡散接合し、接合後放冷した。
【0023】
続いて得られた継手全体を、900〜1000℃(実質的に母材のAc変態点以上の温度)へ再加熱して10〜200分保持の後、0.1℃/s以上の冷却速度で加速冷却してベイナイト〜マルテンサイトの低温変態組織となし、これを光学顕微鏡にて観察して確認した後に、必要な場合に適宜200〜700℃の各温度で0.1〜500時間の範囲で焼き戻して調質組織とした。得られた丸棒接合試験片対からは直径6mmΦの引張り試験片を採取し、強度評価に供するとともに、角棒試験片対からはJIS4号2mmVノッチつきのシャルピー衝撃試験片を採取して、ノッチ位置を接合部とすることで継手の靱性を評価し、これをもって継手の焼き戻し割れ感受性指標とした。
【0024】
不純物成分は、接合前の母材で通常の湿式化学分析にて分析し、析出の有無に拘わらず鋼中含有量で評価した。図1には質量%での(As%+Sn%+Sb%+Pb%+Zn%)の値と焼き戻し割れの一指標としての0℃における継手のシャルピー吸収エネルギーの関係を示した。(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下の場合には継手の0℃における継手のシャルピー吸収エネルギーが常に47Jを超えるが、逆に(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%超の場合には継手の0℃における継手のシャルピー吸収エネルギーが47Jに達しない。
【0025】
また、実施例でも触れるが、各元素が0.005%を超える場合も同様に継手の靱性は0℃において47Jに達しない。さらにSが0.003%を超える場合でも同様に継手靱性が確保できないことも実験的に求めた。
これらの値は、BおよびPを拡散元素として使用する液相拡散接合に特徴的であって、通状の溶接継手や合金鋼の熱処理において見られる焼き戻し脆化のパラメータあるいは評価指標とは異なる制限であり、かつ指標である。この指標と制限が満足できないと、完全に焼き戻し脆化を抑制することは困難である。
【0026】
鋼材は上記した化学成分を有し、残部不可避的不純物およびFeからなる。このような鋼材を液相拡散接合した場合には、接合部の近傍に熱影響部が形成されるが、この部分は結晶粒が粗大化して靭性が低い。この靭性の低い熱影響部に熱処理を施せば靭性が回復する。このためには継手をAc変態点以上に加熱してから冷却速度0.1℃/s以上で加速冷却する。Ac変態点未満の加熱ではオーステナイトへの変態が不充分で靭性が十分回復しない。また、冷却速度が0.1℃/s未満ではマルテンサイトやベイナイトなどの強度の高い低温変態組織を得ることが困難である。なお、加速冷却は焼入れ、あるいは焼準しによって行う。
【0027】
加速冷却後は靭性を更に回復させるために必要に応じてAc変態点以下に焼き戻すことができる。焼戻し温度がAc変態点を超えると鋼が部分的にオーステナイトに変態することになるので焼戻し温度はAc変態点以下とする。以上のような熱処理を施した接合部の靭性は、0℃におけるシャルピー吸収エネルギーで47J以上であることが必要である。すなわち、2mmVノッチ付き試験片を用いて0℃にてシャルピー衝撃試験を行った時の吸収エネルギーが47J未満では鋼材は十分な靭性を有していないからである。鋼を以上のような化学成分と靭性を有するものとすることによって、焼割れまたは再熱割れを生じない耐低温変態割れ性に優れた液相拡散接合用鋼材を得ることができる。
【0028】
なお、本発明では請求項1に記載の鋼であれば,請求項2〜5に記載の通り、B:0.0003〜0.005%,N:0.01%以下、またはCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上、またはNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%の一種または二種以上、またはNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有することができる。
【0029】
上記した合金成分は以下の理由から添加範囲を制限してある。
Bは微量で鋼の焼き入れ性を大きく高めるが、0.0003%未満の添加量では焼き入れ性向上効果が小さい。一方、0.005%を超えて添加すると炭硼化物を形成して、かえって焼き入れ性を低下させることになる。したがって、Bの添加範囲を0.0003〜0.005%とするのが望ましい。
【0030】
NはAlと結合して微細なAlNを析出して結晶粒を微細化する。しかしながら、NはBと結合して焼入れ性に有効な固溶Bの量を低減させる。Nが0.01%を超えると、固溶Bの確保が困難となりNの固定のために多量のTiを必要となってコスト高を招くので、Nは0.01%以下とするのが望ましい。
【0031】
Ca,Mg,Y,Ce,La,Zrは何れも硫化物形態制御能を有する元素であって、この効果を発揮させるためには、Ca:0.0005%以上、Mg:0.0005%以上、Y:0.0005%以上、Ce:0.0005%以上、La:0.0005%以上、Zr:0.001%以上添加する必要がある。しかしながら、Ca:0.01%、Mg:0.005%、Y:0.02%、Ce:0.02%、La:0.02%、Zr:0.02%を超えると粗大酸化物が生成されて鋼の靱性が低下する。したがって、Ca:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の範囲とするのが望ましい。
【0032】
Ni、Co、Cuはいずれもγ安定化元素であって、鋼材の変態点を下げて低温変態を促すことで焼き入れ性を向上させる元素であり、それぞれ0.01%以上の添加で効果が得られる。一方、5.0%を超えて添加すると残留γが増加して鋼材の靱性に影響を及ぼすことから、その添加範囲をNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0とするのが望ましい。
【0033】
Cr、Mo、Wは何れもα安定化元素であるが、Crは同時に耐食性の向上に有用である。何れも0.01%添加で効果が認められるが、Crは13.0%を超えるとδフェライトを生成して低温変態組織を生成し難くなり、かえって強度靱性を低下させる場合があるため、その上限を13.0%に制限した。MoとWは著しい固溶強化を発揮するが、何れも5.0%を超えて添加すると、液相拡散接合の拡散原子であるBおよびPと硼化物あるいは燐化物を生成し、継手の靱性を劣化させる場合がある。したがって、それぞれの添加量をCr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%とするのが望ましい。
【0034】
また、Nb、V、Ta、Hf、Reは微細な炭化物を析出して鋼の強度を高める。何れも0.005%以上の添加で効果がある。しかし、Nb、Ta、Hf、Reは0.5%で、またVは1.0%を超える添加で炭化物が粗大化して靱性の低下を来すので、Nb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%とするのが望ましい。
【0035】
上記した各群の元素の1種または2種以上を適宜組み合わせて複合添加しても、また各元素を単独で添加しても良く、本発明の効果を妨げることなく、鋼材に各種特性を付与することができる。
【0036】
なお、本発明鋼材の製造工程は、通常の高炉−転炉による銑鋼一貫プロセスを適用するだけでなく、冷鉄源を使用した電炉製法、転炉製法も適用でき、さらに連続鋳造工程を経ない場合でも通常の鋳造、鍛造工程を経て製造する事も可能である。また、製造した鋼材の形状は全く自由であって、適用する部材の形状に必要な成型技術を適用できる。すなわち、鋼板、鋼管、棒鋼、線材、形鋼などの広範囲に適用することが可能である。また、本鋼は溶接性にも優れており、液相拡散接合に適していることから液相拡散接合継手を含む構造体であれば、一部に溶接を適用して、あるいは併用して構造体を製造することが可能であり、本発明の効果を何ら妨げるものではない。
【0037】
【実施例】
実験室規模真空溶解、あるいは実機鋼板製造設備において、100kgから300ton重量の真空溶解、あるいは通常の高炉−転炉−炉外精錬−脱ガス/微量元素添加−連続鋳造−熱間圧延によって製造した、請求項1〜4に記載の化学成分範囲鋼材を、圧延方向と平行な方向から10mmΦあるいは20mm角で長さ50mmの簡易小型試験片に加工した。試験片の端面をRmax<100μmに研削加工して脱脂洗浄し、その端面を2つ突き合わせて接合試験片対となし、150kWの出力を有する高周波誘導加熱装置を備えた引っ張り/圧縮試験機を用い、接合面間には液相拡散接合を1000〜1300℃において実現可能なNi基−B系、Fe基−B系、Ni基−P系、Fe基−P系の、実質的に体積分率で50%以上が非晶質である厚み20〜50μmのアモルファス箔を介在させ、必要な接合温度まで試験片全体を加熱し、30秒から60分の間、1〜20MPaの応力下で液相拡散接合し、接合後放冷した。
【0038】
続いて得られた継手全体を、900〜1000℃(実質的に母材のAc変態点以上の温度)へ再加熱して10〜200分保持の後、0.1℃/s以上の冷却速度で加速冷却してベイナイト〜マルテンサイトの低温変態組織となし、これを光学顕微鏡にて観察して確認した後に、必要な場合に適宜200〜700℃の各温度で0.1〜500時間の範囲で焼き戻して調質組織とした。得られた丸棒接合試験片対からは直径6mmΦの引張り試験片を採取し、強度評価に供するとともに、角棒試験片対からはJIS4号2mmVノッチつきのシャルピー衝撃試験片を採取して、ノッチ位置を接合部とすることで継手の靱性を評価し、これをもって継手の焼き戻し割れ感受性指標とした。
不純物成分は、接合前の母材で通常の湿式化学分析にて分析し、析出の有無に拘わらず鋼中含有量で評価した。
【0039】
表1〜4には本発明鋼の化学成分実施例と継手の衝撃吸収エネルギー(J)、および継手の引張り強さ(MPa)、(As%+Sn%+Sb%+Pb%+Zn%)の質量%総和、接合後の熱処理条件をそれぞれ示した。本発明鋼では熱処理後の継手の靱性が47J以上であって、焼き戻し割れ感受性が低いと考えられる。また、実際に焼き戻し割れ、焼割れは継手に発生しなかった。なお、表2の左端は表1の右端に接続されるものであって、以下同様である。
【0040】
【表1】

Figure 2004100027
【0041】
【表2】
Figure 2004100027
【0042】
【表3】
Figure 2004100027
【0043】
【表4】
Figure 2004100027
【0044】
これに対して表5、6には従来技術のみを用いて製造した鋼材による液相拡散接合継手の化学成分と評価結果の例を示してある。表5、6のうち、第81番鋼はPが0.01%を超えたため、継手の靱性が接合部のみならず全体的に低下し、確保できなかった例、第82番鋼は母材Sが高かったため、接合部継手の粒界に原子状Sが偏析して継手靱性が低下した例、第83番から第87番鋼は、それぞれAs,Sn,Sb,Pb,Znの含有量が各個に0.005%を超えたため、(As%+Sn%+Sb%+Pb%+Zn%)の質量%総和は0.015%以下であったが、継手靱性が低下した例、第88番鋼はAs,Sn,Sb,Pb,Znの含有量は各個には0.005%以下であったものの、総和が0.015%を超えたため、継手の靱性が低下した例、第89番鋼はTiが過剰となり、Tiの炭化物が多量に析出し、継手靱性が低下した例、第90番鋼はAl含有量が不足し、Tiとともに鋼中に存在して接合中の結晶粒径制御に作用しなければならない窒化物の量が低下し、継手の靱性が低下した例、第91番鋼はCの量が不足し、継手の接合後の熱処理にもかかわらず、継手の強度が不足した例である。
【0045】
【表5】
Figure 2004100027
【0046】
【表6】
Figure 2004100027
【0047】
【発明の効果】
本発明は液相拡散接合を用いて継手を形成し、構造体を製造する際に、構造体に600MPaを超える高い強度、場合によっては1000MPaを超える超高強度と継手における熱処理時の焼き戻し割れの発生がないことを求められる場合に好適な液相拡散接合用鋼を提供するものであり、液相拡散接合の技術適用および難接合材の組立、さらには省工程による安価な部品の製造など、液相拡散接合の適用によって達成されうる構造体の機能向上に大きく寄与する。
【図面の簡単な説明】
【図1】焼き戻し割れ感受性を高める不純物元素の総和(As%+Sn%+Sb%+Pb%+Zn%)と液相拡散接合継手の0℃における靱性、すなわち焼き戻し割れ感受性指標との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel material that enables a joint structure such as a part or an apparatus using liquid phase diffusion bonding, and more specifically, a strength produced by applying liquid phase diffusion bonding to a part or all of the steel has a strength of 600 MPa or more, particularly The present invention relates to a steel material for liquid phase diffusion bonding that can constitute a high-strength structure or a pressure vessel of 1000 MPa or more.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-164332 [Patent Document 2] Japanese Patent Application Laid-Open No. 2001-131682 [0003]
Liquid phase diffusion bonding is becoming widespread as an industrial new bonding technology between metal materials. In liquid phase diffusion bonding, an element having the ability to form a joint through a diffusion-controlled isothermal solidification process, such as B or P, and these are interposed between the grooves, between the bonding surfaces or grooves of the materials to be bonded. In order to intervene a multi-element alloy consisting of Ni or Fe to be a base material and heat and maintain it at a temperature equal to or higher than the melting point of the low-melting alloy into which the joint has been inserted, this is a technique for forming a joint, unlike a normal welding technique, It has features such as almost no welding residual stress, and the ability to form a smooth and precise joint that does not generate extra welding as in welding. In particular, since it is a surface joining, the joining time is constant and the joining is completed in a relatively short time regardless of the area of the joining surface, which is completely different from the conventional welding. Therefore, if the temperature can be maintained for a predetermined time at a temperature equal to or higher than the low melting point metal into which the groove is inserted, there is a feature that joining between surfaces can be realized regardless of the shape of the groove.
[0004]
However, the melting point of the low melting point alloy (hereinafter referred to as “insert metal”) interposed between the grooves is 900 ° C. to 1300 ° C. because the diffusing element is B or P, and particularly a steel having a ferrite structure. A temperature above the transformation point, Ac 1 or Ac 3 , must be achieved in the groove. At this time, in order to end the diffusion-controlled isothermal solidification early in the industry, the joining temperature will substantially exceed 1000 ° C., and naturally, the steel material is heated to the transformation point or higher, so after the joining is completed, cooling is performed. Sometimes retransformation occurs, and the properties of the material are determined by the transformation structure at this time. Therefore, there is a case where the heat treatment is added later to perform the tempering treatment.
[0005]
However, when isothermal solidification of the joint is achieved by liquid phase diffusion bonding, diffusion-limited solidification of B or P occurs, and these elements tend to concentrate at the grain boundaries of the joint structure, and in some cases precipitate as compounds. There is also. Furthermore, the isothermal solidification portion involves melting and fusion of the base material, and the impurities present in the matrix also re-melt once and tend to segregate at the grain boundaries during formation of the joint structure. Their detailed study revealed this.
[0006]
In particular, when obtaining a low-temperature transformed structure, that is, a martensite structure or a bainite structure, by tempering treatment such as quenching or normalizing to increase the strength, avoid enrichment of the impurity element and B or P in the former γ grain boundary. However, the grain boundaries are easily embrittled, and in some cases, quenching cracks occur due to transformation expansion during cooling. Alternatively, the time difference of the transformation caused by the temperature difference between the inside and the outside surface of the structure that occurs during accelerated cooling using a refrigerant.If tensile stress remains on the surface of the structure, in the subsequent tempering process, carbide Under the conditions that precipitates and nitrides at the grain boundaries by embrittlement occur, cracks along the grain boundaries, ie, tempering cracks (also referred to as reheat cracks or SR cracks) occur, or even if not cracked, the brittleness has an extremely low impact value. It may become a joint. Joints with such brittle properties are subject to cracking after a certain period of time or aging when shocking stress is applied to structural members at low temperatures below room temperature, or when hydrogen enters steel. There was a problem.
[0007]
All of these exhibit the appearance of grain boundary fracture, and are particularly remarkable in a high-strength steel composed of a low-temperature transformation structure and a tempered structure requiring a strength of 600 MPa or more, and sometimes 1000 MPa or more, and embrittlement of grain boundaries. Has led to embrittlement of the material, and therefore, it has been required for the material to be joined to improve the properties of the grain boundaries.
This phenomenon is characteristic of liquid-phase diffusion bonding in which B or P is diffused in a large amount. Unlike tempering embrittlement that occurs in ordinary low-alloy steel, embrittlement that assumes B and P grain boundary segregation is assumed. Since it is a phenomenon, there is almost no similar technology for countermeasures.
[0008]
Japanese Patent Application Laid-Open No. 2001-164332 and Japanese Patent Application Laid-Open No. 2001-131682 disclose the latest technology for improving the reheat cracking resistance of alloy steel. No knowledge of liquid phase diffusion joints is found. Therefore, at the present time, there is no disclosure of a technology capable of effectively preventing the characteristic temper embrittlement occurring in the liquid phase diffusion bonded joint.
[0009]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and after performing liquid phase diffusion bonding using B as a diffusion atom, a high-strength joint of 600 MPa or more, and in some cases, 1000 MPa or more, is subjected to heat treatment heat treatment. It is an object of the present invention to obtain a steel material having resistance to grain boundary embrittlement such as quenching cracking or tempering cracking occurring when the steel material is to be obtained, mainly by limiting steel material impurity components.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention limits the chemical components that contribute to the grain boundary embrittlement of steel, and particularly the individual and total contents of As, Sn, Sb, Pb, and Zn, which have a large effect as an embrittlement factor. Is a steel material designed so that embrittlement of the grain boundary does not occur in the liquid phase diffusion bonded joint, and is specifically as follows.
{Circle around (1)} The invention according to claim 1 is, by mass%, C: 0.05 to 1.0%, Si: 0.01 to 1.0%, Mn: 0.05 to 3.0%, Ti : 0.005 to 0.1%, Al: 0.01 to 0.2%, and P: 0.01% or less, S: 0.003% or less, O: limited to 0.01% or less In addition, all of As, Sn, Sb, Pb, and Zn are limited to 0.005% or less, and the value of (As% + Sn% + Sb% + Pb% + Zn%) is 0.015% or less, and the remainder is inevitable. For liquid-phase diffusion bonding consisting of chemical impurities and Fe, the joint obtained by liquid-phase diffusion bonding of this steel is reheated to the Ac 3 transformation point or higher, and then accelerated cooling at a cooling rate of 0.1 ° C./s or higher. or, the Charpy absorbed energy at 0 ℃ when tempered below the accelerated cooling after Ac 1 transformation point as more 47J A liquid-phase diffusion bonding steel material excellent in low-temperature transformation cracking resistance, characterized in that the lower quench cracking or reheat cracking susceptibility.
[0011]
{Circle over (2)} The invention according to claim 2 is the steel according to claim 1, further comprising B: 0.0003 to 0.005% and N: 0.01% or less. Liquid phase diffusion bonding steel with excellent transformation cracking properties.
[0012]
{Circle around (3)} The invention according to claim 3 is the steel according to claim 1 or 2, further comprising 0.0005 to 0.01% of Ca, 0.0005 to 0.005% of Mg, and 0. 0005 to 0.02%, Ce: 0.0005 to 0.02%, La: 0.0005 to 0.02%, and Zr: 0.001 to 0.02%. This is a steel material for liquid phase diffusion bonding that has excellent low-temperature transformation cracking resistance.
[0013]
{Circle around (4)} The invention according to claim 4 is the steel according to any one of claims 1 to 3, wherein Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu : 0.01 to 5.0%, Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, W: 0.01 to 5.0%. Further, the present invention provides a liquid phase diffusion bonding steel excellent in low-temperature transformation cracking resistance, wherein the strength of the joint after accelerated cooling or after accelerated cooling and tempering is 1000 MPa or more.
[0014]
(5) The invention according to claim 5 is the steel according to any one of claims 1 to 4, further comprising: Nb: 0.005 to 0.5%, V: 0.005 to 1.0%, Ta : 0.005 to 0.5%, Hf: 0.005 to 0.5%, Re: 0.005 to 0.5%, baking after accelerated cooling or accelerated cooling A liquid phase diffusion bonding steel excellent in low-temperature transformation cracking resistance, wherein the strength of the joint after returning is 1000 MPa or more.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reason for limiting the chemical components of the steel material for liquid phase diffusion bonding according to the present invention will be described below.
C is the most basic element that controls the hardenability and strength of steel. If it is less than 0.01%, the strength cannot be ensured, and if it exceeds 1.0%, the strength is improved, but the toughness of the joint cannot be ensured even after tempering, so that the strength is 0.01 to 1.0%. Limited to.
[0016]
Si is a deoxidizing element of steel material and is usually added together with Mn for the purpose of reducing the oxygen concentration of steel. At the same time, it is an element necessary for intragranular strengthening, and its deficiency causes a decrease in strength. Similarly, in the present invention, the main purpose is to add deoxidation and intragranular strengthening, and the effect is exhibited at 0.01% or more, and when added in excess of 1.0%, the steel may become brittle. For this reason, the addition range is limited to 0.01 to 1.0%.
[0017]
Mn is effective for deoxidation together with Si, but is present in steel to enhance the hardenability of the material and contribute to the improvement of strength. The effect is manifested from 0.05%, and if it exceeds 3.0%, a coarse MnO-based oxide is crystallized, and on the contrary, the toughness may be reduced. Therefore, the addition range is 0.05 to 3.0%. Limited to
[0018]
Ti precipitates fine carbides, refines crystal grains, and increases the toughness of steel. For this purpose, 0.005% or more must be added. However, if it exceeds 0.1%, carbides are coarsened to cause a decrease in toughness. Therefore, the range of Ti is limited to 0.005 to 0.1%.
[0019]
Al combines with N and precipitates as AlN, does not dissolve even in the temperature range of liquid phase diffusion bonding, and has the effect of suppressing the movement of γ grains. Even if added in a large amount, carbides are not formed, so that the behavior is fundamentally different from nitride forming elements such as Ti and Zr, and the toughness of steel does not decrease. Therefore, it is necessary to add 0.01% as a minimum amount for exhibiting the effect, and if it exceeds 0.2%, AlN itself becomes coarse and affects toughness. In the range of 0.01 to 0.2%.
[0020]
In order to increase the toughness of a high-strength steel such as the present steel, it is necessary to avoid impurity enrichment at the grain boundaries as much as possible. It was limited to 0.003% or less. O must be limited to 0.01% or less in order to efficiently combine Al with N.
[0021]
In the present invention, As, Sn, Sb, Pb, and Zn are all classified as impurities. All of these tend to segregate at the grain boundaries of the liquid phase diffusion bonded joints and cause tempering cracks, so it is necessary to reduce them, but the upper limit is 0.005% for each. Even if an element is added in excess of this, tempering cracks are induced. At the same time, it has been clarified in the study of the present inventors that the sum of these elements exceeding 0.015% also promotes tempering cracks. That is, in mass%,
(As% + Sn% + Sb% + Pb% + Zn%) ≦ 0.015%
Must be achieved at the joint. In addition, this must also be achieved simultaneously with steel materials that limit S, which is harmful to temper brittleness, to 0.003% or less.
[0022]
The limiting ranges of these impurity elements were determined by the following experiments.
Laboratory scale vacuum melting or vacuum melting of 100 kg, 300 kg, 2 ton, 10 ton, 100 ton, 300 ton, or ordinary blast furnace-converter-out-of-furnace refining-degassing / trace element addition-continuous casting- Various carbon steels, low alloy steels, and alloy steels including the chemical composition range steel materials according to claims 1 to 5 manufactured by hot rolling, and a length of 10 mmΦ or 20 mm square and 50 mm in length from a direction parallel to the rolling direction. It was processed into a simple small test piece. The end face of the test piece was ground to Rmax <100 μm, degreased and washed, and the two end faces were joined to form a pair of bonded test pieces, using a tensile / compression testing machine equipped with a high-frequency induction heating device having an output of 150 kW. And a substantially volume fraction of Ni-base-B system, Fe-base-B system, Ni-base-P system, and Fe-base-P system which can realize liquid phase diffusion bonding at 1000 to 1300 ° C. between the bonding surfaces. The entire test piece is heated to the required joining temperature by interposing an amorphous foil having a thickness of 20 to 50 μm, which is amorphous by 50% or more, and is subjected to a liquid phase under a stress of 1 to 20 MPa for 30 seconds to 60 minutes. Diffusion bonding was performed, and after the bonding, it was allowed to cool.
[0023]
Subsequently, the entire joint obtained is reheated to 900 to 1000 ° C. (substantially at a temperature not lower than the Ac 3 transformation point of the base material), held for 10 to 200 minutes, and then cooled at 0.1 ° C./s or more. After accelerated cooling at a speed to form a low-temperature transformed structure of bainite to martensite, and after confirming this by observing with an optical microscope, if necessary, the temperature is appropriately set at 200 to 700 ° C. for 0.1 to 500 hours. Tempered in the range to give a tempered structure. A tensile test piece having a diameter of 6 mm was collected from the obtained round bar joint test piece pair and subjected to strength evaluation, and a Charpy impact test piece with a JIS 4 2 mm V notch was sampled from the square bar test piece pair, and the notch position was measured. Was used as a joint to evaluate the toughness of the joint, and this was used as an index of susceptibility to tempering cracking of the joint.
[0024]
The impurity components were analyzed by a conventional wet chemical analysis on the base material before joining, and were evaluated based on the content in steel regardless of the presence or absence of precipitation. FIG. 1 shows the relationship between the value of (As% + Sn% + Sb% + Pb% + Zn%) in mass% and the Charpy absorbed energy of the joint at 0 ° C. as an index of tempering crack. When the value of (As% + Sn% + Sb% + Pb% + Zn%) is 0.015% or less, the Charpy absorbed energy of the joint at 0 ° C. always exceeds 47 J, but conversely (As% + Sn% + Sb%). When the value of (+ Pb% + Zn%) exceeds 0.015%, the Charpy absorbed energy of the joint at 0 ° C. does not reach 47 J.
[0025]
Also, as described in Examples, when each element exceeds 0.005%, similarly, the toughness of the joint does not reach 47 J at 0 ° C. Furthermore, it was experimentally determined that the joint toughness could not be ensured even when S exceeds 0.003%.
These values are characteristic of liquid phase diffusion bonding using B and P as diffusion elements, and are different from tempering embrittlement parameters or evaluation indices found in heat treatment of continuous welded joints and alloy steels. It is both a limit and an indicator. If these indices and restrictions are not satisfied, it is difficult to completely suppress temper embrittlement.
[0026]
The steel material has the chemical components described above, and the balance consists of unavoidable impurities and Fe. When such a steel material is subjected to liquid phase diffusion bonding, a heat-affected zone is formed in the vicinity of the bonded portion, but in this portion, the crystal grains are coarsened and the toughness is low. If the heat-affected zone having low toughness is subjected to heat treatment, toughness is restored. For this purpose, the joint is heated to an Ac 3 transformation point or higher and then accelerated and cooled at a cooling rate of 0.1 ° C./s or more. If the heating temperature is lower than the Ac 3 transformation point, transformation to austenite is insufficient and toughness is not sufficiently restored. If the cooling rate is less than 0.1 ° C./s, it is difficult to obtain a high-temperature, low-temperature transformed structure such as martensite or bainite. The accelerated cooling is performed by quenching or normalizing.
[0027]
After the accelerated cooling, it can be tempered to an Ac 1 transformation point or lower as needed to further recover toughness. If the tempering temperature exceeds the Ac 1 transformation point, the steel is partially transformed into austenite, so the tempering temperature is set to the Ac 1 transformation point or lower. It is necessary that the toughness of the joint subjected to the heat treatment as described above has a Charpy absorbed energy at 0 ° C. of 47 J or more. That is, if the absorbed energy is less than 47 J when the Charpy impact test is performed at 0 ° C. using a test piece with a 2 mm V notch, the steel material does not have sufficient toughness. By making the steel have the above-mentioned chemical composition and toughness, it is possible to obtain a steel material for liquid phase diffusion bonding excellent in low-temperature transformation cracking resistance that does not cause sintering cracks or reheat cracking.
[0028]
In the present invention, if it is the steel described in claim 1, as described in claims 2 to 5, B: 0.0003 to 0.005%, N: 0.01% or less, or Ca: 0. 0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005 to 0.02%, Ce: 0.0005 to 0.02%, La: 0.0005 to 0.02% , Zr: one or more of 0.001 to 0.02%, or Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu: 0.01 to 5.0. %, Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, W: 0.01 to 5.0%, Nb: 0.005 to 0.5%. 5%, V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, Hf: 0.005 to 0.5%, Re: 0.005 to 0.5% Species or two or more species may be contained.
[0029]
The range of addition of the above alloy components is limited for the following reasons.
A small amount of B greatly enhances the hardenability of steel, but the effect of improving hardenability is small when the addition amount is less than 0.0003%. On the other hand, if it is added in excess of 0.005%, a boride is formed, which rather reduces the hardenability. Therefore, it is desirable to set the addition range of B to 0.0003 to 0.005%.
[0030]
N combines with Al and precipitates fine AlN to refine crystal grains. However, N combines with B to reduce the amount of solid solution B effective for hardenability. If N exceeds 0.01%, it is difficult to secure solid solution B and a large amount of Ti is required for fixing N, resulting in high cost. Therefore, N is desirably 0.01% or less. .
[0031]
Ca, Mg, Y, Ce, La, and Zr are all elements having a sulfide form controllability. In order to exhibit this effect, Ca: 0.0005% or more and Mg: 0.0005% or more. , Y: 0.0005% or more, Ce: 0.0005% or more, La: 0.0005% or more, and Zr: 0.001% or more. However, when the content exceeds Ca: 0.01%, Mg: 0.005%, Y: 0.02%, Ce: 0.02%, La: 0.02%, and Zr: 0.02%, a coarse oxide is formed. It is formed and the toughness of the steel decreases. Accordingly, Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005 to 0.02%, Ce: 0.0005 to 0.02%, La: 0. [0005] It is desirable to set the range of 0005 to 0.02% and Zr: 0.001 to 0.02%.
[0032]
Ni, Co, and Cu are all γ-stabilizing elements, and are elements that improve the hardenability by lowering the transformation point of the steel material and promoting low-temperature transformation. can get. On the other hand, if the addition exceeds 5.0%, the residual γ increases and affects the toughness of the steel material. Therefore, the addition ranges of Ni: 0.01 to 5.0% and Co: 0.01 to 5. 0%, Cu: desirably 0.01 to 5.0.
[0033]
Cr, Mo, and W are all α-stabilizing elements, but Cr is also useful for improving corrosion resistance. In any case, the effect is recognized when 0.01% is added. However, when Cr exceeds 13.0%, δ ferrite is formed, and it becomes difficult to form a low-temperature transformation structure, and instead, strength toughness may be reduced. The upper limit was limited to 13.0%. Mo and W exhibit remarkable solid solution strengthening. However, if both of them are added in excess of 5.0%, borides or phosphides are formed with B and P, which are diffusion atoms of the liquid phase diffusion bonding, and the toughness of the joint is increased. May deteriorate. Therefore, it is desirable that the respective addition amounts are Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, and W: 0.01 to 5.0%.
[0034]
Further, Nb, V, Ta, Hf, and Re precipitate fine carbides to increase the strength of steel. In any case, the addition of 0.005% or more is effective. However, Nb, Ta, Hf, and Re are 0.5%, and when V exceeds 1.0%, carbides are coarsened and the toughness is reduced, so that Nb: 0.005 to 0.5% , V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, Hf: 0.005 to 0.5%, and Re: 0.005 to 0.5%.
[0035]
One or more of the elements of each group described above may be appropriately combined and added in combination, or each element may be added alone, and imparts various properties to the steel material without hindering the effects of the present invention. can do.
[0036]
In addition, in the manufacturing process of the steel material of the present invention, not only an integrated process of pig steel using a normal blast furnace and a converter, but also an electric furnace manufacturing method and a converter manufacturing method using a cold iron source can be applied. Even if it is not available, it can be manufactured through normal casting and forging processes. Further, the shape of the manufactured steel material is completely free, and a molding technique necessary for the shape of the member to be applied can be applied. That is, it can be applied to a wide range such as a steel plate, a steel pipe, a steel bar, a wire rod, and a shaped steel. In addition, since this steel has excellent weldability and is suitable for liquid phase diffusion bonding, if it is a structure that includes a liquid phase diffusion bonding joint, it is possible to apply welding to a part of the structure or use it together. The body can be manufactured and does not hinder the effects of the present invention.
[0037]
【Example】
In a laboratory scale vacuum melting, or vacuum melting of 100 kg to 300 ton weight in a real steel plate manufacturing facility, or manufactured by ordinary blast furnace-converter-outside furnace refining-degassing / trace element addition-continuous casting-hot rolling, The chemical composition range steel material according to claims 1 to 4 was processed into a simple small test piece of 10 mmΦ or 20 mm square and 50 mm long from a direction parallel to the rolling direction. The end face of the test piece was ground to Rmax <100 μm, degreased and washed, and the two end faces were joined to form a bonded test piece pair, using a tensile / compression testing machine equipped with a high-frequency induction heating device having an output of 150 kW. And a substantially volume fraction of Ni-base-B system, Fe-base-B system, Ni-base-P system, and Fe-base-P system which can realize liquid phase diffusion bonding at 1000 to 1300 ° C. between the bonding surfaces. The entire test piece is heated to the required joining temperature by interposing an amorphous foil having a thickness of 20 to 50 μm, which is amorphous by 50% or more, and is subjected to a liquid phase under a stress of 1 to 20 MPa for 30 seconds to 60 minutes. Diffusion bonding was performed, and after the bonding, it was allowed to cool.
[0038]
Subsequently, the entire joint obtained is reheated to 900 to 1000 ° C. (substantially at a temperature not lower than the Ac 3 transformation point of the base material), held for 10 to 200 minutes, and then cooled at 0.1 ° C./s or more. After accelerated cooling at a speed to form a low-temperature transformed structure of bainite to martensite, and after confirming this by observing with an optical microscope, if necessary, the temperature is appropriately set at 200 to 700 ° C. for 0.1 to 500 hours. Tempered in the range to give a tempered structure. A tensile test piece having a diameter of 6 mm was collected from the obtained round bar joint test piece pair and subjected to strength evaluation, and a Charpy impact test piece with a JIS 4 2 mm V notch was sampled from the square bar test piece pair, and the notch position was measured. Was used as a joint to evaluate the toughness of the joint, and this was used as an index of susceptibility to tempering cracking of the joint.
The impurity components were analyzed by a conventional wet chemical analysis on the base material before joining, and were evaluated based on the content in steel regardless of the presence or absence of precipitation.
[0039]
Tables 1 to 4 show examples of the chemical composition of the steel of the present invention, the impact absorption energy (J) of the joint, the tensile strength (MPa) of the joint, and the mass% sum of (As% + Sn% + Sb% + Pb% + Zn%). And the heat treatment conditions after the joining are shown. In the steel of the present invention, the toughness of the joint after the heat treatment is 47 J or more, and it is considered that the tempering crack sensitivity is low. Further, tempering cracks and tempering cracks did not actually occur in the joint. The left end of Table 2 is connected to the right end of Table 1, and so on.
[0040]
[Table 1]
Figure 2004100027
[0041]
[Table 2]
Figure 2004100027
[0042]
[Table 3]
Figure 2004100027
[0043]
[Table 4]
Figure 2004100027
[0044]
On the other hand, Tables 5 and 6 show examples of chemical components and evaluation results of liquid phase diffusion bonded joints made of steel materials manufactured using only the conventional technology. In Tables 5 and 6, No. 81 steel had a P exceeding 0.01%, so that the toughness of the joint was reduced not only at the joint but also as a whole and could not be secured. In the case where atomic S was segregated at the grain boundary of the joint due to high S and the toughness of the joint decreased, the 83rd to 87th steels had As, Sn, Sb, Pb and Zn contents respectively. Since the content exceeded 0.005% for each piece, the total mass% of (As% + Sn% + Sb% + Pb% + Zn%) was 0.015% or less. , Sn, Sb, Pb, and Zn contents were 0.005% or less for each piece, but the sum exceeded 0.015%, and the toughness of the joint was reduced. Excessive, a large amount of Ti carbides precipitated, and joint toughness was reduced. In the case where the amount is insufficient, the amount of nitride which must be present in the steel together with Ti and act to control the crystal grain size during joining decreases, and the toughness of the joint decreases, the 91st steel is the amount of C This is an example in which the strength of the joint was insufficient despite the heat treatment after joining the joint.
[0045]
[Table 5]
Figure 2004100027
[0046]
[Table 6]
Figure 2004100027
[0047]
【The invention's effect】
The present invention forms a joint by using liquid phase diffusion bonding, and when manufacturing a structure, the structure has a high strength exceeding 600 MPa, and in some cases, an ultra-high strength exceeding 1000 MPa and a tempering crack during heat treatment in the joint. The purpose of the present invention is to provide a liquid phase diffusion bonding steel suitable for the case where it is required that there is no occurrence of liquid phase diffusion, apply liquid phase diffusion bonding technology, assemble difficult-to-bond materials, and manufacture inexpensive parts by saving steps. In addition, it greatly contributes to improving the function of the structure that can be achieved by applying liquid phase diffusion bonding.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the sum total of impurity elements (As% + Sn% + Sb% + Pb% + Zn%) that enhances tempering crack susceptibility and the toughness of a liquid phase diffusion bonded joint at 0 ° C., that is, the tempering crack susceptibility index. It is.

Claims (5)

質量%で、C:0.05〜1.0%,Si:0.01〜1.0%,Mn:0.05〜3.0%,Ti:0.005〜0.1%,Al:0.01〜0.2%を含有し、かつP:0.01%以下,S:0.003%以下,O:0.01%以下に制限し、加えてAs,Sn,Sb,Pb,Znの何れも0.005%以下に制限し、かつ(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下、残部が不可避的不純物およびFeからなる液相拡散接合用鋼材であって、この鋼材を液相拡散接合した継手をAc変態点以上に再加熱してから冷却速度0.1℃/s以上で加速冷却するか、前記加速冷却後Ac変態点以下に焼き戻したときの0℃におけるシャルピー吸収エネルギーを47J以上として、焼割れまたは再熱割れ感受性を低くしたことを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。In mass%, C: 0.05 to 1.0%, Si: 0.01 to 1.0%, Mn: 0.05 to 3.0%, Ti: 0.005 to 0.1%, Al: 0.01 to 0.2%, P: 0.01% or less, S: 0.003% or less, O: 0.01% or less, in addition to As, Sn, Sb, Pb, All of Zn are limited to 0.005% or less, and the value of (As% + Sn% + Sb% + Pb% + Zn%) is 0.015% or less, and the balance is unavoidable impurities and steel for liquid phase diffusion bonding made of Fe. The joint obtained by subjecting the steel material to liquid phase diffusion bonding is reheated to an Ac 3 transformation point or more and then accelerated cooling at a cooling rate of 0.1 ° C./s or more, or is cooled to an Ac 1 transformation point or less after the accelerated cooling. The Charpy absorbed energy at 0 ° C when tempered is set to 47 J or more, and the susceptibility to quenching or reheat cracking is increased. Low temperature transformation cracking resistance excellent liquid phase diffusion bonding steel material, characterized in that there was a comb. 請求項1に記載の鋼であって、更にB:0.0003〜0.005%,N:0.01%以下を含有することを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。2. The liquid phase diffusion bonding excellent in low temperature transformation cracking resistance according to claim 1, further comprising B: 0.0003 to 0.005% and N: 0.01% or less. For steel. 請求項1または2に記載の鋼であって、更にCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上を含有することを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。The steel according to claim 1 or 2, further comprising: Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005 to 0.02%, Ce: 0. 0.0005 to 0.02%, La: 0.0005 to 0.02%, and Zr: 0.001 to 0.02%. Steel for liquid phase diffusion bonding. 請求項1〜3の何れかに記載の鋼であって、更にNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。The steel according to any one of claims 1 to 3, further comprising: Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu: 0.01 to 5.0%, Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, W: 0.01 to 5.0%, and after or after accelerated cooling. A liquid phase diffusion bonding steel excellent in low-temperature transformation cracking resistance, wherein the strength of the joint after tempering is 1000 MPa or more. 請求項1〜4の何れかに記載の鋼であって、更にNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。The steel according to any one of claims 1 to 4, wherein Nb: 0.005 to 0.5%, V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, One or two or more of Hf: 0.005 to 0.5% and Re: 0.005 to 0.5%, and the joint strength after accelerated cooling or accelerated cooling and tempering is 1000 MPa or more. A liquid phase diffusion bonding steel excellent in low temperature transformation cracking resistance.
JP2002267023A 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance Expired - Fee Related JP3996824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267023A JP3996824B2 (en) 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267023A JP3996824B2 (en) 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance

Publications (2)

Publication Number Publication Date
JP2004100027A true JP2004100027A (en) 2004-04-02
JP3996824B2 JP3996824B2 (en) 2007-10-24

Family

ID=32265670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267023A Expired - Fee Related JP3996824B2 (en) 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance

Country Status (1)

Country Link
JP (1) JP3996824B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224418A (en) * 2006-01-30 2007-09-06 Hitachi Metals Ltd Hot tool steel having excellent toughness
CN100463995C (en) * 2005-12-12 2009-02-25 鞍钢股份有限公司 Low-carbon tungsten-system bainite steel and its manufacture
JP2009084606A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Ind Ltd Austenitic stainless steel for use in high temperature superior in workability after long period of use
JP2009221910A (en) * 2008-03-14 2009-10-01 Nippon Steel Corp Method for manufacturing common rail and partially reinforced common rail
WO2012118053A1 (en) * 2011-03-03 2012-09-07 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
CN103014534A (en) * 2012-12-01 2013-04-03 滁州市成业机械制造有限公司 Cast hot work die steel and processing method thereof
US20130202907A1 (en) * 2012-02-08 2013-08-08 Edwin Hall Niccolls Equipment for use in corrosive environments and methods for forming thereof
CN103741060A (en) * 2013-12-19 2014-04-23 马鞍山市方圆材料工程有限公司 Alloy steel material for yttrium-containing roller and preparation method thereof
CN103774053A (en) * 2013-12-19 2014-05-07 马鞍山市方圆材料工程有限公司 High-hardness alloy steel material for composite roller surface layer and preparation method thereof
CN104164630A (en) * 2014-07-25 2014-11-26 合肥市瑞宏重型机械有限公司 High-strength corrosion-resistant automobile accessory alloy steel material and manufacturing method thereof
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
CN105220076A (en) * 2015-11-07 2016-01-06 李白 Wind-driven generator wind power bearing
CN105525224A (en) * 2016-01-26 2016-04-27 安徽同盛环件股份有限公司 Anti-corrosion alloy steel ring piece and rolling process
CN105568133A (en) * 2016-01-05 2016-05-11 山西太钢不锈钢股份有限公司 Cold-rolled working roller material and heat treatment method thereof
JP2016141846A (en) * 2015-02-02 2016-08-08 株式会社神戸製鋼所 Weld metal and weld structure
CN106399825A (en) * 2016-08-26 2017-02-15 江苏星源电站冶金设备制造有限公司 Ceramic lined compound tube and manufacturing process thereof
JP2017206743A (en) * 2016-05-19 2017-11-24 新日鐵住金株式会社 Rail excellent in abrasion resistance and toughness
CN109402523A (en) * 2018-12-29 2019-03-01 陈章华 A kind of low-carbon high-chromium high boron wear-resisting steel and preparation method thereof
CN110714162A (en) * 2019-10-31 2020-01-21 成都先进金属材料产业技术研究院有限公司 Method for manufacturing high-temperature bolt for steam turbine
CN110987695A (en) * 2019-12-19 2020-04-10 中南大学 Method for measuring quenching sensitive temperature range of heat-treatable strengthened aluminum alloy
CN111500945A (en) * 2020-04-27 2020-08-07 浙江丰原型钢科技有限公司 Processing technology of high-strength corrosion-resistant round steel
JP2021030231A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Weld material
KR20210116563A (en) * 2019-03-29 2021-09-27 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
WO2022145069A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
CN114875304A (en) * 2022-03-31 2022-08-09 新余钢铁股份有限公司 Quenched and tempered high-strength steel plate for SA537MCL2 pressure vessel and production method thereof
CN115261719A (en) * 2022-05-14 2022-11-01 江阴市中岳机锻有限公司 Low-temperature-resistant bow outer shaft sleeve and machining process thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987778A (en) * 2017-04-07 2017-07-28 莒州集团有限公司 Coal pulverizer is with new strike wheel plate
CN107201482B (en) * 2017-04-19 2019-01-25 马鞍山市鑫龙特钢有限公司 A kind of wind-powered electricity generation pinion steel and preparation method thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463995C (en) * 2005-12-12 2009-02-25 鞍钢股份有限公司 Low-carbon tungsten-system bainite steel and its manufacture
JP2007224418A (en) * 2006-01-30 2007-09-06 Hitachi Metals Ltd Hot tool steel having excellent toughness
JP2009084606A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Ind Ltd Austenitic stainless steel for use in high temperature superior in workability after long period of use
JP2009221910A (en) * 2008-03-14 2009-10-01 Nippon Steel Corp Method for manufacturing common rail and partially reinforced common rail
EP2682491A4 (en) * 2011-03-03 2015-04-08 Hitachi Metals Ltd Hot work tool steel having excellent toughness, and process of producing same
WO2012118053A1 (en) * 2011-03-03 2012-09-07 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
CN103403209A (en) * 2011-03-03 2013-11-20 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
EP2682491A1 (en) * 2011-03-03 2014-01-08 Hitachi Metals, Ltd. Hot work tool steel having excellent toughness, and process of producing same
US20130202907A1 (en) * 2012-02-08 2013-08-08 Edwin Hall Niccolls Equipment for use in corrosive environments and methods for forming thereof
CN103014534A (en) * 2012-12-01 2013-04-03 滁州市成业机械制造有限公司 Cast hot work die steel and processing method thereof
CN103774053A (en) * 2013-12-19 2014-05-07 马鞍山市方圆材料工程有限公司 High-hardness alloy steel material for composite roller surface layer and preparation method thereof
CN103774053B (en) * 2013-12-19 2015-11-25 马鞍山市方圆材料工程有限公司 A kind of composite roll upper layer high hardness alloy steel and preparation method thereof
CN103741060B (en) * 2013-12-19 2016-03-23 马鞍山市方圆材料工程有限公司 A kind of containing yttrium roll alloy steel material and preparation method thereof
CN103741060A (en) * 2013-12-19 2014-04-23 马鞍山市方圆材料工程有限公司 Alloy steel material for yttrium-containing roller and preparation method thereof
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
CN104164630A (en) * 2014-07-25 2014-11-26 合肥市瑞宏重型机械有限公司 High-strength corrosion-resistant automobile accessory alloy steel material and manufacturing method thereof
CN104164630B (en) * 2014-07-25 2016-05-25 合肥市瑞宏重型机械有限公司 A kind of high-strength corrosion-resisting auto parts machinery alloy steel material and manufacturing process thereof
CN107208218A (en) * 2015-02-02 2017-09-26 株式会社神户制钢所 Welding metal and welding structural body
EP3255166A4 (en) * 2015-02-02 2018-07-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welded metal and welded structure
JP2016141846A (en) * 2015-02-02 2016-08-08 株式会社神戸製鋼所 Weld metal and weld structure
WO2016125676A1 (en) * 2015-02-02 2016-08-11 株式会社神戸製鋼所 Welded metal and welded structure
CN105220076A (en) * 2015-11-07 2016-01-06 李白 Wind-driven generator wind power bearing
CN105568133A (en) * 2016-01-05 2016-05-11 山西太钢不锈钢股份有限公司 Cold-rolled working roller material and heat treatment method thereof
CN105525224A (en) * 2016-01-26 2016-04-27 安徽同盛环件股份有限公司 Anti-corrosion alloy steel ring piece and rolling process
JP2017206743A (en) * 2016-05-19 2017-11-24 新日鐵住金株式会社 Rail excellent in abrasion resistance and toughness
CN106399825A (en) * 2016-08-26 2017-02-15 江苏星源电站冶金设备制造有限公司 Ceramic lined compound tube and manufacturing process thereof
CN109402523A (en) * 2018-12-29 2019-03-01 陈章华 A kind of low-carbon high-chromium high boron wear-resisting steel and preparation method thereof
KR102633525B1 (en) 2019-03-29 2024-02-07 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
US11732321B2 (en) * 2019-03-29 2023-08-22 Nippon Steel Corporation Steel sheet and method of producing same
KR20210116563A (en) * 2019-03-29 2021-09-27 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
US20220145417A1 (en) * 2019-03-29 2022-05-12 Nippon Steel Corporation Steel sheet and method of producing same
JP7295418B2 (en) 2019-08-13 2023-06-21 日本製鉄株式会社 welding material
JP2021030231A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Weld material
CN110714162A (en) * 2019-10-31 2020-01-21 成都先进金属材料产业技术研究院有限公司 Method for manufacturing high-temperature bolt for steam turbine
CN110987695A (en) * 2019-12-19 2020-04-10 中南大学 Method for measuring quenching sensitive temperature range of heat-treatable strengthened aluminum alloy
CN111500945A (en) * 2020-04-27 2020-08-07 浙江丰原型钢科技有限公司 Processing technology of high-strength corrosion-resistant round steel
WO2022145069A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
CN114875304A (en) * 2022-03-31 2022-08-09 新余钢铁股份有限公司 Quenched and tempered high-strength steel plate for SA537MCL2 pressure vessel and production method thereof
CN115261719A (en) * 2022-05-14 2022-11-01 江阴市中岳机锻有限公司 Low-temperature-resistant bow outer shaft sleeve and machining process thereof

Also Published As

Publication number Publication date
JP3996824B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
RU2502820C1 (en) Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
JP4730102B2 (en) Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP4116841B2 (en) High strength liquid phase diffusion bonding steel with excellent toughness and fatigue strength
JP5245414B2 (en) Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP2004323917A (en) High strength high toughness steel sheet
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JP2009161811A (en) Steel sheet for low yield ratio high strength steel pipe, method for producing the same, and low yield ratio high strength steel pipe
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2020147786A (en) Hot forged non-heat treated parts and method for producing the same, and hot forged non-heat treated parts steel material
JP4434029B2 (en) High-tensile steel with excellent weldability and joint toughness
JPH0227407B2 (en) YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3996824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees