JP2582147B2 - Method for producing low temperature nickel steel sheet with excellent weld toughness - Google Patents

Method for producing low temperature nickel steel sheet with excellent weld toughness

Info

Publication number
JP2582147B2
JP2582147B2 JP1011810A JP1181089A JP2582147B2 JP 2582147 B2 JP2582147 B2 JP 2582147B2 JP 1011810 A JP1011810 A JP 1011810A JP 1181089 A JP1181089 A JP 1181089A JP 2582147 B2 JP2582147 B2 JP 2582147B2
Authority
JP
Japan
Prior art keywords
temperature
less
toughness
steel sheet
weld toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1011810A
Other languages
Japanese (ja)
Other versions
JPH02194122A (en
Inventor
高宏 久保
善文 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1011810A priority Critical patent/JP2582147B2/en
Publication of JPH02194122A publication Critical patent/JPH02194122A/en
Application granted granted Critical
Publication of JP2582147B2 publication Critical patent/JP2582147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、溶接部靭性の優れた低温用ニッケル鋼板
の製造方法に係わり、とくに液化天然ガス(LNG)用鋼
材など−160℃以下のような極低温での使用において溶
接部靭性が重要な要因となる低温用ニッケル鋼板の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a low-temperature nickel steel sheet having excellent weld toughness, particularly to a steel material for liquefied natural gas (LNG) having a temperature of -160 ° C or less. The present invention relates to a method for producing a low-temperature nickel steel sheet in which weld toughness is an important factor when used at extremely low temperatures.

<従来の技術> LNGタンクなどに用いられる鋼材、たとえば9%Ni鋼
はすでに、再加熱焼入れ−焼戻し処理(RQ−T)による
ASTM A553、直接焼入れ−焼戻し処理(DQ−T)による
ASTM A844などの規格鋼として知られている。
<Prior Art> Steel materials used for LNG tanks, such as 9% Ni steel, have already been subjected to reheating quenching-tempering (RQ-T).
ASTM A553, direct quenching-tempering (DQ-T)
Known as standard steel such as ASTM A844.

これらの鋼材には、低温での高靭性、とくに溶接部に
おける低温靭性が要求される。
These steel materials are required to have high toughness at low temperatures, especially at low temperatures in welds.

溶接部のうち、とくに1350℃以上に加熱される熱影響
部の靭性を確保するためには種々の手立てが講じられて
いる。
Various measures have been taken to secure the toughness of the heat-affected zone, which is heated particularly to 1350 ° C. or higher, in the welded zone.

しかしながら最近、溶接部のうち700〜900℃に加熱さ
れる熱影響部において、島状マルテンサイトが生成する
ことによる靭性の低下が明らかとなり問題となってい
る。
However, recently, in the heat-affected zone heated to 700 to 900 ° C. in the welded portion, a decrease in toughness due to the formation of island-like martensite has become evident and has become a problem.

溶接の際、700〜900℃に加熱される熱影響部の靭性低
下を解決するための手立てとしては、たとえば特開昭53
−112219号公報でSi量の低減化が提案されている。しか
しながらこの方法では母材強度が規格値を満足できな
い。また母材靭性の低下を避けることができない。
In order to solve the decrease in toughness of the heat-affected zone heated to 700 to 900 ° C. during welding, for example, Japanese Patent Application Laid-Open No.
-112219 proposes a reduction in the amount of Si. However, in this method, the base material strength cannot satisfy the standard value. In addition, a decrease in base metal toughness cannot be avoided.

また、上記問題点を解決するために本願出願人は先に
Si量とMn量を低減し、Tiを添加する方法を特開昭63−29
0246号公報で提案している。しかしながらさらに検討を
行った結果、この方法では1000〜1200℃に加熱される熱
影響部の−196℃におけるシャルピー衡撃試験におい
て、脆性破面が現れることが明らかとなった。
In order to solve the above problems, the applicant of the present application
Japanese Patent Application Laid-Open No. Sho 63-29 describes a method for reducing the amount of Si and Mn and adding Ti.
No. 0246 proposes this. However, as a result of further study, it became clear that in this method, a brittle fracture surface appears in a Charpy impact test at -196 ° C of the heat-affected zone heated to 1000 to 1200 ° C.

<発明が解決しようとする課題> この発明は、上記の課題を有利に解決するもので、70
0℃以上に加熱される溶接部における低温靭性にも優
れ、かつASTM A553及びASTM A844に規定されている強
度を有する低温用ニッケル鋼板の製造方法を提案するこ
とを目的とするものである。
<Problem to be solved by the invention> The present invention advantageously solves the above-mentioned problems, and
An object of the present invention is to propose a method for producing a low-temperature nickel steel sheet having excellent low-temperature toughness in a welded portion heated to 0 ° C. or higher and having strength specified in ASTM A553 and ASTM A844.

<課題を解決するための手段> 本発明は、重量%で、C:0.04〜0.12%,Si:0.02〜0.19
%,Mn:0.05〜0.30%未満,P:0.01%以下,S:0.005%以下,
Ni:6.5〜12.0%,Al:0.01〜0.10%及びN:0.0035%以下を
含み、必要に応じてさらにNb:0.005〜0.06%,V:0.005〜
0.07%及びCu:0.05〜0.50%のうちから選んだ少なくと
も一種を含有し、残部は実質的にFeからなるスラブを11
00〜1300℃の温度に加熱し、次いで圧延仕上温度1000〜
700℃にて熱間圧延し、熱間圧延後の鋼板を冷却する過
程で800〜500℃の温度範囲の平均冷却速度を2℃/sec以
上として冷却し、次いで450℃〜(Ac1+70℃)の温度範
囲で焼もどすことを特徴とする溶接部靭性の優れた低温
用ニッケル鋼板の製造方法である。
<Means for Solving the Problems> In the present invention, C: 0.04 to 0.12%, Si: 0.02 to 0.19 by weight%.
%, Mn: 0.05 to less than 0.30%, P: 0.01% or less, S: 0.005% or less,
Ni: 6.5 to 12.0%, Al: 0.01 to 0.10% and N: 0.0035% or less, Nb: 0.005 to 0.06%, V: 0.005 to
A slab containing at least one selected from 0.07% and Cu: 0.05 to 0.50%, with the balance being substantially Fe
Heat to a temperature of 00 ~ 1300 ° C, then roll finish temperature 1000 ~
In the process of hot rolling at 700 ° C. and cooling the steel sheet after hot rolling, cooling is performed at an average cooling rate of 2 ° C./sec or more in a temperature range of 800 to 500 ° C., and then 450 ° C. to (Ac 1 + 70 ° C.) This is a method for producing a low-temperature nickel steel sheet having excellent weld toughness, characterized by tempering in the temperature range of (1).

<作 用> この発明の基礎は、6.5〜12.0%(重量%以下同じ)
の範囲のNiを含有する低温用鋼組成のうち、とくにSiを
0.02〜0.19%、Mnを0.05〜0.30%未満、Nを0.0035%以
下に低減することによって、直接焼入れと焼戻し処理で
高強度を確保しつつ、溶接部の高靭性が確保されること
を知見したところにある。
<Operation> The basis of the present invention is 6.5 to 12.0% (the same applies to weight% or less).
Of low-temperature steel compositions containing Ni in the range of
By reducing 0.02 to 0.19%, Mn to less than 0.05 to 0.30%, and N to 0.0035% or less, it was found that high toughness of the welded portion was secured while securing high strength by direct quenching and tempering. There.

まずこの発明における鋼の成分組成の限定理由を説明
する。
First, the reasons for limiting the composition of steel in the present invention will be described.

C:0.04〜0.12% Cは、十分な高張力を得るために有用な元素である
が、含有量が0.04%に満たないと強度上Si,Mnを増加す
る必要が生じ、前述したとおり700〜900℃に加熱された
部分の靭性が低いという問題があり、一方0.12%を超え
ても靭性を損なうので、0.04〜0.12%の範囲とした。
C: 0.04 to 0.12% C is a useful element for obtaining a sufficiently high tensile strength. However, if the content is less than 0.04%, it is necessary to increase Si and Mn in terms of strength. There is a problem that the toughness of a portion heated to 900 ° C. is low. On the other hand, if it exceeds 0.12%, the toughness is impaired. Therefore, the range is 0.04 to 0.12%.

Si:0.02〜0.19% Siは、この発明の特徴の一つであり、それというの
は、Siの低減は溶接部靭性改善に顕著な効果を示すから
である。しかしながら、0.02%未満にしても漸進的効果
は認められないので下限を0.02%とした。一方0.19%を
超えるとかえって靭性の劣化を招くだけでなく強度が過
剰に上昇するため0.19%を上限とした。
Si: 0.02 to 0.19% Si is one of the features of the present invention, because the reduction of Si has a remarkable effect on the improvement of weld toughness. However, even if less than 0.02%, no gradual effect is observed, so the lower limit was set to 0.02%. On the other hand, when the content exceeds 0.19%, not only is the toughness deteriorated but also the strength is excessively increased, so the upper limit is 0.19%.

Mn:0.05〜0.30%未満 Mnも、Siと同様にこの発明の特徴の一つである。Mnの
低減もSiの低減と相まることにより溶接部靭性改善に顕
著な効果を示す。しかしながら0.05%を下回る低減は漸
進的効果を示さないので、下限を0.05%とした。Mnはこ
の範囲で低減すれば漸進的に溶接部靭性を改善し、とく
に0.30%未満で顕著である。このため、Mnは0.05〜0.30
%未満とした。
Mn: 0.05 to less than 0.30% Mn is one of the features of the present invention like Si. The reduction of Mn, combined with the reduction of Si, has a remarkable effect on the improvement of weld toughness. However, a reduction below 0.05% does not show a gradual effect, so the lower limit was made 0.05%. If Mn is reduced in this range, the weld toughness is gradually improved, and is particularly remarkable at less than 0.30%. Therefore, Mn is 0.05 to 0.30
%.

P≦0.01%,S≦0.005% P,Sはいずれも、母材および溶接部の靭性を害するの
で極力低減することが望ましいが、それぞれ0.01%以
下、0.005%以下の範囲で許容できる。
P ≦ 0.01%, S ≦ 0.005% Since both P and S impair the toughness of the base metal and the welded portion, it is desirable to reduce them as much as possible. However, P and S are acceptable in the range of 0.01% or less and 0.005% or less, respectively.

Ni:6.5〜12.0% Niは、この発明の低温用鋼には必須の元素で、低温に
おいて高靭性を与える効果を有するが、6.5%未満では
その効果に乏しく、一方12%を超えて多量に添加しても
その効果は飽和に達し、また不経済でもあるので、6.5
〜12.0%の範囲に限定した。
Ni: 6.5 to 12.0% Ni is an essential element in the low-temperature steel of the present invention, and has an effect of providing high toughness at low temperatures. Even if it is added, its effect reaches saturation and is uneconomical.
Limited to the range of ~ 12.0%.

Al:0.01〜0.10% Alは、脱酸上必要な元素であるが、0.01%未満ではそ
の効果に乏しく、一方0.10%を超えると清浄性を損なう
ので、0.01〜0.10%の範囲とした。
Al: 0.01 to 0.10% Al is an element necessary for deoxidation. If it is less than 0.01%, its effect is poor. On the other hand, if it exceeds 0.10%, cleanliness is impaired.

N:0.0035%以下 Nは本発明の特徴の一つである。Nを低減すると、可
動転位が減少しまた島状マルテンサイトが減少するため
に靭性は向上する。とくに、Nを0.0035%以下とする
と、SiとMnの低減と相まることにより、700〜900℃に添
加される熱影響部の靭性を著しく改善できる。また、13
50℃以上に加熱される熱影響部の靭性も、Tiを添加する
のと同等に改善できる。
N: 0.0035% or less N is one of the features of the present invention. When N is reduced, toughness is improved because mobile dislocations are reduced and island martensite is reduced. In particular, when N is set to 0.0035% or less, the toughness of the heat-affected zone added at 700 to 900 ° C can be remarkably improved due to the reduction of Si and Mn. Also, 13
The toughness of the heat-affected zone heated to 50 ° C. or more can be improved as well as the case where Ti is added.

上記C,Si,Mn,P,S,Ni,Al,Nの各限定量をもってこの発
明による低温用鋼の基本成分とするが、この発明ではさ
らにNb:0.005〜0.06%,V:0.005〜0.07%及びCu:0.05…
0.50%のうち少なくとも一種を含有させることもでき
る。
The respective limited amounts of C, Si, Mn, P, S, Ni, Al, and N are used as the basic components of the low-temperature steel according to the present invention. In the present invention, Nb: 0.005 to 0.06%, and V: 0.005 to 0.07 % And Cu: 0.05…
At least one of 0.50% may be contained.

これらの限定理由について次に説明する。 The reasons for these limitations will be described below.

Nb:0.005〜0.06%,V:0.005〜0.07% Nb及びVはいずれも、折出強化により強度を向上させ
るのに有効に寄与するが、両者とも0.005%未満では添
加効果が少ないので0.005%下限とし、一方Nbは0.06
%、またVは0.07%を超えるとかえって靭性を損なうの
でそれぞれ上限をNb:0.06%,V:0.07%に限定した。
Nb: 0.005% to 0.06%, V: 0.005% to 0.07% Both Nb and V effectively contribute to improving the strength by strengthening the bend out. And Nb is 0.06
% And V exceed 0.07%, which impairs toughness. Therefore, the upper limits are respectively limited to 0.06% for Nb and 0.07% for V.

Cu:0.05〜0.50% Cuは、焼入性向上により強度を改善するのに有効な元
素であるが、0.05%未満ではその添加効果に乏しく、一
方0.50%を超えるとかえって靭性を損なうので、0.05〜
0.50%の範囲に限定した。
Cu: 0.05 to 0.50% Cu is an effective element for improving the strength by improving the hardenability, but if it is less than 0.05%, the effect of its addition is poor, while if it exceeds 0.50%, the toughness is impaired. ~
The range was limited to 0.50%.

以上述べた成分範囲になる鋼材は何れも1100℃以上13
00℃以下の温度に加熱して圧延を行うわけであるが、加
熱温度が1100℃未満のときは鋼塊冷却時に粗大析出した
AlNが溶解せず、靭性を劣化させるほかに十分な圧下比
をとることができないことも問題である。一方1300℃を
超えて加熱するとオーステナイト粒が粗大化し、また不
経済でもあるので、スラブ加熱温度は1100〜1300℃に限
定される。
All steel materials within the above composition range are 1100 ° C or higher13
Rolling is performed by heating to a temperature of 00 ° C or less, but when the heating temperature is less than 1100 ° C, coarse precipitates were formed during cooling of the ingot
It is also a problem that AlN does not dissolve, and in addition to deteriorating toughness, a sufficient rolling reduction cannot be achieved. On the other hand, heating above 1300 ° C causes austenite grains to become coarse and uneconomical, so the slab heating temperature is limited to 1100 to 1300 ° C.

熱間圧延の仕上げ温度は、1000〜700℃に限定され
る。1000℃超では十分な細粒組織が得られず、この発明
で目指した高靭性鋼板の製造に不都合である。一方700
℃未満ではひずみが結晶粒に蓄積され、靭性が低い。
The finishing temperature of hot rolling is limited to 1000 to 700 ° C. If the temperature exceeds 1000 ° C., a sufficient fine-grained structure cannot be obtained, which is inconvenient for the production of a high toughness steel plate aimed at by the present invention. 700
If the temperature is lower than ℃, strain is accumulated in the crystal grains, and the toughness is low.

圧延後、直ちに焼入れ処理ができることはこの発明の
特徴とするところであるが、この処理により再加熱焼入
れ処理を省略でき、コストが安くなり、それと同時に直
接焼入れでは、再加熱焼入れ処理する場合よりも強度が
増加し、そのためSi量,Mn量及びN量を低減することが
可能となる。
It is a feature of the present invention that the quenching process can be performed immediately after rolling, but this process can omit the reheating quenching process and reduce the cost, and at the same time, the direct quenching has higher strength than the reheating quenching process. Is increased, so that the amount of Si, the amount of Mn, and the amount of N can be reduced.

このSi量,Mn量及びN量の低減が母材及び溶接部靭性
を向上させることは前に述べたとおりである。直接焼入
れの平均冷却温度は800〜500℃の温度範囲で2℃/sec以
上を要し、これより遅い冷却温度では必要強度を充足す
ることができない。また少なくとも800〜500℃の温度範
囲を2℃/sec以上の冷却速度とする必要があり、800℃
超あるいは500℃未満の温度域における冷却速度につい
ては特に限定されない。
As described above, the reduction of the Si content, the Mn content, and the N content improves the toughness of the base metal and the welded portion. The average cooling temperature of direct quenching requires 2 ° C./sec or more in a temperature range of 800 to 500 ° C., and a cooling temperature slower than this cannot satisfy the required strength. In addition, it is necessary to set the temperature range of at least 800 to 500 ° C to a cooling rate of 2 ° C / sec or more.
The cooling rate in a temperature range exceeding or less than 500 ° C. is not particularly limited.

直接焼入れ後、焼もどし処理を施すがその加熱温度は
450℃以上(Ac1+70℃)温度以下であり、450℃未満で
は靭性が確保できず、また(Ac1+70℃)温度を超える
と強度が低下してしまう。
After direct quenching, tempering is performed, but the heating temperature is
The temperature is 450 ° C. or higher and (Ac 1 + 70 ° C.) or lower, and if it is lower than 450 ° C., the toughness cannot be ensured. If the temperature exceeds (Ac 1 + 70 ° C.), the strength decreases.

<実施例> 実施例1 表1に示す化学組成になる鋼スラブ加熱温度1200℃、
圧延仕上げ温度900℃の条件で15mm厚まで圧延し、直ち
に水冷し、800〜500℃の温度範囲の平均冷却速度を50℃
/secとし、ついで570℃で70minの焼戻し処理(DQ−T)
を施した。比較のため、表1に示す鋼をスラブ加熱温度
1200℃、圧延仕上げ温度900℃の条件で15mm厚まで圧延
し、室温まで空冷(800〜500℃の平均冷却速度0.8℃/se
c)した後、780℃で60min加熱後直ちに水冷する再加熱
焼入れを施し、ついで570℃で70minの焼戻し処理(RQ−
T)を施した。次いで入熱量20kJ/cm,パス数4の条件で
オーステナイト系ワイヤを用いてサブマージアーク溶接
した。
<Example> Example 1 A steel slab heating temperature of 1200 ° C having a chemical composition shown in Table 1,
Rolling to 15mm thickness under the condition of rolling finishing temperature 900 ° C, immediately cooling with water, average cooling rate of 800-500 ° C at 50 ° C
/ sec, then tempering at 570 ° C for 70 minutes (DQ-T)
Was given. For comparison, the steel shown in Table 1 was heated at the slab heating temperature.
Rolled to a thickness of 15 mm under the conditions of 1200 ° C and rolling finish temperature of 900 ° C, and air-cooled to room temperature (800-500 ° C average cooling rate 0.8 ° C / se
c) After heating at 780 ° C for 60 minutes, reheating and quenching immediately after cooling with water followed by tempering at 570 ° C for 70 minutes (RQ-
T). Next, submerged arc welding was performed using an austenitic wire under the conditions of a heat input of 20 kJ / cm and a number of passes of 4.

その時の母材強度および靭性(vE-196℃)について調
べた結果を表2に示す。またBond部、HAZ3,5,7mm部のシ
ャルピー衡撃試験結果を表3に示す。本発明のDQ−T処
理において、極めて高い強度,靭性を有する母材から得
られるとともに溶接部靭性も改善されている。
Table 2 shows the results of the investigation on the base metal strength and toughness (vE -196 ° C) at that time. Table 3 shows the Charpy barrage test results of the Bond part and the HAZ 3, 5, and 7 mm sections. In the DQ-T treatment of the present invention, a base material having extremely high strength and toughness is obtained, and weld toughness is improved.

実施例2 表4に示す化学組成になる鋼を、スラブ加熱温度1200
℃、圧延仕上げ温度900℃の条件で10mm厚まで圧延し、
直ちに水冷し、800〜500℃の温度範囲の平均冷却速度を
50℃/secとし、ついで570℃で70minの焼戻し処理(DQ−
T)を施した。
Example 2 Steel having the chemical composition shown in Table 4 was heated at a slab heating temperature of 1200.
℃, rolled to a thickness of 10mm under the condition of rolling finish temperature 900 ℃,
Immediately cool with water, and use the average cooling rate in the temperature range of 800 to 500 ° C.
50 ° C / sec, then tempering at 570 ° C for 70 minutes (DQ-
T).

次いで入熱量19kJ/cm、パス数3の条件でオーステナ
イト系ワイヤを用いてサブマージアーク溶接した。そし
て、Bond部、HAZ3,5,7mmからシャルピー衡撃試験片を採
取し実験に供した。その結果を母材の強度とともに表5
に示す。
Next, submerged arc welding was performed using an austenitic wire under the conditions of a heat input of 19 kJ / cm and three passes. Then, Charpy striking test pieces were collected from the Bond part, HAZ 3, 5, 7 mm, and subjected to the experiment. Table 5 shows the results together with the strength of the base material.
Shown in

表5より本発明の組成を満足する鋼をDQ−T処理した
供試鋼No.1〜12はASTM規格に規定されている強度を確保
するとともに比較鋼No.13〜19に比して十分な溶接部靭
性が得られている。特に加熱温度が700〜900℃に達する
HAZ7mmの溶接部の靭性の改善が著しい。これに対して供
試鋼13〜18(比較鋼)のように本発明鋼の基本成分のう
ち例えばC,P,S,Ni,Alを満足していても残りのSi,Mn,Nの
うちいずれか一つでも満足できないときには十分な溶接
部靭性が確保できず、また供試鋼19(比較鋼)のように
Tiを添加すると1000〜1200℃に昇温するHAZ3mmにおいて
十分な溶接部靭性が確保できないことがわかる。
Table 5 shows that the test steels Nos. 1 to 12 obtained by DQ-T treatment of the steels satisfying the composition of the present invention ensure the strength stipulated in the ASTM standard and have a sufficient strength as compared with the comparative steels Nos. 13 to 19. High weld toughness. Especially the heating temperature reaches 700-900 ℃
Significant improvement in toughness of HAZ 7mm weld. On the other hand, even if the steel of the present invention satisfies, for example, C, P, S, Ni, and Al among the basic components of the steel of the present invention, such as test steels 13 to 18 (comparative steels), the remaining Si, Mn, and N If any one of them is not satisfactory, sufficient weld toughness cannot be secured, and as in test steel 19 (comparative steel)
It can be seen that sufficient weld toughness cannot be ensured in HAZ 3 mm, which rises to 1000 to 1200 ° C. when Ti is added.

<発明の効果> かくしてこの発明の製造方法によれば、低温靭性とく
に溶接部靭性に優れた低温用鋼を容易に得ることができ
る。
<Effects of the Invention> Thus, according to the production method of the present invention, a low-temperature steel excellent in low-temperature toughness, in particular, weld toughness can be easily obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.04〜0.12%,Si:0.02〜0.19
%,Mn:0.05〜0.30%未満,P:0.01%以下,S:0.005%以下,
Ni:6.5〜12.0%,Al:0.01〜0.10%及びN:0.0035%以下を
含み、残部は実質的にFeからなるスラブを1100〜1300℃
の温度に加熱し、次いで圧延仕上温度1000〜700℃にて
熱間圧延し、熱間圧延後の鋼板を冷却する過程で800〜5
00℃の温度範囲の平均冷却速度を2℃/sec以上として冷
却し、次いで450℃〜(Ac1+70℃)の温度範囲で焼もど
すことを特徴とする溶接部靭性の優れた低温用ニッケル
鋼板の製造方法。
C .: 0.04 to 0.12%, Si: 0.02 to 0.19% by weight
%, Mn: 0.05 to less than 0.30%, P: 0.01% or less, S: 0.005% or less,
Ni: 6.5 to 12.0%, Al: 0.01 to 0.10% and N: 0.0035% or less, the remainder being a slab consisting essentially of Fe at 1100 to 1300 ° C
Temperature, then hot-rolled at a rolling finish temperature of 1000 to 700 ° C, and 800 to 5 in the process of cooling the steel sheet after hot rolling.
Low temperature nickel steel sheet with excellent weld toughness characterized by cooling at an average cooling rate of 2 ° C./sec or more in a temperature range of 00 ° C. and then tempering in a temperature range of 450 ° C. to (Ac 1 + 70 ° C.) Manufacturing method.
【請求項2】重量%で、C:0.04〜0.12%,Si:0.02〜0.19
%,Mn:0.05〜0.30%未満,P:0.01%以下,S:0.005%以下,
Ni:6.5〜12.0%,Al:0.01〜0.10%及びN:0.0035%以下を
含み、さらにNb:0.005〜0.06%,V:0.005〜0.07%及びC
u:0.05〜0.50%のうちから選んだ少なくとも一種を含有
し、残部は実質的にFeからなるスラブを1100〜1300℃の
温度に加熱し、次いで圧延仕上温度1000〜700℃にて熱
間圧延し、熱間圧延の鋼板を冷却する過程で800〜500℃
の温度範囲の平均冷却速度を2℃/sec以上として冷却
し、次いで450℃〜(Ac1+70℃)の温度範囲で焼もどす
ことを特徴とする溶接部靭性の優れた低温用ニッケル鋼
板の製造方法。
2. C: 0.04 to 0.12%, Si: 0.02 to 0.19 by weight%
%, Mn: 0.05 to less than 0.30%, P: 0.01% or less, S: 0.005% or less,
Ni: 6.5 to 12.0%, Al: 0.01 to 0.10% and N: 0.0035% or less, Nb: 0.005 to 0.06%, V: 0.005 to 0.07% and C
u: At least one selected from 0.05 to 0.50% is contained, and the remainder is substantially heated to a temperature of 1100 to 1300 ° C., and hot-rolled at a finishing temperature of 1000 to 700 ° C. 800 ~ 500 ℃ in the process of cooling hot-rolled steel sheet
Production of low-temperature nickel steel sheet with excellent weld toughness characterized by cooling at an average cooling rate of 2 ° C./sec or more in the temperature range above and then tempering in a temperature range of 450 ° C. to (Ac 1 + 70 ° C.) Method.
JP1011810A 1989-01-23 1989-01-23 Method for producing low temperature nickel steel sheet with excellent weld toughness Expired - Fee Related JP2582147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011810A JP2582147B2 (en) 1989-01-23 1989-01-23 Method for producing low temperature nickel steel sheet with excellent weld toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011810A JP2582147B2 (en) 1989-01-23 1989-01-23 Method for producing low temperature nickel steel sheet with excellent weld toughness

Publications (2)

Publication Number Publication Date
JPH02194122A JPH02194122A (en) 1990-07-31
JP2582147B2 true JP2582147B2 (en) 1997-02-19

Family

ID=11788175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011810A Expired - Fee Related JP2582147B2 (en) 1989-01-23 1989-01-23 Method for producing low temperature nickel steel sheet with excellent weld toughness

Country Status (1)

Country Link
JP (1) JP2582147B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266417A (en) * 1990-01-25 1993-11-30 Kawasaki Steel Corporation Low-temperature service nickel plate with excellent weld toughness
JP5076423B2 (en) * 2006-09-27 2012-11-21 Jfeスチール株式会社 Method for producing Ni-containing steel sheet
CN109694987B (en) * 2017-10-20 2021-02-23 鞍钢股份有限公司 High-nickel steel for ultralow-temperature pressure vessel and manufacturing method thereof
WO2020184162A1 (en) * 2019-03-13 2020-09-17 Jfeスチール株式会社 Thick steel sheet and production method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935619A (en) * 1982-08-18 1984-02-27 Sumitomo Metal Ind Ltd Production of high tensile steel material having excellent toughness of weld zone
JPH0649898B2 (en) * 1986-01-24 1994-06-29 株式会社神戸製鋼所 Method for producing low yielding high yield point steel with excellent toughness in the heat affected zone
JPH0660346B2 (en) * 1987-03-02 1994-08-10 日本鋼管株式会社 High-strength steel pipe fitting manufacturing method

Also Published As

Publication number Publication date
JPH02194122A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR20210149145A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
CN112236539B (en) High-tensile thick steel plate for extremely low temperature and method for producing same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP3864536B2 (en) High strength steel with excellent delayed fracture resistance and method for producing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP2004052063A (en) METHOD FOR PRODUCING 780 MPa-CLASS NON-HEAT REFINING THICK STEEL PLATE
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP2557993B2 (en) Low temperature thin nickel steel plate with excellent weld toughness
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP4087237B2 (en) High workability, high strength cold-rolled steel sheet with improved corrosion resistance and spot weldability and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees