JP3996824B2 - Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance - Google Patents

Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance Download PDF

Info

Publication number
JP3996824B2
JP3996824B2 JP2002267023A JP2002267023A JP3996824B2 JP 3996824 B2 JP3996824 B2 JP 3996824B2 JP 2002267023 A JP2002267023 A JP 2002267023A JP 2002267023 A JP2002267023 A JP 2002267023A JP 3996824 B2 JP3996824 B2 JP 3996824B2
Authority
JP
Japan
Prior art keywords
steel
liquid phase
phase diffusion
diffusion bonding
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002267023A
Other languages
Japanese (ja)
Other versions
JP2004100027A (en
Inventor
泰士 長谷川
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002267023A priority Critical patent/JP3996824B2/en
Publication of JP2004100027A publication Critical patent/JP2004100027A/en
Application granted granted Critical
Publication of JP3996824B2 publication Critical patent/JP3996824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液相拡散接合を用いた部品または装置などの接合構造体を可能ならしむる鋼材に関し、さらに詳しくは液相拡散接合を一部または全部に適用して製造した強度が600MPa以上、特に1000MPa以上の高強度構造体あるいは圧力容器を構成することのできる液相拡散接合用鋼材に関する。
【0002】
【従来の技術】
【特許文献1】
特開2001−164332号公報
【特許文献2】
特開2001−131682号公報
【0003】
金属材料どうしの工業的な新しい接合技術として液相拡散接合が普及しつつある。液相拡散接合は、接合しようとする材料の接合面すなわち開先間に、拡散律速の等温凝固過程を経て継手を形成する能力を有する元素、例えばBあるいはPとこれらを開先間に介在させるために基材となるNiないしはFeからなる多元合金を介在させ、継手を挿入した低融点合金の融点以上の温度に加熱保持し、継手を形成する技術であって、通常の溶接技術と異なり、溶接残留応力が殆どないこと、あるいは溶接のような余盛りを発生しない平滑かつ精密な継手を形成できるなどの特徴を有する。特に、面接合であるため、接合面の面積によらず接合時間が一定でかつ比較的短時間で接合が完了する点は、従来溶接と全く異なっている。従って、開先さえ挿入した低融点金属以上の温度に所定の時間保持できれば、開先形状を選ばず、面どうしの接合を実現することができるという特徴を有する。
【0004】
しかし、開先間に介在させる低融点の合金(以降インサートメタルと称する)の融点は、その拡散元素がBまたはPである以上、900℃〜1300℃の温度であり、特にフェライト構造を有する鋼の変態点、AcあるいはAcを超える温度を開先で達成しなければならない。この時、工業的には拡散律速の等温凝固を早く終了させるためには実質的に接合温度が1000℃を超えることとなり、当然鋼材は変態点以上に加熱されることから、接合終了後は冷却時に再変態が生じ、材料の特性はこの時の変態組織で決定される。従って、後に熱処理を附加して調質処理を実施する場合がある。
【0005】
しかし、液相拡散接合で継手の等温凝固を達成する場合、BまたはPの拡散律速凝固が生起し、どうしても継手組織の粒界にはこれら元素が濃縮しやすく、場合によっては化合物として析出する場合もある。さらに、等温凝固部は母材の溶融と融合を伴っており、母在中に存在する不純物もまた一度再溶融し接合部組織の形成時に粒界に偏析しやすくなる傾向があることが本発明者らの詳細な研究で明らかとなった。
【0006】
特に強度を高めるべく焼入れ、焼準しなどの調質処理で低温変態組織、すなわちマルテンサイト組織やベイナイト組織を得る場合、それらの旧γ粒界への不純物元素とBあるいはPの濃化は避けられず、粒界は脆化し易くなり、場合によっては冷却時の変態膨張によって焼割れが発生したりする。あるいは冷媒を使用して加速冷却する際に生じる構造物の内部と外表面の温度差に起因した変態の時間差で、構造物の表面に引張り応力が残留する場合には続く焼き戻し過程において、炭化物や窒化物を粒界に析出して脆化する条件では粒界に沿った割れ、すなわち焼き戻し割れ(再熱割れ、SR割れとも称する)を生じたり、割れないまでも著しく衝撃値の低い脆い継手となってしまう場合がある。このような脆い性質を有する継手は構造部材に衝撃的な応力が室温以下の低温で付加されたとき、あるいは鋼中に水素が侵入した場合などにある程度経時もしくは経年してから割れを生起する場合があり、問題となっていた。
【0007】
これらは全て粒界破壊の様相を呈し、特に600MPa以上、場合によっては1000MPa以上の強度を必要とする、低温変態組織およびその焼き戻し組織からなる高強度鋼で顕著であり、粒界の脆化が材料の脆化を誘引していることから、粒界の性質改善が被接合材料に求められていた。
この現象はBまたはPを大量に拡散させる液相拡散接合に特徴的であって、通常の低合金鋼で生じる焼き戻し脆化とは異なり、BとPの粒界偏析が前提となる脆化現象であるため、その対策に関する類似技術は殆ど見あたらない。
【0008】
合金鋼の焼き戻し脆化対策技術は特開2001−164332号公報、あるいは特開2001−131682号公報等に最新の合金鋼における耐再熱割れ性向上技術が開示されているものの、これらの技術に液相拡散接合の継手に関する知見は全く認められない。したがって、液相拡散接合継手で生じる特徴的な焼き戻し脆化を有効に防止しうる技術の開示は、現時点では全くない。
【0009】
【発明が解決しようとする課題】
本発明は上記のような従来技術が抱える問題点を解決して、Bを拡散原子として用いて液相拡散接合した後に、600MPa以上、場合によっては1000MPa以上の高強度の継手を、調質熱処理で得ようとする場合に生じる焼割れ、あるいは焼き戻し割れ等の粒界脆化に対する耐性のある鋼材を、主に鋼材不純物成分の限定によって得ることを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記のような課題に対して、鋼材の粒界脆化に寄与する化学成分を限定し、特に脆化因子として影響の大きいAs,Sn,Sb,Pb,Znの個別および総合含有量を規定して粒界の脆化が液相拡散接合継手に生じないように設計した鋼材であり、具体的には以下に示すとおりである。
(1) 請求項1に記載の発明は、質量%で、C:0.05〜1.0%,Si:0.01〜1.0%,Mn:0.05〜3.0%,Ti:0.005〜0.1%,Al:0.01〜0.2%,B:0.0003〜0.005%,N:0.01%以下を含有し、かつP:0.01%以下,S:0.003%以下,O:0.01%以下に制限し、加えてAs,Sn,Sb,Pb,Znの何れも0.005%以下に制限し、かつ(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下、残部が不可避的不純物およびFeからなる液相拡散接合用鋼材であって、この鋼材を液相拡散接合した継手をAc変態点以上に再加熱してから冷却速度0.1℃/s以上で加速冷却するか、前記加速冷却後Ac変態点以下に焼き戻したときの0℃におけるシャルピー吸収エネルギーが47J以上となることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0011】
(2) 請求項2の発明は、請求項1に記載の鋼であって、更にCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上を含有することを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0012】
(3) 請求項3の発明は、請求項1〜2の何れかに記載の鋼であって、更にNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%の一種または二種以上を含有し、この鋼材を液相拡散接合した継手を Ac 変態点以上に再加熱してから冷却速度 0.1 /s 以上で加速冷却するか、前記加速冷却後 Ac 変態点以下に焼き戻したときの継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0013】
(4) 請求項4の発明は、請求項1〜3の何れかに記載の鋼であって,更にNb:0.005〜0.5%,V:0.005〜1.0% , Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有し、この鋼材を液相拡散接合した継手を Ac 変態点以上に再加熱してから冷却速度 0.1 /s 以上で加速冷却するか、前記加速冷却後 Ac 変態点以下に焼き戻したときの継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材である。
【0014】
【0015】
【発明の実施の形態】
最初に、本発明に記載の液相拡散接合用鋼材の化学成分を限定した理由について以下に述べる。
Cは鋼の焼き入れ性と強度を制御する最も基本的な元素である。0.01%未満では強度が確保できず、1.0%を超えて添加すると強度は向上するものの、焼戻し後においても継手の靱性を確保することができないことから0.01〜1.0%に限定した。
【0016】
Siは鋼材の脱酸元素であり、通常Mnとともに鋼の酸素濃度を低減する目的で添加される。同時に粒内強化に必要な元素であって、その不足は強度低下をきたす。本発明でも同様に、脱酸と粒内強化を主目的として添加し、0.01%以上で効果を発揮し、1.0%を超えて添加した場合には鋼材の脆化を招く場合があることから、その添加範囲を0.01〜1.0%に限定した。
【0017】
MnはSiとともに脱酸にも効用があるが、鋼中にあって材料の焼き入れ性を高め、強度向上に寄与する。その効果は0.05%より発現し、3.0%を超えると粗大なMnO系酸化物を晶出し、かえって靱性を低下させる場合があることからその添加範囲を0.05〜3.0%に限った。
【0018】
Tiは微細な炭化物を析出して結晶粒を微細化し鋼の靭性を高める。この目的のためには0.005%以上の添加が必要であるが、0.1%を超えると炭化物が粗大化して靭性の低下を招く。したがって、Tiの範囲を0.005〜0.1%に限定した。
【0019】
AlはNと結合してAlNとして析出し、液相拡散接合の温度範囲においても溶解せず、γ粒の移動を抑制する効果を有する。多く添加しても炭化物を形成しないことから、根本的にTiやZr等の窒化物形成元素とは挙動が異なり、鋼の靱性低下をきたさない。従って、効果を発揮する最低量として0.01%の添加が必要であり、0.2%を超えて添加した場合にはAlNそのものが粗大化して靱性に影響があることから、接合温度に応じて0.01〜0.2%の範囲で適宜添加することとした。
【0020】
なお、本鋼のような高強度鋼において靱性を高めるには、粒界への不純物濃化は極力これを回避する必要があり、PおよびSは、この目的のためにそれぞれ0.01%および0.003%以下に制限した。また、Alを効率よくNと結合させるためにOは0.01%以下に制限されなければならない。
【0021】
また、As,Sn,Sb,Pb,Znはいずれも本発明においては不純物に分類する。これらは全て液相拡散接合継手の粒界に偏析しやすく、焼き戻し割れの原因となるため、これらを低減する必要があるが、その範囲は各個に0.005%が上限であり、たとえ一元素であってもこれを超えて添加すると焼き戻し割れを誘引する。同時に、これら元素の総和が0.015%を超えることもまた同様に焼き戻し割れを助長する事が、本発明者らの研究で明らかとなった。すなわち質量%で、
(As%+Sn%+Sb%+Pb%+Zn%)≦0.015%
が接合継手で達成されている必要がある。しかも、これは同様に焼き戻し脆性に有害なSを0.003%以下に制限した鋼材で同時に達成されなければならない。
【0022】
これらの不純物元素の制限範囲は以下のような実験によって求めた。
実験室規模真空溶解、あるいは実機鋼板製造設備において、100kg, 300kg, 2ton, 10ton, 100ton, 300tonの真空溶解、あるいは通常の高炉−転炉−炉外精錬−脱ガス/微量元素添加−連続鋳造−熱間圧延によって製造した、請求項1〜5に記載の化学成分範囲鋼材を含む種々の炭素鋼、低合金鋼、合金鋼を、圧延方向と平行な方向から10mmΦあるいは20mm角で長さ50mmの簡易小型試験片に加工した。試験片の端面をRmax<100μmに研削加工して脱脂洗浄し、その端面を2つ突き合わせて接合試験片対となし、150kWの出力を有する高周波誘導加熱装置を備えた引っ張り/圧縮試験機を用い、接合面間には液相拡散接合を1000〜1300℃において実現可能なNi基−B系、Fe基−B系、Ni基−P系、Fe基−P系の、実質的に体積分率で50%以上が非晶質である厚み20〜50μmのアモルファス箔を介在させ、必要な接合温度まで試験片全体を加熱し、30秒から60分の間、1〜20MPaの応力下で液相拡散接合し、接合後放冷した。
【0023】
続いて得られた継手全体を、900〜1000℃(実質的に母材のAc3変態点以上の温度)へ再加熱して10〜200分保持の後、0.1℃/s以上の冷却速度で加速冷却してベイナイト〜マルテンサイトの低温変態組織となし、これを光学顕微鏡にて観察して確認した後に、必要な場合に適宜200〜700℃の各温度で0.1〜500時間の範囲で焼き戻して調質組織とした。得られた丸棒接合試験片対からは直径6mmΦの引張り試験片を採取し、強度評価に供するとともに、角棒試験片対からはJIS4号2mmVノッチつきのシャルピー衝撃試験片を採取して、ノッチ位置を接合部とすることで継手の靱性を評価し、これをもって継手の焼き戻し割れ感受性指標とした。
【0024】
不純物成分は、接合前の母材で通常の湿式化学分析にて分析し、析出の有無に拘わらず鋼中含有量で評価した。図1には質量%での(As%+Sn%+Sb%+Pb%+Zn%)の値と焼き戻し割れの一指標としての0℃における継手のシャルピー吸収エネルギーの関係を示した。(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下の場合には継手の0℃における継手のシャルピー吸収エネルギーが常に47Jを超えるが、逆に(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%超の場合には継手の0℃における継手のシャルピー吸収エネルギーが47Jに達しない。
【0025】
また、実施例でも触れるが、各元素が0.005%を超える場合も同様に継手の靱性は0℃において47Jに達しない。さらにSが0.003%を超える場合でも同様に継手靱性が確保できないことも実験的に求めた。
これらの値は、BおよびPを拡散元素として使用する液相拡散接合に特徴的であって、通状の溶接継手や合金鋼の熱処理において見られる焼き戻し脆化のパラメータあるいは評価指標とは異なる制限であり、かつ指標である。この指標と制限が満足できないと、完全に焼き戻し脆化を抑制することは困難である。
【0026】
鋼材は上記した化学成分を有し、残部不可避的不純物およびFeからなる。このような鋼材を液相拡散接合した場合には、接合部の近傍に熱影響部が形成されるが、この部分は結晶粒が粗大化して靭性が低い。この靭性の低い熱影響部に熱処理を施せば靭性が回復する。このためには継手をAc変態点以上に加熱してから冷却速度0.1℃/s以上で加速冷却する。Ac変態点未満の加熱ではオーステナイトへの変態が不充分で靭性が十分回復しない。また、冷却速度が0.1℃/s未満ではマルテンサイトやベイナイトなどの強度の高い低温変態組織を得ることが困難である。なお、加速冷却は焼入れ、あるいは焼準しによって行う。
【0027】
加速冷却後は靭性を更に回復させるために必要に応じてAc変態点以下に焼き戻すことができる。焼戻し温度がAc変態点を超えると鋼が部分的にオーステナイトに変態することになるので焼戻し温度はAc変態点以下とする。以上のような熱処理を施した接合部の靭性は、0℃におけるシャルピー吸収エネルギーで47J以上であることが必要である。すなわち、2mmVノッチ付き試験片を用いて0℃にてシャルピー衝撃試験を行った時の吸収エネルギーが47J未満では鋼材は十分な靭性を有していないからである。鋼を以上のような化学成分と靭性を有するものとすることによって、焼割れまたは再熱割れを生じない耐低温変態割れ性に優れた液相拡散接合用鋼材を得ることができる。
【0028】
なお、本発明では、B:0.0003〜0.005%,N:0.01%以下、またはCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上、またはNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%の一種または二種以上、またはNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有することができる。
【0029】
上記した合金成分は以下の理由から添加範囲を制限してある。
Bは微量で鋼の焼き入れ性を大きく高めるが、0.0003%未満の添加量では焼き入れ性向上効果が小さい。一方、0.005%を超えて添加すると炭硼化物を形成して、かえって焼き入れ性を低下させることになる。したがって、Bの添加範囲を0.0003〜0.005%とするのが望ましい。
【0030】
NはAlと結合して微細なAlNを析出して結晶粒を微細化する。しかしながら、NはBと結合して焼入れ性に有効な固溶Bの量を低減させる。Nが0.01%を超えると、固溶Bの確保が困難となりNの固定のために多量のTiを必要となってコスト高を招くので、Nは0.01%以下とするのが望ましい。
【0031】
Ca,Mg,Y,Ce,La,Zrは何れも硫化物形態制御能を有する元素であって、この効果を発揮させるためには、Ca:0.0005%以上、Mg:0.0005%以上、Y:0.0005%以上、Ce:0.0005%以上、La:0.0005%以上、Zr:0.001%以上添加する必要がある。しかしながら、Ca:0.01%、Mg:0.005%、Y:0.02%、Ce:0.02%、La:0.02%、Zr:0.02%を超えると粗大酸化物が生成されて鋼の靱性が低下する。したがって、Ca:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の範囲とするのが望ましい。
【0032】
Ni、Co、Cuはいずれもγ安定化元素であって、鋼材の変態点を下げて低温変態を促すことで焼き入れ性を向上させる元素であり、それぞれ0.01%以上の添加で効果が得られる。一方、5.0%を超えて添加すると残留γが増加して鋼材の靱性に影響を及ぼすことから、その添加範囲をNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0とするのが望ましい。
【0033】
Cr、Mo、Wは何れもα安定化元素であるが、Crは同時に耐食性の向上に有用である。何れも0.01%添加で効果が認められるが、Crは13.0%を超えるとδフェライトを生成して低温変態組織を生成し難くなり、かえって強度靱性を低下させる場合があるため、その上限を13.0%に制限した。MoとWは著しい固溶強化を発揮するが、何れも5.0%を超えて添加すると、液相拡散接合の拡散原子であるBおよびPと硼化物あるいは燐化物を生成し、継手の靱性を劣化させる場合がある。したがって、それぞれの添加量をCr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%とするのが望ましい。
【0034】
また、Nb、V、Ta、Hf、Reは微細な炭化物を析出して鋼の強度を高める。何れも0.005%以上の添加で効果がある。しかし、Nb、Ta、Hf、Reは0.5%で、またVは1.0%を超える添加で炭化物が粗大化して靱性の低下を来すので、Nb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%とするのが望ましい。
【0035】
上記した各群の元素の1種または2種以上を適宜組み合わせて複合添加しても、また各元素を単独で添加しても良く、本発明の効果を妨げることなく、鋼材に各種特性を付与することができる。
【0036】
なお、本発明鋼材の製造工程は、通常の高炉−転炉による銑鋼一貫プロセスを適用するだけでなく、冷鉄源を使用した電炉製法、転炉製法も適用でき、さらに連続鋳造工程を経ない場合でも通常の鋳造、鍛造工程を経て製造する事も可能である。また、製造した鋼材の形状は全く自由であって、適用する部材の形状に必要な成型技術を適用できる。すなわち、鋼板、鋼管、棒鋼、線材、形鋼などの広範囲に適用することが可能である。また、本鋼は溶接性にも優れており、液相拡散接合に適していることから液相拡散接合継手を含む構造体であれば、一部に溶接を適用して、あるいは併用して構造体を製造することが可能であり、本発明の効果を何ら妨げるものではない。
【0037】
【実施例】
実験室規模真空溶解、あるいは実機鋼板製造設備において、100kgから300ton重量の真空溶解、あるいは通常の高炉−転炉−炉外精錬−脱ガス/微量元素添加−連続鋳造−熱間圧延によって製造した、請求項1〜4に記載の化学成分範囲鋼材を、圧延方向と平行な方向から10mmΦあるいは20mm角で長さ50mmの簡易小型試験片に加工した。試験片の端面をRmax<100μmに研削加工して脱脂洗浄し、その端面を2つ突き合わせて接合試験片対となし、150kWの出力を有する高周波誘導加熱装置を備えた引っ張り/圧縮試験機を用い、接合面間には液相拡散接合を1000〜1300℃において実現可能なNi基−B系、Fe基−B系、Ni基−P系、Fe基−P系の、実質的に体積分率で50%以上が非晶質である厚み20〜50μmのアモルファス箔を介在させ、必要な接合温度まで試験片全体を加熱し、30秒から60分の間、1〜20MPaの応力下で液相拡散接合し、接合後放冷した。
【0038】
続いて得られた継手全体を、900〜1000℃(実質的に母材のAc変態点以上の温度)へ再加熱して10〜200分保持の後、0.1℃/s以上の冷却速度で加速冷却してベイナイト〜マルテンサイトの低温変態組織となし、これを光学顕微鏡にて観察して確認した後に、必要な場合に適宜200〜700℃の各温度で0.1〜500時間の範囲で焼き戻して調質組織とした。得られた丸棒接合試験片対からは直径6mmΦの引張り試験片を採取し、強度評価に供するとともに、角棒試験片対からはJIS4号2mmVノッチつきのシャルピー衝撃試験片を採取して、ノッチ位置を接合部とすることで継手の靱性を評価し、これをもって継手の焼き戻し割れ感受性指標とした。
不純物成分は、接合前の母材で通常の湿式化学分析にて分析し、析出の有無に拘わらず鋼中含有量で評価した。
【0039】
表1〜4には本発明鋼の化学成分実施例と継手の衝撃吸収エネルギー(J)、および継手の引張り強さ(MPa)、(As%+Sn%+Sb%+Pb%+Zn%)の質量%総和、接合後の熱処理条件をそれぞれ示した。本発明鋼では熱処理後の継手の靱性が47J以上であって、焼き戻し割れ感受性が低いと考えられる。また、実際に焼き戻し割れ、焼割れは継手に発生しなかった。なお、表2の左端は表1の右端に接続されるものであって、以下同様である。
【0040】
【表1】

Figure 0003996824
【0041】
【表2】
Figure 0003996824
【0042】
【表3】
Figure 0003996824
【0043】
【表4】
Figure 0003996824
【0044】
これに対して表5、6には従来技術のみを用いて製造した鋼材による液相拡散接合継手の化学成分と評価結果の例を示してある。表5、6のうち、第81番鋼はPが0.01%を超えたため、継手の靱性が接合部のみならず全体的に低下し、確保できなかった例、第82番鋼は母材Sが高かったため、接合部継手の粒界に原子状Sが偏析して継手靱性が低下した例、第83番から第87番鋼は、それぞれAs,Sn,Sb,Pb,Znの含有量が各個に0.005%を超えたため、(As%+Sn%+Sb%+Pb%+Zn%)の質量%総和は0.015%以下であったが、継手靱性が低下した例、第88番鋼はAs,Sn,Sb,Pb,Znの含有量は各個には0.005%以下であったものの、総和が0.015%を超えたため、継手の靱性が低下した例、第89番鋼はTiが過剰となり、Tiの炭化物が多量に析出し、継手靱性が低下した例、第90番鋼はAl含有量が不足し、Tiとともに鋼中に存在して接合中の結晶粒径制御に作用しなければならない窒化物の量が低下し、継手の靱性が低下した例、第91番鋼はCの量が不足し、継手の接合後の熱処理にもかかわらず、継手の強度が不足した例である。
【0045】
【表5】
Figure 0003996824
【0046】
【表6】
Figure 0003996824
【0047】
【発明の効果】
本発明は液相拡散接合を用いて継手を形成し、構造体を製造する際に、構造体に600MPaを超える高い強度、場合によっては1000MPaを超える超高強度と継手における熱処理時の焼き戻し割れの発生がないことを求められる場合に好適な液相拡散接合用鋼を提供するものであり、液相拡散接合の技術適用および難接合材の組立、さらには省工程による安価な部品の製造など、液相拡散接合の適用によって達成されうる構造体の機能向上に大きく寄与する。
【図面の簡単な説明】
【図1】 焼き戻し割れ感受性を高める不純物元素の総和(As%+Sn%+Sb%+Pb%+Zn%)と液相拡散接合継手の0℃における靱性、すなわち焼き戻し割れ感受性指標との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material that enables a joining structure such as a component or an apparatus using liquid phase diffusion bonding, and more particularly, a strength produced by applying liquid phase diffusion bonding to a part or all of 600 MPa or more, particularly The present invention relates to a steel for liquid phase diffusion bonding that can constitute a high-strength structure or pressure vessel of 1000 MPa or more.
[0002]
[Prior art]
[Patent Document 1]
JP 2001-164332 A [Patent Document 2]
Japanese Patent Laid-Open No. 2001-131682
Liquid phase diffusion bonding is spreading as a new industrial joining technique between metal materials. In liquid phase diffusion bonding, elements having the ability to form a joint through a diffusion-controlled isothermal solidification process, for example, B or P, are interposed between the grooves between the bonding surfaces of the materials to be bonded, that is, the grooves. In order to form a joint, a multi-element alloy composed of Ni or Fe as a base material is interposed, heated to a temperature equal to or higher than the melting point of the low-melting-point alloy with the joint inserted, and unlike a normal welding technique, It has characteristics such that there is almost no residual welding stress, and a smooth and precise joint can be formed that does not generate surplus as in welding. In particular, since surface bonding is used, the welding time is constant regardless of the area of the bonding surface and the bonding is completed in a relatively short time, which is completely different from conventional welding. Therefore, as long as the groove can be maintained at a temperature equal to or higher than the inserted low melting point metal for a predetermined time, it is possible to realize bonding between faces regardless of the groove shape.
[0004]
However, the melting point of the low melting point alloy (hereinafter referred to as insert metal) interposed between the grooves is 900 ° C. to 1300 ° C. as long as the diffusing element is B or P, and particularly a steel having a ferrite structure. A temperature exceeding the transformation point of Ac 1 or Ac 3 must be achieved in the groove. At this time, in order to end diffusion-controlled isothermal solidification quickly industrially, the bonding temperature will substantially exceed 1000 ° C, and naturally the steel is heated above the transformation point. Sometimes retransformation occurs and the properties of the material are determined by the transformation structure at this time. Therefore, there is a case where a tempering process is performed by adding a heat treatment later.
[0005]
However, when isothermal solidification of a joint is achieved by liquid phase diffusion bonding, diffusion-controlled solidification of B or P occurs, and these elements tend to concentrate at the grain boundaries of the joint structure, and in some cases, precipitate as a compound. There is also. Furthermore, the isothermal solidification part is accompanied by melting and fusion of the base material, and impurities existing in the base material also tend to be remelted once and tend to segregate at the grain boundary when forming the joint structure. Their detailed study revealed this.
[0006]
In particular, when obtaining a low temperature transformation structure, that is, a martensite structure or a bainite structure by tempering such as quenching or normalizing to increase the strength, avoid enrichment of impurity elements and B or P in the former γ grain boundaries. In other words, the grain boundaries are easily embrittled, and in some cases, cracking occurs due to transformation expansion during cooling. Alternatively, if tensile stress remains on the surface of the structure due to the time difference of transformation caused by the temperature difference between the internal and external surfaces of the structure that occurs when accelerated cooling is performed using a refrigerant, Or under the condition of precipitation of nitrides at the grain boundaries and embrittlement, cracks along the grain boundaries, that is, tempering cracks (also referred to as reheat cracking, SR cracking), or brittleness with a remarkably low impact value even if not cracked It may become a joint. When such a brittle joint is subjected to impact stress on a structural member at a low temperature of room temperature or below, or when hydrogen enters the steel, cracks will occur after some time or aging. There was a problem.
[0007]
All of these exhibit an aspect of grain boundary fracture, particularly in high-strength steel composed of a low-temperature transformation structure and its tempered structure, which requires a strength of 600 MPa or more, and in some cases, 1000 MPa or more. Therefore, the material to be joined has been required to be improved in the properties of grain boundaries.
This phenomenon is characteristic of liquid phase diffusion bonding in which a large amount of B or P is diffused. Unlike temper embrittlement that occurs in ordinary low alloy steels, embrittlement is premised on grain boundary segregation of B and P. Since it is a phenomenon, there are few similar techniques for countermeasures.
[0008]
Although temper embrittlement countermeasure technology of alloy steel is disclosed in Japanese Patent Application Laid-Open No. 2001-164332 or Japanese Patent Application Laid-Open No. 2001-131682, the latest technology for improving reheat cracking resistance in alloy steel is disclosed. However, no knowledge about the joints of liquid phase diffusion bonding is found. Accordingly, there is no disclosure of a technology that can effectively prevent characteristic temper embrittlement that occurs in a liquid phase diffusion bonding joint.
[0009]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and after performing liquid phase diffusion bonding using B as a diffusion atom, a high-strength joint of 600 MPa or more, and in some cases 1000 MPa or more, is subjected to a tempering heat treatment. It is an object to obtain a steel material that is resistant to grain boundary embrittlement such as tempering cracking or tempering cracking that occurs when trying to obtain by mainly limiting the steel material impurity components.
[0010]
[Means for Solving the Problems]
The present invention limits the chemical components that contribute to the grain boundary embrittlement of the steel material for the above-mentioned problems, and particularly the individual and total contents of As, Sn, Sb, Pb, and Zn, which have a great influence as an embrittlement factor. The steel material is designed so that grain boundary embrittlement does not occur in the liquid phase diffusion bonded joint, and is specifically as follows.
(1) The invention according to claim 1 is, in mass%, C: 0.05 to 1.0%, Si: 0.01 to 1.0%, Mn: 0.05 to 3.0%, Ti : 0.005 to 0.1%, Al: 0.01 to 0.2%, B: 0.0003 to 0.005%, N: 0.01% or less , and P: 0.01% Hereinafter, S: 0.003% or less, O: 0.01% or less, in addition, any of As, Sn, Sb, Pb, Zn is limited to 0.005% or less, and (As% + Sn%) + Sb% + Pb% + Zn%) is 0.015% or less, and the balance is a steel for liquid phase diffusion bonding consisting of inevitable impurities and Fe, and a joint obtained by liquid phase diffusion bonding of this steel material is at least the Ac 3 transformation point And then cooled at a cooling rate of 0.1 ° C / s or higher, or charred at 0 ° C when tempered below the Ac 1 transformation point after the accelerated cooling. It is a steel for liquid phase diffusion bonding excellent in low-temperature transformation cracking resistance, characterized by having a P absorption energy of 47 J or more .
[0011]
(2) The invention of claim 2 is the steel of claim 1, and further Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005 It is characterized by containing 0.02%, Ce: 0.0005-0.02%, La: 0.0005-0.02%, Zr: 0.001-0.02%, or two or more. It is a steel for liquid phase diffusion bonding excellent in low temperature transformation cracking resistance.
[0012]
(3) The invention of claim 3 is the steel according to any one of claims 1 to 2, further comprising Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu : 0.01 to 5.0%, Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, W : Containing from 0.01 to 5.0% of one or two or more, accelerated cooling at a cooling rate 0.1 ° C. / s or higher this steel a liquid phase diffusion bonded joints after reheating above Ac 3 transformation point Alternatively, it is a steel for liquid phase diffusion bonding excellent in low temperature transformation cracking resistance, characterized in that the strength of the joint when tempered to below the Ac 1 transformation point after accelerated cooling is 1000 MPa or more .
[0013]
(4) The invention of claim 4 is the steel according to any one of claims 1 to 3, further comprising Nb: 0.005 to 0.5%, V: 0.005 to 1.0% , Ta : 0.005 to 0.5%, Hf: 0.005 to 0.5%, Re: 0.005 to 0.5%, or a combination of two or more of these steel materials that are liquid phase diffusion bonded the accelerated cooling after reheating above Ac 3 transformation point at a cooling rate of 0.1 ° C. / s or higher or, the strength of the joint when tempered below the accelerated cooling after Ac 1 transformation point is not less than 1000MPa It is a steel material for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance.
[0014]
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason why the chemical components of the steel for liquid phase diffusion bonding described in the present invention are limited will be described below.
C is the most basic element that controls the hardenability and strength of steel. If it is less than 0.01%, the strength cannot be secured, and if added over 1.0%, the strength is improved, but the toughness of the joint cannot be secured even after tempering. Limited to.
[0016]
Si is a deoxidizing element for steel and is usually added together with Mn for the purpose of reducing the oxygen concentration of the steel. At the same time, it is an element necessary for intragranular strengthening, and its deficiency causes a decrease in strength. Similarly, in the present invention, deoxidation and intragranular strengthening are added as main purposes, and the effect is exhibited at 0.01% or more, and when added over 1.0%, the steel material may be embrittled. Therefore, the addition range was limited to 0.01 to 1.0%.
[0017]
Mn has an effect on deoxidation as well as Si, but it is in steel and improves the hardenability of the material and contributes to the improvement of strength. The effect is manifested from 0.05%, and if it exceeds 3.0%, a coarse MnO-based oxide is crystallized, and on the contrary, the toughness may be lowered, so the addition range is 0.05-3.0%. Limited to.
[0018]
Ti precipitates fine carbides, refines the crystal grains, and increases the toughness of the steel. For this purpose, 0.005% or more must be added, but if it exceeds 0.1%, the carbides become coarse and the toughness is reduced. Therefore, the range of Ti is limited to 0.005 to 0.1%.
[0019]
Al binds to N and precipitates as AlN, does not dissolve even in the temperature range of liquid phase diffusion bonding, and has an effect of suppressing the movement of γ grains. Even if a large amount is added, no carbide is formed, so the behavior is fundamentally different from nitride forming elements such as Ti and Zr, and the toughness of the steel is not lowered. Therefore, it is necessary to add 0.01% as the minimum amount to exert the effect, and when adding over 0.2%, AlN itself becomes coarse and affects toughness. Therefore, it was decided to add appropriately in the range of 0.01 to 0.2%.
[0020]
In order to increase toughness in a high-strength steel such as this steel, it is necessary to avoid impurity concentration at the grain boundaries as much as possible. P and S are 0.01% and Limited to 0.003% or less. Further, O must be limited to 0.01% or less in order to bind Al to N efficiently.
[0021]
Further, As, Sn, Sb, Pb, and Zn are all classified as impurities in the present invention. All of these are easily segregated at the grain boundaries of the liquid phase diffusion joint and cause tempering cracks. Therefore, it is necessary to reduce these, but the upper limit is 0.005% for each piece. Even if it is an element, adding more than this will induce tempering cracks. At the same time, it has been clarified by the present inventors that the sum of these elements exceeding 0.015% also promotes tempering cracks. That is, by mass%
(As% + Sn% + Sb% + Pb% + Zn%) ≦ 0.015%
Must be achieved with the joint joint. Moreover, this must be achieved simultaneously with a steel material in which S which is also harmful to temper brittleness is limited to 0.003% or less.
[0022]
The limiting range of these impurity elements was determined by the following experiment.
100kg, 300kg, 2ton, 10ton, 100ton, 300ton vacuum melting or normal blast furnace-converter-off-furnace refining-degassing / trace element addition-continuous casting- Various carbon steels, low alloy steels, and alloy steels including the chemical composition range steel materials according to claim 1 manufactured by hot rolling are 10 mmΦ or 20 mm square and 50 mm long from a direction parallel to the rolling direction. It was processed into a simple small test piece. Using a tensile / compression tester equipped with a high-frequency induction heating device with an output of 150 kW, grinding the end face of the test piece to Rmax <100μm, degreasing and cleaning, and joining the two end faces together to form a bonded test piece pair The volume fraction of the Ni-base-B, Fe-base-B, Ni-base-P, and Fe-base-P systems capable of realizing liquid phase diffusion bonding at 1000 to 1300 ° C. is substantially between the joining surfaces. And an amorphous foil having a thickness of 20 to 50 μm in which 50% or more is amorphous, and the whole test piece is heated to a required joining temperature, and the liquid phase is applied under a stress of 1 to 20 MPa for 30 seconds to 60 minutes. Diffusion bonding was performed, and the mixture was allowed to cool after bonding.
[0023]
Subsequently, the entire joint obtained was reheated to 900 to 1000 ° C. (substantially the temperature above the Ac 3 transformation point of the base material), held for 10 to 200 minutes, and then cooled to 0.1 ° C./s or more. After accelerating cooling at a speed to form a low temperature transformation structure of bainite to martensite, and confirming this by observing with an optical microscope, it is appropriately performed at 200 to 700 ° C. for 0.1 to 500 hours. The tempered structure was tempered in the range. A tensile test piece with a diameter of 6 mmΦ was taken from the obtained round bar joint test piece pair for strength evaluation, and a Charpy impact test piece with a JIS No. 2 mm V notch was taken from the square bar test piece pair to obtain a notch position. Was used as a joint, and the toughness of the joint was evaluated, and this was used as a tempering crack sensitivity index of the joint.
[0024]
Impurity components were analyzed by ordinary wet chemical analysis on the base material before joining, and evaluated by the content in steel regardless of the presence or absence of precipitation. FIG. 1 shows the relationship between the value in mass% (As% + Sn% + Sb% + Pb% + Zn%) and the Charpy absorbed energy of the joint at 0 ° C. as an index of temper cracking. When the value of (As% + Sn% + Sb% + Pb% + Zn%) is 0.015% or less, the Charpy absorbed energy of the joint at 0 ° C. always exceeds 47 J, but conversely (As% + Sn% + Sb%) When the value of (+ Pb% + Zn%) exceeds 0.015%, the Charpy absorbed energy of the joint at 0 ° C. does not reach 47 J.
[0025]
In addition, as described in Examples, the toughness of the joint does not reach 47 J at 0 ° C. when each element exceeds 0.005%. Furthermore, it was experimentally determined that joint toughness could not be secured in the same manner even when S exceeds 0.003%.
These values are characteristic for liquid phase diffusion bonding using B and P as diffusing elements, and are different from temper embrittlement parameters or evaluation indices found in heat treatments of general welded joints and alloy steels. It is a limit and an indicator. If this index and restriction cannot be satisfied, it is difficult to completely suppress temper embrittlement.
[0026]
The steel material has the above-described chemical components, and the balance is inevitable impurities and Fe. When such a steel material is subjected to liquid phase diffusion bonding, a heat-affected zone is formed in the vicinity of the bonded portion, but in this portion, crystal grains become coarse and the toughness is low. If heat treatment is applied to the heat-affected zone having low toughness, the toughness is recovered. For this purpose, the joint is heated to the Ac 3 transformation point or higher and then cooled at a cooling rate of 0.1 ° C./s or higher. Heating below the Ac 3 transformation point results in insufficient transformation to austenite and does not sufficiently recover toughness. Further, when the cooling rate is less than 0.1 ° C./s, it is difficult to obtain a low-temperature transformation structure having high strength such as martensite and bainite. The accelerated cooling is performed by quenching or normalizing.
[0027]
After accelerated cooling, it can be tempered below the Ac 1 transformation point as needed to further restore toughness. When the tempering temperature exceeds the Ac 1 transformation point, the steel partially transforms to austenite, so the tempering temperature is set to the Ac 1 transformation point or less. The toughness of the joint subjected to the heat treatment as described above needs to be 47 J or more in Charpy absorbed energy at 0 ° C. In other words, the steel material does not have sufficient toughness when the absorbed energy is less than 47 J when a Charpy impact test is performed at 0 ° C. using a test piece with a 2 mmV notch. By making the steel have the above chemical components and toughness, a liquid phase diffusion bonding steel material excellent in low temperature transformation cracking resistance that does not cause firing cracking or reheat cracking can be obtained.
[0028]
In the present invention, B: 0.0003 to 0.005%, N: 0.01% or less, or Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005-0.02%, Ce: 0.0005-0.02%, La: 0.0005-0.02%, Zr: one or more of 0.001-0.02%, or Ni : 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu: 0.01 to 5.0%, Cr: 0.01 to 13.0%, Mo: 0.01 to 5 0.0%, W: 0.01 to 5.0% or two or more, or Nb: 0.005 to 0.5%, V: 0.005 to 1.0%, Ta: 0.005 One or more of 0.5%, Hf: 0.005 to 0.5%, and Re: 0.005 to 0.5% can be contained.
[0029]
The range of addition of the above alloy components is limited for the following reason.
A small amount of B greatly increases the hardenability of the steel, but the effect of improving the hardenability is small with an addition amount of less than 0.0003%. On the other hand, if added over 0.005%, a carbonized boride is formed and the hardenability is lowered. Therefore, it is desirable that the addition range of B is 0.0003 to 0.005%.
[0030]
N combines with Al to precipitate fine AlN to refine crystal grains. However, N combines with B to reduce the amount of solid solution B effective for hardenability. If N exceeds 0.01%, it is difficult to secure solute B, and a large amount of Ti is required to fix N, resulting in high costs. Therefore, N is preferably 0.01% or less. .
[0031]
Ca, Mg, Y, Ce, La, and Zr are all elements having sulfide form control ability, and in order to exert this effect, Ca: 0.0005% or more, Mg: 0.0005% or more Y: 0.0005% or more, Ce: 0.0005% or more, La: 0.0005% or more, Zr: 0.001% or more must be added. However, when Ca: 0.01%, Mg: 0.005%, Y: 0.02%, Ce: 0.02%, La: 0.02%, and Zr: 0.02%, coarse oxides are formed. As a result, the toughness of the steel decreases. Therefore, Ca: 0.0005-0.01%, Mg: 0.0005-0.005%, Y: 0.0005-0.02%, Ce: 0.0005-0.02%, La: 0.00. It is desirable to set the range of 0005 to 0.02% and Zr: 0.001 to 0.02%.
[0032]
Ni, Co, and Cu are all γ-stabilizing elements, and are elements that improve the hardenability by lowering the transformation point of the steel material and promoting low-temperature transformation. can get. On the other hand, if adding over 5.0%, the residual γ increases and affects the toughness of the steel material, so the addition ranges are Ni: 0.01 to 5.0%, Co: 0.01 to 5. It is desirable that 0%, Cu: 0.01 to 5.0.
[0033]
Cr, Mo, and W are all α-stabilizing elements, but Cr is also useful for improving corrosion resistance. In any case, the effect is observed when 0.01% is added. However, when Cr exceeds 13.0%, it is difficult to generate a low temperature transformation structure by forming δ ferrite, and the strength toughness may be lowered. The upper limit was limited to 13.0%. Mo and W exhibit remarkable solid solution strengthening, but if both are added in excess of 5.0%, B and P, which are diffusion atoms of liquid phase diffusion bonding, and boride or phosphide are formed, and the toughness of the joint May deteriorate. Therefore, it is desirable that the respective addition amounts be Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, and W: 0.01 to 5.0%.
[0034]
Nb, V, Ta, Hf, and Re precipitate fine carbides to increase the strength of the steel. In any case, the addition of 0.005% or more is effective. However, Nb, Ta, Hf, and Re are 0.5%, and V exceeds 1.0%, and carbides coarsen and lower toughness. Therefore, Nb: 0.005 to 0.5% , V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, Hf: 0.005 to 0.5%, Re: 0.005 to 0.5%.
[0035]
One or two or more of the elements of each group described above may be combined and added in combination, or each element may be added alone, giving various properties to the steel without impairing the effects of the present invention. can do.
[0036]
In addition, the manufacturing process of the steel of the present invention can be applied not only to an integrated steelmaking process using a normal blast furnace and converter, but also to an electric furnace manufacturing method and a converter manufacturing method using a cold iron source, and further through a continuous casting process. Even if not, it can be manufactured through normal casting and forging processes. Moreover, the shape of the manufactured steel material is completely free, and a molding technique necessary for the shape of the member to be applied can be applied. That is, it can be applied to a wide range of steel plates, steel pipes, steel bars, wire rods, shaped steels and the like. In addition, this steel has excellent weldability and is suitable for liquid phase diffusion bonding, so if it is a structure that includes a liquid phase diffusion bonding joint, it is a structure that uses welding in part or is used in combination. It is possible to manufacture a body and does not interfere with the effects of the present invention.
[0037]
【Example】
In laboratory-scale vacuum melting, or in actual steel plate manufacturing equipment, manufactured by vacuum melting of 100 kg to 300 ton weight, or ordinary blast furnace-converter-external refining-degassing / trace element addition-continuous casting-hot rolling, The chemical composition range steel according to claims 1 to 4 was processed into a simple small test piece having a length of 10 mmΦ or 20 mm square and a length of 50 mm from a direction parallel to the rolling direction. Using a tensile / compression tester equipped with a high-frequency induction heating device with an output of 150 kW, grinding the end face of the test piece to Rmax <100μm, degreasing and cleaning, and joining the two end faces together to form a bonded test piece pair The volume fraction of the Ni-base-B, Fe-base-B, Ni-base-P, and Fe-base-P systems capable of realizing liquid phase diffusion bonding at 1000 to 1300 ° C. is substantially between the joining surfaces. And an amorphous foil having a thickness of 20 to 50 μm in which 50% or more is amorphous, and the whole test piece is heated to a required joining temperature, and the liquid phase is applied under a stress of 1 to 20 MPa for 30 seconds to 60 minutes. Diffusion bonding was performed, and the mixture was allowed to cool after bonding.
[0038]
Subsequently, the entire joint obtained was reheated to 900 to 1000 ° C. (substantially the temperature above the Ac 3 transformation point of the base material), held for 10 to 200 minutes, and then cooled to 0.1 ° C./s or more. After accelerating cooling at a speed to form a low temperature transformation structure of bainite to martensite, and confirming this by observing with an optical microscope, it is appropriately performed at 200 to 700 ° C. for 0.1 to 500 hours. The tempered structure was tempered in the range. A tensile test piece with a diameter of 6 mmΦ was taken from the obtained round bar joint test piece pair for strength evaluation, and a Charpy impact test piece with a JIS No. 2 mm V notch was taken from the square bar test piece pair to obtain a notch position. Was used as a joint, and the toughness of the joint was evaluated, and this was used as a tempering crack sensitivity index of the joint.
Impurity components were analyzed by ordinary wet chemical analysis on the base material before joining, and evaluated by the content in steel regardless of the presence or absence of precipitation.
[0039]
Tables 1 to 4 show examples of chemical components of the steel of the present invention, the impact absorption energy (J) of the joint, and the tensile strength (MPa) of the joint, and the mass% sum of (As% + Sn% + Sb% + Pb% + Zn%). The heat treatment conditions after bonding are shown respectively. In the steel of the present invention, the toughness of the joint after heat treatment is 47 J or more, and it is considered that the temper cracking sensitivity is low. Further, tempering cracks and tempering cracks did not actually occur in the joint. The left end of Table 2 is connected to the right end of Table 1, and so on.
[0040]
[Table 1]
Figure 0003996824
[0041]
[Table 2]
Figure 0003996824
[0042]
[Table 3]
Figure 0003996824
[0043]
[Table 4]
Figure 0003996824
[0044]
On the other hand, Tables 5 and 6 show examples of chemical components and evaluation results of liquid phase diffusion bonding joints made of steel manufactured using only the prior art. Of Tables 5 and 6, since steel No. 81 exceeded P of 0.01%, an example in which the toughness of the joint was lowered not only at the joint portion but could not be secured. Since S was high, atomic S was segregated at the grain boundary of the joint joint, and the joint toughness decreased. For example, No. 83 to No. 87 steel contained As, Sn, Sb, Pb, and Zn, respectively. Since it exceeded 0.005% in each piece, the total mass% of (As% + Sn% + Sb% + Pb% + Zn%) was 0.015% or less, but the joint toughness was lowered. , Sn, Sb, Pb, Zn content was 0.005% or less for each piece, but the total exceeded 0.015%, so the toughness of the joint was reduced. An example of excessive Ti carbide precipitates and a decrease in joint toughness. An example in which the amount of nitride, which is present in steel together with Ti and has to act to control the grain size during bonding, is reduced due to a shortage of the amount of titanium and the toughness of the joint is reduced. This is an example in which the strength of the joint is insufficient despite the heat treatment after joining the joint.
[0045]
[Table 5]
Figure 0003996824
[0046]
[Table 6]
Figure 0003996824
[0047]
【The invention's effect】
In the present invention, when a joint is formed using liquid phase diffusion bonding and a structure is manufactured, the structure has a high strength exceeding 600 MPa, and in some cases an ultrahigh strength exceeding 1000 MPa, and tempering cracks during heat treatment in the joint. Liquid phase diffusion bonding steel suitable for cases where it is required that there is no generation of defects, including application of liquid phase diffusion bonding technology, assembly of difficult-to-bond materials, and production of inexpensive parts through reduced processes, etc. This greatly contributes to the improvement of the function of the structure that can be achieved by application of liquid phase diffusion bonding.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the sum of impurity elements (As% + Sn% + Sb% + Pb% + Zn%) and the toughness at 0 ° C. of a liquid phase diffusion joint, that is, the temper cracking susceptibility index. It is.

Claims (4)

質量%で、C:0.05〜1.0%,Si:0.01〜1.0%,Mn:0.05〜3.0%,Ti:0.005〜0.1%,Al:0.01〜0.2%,B:0.0003〜0.005%,N:0.01%以下を含有し、かつP:0.01%以下,S:0.003%以下,O:0.01%以下に制限し、加えてAs,Sn,Sb,Pb,Znの何れも0.005%以下に制限し、かつ(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下、残部が不可避的不純物およびFeからなる液相拡散接合用鋼材であって、この鋼材を液相拡散接合した継手をAc変態点以上に再加熱してから冷却速度0.1℃/s以上で加速冷却するか、前記加速冷却後Ac変態点以下に焼き戻したときの0℃におけるシャルピー吸収エネルギーが47J以上となることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。In mass%, C: 0.05 to 1.0%, Si: 0.01 to 1.0%, Mn: 0.05 to 3.0%, Ti: 0.005 to 0.1%, Al: 0.01 to 0.2%, B: 0.0003 to 0.005%, N: 0.01% or less , and P: 0.01% or less, S: 0.003% or less, O: In addition, it is limited to 0.01% or less, and all of As, Sn, Sb, Pb, and Zn are limited to 0.005% or less, and the value of (As% + Sn% + Sb% + Pb% + Zn%) is 0.00. A steel for liquid phase diffusion bonding comprising 015% or less, the balance being unavoidable impurities and Fe, and a cooling rate of 0.1 ° C./s after reheating the joint obtained by liquid phase diffusion bonding of this steel to the Ac 3 transformation point or higher in accelerated cooling or, Charpy absorbed energy at 0 ℃ when tempered below the accelerated cooling after Ac 1 transformation point is 47J or more Low temperature transformation cracking resistance excellent liquid phase diffusion bonding steel material, characterized in that the upper. 請求項1に記載の鋼であって、更にCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上を含有することを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。It is steel of Claim 1, Comprising: Ca: 0.0005-0.01%, Mg: 0.0005-0.005%, Y: 0.0005-0.02%, Ce: 0.0005 A liquid excellent in low-temperature transformation cracking resistance , comprising one or more of 0.02%, La: 0.0005-0.02%, Zr: 0.001-0.02% Steel for phase diffusion bonding. 請求項1〜2の何れかに記載の鋼であって、更にNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W :0.01〜5.0%の一種または二種以上を含有し、この鋼材を液相拡散接合した継手を Ac 変態点以上に再加熱してから冷却速度 0.1 /s 以上で加速冷却するか、前記加速冷却後 Ac 変態点以下に焼き戻したときの継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。It is steel in any one of Claims 1-2, Comprising: Ni: 0.01-5.0%, Co: 0.01-5.0%, Cu: 0.01-5.0%, Cr: 0.01 to 13.0%, Mo: 0.01 to 5.0%, W : Containing from 0.01 to 5.0% of one or two or more, accelerated cooling at a cooling rate 0.1 ° C. / s or higher this steel a liquid phase diffusion bonded joints after reheating above Ac 3 transformation point Alternatively, a steel for liquid phase diffusion bonding having excellent low temperature transformation cracking resistance , wherein the joint has a strength of 1000 MPa or more when tempered below the Ac 1 transformation point after accelerated cooling . 請求項1〜3の何れかに記載の鋼であって、更にNb:0.005〜0.5%,V:0.005〜1.0% , Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有し、この鋼材を液相拡散接合した継手を Ac 変態点以上に再加熱してから冷却速度 0.1 /s 以上で加速冷却するか、前記加速冷却後 Ac 変態点以下に焼き戻したときの継手の強度が1000MPa以上であることを特徴とする耐低温変態割れ性に優れた液相拡散接合用鋼材。 The steel according to any one of claims 1 to 3, wherein Nb: 0.005 to 0.5%, V : 0.005 to 1.0% , Ta: 0.005 to 0.5%, One or more of Hf: 0.005 to 0.5% and Re: 0.005 to 0.5% are contained, and the joint obtained by liquid phase diffusion bonding of this steel material is reheated to the Ac 3 transformation point or higher. or accelerated cooling at a cooling rate 0.1 ° C. / s or more since excellent low-temperature transformation cracking resistance, wherein the strength of the joint when tempered below the accelerated cooling after Ac 1 transformation point is not less than 1000MPa Steel for liquid phase diffusion bonding.
JP2002267023A 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance Expired - Fee Related JP3996824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267023A JP3996824B2 (en) 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267023A JP3996824B2 (en) 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance

Publications (2)

Publication Number Publication Date
JP2004100027A JP2004100027A (en) 2004-04-02
JP3996824B2 true JP3996824B2 (en) 2007-10-24

Family

ID=32265670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267023A Expired - Fee Related JP3996824B2 (en) 2002-09-12 2002-09-12 Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance

Country Status (1)

Country Link
JP (1) JP3996824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987778A (en) * 2017-04-07 2017-07-28 莒州集团有限公司 Coal pulverizer is with new strike wheel plate
CN107201482A (en) * 2017-04-19 2017-09-26 马鞍山市鑫龙特钢有限公司 A kind of wind-powered electricity generation pinion steel and preparation method thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463995C (en) * 2005-12-12 2009-02-25 鞍钢股份有限公司 Low-carbon tungsten-system bainite steel and its manufacture
JP5029942B2 (en) * 2006-01-30 2012-09-19 日立金属株式会社 Hot work tool steel with excellent toughness
JP4946758B2 (en) * 2007-09-28 2012-06-06 住友金属工業株式会社 High temperature austenitic stainless steel with excellent workability after long-term use
JP4740275B2 (en) * 2008-03-14 2011-08-03 新日本製鐵株式会社 Common rail manufacturing method and partially reinforced common rail
CN103403209B (en) * 2011-03-03 2016-01-13 日立金属株式会社 The hot work tool steel of tenacity excellent and manufacture method thereof
US20130202907A1 (en) * 2012-02-08 2013-08-08 Edwin Hall Niccolls Equipment for use in corrosive environments and methods for forming thereof
CN103014534B (en) * 2012-12-01 2015-05-13 滁州市成业机械制造有限公司 Cast hot work die steel and processing method thereof
CN103774053B (en) * 2013-12-19 2015-11-25 马鞍山市方圆材料工程有限公司 A kind of composite roll upper layer high hardness alloy steel and preparation method thereof
CN103741060B (en) * 2013-12-19 2016-03-23 马鞍山市方圆材料工程有限公司 A kind of containing yttrium roll alloy steel material and preparation method thereof
JP6442852B2 (en) * 2014-04-03 2018-12-26 新日鐵住金株式会社 Duplex stainless steel welded joint
CN104164630B (en) * 2014-07-25 2016-05-25 合肥市瑞宏重型机械有限公司 A kind of high-strength corrosion-resisting auto parts machinery alloy steel material and manufacturing process thereof
JP2016141846A (en) * 2015-02-02 2016-08-08 株式会社神戸製鋼所 Weld metal and weld structure
CN105220076B (en) * 2015-11-07 2017-05-10 南通德森海洋科技有限公司 Wind power bearing for wind driven generator
CN105568133A (en) * 2016-01-05 2016-05-11 山西太钢不锈钢股份有限公司 Cold-rolled working roller material and heat treatment method thereof
CN105525224A (en) * 2016-01-26 2016-04-27 安徽同盛环件股份有限公司 Anti-corrosion alloy steel ring piece and rolling process
JP6631403B2 (en) * 2016-05-19 2020-01-15 日本製鉄株式会社 Rails with excellent wear resistance and toughness
CN106399825A (en) * 2016-08-26 2017-02-15 江苏星源电站冶金设备制造有限公司 Ceramic lined compound tube and manufacturing process thereof
CN109402523A (en) * 2018-12-29 2019-03-01 陈章华 A kind of low-carbon high-chromium high boron wear-resisting steel and preparation method thereof
WO2020203159A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet and manufacturing method thereof
JP7295418B2 (en) * 2019-08-13 2023-06-21 日本製鉄株式会社 welding material
CN110714162A (en) * 2019-10-31 2020-01-21 成都先进金属材料产业技术研究院有限公司 Method for manufacturing high-temperature bolt for steam turbine
CN110987695B (en) * 2019-12-19 2020-12-04 中南大学 Method for measuring quenching sensitive temperature range of heat-treatable strengthened aluminum alloy
CN111500945A (en) * 2020-04-27 2020-08-07 浙江丰原型钢科技有限公司 Processing technology of high-strength corrosion-resistant round steel
WO2022145069A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
CN114875304B (en) * 2022-03-31 2023-03-03 新余钢铁股份有限公司 Quenched and tempered high-strength steel plate for SA537MCL2 pressure vessel and production method thereof
CN115261719A (en) * 2022-05-14 2022-11-01 江阴市中岳机锻有限公司 Low-temperature-resistant bow outer shaft sleeve and machining process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987778A (en) * 2017-04-07 2017-07-28 莒州集团有限公司 Coal pulverizer is with new strike wheel plate
CN107201482A (en) * 2017-04-19 2017-09-26 马鞍山市鑫龙特钢有限公司 A kind of wind-powered electricity generation pinion steel and preparation method thereof
CN107201482B (en) * 2017-04-19 2019-01-25 马鞍山市鑫龙特钢有限公司 A kind of wind-powered electricity generation pinion steel and preparation method thereof

Also Published As

Publication number Publication date
JP2004100027A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP4252974B2 (en) Clad steel base material and method for producing clad steel using the clad steel base material
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JPS629646B2 (en)
JP2018053281A (en) Rectangular steel tube
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP3579307B2 (en) 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
JP2001335884A (en) High strength thick steel plate excellent in ctod(crack tip opening displacement) characteristic, and its manufacturing method
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP4116841B2 (en) High strength liquid phase diffusion bonding steel with excellent toughness and fatigue strength
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JPS59136418A (en) Preparation of high toughness and high strength steel
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP4434029B2 (en) High-tensile steel with excellent weldability and joint toughness
JP2020204091A (en) High strength steel sheet for high heat input welding
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JPH0227407B2 (en) YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO
JP2020204075A (en) High strength steel sheet for high heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3996824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees