JPS5935619A - Production of high tensile steel material having excellent toughness of weld zone - Google Patents

Production of high tensile steel material having excellent toughness of weld zone

Info

Publication number
JPS5935619A
JPS5935619A JP14296982A JP14296982A JPS5935619A JP S5935619 A JPS5935619 A JP S5935619A JP 14296982 A JP14296982 A JP 14296982A JP 14296982 A JP14296982 A JP 14296982A JP S5935619 A JPS5935619 A JP S5935619A
Authority
JP
Japan
Prior art keywords
toughness
steel
content
strength
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14296982A
Other languages
Japanese (ja)
Inventor
Ichiro Seta
一郎 瀬田
Hiroshi Matsushita
宏 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14296982A priority Critical patent/JPS5935619A/en
Publication of JPS5935619A publication Critical patent/JPS5935619A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce a high tensile steel material having excellent toughness of weld zones and base material at a low cost with good productivity by rolling low carbon steel having a specific Ca/S ratio and of low N content extremely low S content and high Mn content, then cooling the same under specific conditions. CONSTITUTION:The steel contg., by wt%, 0.035-0.160% C, 0.001-0.400% Si, 0.6-1.6% Mn, 0.003-0.012% Ti, 0.01-0.09% Al, 0.0001-0.0060% N, 0.0001- 0.0020% S, 0.0001-0.0100% Ca, <=0.015% P, satisfying the relation 1.0-5.0 Ca/S, contg. further >=1 kinds among 0.1-1.0% Cu, 0.1-9.5% Ni, 0.1-1.0% Cr, 0.05- 0.35% Mo, 0.008-0.030% Nb, 0.01-0.07% V, 0.0005-0.0015% B according to need, and the balance Fe, is treated in the following way: The steel is rolled after heating to 870-1,280 deg.C and is cooled at a rate of 5-50 deg.C/sec. in the temp. region from the end temp. of rolling to 450 deg.C after the completion of rolling at 800-690 deg.C.

Description

【発明の詳細な説明】 この発明は、溶接部靭性の極めてすぐれた高張力’、J
6ti利の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high tensile strength with extremely excellent weld toughness, J
The present invention relates to a method for manufacturing 6ti.

近年、各種建造物や産業機械等の構造材として、高強度
でかつ加工性のすぐれた調料への要求が高まっており、
これらに対処するために各種の鋼材が開発され、使用さ
れるようになってきた。そして最近では、エネルギー事
情の悪化等から、寒冷地その他の極めて苛酷な環境下で
の資源開発のやむなきに至っており、鋼母材自体の靭性
改善のほか、これに相応する鋼材溶接部の脆化対策も重
要な課題の]つとなってきている。
In recent years, there has been an increasing demand for preparations with high strength and excellent workability as structural materials for various buildings and industrial machinery.
In order to cope with these problems, various steel materials have been developed and come into use. Recently, due to the deterioration of the energy situation, resource development in cold regions and other extremely harsh environments has become unavoidable, and in addition to improving the toughness of the steel base material itself, the corresponding embrittlement of steel welds has become necessary. Countermeasures are also becoming an important issue.

従来より、鋼材のHA、 Z (溶接熱影響部)靭性の
改善対策として、鋼を高Mn鋼(通常はMn:1.3重
量係以」二)とすることによって強度を確保し、さらに
、鋼中のNQTi添加によって固定する等の方法が採ら
れてきた。
Traditionally, as a measure to improve the HA and Z (weld heat affected zone) toughness of steel materials, strength has been ensured by using high Mn steel (usually Mn: 1.3 weight coefficient or higher), and Methods such as fixing by adding NQTi to steel have been adopted.

しかしながら、高Mn鋼において低温割れの発生を抑止
し得るだけの低炭素当量(低Ceq)を得るためには、
鋼中のC含有量を極めて低くする必要があり、製鋼作業
が困難になるとともに、Mn成分添加に際して、安価な
フェロマンガンではなくシリコマンガンや金属Mnを使
用しなければならず、製品コストの」1昇を招くという
問題点があった。
However, in order to obtain a low carbon equivalent (low Ceq) that can suppress the occurrence of cold cracking in high Mn steel,
The C content in the steel needs to be extremely low, which makes steel manufacturing difficult, and when adding the Mn component, silicomanganese or metallic Mn must be used instead of the cheaper ferromanganese, which reduces product costs. There was a problem in that it led to a one-up increase.

ナセなら、フェロマンガンには0分も多量に含有されて
おり、Mnを多くすると必然的にCも高くなるからであ
る。
If this is true, it is because ferromanganese contains a large amount of 0 min, and as Mn increases, C will inevitably increase as well.

・そこで、このようなことをふまえて、Mn:0.90
重量係以下という低Mn域にてHAZ部をフェライトと
する試みも行なわれたが、このような低Mn域ではフェ
ライトが得られたとしても細粒にはなり得す、結局靭t
’1lr−劣化してしまって所望の効果をあげることは
できなかった。
・So, based on this, Mn: 0.90
Attempts have been made to make the HAZ part ferrite in a low Mn range below the weight coefficient, but even if ferrite is obtained in such a low Mn range, it may become fine grains, and in the end, the toughness
'1lr - It deteriorated and the desired effect could not be achieved.

一方、最近の製鋼・精錬技術の進歩には目を見張るもの
があり、極低S技術、低N鋼溶製技術。
On the other hand, the recent progress in steel manufacturing and refining technology is remarkable, including ultra-low S technology and low N steel melting technology.

Ca処理に」二つて8分の形状を制御する技術、および
′J゛]量の微量コントロール技術等においては、これ
まで達成できなかった著しい成果が次々にあげられてい
るのが現状である。
The current state of affairs is that remarkable results that have not been achieved until now are being achieved one after another in the technology of controlling the shape of "two-eighths" in Ca treatment, and the technology of micro-controlling the amount of ``J゛''.

本発明者等は、」二連のような観点に立って、格別なコ
スト上昇を伴なわずに、かつ従来の溶接部靭性対策41
f1以上に罹めてすぐれた溶接部靭性を有する高張力鋼
材を生産性良く得るべく、特に最新の製鋼技術の現状を
十分にふまえて研究を行なった結果、以下(a)〜(C
1に示す如き知見を得るに至ったのである。すなわち、 (a)所望の強度を有する高張力鋼において、衝゛1ヒ
値劣化の原因となるS含有量を、0.003重量係以ト
、の含有が普通であった溶接部脆化対策鋼に比して極低
レベルにまで下げるとともに、HAZ脆化の原因となる
N含有量をも極力低減し、しかも鋼中の微量SをCa処
理によりCaSとして固定し球状化することでこれをフ
ェライト生成核となさしめ、これにさらに鋼中NをT1
で固定するという各処理を組合せると、各々の処理に期
待される作用効果が有機的に絡み合って助長され、その
結果、低Mn鋼においてもHAZ部に細粒のフェライト
組織を得ることができるようになって、従来の低Mn鋼
以上に低温靭性が向上するとともに、他方では、MnS
が存在せずかつCaSの量も極めて少ないので、延性・
脆性遷移領域においても極めて良好な衝撃値が得られる
ことから、フェライト地の細粒化効果と相まって従来の
高MnのHAZ部以」二のすぐれた低温靭性が得られる
こと、 (b)  このように、低N化・極低S化と、Ti処理
およびCa処理との組合せを高Mn調料に適用すれば、
従来の高Mn化材よりもさらに低温靭性が向」ニするこ
と、 (C)  上述のような処理を施した高張力鋼中に、C
u、 Ni、 Cr、 Mo、 Nb、 VおよびBの
1種または2種以上の所定量を添加すれば、該鋼材の強
度、靭性、あるいは耐食性を更に改善できること、した
がって、この発明は」1記知見に基いてなされたもので
あって、 C’、 0.03.5〜0. ]−60%(以F″受は
重量%)。
The present inventors have proposed the conventional weld toughness measures 41, without any particular increase in cost, from the viewpoint of ``two series''.
In order to obtain high-strength steel materials having f1 or higher and excellent weld toughness with good productivity, we have conducted research that takes into account the current state of the latest steelmaking technology, and as a result we have developed the following (a) to (C).
We came to the knowledge shown in 1. In other words, (a) Measures against embrittlement of welds in which the S content, which causes deterioration of the impact value, is usually 0.003% by weight in high-strength steel having the desired strength. In addition to reducing the N content, which causes HAZ embrittlement, to an extremely low level compared to steel, the N content, which causes HAZ embrittlement, is also reduced as much as possible, and the trace amount of S in the steel is fixed as CaS through Ca treatment and made spheroidized. The N in the steel is added to T1 to form a ferrite generation nucleus.
When the various treatments of fixation are combined, the expected effects of each treatment are organically intertwined and promoted, and as a result, a fine-grained ferrite structure can be obtained in the HAZ part even in low Mn steel. As a result, low-temperature toughness is improved more than that of conventional low-Mn steels, and on the other hand, MnS
Since there is no CaS and the amount of CaS is extremely small, the ductility and
Since extremely good impact values are obtained even in the brittle transition region, combined with the grain refinement effect of the ferrite base, it is possible to obtain superior low-temperature toughness compared to conventional high-Mn HAZ parts. In addition, if a combination of low N and extremely low S, Ti treatment and Ca treatment is applied to a high Mn preparation,
The low-temperature toughness is even better than that of conventional high-Mn materials. (C) C
By adding a predetermined amount of one or more of u, Ni, Cr, Mo, Nb, V, and B, the strength, toughness, or corrosion resistance of the steel material can be further improved. Based on knowledge, C', 0.03.5 to 0. ] -60% (Hereinafter, "F" indicates weight %).

Sj、 ’、 0.001〜0.4.00% 。Sj, ', 0.001-0.4.00%.

Mn : 0.6〜16%。Mn: 0.6-16%.

Tj、 : 0.003〜0012%。Tj: 0.003-0012%.

Ae : OO]〜0.09 % 。Ae: OO] ~ 0.09%.

N:00001〜0.0060%。N: 00001-0.0060%.

ε;:0.0001〜0.0020%。ε: 0.0001 to 0.0020%.

(:a、:0000コ〜00100%。(:a, :0000~00100%.

1): 0. O]、 ]5%リド。1): 0. O],  5% Lido.

を含有するとともに、Ca、/ S = 1.0〜5.
0の関係を6:’a足しているか、あるいはさらに、C
u:O上 〜:I−,0% 、      Ni:0.
1 〜9.5  つb 。
and Ca,/S = 1.0 to 5.
6:'a is added to the relationship of 0, or in addition, C
u: O on ~: I-, 0%, Ni: 0.
1 to 9.5 b.

Cr : 0.1〜1.0%、Mo:005〜0.35
 % 。
Cr: 0.1-1.0%, Mo: 005-0.35
%.

N b  ○008〜0.030%、V :001〜0
.07%。
Nb ○008~0.030%, V:001~0
.. 07%.

13:0.0005〜o、 c5015係。13:0.0005~o, c5015 section.

のうちの1f!lI以−1−を含み、 Feおよび不可避不純物:残り。1f of them! lI or more-1-, Fe and unavoidable impurities: remainder.

からなる鋼を8’70〜1280℃の温度に加熱してか
らこれに圧延加工を施し、800〜690℃の温度にて
圧延を終了した後、該圧延終了温度から450℃までの
温度域を5〜b で冷却す名ことによって、溶接部靭性のすぐれた高張力
鋼材を得ることに特徴を有するものである。
A steel made of By cooling in steps 5-b, a high-tensile steel material with excellent weld toughness can be obtained.

なお、この発明の方法において圧延に供する鋼は、通常
のインゴット鋳造によって製造された鋼塊に適当な分塊
圧延を施してスラブとしたものでも良いし、連続鋳造法
により直接スラブとしたものでも良いが、TiN微細分
散やCaS微細分散の面からは、どちらかというと連続
鋳造法によってスラブとしたものの方が好ましい。
In addition, the steel to be rolled in the method of this invention may be a slab produced by subjecting a steel ingot manufactured by normal ingot casting to appropriate blooming rolling, or a slab directly produced by a continuous casting method. However, in terms of TiN fine dispersion and CaS fine dispersion, it is more preferable to form a slab by continuous casting.

つぎに、この発明の高張力鋼材の製造方法において、圧
延に供される鋼の化学成分組成、加熱温度、圧延終了温
度、および冷却条件を上記のように限定した理由を説明
する。
Next, the reason why the chemical composition, heating temperature, rolling end temperature, and cooling conditions of the steel to be rolled are limited as described above in the method for manufacturing high-strength steel materials of the present invention will be explained.

■)鋼の化学成分組成 ■ C C成分は、最も経済的に鋼材の強度を確保する元素であ
るが、その含有量が00ご5%未満では鋼材強度確保作
用に所望の効果を得ることができ11、一方O]60%
を越えて含有せしめると鋼材の溶接性や靭性が損なわれ
るようになることから、その含有量を0.035〜0.
160%と定めた。
■) Chemical composition of steel■ C The C component is the element that most economically ensures the strength of steel materials, but if its content is less than 0.5%, it may not be possible to obtain the desired effect on ensuring the strength of steel materials. 11, while O] 60%
If the content exceeds 0.035 to 0.03, the weldability and toughness of the steel material will be impaired.
It was set at 160%.

■ Sj S]成分には、溶接構造物としての母材特性を改善する
作用があるほか、鋼の脱酸作用をも有するものであるが
、その含有量が0001%未満では前記作用に所望の効
果を得ることができず、一方、0、400%を越えて含
有させると溶接部靭性を損なうようになることから、そ
の含有量を0.901〜0、4.00%と定めた。
■ Sj S] component not only has the effect of improving the properties of the base material as a welded structure, but also has the deoxidizing effect of steel, but if its content is less than 0001%, the desired effect may not be achieved. On the other hand, if the content exceeds 0.400%, the toughness of the weld zone will be impaired, so the content was set at 0.901 to 0.4.00%.

■ Mn M n成分は、Cについで経済的に強度を確保する作用
を有する元素であるが、その含有量が06%未満では前
記作用に所望の効果を得ることができず、一方]6%を
越えて含有せしめると溶接部靭性に悪影響を与えるよう
になることから、その含有量を0.6〜1.6%と定め
た。
■ Mn The Mn component is an element that economically ensures strength next to C, but if its content is less than 6%, the desired effect cannot be obtained; The content was set at 0.6 to 1.6% because if the content exceeds 0.2%, it would have an adverse effect on the toughness of the weld zone.

■ Tl T1成分は、溶接部靭性を改善するために特に有効な元
素である。すなわち、T1は、鋼中のNf:’l’i窒
化物として固定し、Nによる溶接部靭性劣化作用を収り
除くと同時に、Ti窒化物が溶接部靭性に好影響を及ぼ
すという作用を積極的に利用するために添加するもので
あり、それ故に、共存するN量によってもその効果が左
右されるものではあるが、その含有量がO,OO3%未
満では靭性改善効果がもたらされず、一方0.012%
を越えて含有させると、逆に靭性が劣化するようになる
ことから、その含有量を0.003〜0.012%と定
めた。そして、このようにT1含有量を低目に抑えたこ
とも、この発明の重要なポイントの1つである。
■ Tl The T1 component is a particularly effective element for improving the toughness of the weld zone. In other words, T1 is fixed as Nf:'l'i nitride in the steel, and at the same time eliminates the deterioration effect of N on the weld joint toughness, and at the same time actively promotes the effect that Ti nitride has on the weld joint toughness. It is added to utilize O and OO as a material, and its effect is therefore influenced by the amount of coexisting N. However, if the content is less than 3% of O, OO, no toughness improvement effect is brought about. 0.012%
If the content exceeds 0.2%, the toughness will deteriorate, so the content was set at 0.003% to 0.012%. Also, keeping the T1 content low in this way is one of the important points of this invention.

■ AC Ag、成分には母材靭性を確保する作用があるが、その
含有量が0,01%未満では前記作用に所望の効果を得
ることができず、一方009%を越えて含有させると鋼
の清浄度が悪化することとなるので、その含有量を00
1〜009%と定めた。
■ AC Ag, a component, has the effect of ensuring the toughness of the base material, but if its content is less than 0.01%, the desired effect cannot be obtained in this effect, while if it is contained in excess of 0.09%, Since the cleanliness of the steel will deteriorate, its content should be reduced to 0.00%.
It was set at 1-009%.

■ 14 1り成分は、鋼中に不可避的に入る一種の不純物である
が、T】やAi!と結合してTjNやA[N等の窒化物
を形成する元素である。そして、形成された”]′IN
が溶接部靭性に好影響を与えることから、これを積極的
に利用するために、その好影響が認められる限度である
O、 OOO1%を含有量の下限値とした。一方0. 
OO60%を越えて含有すると、溶接部の靭性が極端に
損なわれるようになることも確認された。Jメ」二のよ
うな理由から、N含有量をf、)、 000 ]−〜0
.0060%と定めた。また、窒化物の形成の面からは
、’ll”、 j / Hの比が]、5〜34であるこ
とが望ましいが、N量規定により]5〜3.4の範囲外
の組成においても比較的高靭性を得られることが確認さ
れた。
■ 14 Components are a type of impurity that inevitably enters steel, such as T] and Ai! It is an element that combines with to form nitrides such as TjN and A[N. And formed”]’IN
Since O has a positive effect on the toughness of the weld zone, in order to actively utilize this, the lower limit of the content was set at 1%, which is the limit at which this positive effect is recognized. On the other hand, 0.
It has also been confirmed that if the content exceeds 60% OO, the toughness of the welded joint will be extremely impaired. For the reasons mentioned above, the N content is set to f, ), 000 ] - ~ 0
.. It was set as 0060%. In addition, from the viewpoint of nitride formation, it is desirable that the ratio of 'll'', j / H is 5 to 34; It was confirmed that relatively high toughness could be obtained.

第1図は、3種類のT1添加鋼に対してN含有量を変化
させたときの溶接ボンド部靭性の変化状況を小す線図で
ある。なお、このときの溶接入熱は6万J/cmであっ
た。
FIG. 1 is a diagram showing how the weld bond toughness changes when the N content is changed for three types of T1-added steel. Note that the welding heat input at this time was 60,000 J/cm.

第1図からも、鋼中のN含有量が0.0060%を越え
ると溶接ポンド部靭性が著しく劣化することがわかる。
It can also be seen from FIG. 1 that when the N content in the steel exceeds 0.0060%, the toughness of the weld pound portion deteriorates significantly.

また、Tl量が0.012%がら0.003%に低下す
るにつれて、ボンド部靭性の指標としてとったところの
、vTs(シャルピー破面遷移温度)の最低値を示すN
量が徐々に低1寸側へ移行して行くのがわかる。との最
低のvTsを示すN量は、Tl量 N比で約2.5を示
すところである。また、T]量を最大限0.012%と
低く抑えているために、極低N域での脆化の程度が比較
的小さく抑えられていることもわかる。
In addition, as the Tl content decreased from 0.012% to 0.003%, N
You can see that the amount gradually shifts to the lower 1 inch side. The N amount exhibiting the lowest vTs is approximately 2.5 in terms of the Tl amount N ratio. It can also be seen that because the amount of T] is suppressed to a maximum of 0.012%, the degree of embrittlement in the extremely low N range is suppressed to a relatively low level.

■ S Sl、成分は、一般に鋼中に不純物元素として含まれて
いるが、本発明においては極低S化を実現することによ
り溶接部の靭性を著しく改善することができた。このよ
うな極低S化の効果が発揮されるのは、S含有量がO,
OO20%以下の範囲であり、一方、Ca添加によって
SはCa、Sとして固定され、これが鋼の異方性を小さ
くするとともに溶接部の靭性向上にも有効に作用するも
のであるが、このCaSの作用を有効に利用できるS含
有量の最低量が0.0001%であることがら、S含有
量を、0、0001〜O,OO20%と定めた。
(2) S Sl is generally contained in steel as an impurity element, but in the present invention, by achieving an extremely low S content, it was possible to significantly improve the toughness of the weld zone. This extremely low S content is achieved when the S content is O,
On the other hand, by adding Ca, S is fixed as Ca and S, which effectively reduces the anisotropy of the steel and improves the toughness of the weld zone. Since the minimum amount of S content that can effectively utilize the effect of is 0.0001%, the S content was determined to be 0,0001 to 20%.

第2図は、溶接列?ンド部靭性に対するS含有量の影響
をホした線図である。なお、とのときのや接人熱は6万
J/cmであった。
Is the welding row in Figure 2? FIG. 3 is a diagram showing the influence of S content on the toughness of the bonded portion. In addition, the contact fever at the time of the interview was 60,000 J/cm.

第2図からも、S量がO,OO20%以下になると溶接
ボンド部の衝撃吸収エネルギーが著しく向」ニしている
ことがわかる。
It can also be seen from FIG. 2 that when the amount of S is less than 20% of O and OO, the impact absorption energy of the weld bond is significantly improved.

■ Ca Ca成分には、Sと硫化物を形成して鋼の異方性を小さ
くするとともに溶接部の靭性を向」ニさせる(’l /
IJがあるが、その含有量が0,0−”001%未満で
は1)11記作用に所望の効果を得ることができず、一
方0.010%以」−では鋼の清浄度を悪化するように
なることから、その含有量を0.0001〜0.010
0%と定めた。
■ Ca The Ca component forms sulfides with S to reduce the anisotropy of the steel and improve the toughness of the welded joint ('l/
There is IJ, but if the content is less than 0.0-001%, 1) the desired effect on the action described in item 11 cannot be obtained, whereas if it is more than 0.010%, the cleanliness of the steel will deteriorate. Therefore, the content should be set at 0.0001 to 0.010.
It was set as 0%.

■ P ■)分はSと同様に鋼中に不純物として含まれるのを避
けることのできない元素であり、その含有量が少ない程
、母材靭性や溶接部靭性、あるいは溶接性が向上するの
で、可能な限り含有量を抑えるのが好ましいものである
。しかしながら、通常の製銑・製鋼プロセスでは低P鋼
を得るために特別の処理を施すのが一般的であシ、低P
化によるコストアップと特性向上との兼ね合いがら、P
含有量の上限を定めるのが普通であるが、本発明方法の
場合は、特に、P含有量がO,005%を越えると所望
の溶接部靭性を得ることができなくなるので、その含有
量を0.015%以下と定めた。
Like S, P is an element that cannot be avoided as an impurity in steel, and the lower its content, the better the base metal toughness, weld zone toughness, and weldability. It is preferable to suppress the content as much as possible. However, in ordinary ironmaking and steelmaking processes, special treatment is generally required to obtain low P steel;
While balancing cost increase and property improvement due to
Although it is common practice to set an upper limit for the P content, in the case of the method of the present invention, the desired weld toughness cannot be obtained especially if the P content exceeds 0.005%, so the upper limit of the P content must be set. It was set at 0.015% or less.

[相] Ca/S S成分に対するCa成分の重量比率もまた、前述の説明
から理解できるように溶接ボンド部の靭性に大きな影響
を与える要因となるものであり、極低S域においてはそ
の値、すなわちCa/Sの値が1、0未満であっても、
また5、0を越えても溶接ボンド部靭性が極端に劣化す
ることから、その値を1.0〜5.0と定めた。
[Phase] Ca/S As can be understood from the above explanation, the weight ratio of the Ca component to the S component is also a factor that greatly affects the toughness of the weld bond, and in the extremely low S range, its value decreases. , that is, even if the value of Ca/S is less than 1 or 0,
Moreover, since the weld bond toughness deteriorates extremely even if the value exceeds 5.0, the value is set at 1.0 to 5.0.

第3図は、溶接ポンド部靭性に肖えるCa/ Sの値の
影響を示した線図であるが、第3図からも、極低S城に
おいてはCa/Sの値が1.0〜5.0の場合にのみ溶
接ボンド部の衝撃吸収エネルギーが著しく向」ニしてい
ることがわかる。
Figure 3 is a diagram showing the influence of the Ca/S value on the weld pound toughness. Figure 3 also shows that in extremely low S castles, the Ca/S value ranges from 1.0 to It can be seen that only in the case of 5.0, the impact absorption energy of the weld bond is significantly improved.

(1−ONI N]酸成分は、溶接性に悪影響を与えることなしに[3
1Jの強度および靭性を格段に向上する作用があるので
、特により一層の母相強度や靭性の向上が要求される場
合に必要に応じて添加されるが、その含有量が01%未
満では前記作用に所望の効果が得られず、一方9.5%
を越えて含有させてもそれ以」−の向」−効果が得られ
ないうえ、通常の用途に対しては95%以丁の添加で十
分な成果が得られることから、その含有量を01〜9.
5%と定めた。
(1-ONI N) Acid component [3-ONI N] without adversely affecting weldability.
Since it has the effect of significantly improving the strength and toughness of 1J, it is added as necessary especially when further improvements in matrix strength and toughness are required, but if the content is less than 0.1%, the The desired effect was not obtained, while 9.5%
Even if the content exceeds 0.01%, no further effect will be obtained, and for normal purposes, sufficient results can be obtained with addition of 95% or more. ~9.
It was set at 5%.

(i、lil  C11 (:u成分顛はN1とほぼ同様な作用があるとともに、
耐環境腐食性を改善し、若干の強度上昇作用をもイfす
る元素であるので、特により一層の母相強度・靭性、耐
環境腐食性1強度等の向」二が要求されるjl、1合に
必要に応じて添加されるが、その含有量が0.1%未満
では前記作用に所望の効果が得られず、一方1.0係を
越えて含有させると、鋼の熱間圧延中KCu−クラック
が発生して鋼材製造が困難になることから、その含有量
を01〜]、0と定めた。
(i, lil C11 (:u component has almost the same effect as N1,
Since it is an element that improves environmental corrosion resistance and also has a slight strength increasing effect, it is particularly required for further matrix strength and toughness, environmental corrosion resistance, strength, etc. If the content is less than 0.1%, the desired effect cannot be obtained; on the other hand, if the content exceeds 1.0%, the hot rolling of steel Medium KCu - Since cracks occur and make steel production difficult, the content was determined to be 01 to 0.

(4Cr Cr成分は圧延組織のきイナイト化を促進し、強度や靭
性を向上させる作用を有するほか、耐環境腐食性をも改
善する作用を備えた安価な元素であるので、特により一
層の強度、靭性および耐環境腐食性が要求される場合に
必要に応じて含有せしめられるものであるが、その含有
量が01係未満では前記作用に所望の効果が得られず、
一方10係を越えて含有させる上清接部の硬化を増大さ
せ、靭性および耐割れ性の低下−を招くよ5になる−こ
とから、その含有量を01〜1.0%と定めた。
(4Cr The Cr component is an inexpensive element that not only promotes the initization of the rolled structure and improves strength and toughness, but also improves environmental corrosion resistance. , is included as necessary when toughness and environmental corrosion resistance are required, but if the content is less than 01%, the desired effect cannot be obtained,
On the other hand, if the content exceeds 10%, it will increase the hardening of the supernatant contact area and cause a decrease in toughness and cracking resistance.Therefore, the content was set at 01 to 1.0%.

  MO Mo成分には、少量の添加により母材の強度および靭性
を改善する作用があるので、特により一層の母材強度や
靭性改善が要求される場合に必要に応じて含有せしめら
れるものであるが、その含有量゛が0.05%未満では
前記作用に所望の効果を得ることかできず、一方0.3
5%を越えて含有させると溶接部靭性および溶接性が極
端に劣化するようになることから、その含有量を0.0
5〜0.35係と定めた。
MO The Mo component has the effect of improving the strength and toughness of the base material when added in small amounts, so it is included as necessary, especially when further improvement in base material strength and toughness is required. However, if the content is less than 0.05%, the desired effect cannot be obtained;
If the content exceeds 5%, the weld toughness and weldability will be extremely deteriorated, so the content should be reduced to 0.0%.
It was set as 5 to 0.35.

Qら)Nl)、およびV 1月〕およびV成分はともに本発明鋼の圧延組織の細粒
化と析出硬化を狙って、必要に応じて含有せしめ、強度
および靭性向上を図る添加元素であるが、Nb含有量が
o、oos%未満、あるいはV含有量が00]%未満で
は強度および靭性向上に所望の効果が得られず、一方、
Nl)含有量が0030%を越えるか、あるいは■含有
量が007%を越えると溶接部靭性に悪影響が出てくる
ようになることから、その含有量を、Nb : 0.0
08〜0030%、V:00]−〜0.07 %とそれ
ぞれ定めた。
Q et al) Nl) and V January) and V component are both additive elements that are included as necessary to improve the strength and toughness of the steel of the present invention, with the aim of grain refinement and precipitation hardening of the rolled structure. However, if the Nb content is less than o, oos% or the V content is less than 00]%, the desired effect on improving strength and toughness cannot be obtained;
If the Nl) content exceeds 0.030% or (■) content exceeds 0.007%, the toughness of the weld will be adversely affected, so the content should be reduced to Nb: 0.0.
08-0030%, V:00]--0.07%, respectively.

(jfj)  B B成分には焼入れ性を向」ニさせて強度を高めるととも
に、溶接部において鋼中の遊離Nと結合してBNを形成
し、溶接ボンド部の靭性を向上する作用があるので、特
により一層のこれらの特性向上が要求される場合に必要
に応じて添加されるものであるが、その含有量がO,O
OO5%未満では前記作用に所望の効果が得られず、一
方0.0 O15%を越えて含有させると、 Ti添加
および低N化の背景を有するが故に溶接部靭性の著しい
低下を招くようになることから、その含有量をO,OO
O5〜0.0015%と定めた。
(jfj) B The B component not only improves hardenability and increases strength, but also combines with free N in the steel to form BN in the weld, improving the toughness of the weld bond. It is added as necessary, especially when further improvement of these properties is required, but if the content is O, O
If the content is less than 5% OO, the desired effect cannot be obtained, while if the content exceeds 15% 0.0 O, due to the background of Ti addition and low N content, the weld toughness will be significantly reduced. Therefore, the content is O, OO
It was set as O5 to 0.0015%.

以」―のように鋼の化学成分組成を限定しても、加熱圧
延条件が不適当であると、所望のすぐれた強度および靭
性を得ることができないので、加熱圧延条件をも上記の
ように限定したのである。すなわち、 ■)加熱温度 圧延に供する鋼の加熱温度が870℃未満では、鋼材を
十分にオーステナイト化できない恐れがあるとともに、
炭化物や窒化悔が十分オーステナイト中に固溶させ得な
いことがらシ、一方1280℃を越えて加熱すると、γ
粒径が大きくなって圧延後の組織を粗くし、母相の靭性
を損なうようになることから、加熱温度を870−12
80℃と定めた。なお、母材に特に高靭性を要求される
場合には、γ粒径の粗大化を極力避けるために加熱r温
度の1.限を1000℃とするのが好ましい。
Even if the chemical composition of the steel is limited as described above, if the hot rolling conditions are inappropriate, it will not be possible to obtain the desired excellent strength and toughness. It was limited. That is, (1) If the heating temperature of the steel subjected to heating temperature rolling is less than 870°C, there is a risk that the steel material will not be sufficiently austenitized;
On the other hand, heating above 1280°C causes γ
The heating temperature was set to 870-12 mm because the grain size becomes large and the structure after rolling becomes coarse, impairing the toughness of the matrix.
The temperature was set at 80°C. In addition, when particularly high toughness is required for the base material, the heating temperature should be adjusted to 1. It is preferable to set the limit to 1000°C.

II+)  圧延終了温度 圧延終了温度が800℃を越えた場合には、圧延加工に
よる鋼板組織の微細化作用が不十分となり、安定した高
靭性が得られない。また、変態が十分進行していない場
合には、強度が高くなりすき′る等の理由により強度バ
ラツキが大きくなる。
II+) Rolling End Temperature When the rolling end temperature exceeds 800°C, the effect of refining the steel plate structure by rolling becomes insufficient, and stable high toughness cannot be obtained. Furthermore, if the transformation has not progressed sufficiently, the strength will increase and the strength variation will increase due to reasons such as gapping.

一方、690℃未満の温度域で圧延を行なうと、変態を
終了したフェライトに加工を加えることとなり、特に低
温加工のために加工歪が残ったままとなって旬月の靭性
が損なわれるようになるので、月−延終了温度を800
〜690℃と定めた。
On the other hand, if rolling is performed in a temperature range below 690°C, processing will be applied to ferrite that has completed transformation, and processing distortion will remain due to low-temperature processing, resulting in loss of toughness. Therefore, the temperature at the end of the month is 800.
The temperature was set at ~690°C.

なお、母相により高靭性が要求される場合には、低温域
での圧ト量を多くするのが有効であり、870℃以丁の
累積圧下率を60係以−1−とすることが望ましい。
In addition, when high toughness is required depending on the matrix, it is effective to increase the amount of compression in the low temperature range, and it is recommended to set the cumulative reduction rate at 870°C or higher to 60 or more -1-. desirable.

IV)  冷却条件 この発明の高張力鋼材の製造方法においては、圧延終了
後から加速冷却を行なうことが母材強度を高め′るため
に有効であるが、その冷却速度が5℃/sec未満であ
ると強度上昇が小さくて所望の高強度を得ることができ
ず、一方50℃/!;ecを越えた場合には母材強度は
上昇するものの母料靭性の劣化を来たすこととなること
から、冷却速度を5〜b た範囲は、圧延終了温度から450℃までの温度域であ
るが、450℃を下まわる温度域では単なる放冷でも加
速冷却でもどちらを採用しても所望の強度および靭性値
を達成することができるので、要求される母材の強度と
靭性のバランスを考慮しながらいずれかを採用するのが
よい。そして、強度はそれほど必要としないが高靭性を
要求される場合には、450℃から放冷することか望ま
しく、逆に、靭性はそれほど必要としないが高強度を要
求される場合には、加速冷却をさらに低温まで持続する
のが好ましい。
IV) Cooling Conditions In the method for producing high-strength steel materials of the present invention, it is effective to perform accelerated cooling after the completion of rolling to increase the strength of the base material, but if the cooling rate is less than 5°C/sec. If it is 50℃/!, the strength increase will be small and the desired high strength cannot be obtained. If it exceeds ec, the strength of the base material increases but the toughness of the base material deteriorates, so the cooling rate range is from 5 to 450°C from the end of rolling temperature. However, in the temperature range below 450℃, the desired strength and toughness values can be achieved regardless of whether simple cooling or accelerated cooling is used, so the balance between the required strength and toughness of the base material is considered. However, it is better to adopt one of them. If strength is not required but high toughness is required, it is preferable to allow cooling from 450°C; conversely, if high strength is required but not so much toughness, acceleration is recommended. Preferably, cooling is continued to even lower temperatures.

ついで、この発明を実施例により比較例と対トヒしなが
ら説明する。
Next, the present invention will be explained using examples and comparison examples.

実施例 まず、通常の連続鋳造法によって、第1”表に示す如き
化学成分組成を有する本発明対象幻;[相]A −M 
EXAMPLE First, by a normal continuous casting method, the present invention target particles having the chemical composition shown in Table 1: [Phases] A-M
.

および比較鋼N−V/のスラフ゛を製造した。1ヒ較@
1(dIく〜Wは、第1表中の※印の点で不発1男’i
)象鐸j1の成分組成範囲から外れた組成を有している
ものであ て) 。
and comparative steel N-V/ were produced. 1st comparison @
1 (dIku~W is the point marked with * in Table 1)
) It has a composition that is outside the composition range of Zotaku j1).

つき′に、これらそれぞれのスラフ゛を、第2表に小さ
れる条件にて加熱・圧延・冷却し、?Iられた:i(、
+d板の機械的性Uおよび溶接部の特性を桓11定した
Then, each of these sloughs was heated, rolled, and cooled under the conditions shown in Table 2. I got it: i(,
The mechanical property U of the +d plate and the properties of the welded part were determined.

そしてその結果も第2表に併せて8己載した。なお、熱
間圧延の際の圧延率は50%とした。また、溶接部の特
性を測定するにあたってシよ、し型開先を採用し、 溶接′小流°700Δ。
The results are also listed in Table 2. Note that the rolling ratio during hot rolling was 50%. In addition, to measure the characteristics of the weld zone, a square groove was used, and the welding flow was 700 Δ.

溶接電圧:37V。Welding voltage: 37V.

溶接速度: 25 cm/Tu”。Welding speed: 25 cm/Tu”.

溶接人M量: 62000 J /am。Amount of welding personnel: 62,000 J/am.

の条件のサブマージアーク溶接を実施した後、第4図に
示すように、溶接部表面側から深さ:1mmのところか
ら試験片aを採取して試験を行なった。
After performing submerged arc welding under the following conditions, as shown in FIG. 4, a test piece a was taken from a depth of 1 mm from the weld surface side and tested.

一方、前記第1表の本発明対象鋼Aの成分組成を有する
スラブについて、第3表に示される如き各種の加熱・圧
延・冷却条件での加工を施して、前記と同様に得られた
鋼板の機械的性質および溶接部特性を測定したところ、
同じく第3表に示したような結果が得られた。゛なお、
第3表における※印は、いずれも本発明方法の範囲から
外れた条件を与えたことを示すものである。
On the other hand, a steel plate obtained in the same manner as described above by processing a slab having the composition of the steel A subject to the present invention shown in Table 1 under various heating, rolling, and cooling conditions as shown in Table 3. When we measured the mechanical properties and weld properties of
Similarly, the results shown in Table 3 were obtained.゛Also,
The asterisks in Table 3 indicate that conditions outside the scope of the method of the present invention were provided.

このようにして得られた結果を検討すると、使用する鋼
の成分組成が本発明の範囲内のものであって、しかも本
発明における条件どおりの圧延を施した本発明方法1〜
13.および24〜26で得られた鋼板は、いずれも良
好な母材強度、靭性。
Examining the results obtained in this way, it was found that the composition of the steel used was within the scope of the present invention, and that the rolling was carried out according to the conditions of the present invention.
13. The steel plates obtained in Nos. 24 to 26 all had good base metal strength and toughness.

および良好な溶接部靭性を備えていることがわかり、ま
た、本発明方法24は加速冷却速度が7℃/ seeと
小さく、得られた鋼板の強度は本発明方法例の他のもの
よりは低いが、母材靭性はvTs(シャルピー破面遷移
温度)ニー123℃、vE−a。
In addition, method 24 of the present invention had a small accelerated cooling rate of 7°C/see, and the strength of the obtained steel plate was lower than that of other method examples of the present invention. However, the base material toughness is vTs (Charpy fracture transition temperature) knee 123°C, vE-a.

(−60℃におけるシャルピー吸収エネルギー値):’
34.’2と極めて良好な値を示しており、溶接部もす
ぐれた靭性を有していることが明らかである。
(Charpy absorbed energy value at -60℃):'
34. '2, which is an extremely good value, and it is clear that the welded part also has excellent toughness.

そして、本発明方法25はスラブ加熱温度が1150℃
と高くまた加速冷却速度が20℃/secと太きいため
、得られた鋼板の母材靭性はvTs : −’i’ 2
℃と劣ってはいるが、強度が著しく向上している。
In method 25 of the present invention, the slab heating temperature is 1150°C.
Since the accelerated cooling rate is as high as 20°C/sec, the base metal toughness of the obtained steel plate is vTs : -'i' 2
Although it is inferior to ℃, the strength is significantly improved.

このように、この方法は圧延機のモーターパワーが不足
するような場合に有効な方法である。さらに、本発明方
法26は圧延後20℃/secで450℃まで冷却し、
その後も加速冷却を続けた場合の例であるが、本発明方
法24に比べて得られた鋼板の母相靭性は若干低下して
いるけれども本発明方法25はど低下の度合は大きくな
く、強度は本発明方法25と同程度まで向」ニしている
ことがわかる。
Thus, this method is effective in cases where the motor power of the rolling mill is insufficient. Furthermore, method 26 of the present invention cools down to 450°C at 20°C/sec after rolling,
This is an example in which accelerated cooling is continued after that, and although the matrix toughness of the steel plate obtained by method 24 of the present invention is slightly lower, the degree of decrease in method 25 of the present invention is not large, and the strength It can be seen that this method is superior to the same extent as method 25 of the present invention.

これに対して、使用する鋼の成分組成範囲、あるいは圧
延条件が本発明の範囲から外れている比較例によって製
造された鋼板は、いずれも母材の靭性や溶接部の靭性が
良好な値を示していないことは明白である。例えば、比
較法17は使用鋼にTiが添加されていないために得ら
れた鋼板の母材および溶接部の靭性が著しく劣っており
、比較法23は使用鋼にNが過剰に含有されているため
溶接部靭性が劣っていることがわかる。
On the other hand, steel plates manufactured by comparative examples in which the composition range of the steel used or the rolling conditions are outside the range of the present invention all have good values for the toughness of the base metal and the toughness of the welded part. It is clear that it is not shown. For example, in Comparative Method 17, the toughness of the base metal and welded part of the obtained steel plate is extremely poor because Ti is not added to the steel used, and in Comparative Method 23, the steel used contains excessive N. Therefore, it can be seen that the weld toughness is inferior.

−1−述のように、この発明によれば、従来知られてい
た溶接部靭性対策鋼よりも、溶接部および母相の靭性が
著しくすぐれた高張力鋼材を、低コストで生産性良く製
造することができ、各種溶接構造物の適用範囲をさらに
拡大することができるなど、工業上有用な効果がもたら
されるのである。
-1- As mentioned above, according to the present invention, high-strength steel materials with significantly superior weld and matrix toughness than conventionally known weld zone toughness steels can be manufactured at low cost and with high productivity. This brings about industrially useful effects such as further expanding the scope of application of various welded structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接ボンド部靭性に及ぼすN含有量の影響を示
した線図、第2図は溶接ボンド部靭性に及ばすS含有量
の影響を示した線図、第3図は溶接ボンド部靭性に及ぼ
すCa/Sの値の影響を示した線図であり、第4図は試
験片採取状況を示す概念図である。 第 1図 N含有量(%) 巣2図 S含有量(’/、) 架3図 学4図
Figure 1 is a diagram showing the influence of N content on the toughness of weld bond, Figure 2 is a diagram showing the influence of S content on toughness of weld bond, and Figure 3 is a diagram showing the influence of S content on toughness of weld bond. FIG. 4 is a diagram showing the influence of the Ca/S value on toughness, and FIG. 4 is a conceptual diagram showing the state of specimen collection. Figure 1 N content (%) Nest 2 Figure S content ('/,) Frame 3 Figure 4

Claims (1)

【特許請求の範囲】 (1,)    C二 0.035 〜0.160 %
 。 Si、 、’ 0.001〜0.400%。 Mn : 0.6〜1.6%。 Ti : 0.003〜0012%。 AQ : 0.01〜009%。 N:0OOO1〜0.0060%。 S:0.0001〜0.0020%。 Ca、 : O,OO01〜0.0100% 。 P:0.015%す下。 を含有するとともに、Ca/ S = 1.0〜5.0
の関係を満足し、 Feおよび不=J’避不純物゛残シ。 (以上重量係)からなる鋼を870〜1280℃の温度
に加熱してからこれに圧延加工を施し、800〜690
℃の温度にて圧延を終了した後、該圧延終了温度から4
50℃までの温度域を5〜b 接部靭性のすぐれた高張力鋼材の製造方法。 (2)  C:0.035〜0.160係。 Si:O,001〜0400%。 Mn:0.6〜1.6%。 Ti:0.003〜0.012%。 Ap、 : o、 01〜0.09%。 N:0.0001 〜0.0060  係。 S:0.0001〜0.0020%。 Ca:  0.0001 〜0.0100 %。 P:0.015%以下。 を含有するとともに、Ca/ S = 1.0〜5.0
の関係を満足し、さらに、 Cu:   0.1 〜1.0%、      Ni 
 二  O,1〜 9. 5  %  。 Cr:0.1〜1.0%、  Mo:0.05〜0.3
5%。 Nb: 0.008〜0.0100.  V : 0.
01 NO,07%。 B  :0O005〜O,OO15%。 のうちの1種り」二を含み、 Feおよび不可避不純物、残り。 (以」二重布%)からなる鋼を870〜1280℃の?
M oに加熱してからこれに圧延加工を施し、800〜
690℃の温度にて圧延を終了した後、該圧延終了1晶
度から450℃までの温度域を5〜b 接部靭性のすぐれた高張力鋼材の製造方法。
[Claims] (1,) C2 0.035 to 0.160%
. Si, ,' 0.001-0.400%. Mn: 0.6-1.6%. Ti: 0.003-0012%. AQ: 0.01-009%. N: 0OOO1 to 0.0060%. S: 0.0001-0.0020%. Ca: O,OO01~0.0100%. P: 0.015% below. and Ca/S = 1.0 to 5.0
Satisfying the relationship, Fe and non-J' avoidable impurities remain. After heating the steel consisting of (above weight) to a temperature of 870 to 1280°C, it is rolled to a temperature of 800 to 690°C.
After finishing rolling at a temperature of 4°C,
A method for producing high tensile strength steel with excellent joint toughness in the temperature range of 50°C to 50°C. (2) C: 0.035-0.160. Si:O, 001-0400%. Mn: 0.6-1.6%. Ti: 0.003% to 0.012%. Ap: o, 01-0.09%. N: 0.0001 ~ 0.0060 Person in charge. S: 0.0001-0.0020%. Ca: 0.0001 to 0.0100%. P: 0.015% or less. and Ca/S = 1.0 to 5.0
satisfies the relationship, furthermore, Cu: 0.1 to 1.0%, Ni
2 O, 1-9. 5%. Cr: 0.1-1.0%, Mo: 0.05-0.3
5%. Nb: 0.008-0.0100. V: 0.
01 NO, 07%. B: 0O005~O, OO15%. Contains one of the following: Fe and unavoidable impurities, the remainder. (hereinafter referred to as "double cloth%") steel at 870-1280℃?
After heating to Mo, it is rolled to 800~
After finishing rolling at a temperature of 690°C, the temperature range from 1 crystallinity at the end of the rolling to 450°C is 5-b.
JP14296982A 1982-08-18 1982-08-18 Production of high tensile steel material having excellent toughness of weld zone Pending JPS5935619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14296982A JPS5935619A (en) 1982-08-18 1982-08-18 Production of high tensile steel material having excellent toughness of weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14296982A JPS5935619A (en) 1982-08-18 1982-08-18 Production of high tensile steel material having excellent toughness of weld zone

Publications (1)

Publication Number Publication Date
JPS5935619A true JPS5935619A (en) 1984-02-27

Family

ID=15327864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14296982A Pending JPS5935619A (en) 1982-08-18 1982-08-18 Production of high tensile steel material having excellent toughness of weld zone

Country Status (1)

Country Link
JP (1) JPS5935619A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204863A (en) * 1984-03-28 1985-10-16 Kobe Steel Ltd Steel for high heat input welded structure
JPS6164824A (en) * 1984-09-05 1986-04-03 Kobe Steel Ltd Manufacture of 50kgf/mm2-class steel plate for low temperature use
JPS61238911A (en) * 1985-04-12 1986-10-24 Nippon Steel Corp Manufacture of steel for low temperature superior in toughness of weld heat affected zone
JPS61270354A (en) * 1985-05-27 1986-11-29 Kawasaki Steel Corp High-toughness welding steel
JPS61270333A (en) * 1985-05-23 1986-11-29 Sumitomo Metal Ind Ltd Production of high tensile steel having excellent cod characteristic in weld zone
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone
JPH02194122A (en) * 1989-01-23 1990-07-31 Kawasaki Steel Corp Manufacture of nickel steel plate for low temperature use excellent in toughness in weld zone
JPH04272156A (en) * 1991-02-28 1992-09-28 Kobe Steel Ltd Steel plate hardly causing haz cracking in high heat input welded square joint part of steel-frame box pillar
EP1091005A2 (en) * 1999-10-06 2001-04-11 Kawasaki Steel Corporation Rust-resistant calcium steel
CN104120339A (en) * 2014-06-18 2014-10-29 内蒙古包钢钢联股份有限公司 Low-yield-ratio thick Q345R steel plate for pressure vessels and production method thereof
CN110396647A (en) * 2019-08-22 2019-11-01 中天钢铁集团有限公司 A kind of high electromagnetic performance and Aldecor and its production technology and purposes

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204863A (en) * 1984-03-28 1985-10-16 Kobe Steel Ltd Steel for high heat input welded structure
JPS6164824A (en) * 1984-09-05 1986-04-03 Kobe Steel Ltd Manufacture of 50kgf/mm2-class steel plate for low temperature use
JPH0440411B2 (en) * 1985-04-12 1992-07-02 Nippon Steel Corp
JPS61238911A (en) * 1985-04-12 1986-10-24 Nippon Steel Corp Manufacture of steel for low temperature superior in toughness of weld heat affected zone
JPH0535204B2 (en) * 1985-05-23 1993-05-26 Sumitomo Metal Ind
JPS61270333A (en) * 1985-05-23 1986-11-29 Sumitomo Metal Ind Ltd Production of high tensile steel having excellent cod characteristic in weld zone
JPH0454734B2 (en) * 1985-05-27 1992-09-01 Kawasaki Steel Co
JPS61270354A (en) * 1985-05-27 1986-11-29 Kawasaki Steel Corp High-toughness welding steel
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone
JPH0470386B2 (en) * 1986-10-08 1992-11-10 Nippon Steel Corp
JPH02194122A (en) * 1989-01-23 1990-07-31 Kawasaki Steel Corp Manufacture of nickel steel plate for low temperature use excellent in toughness in weld zone
JPH04272156A (en) * 1991-02-28 1992-09-28 Kobe Steel Ltd Steel plate hardly causing haz cracking in high heat input welded square joint part of steel-frame box pillar
EP1091005A2 (en) * 1999-10-06 2001-04-11 Kawasaki Steel Corporation Rust-resistant calcium steel
EP1091005A3 (en) * 1999-10-06 2003-12-10 JFE Steel Corporation Rust-resistant calcium steel
US6841123B1 (en) 1999-10-06 2005-01-11 Jfe Steel Corporation Rust-resistant calcium steel
CN104120339A (en) * 2014-06-18 2014-10-29 内蒙古包钢钢联股份有限公司 Low-yield-ratio thick Q345R steel plate for pressure vessels and production method thereof
CN110396647A (en) * 2019-08-22 2019-11-01 中天钢铁集团有限公司 A kind of high electromagnetic performance and Aldecor and its production technology and purposes

Similar Documents

Publication Publication Date Title
JPS5877528A (en) Manufacture of high tensile steel with superior toughness at low temperature
JP2005264208A (en) Low yield ratio wide flange beam having excellent earthquake resistance and its production method
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JPS5935619A (en) Production of high tensile steel material having excellent toughness of weld zone
JPS6141968B2 (en)
JP7410438B2 (en) steel plate
JPS5914535B2 (en) Non-heat treated high tensile strength steel line pipe thick plate with unstable ductility and good fracture resistance
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP2020204091A (en) High strength steel sheet for high heat input welding
JP3900018B2 (en) High pass temperature multi-layer weld steel manufacturing method and high pass temperature multi-pass weld method
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS62214126A (en) Manufacture of high tensile steel superior in cod characteristic at weld zone
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JPH0121847B2 (en)
JP2020204092A (en) High strength steel sheet for high heat input welding
JPH01188652A (en) Steel for welding having excellent low temperature toughness and manufacture thereof
JPS6164824A (en) Manufacture of 50kgf/mm2-class steel plate for low temperature use
JPH0920921A (en) Production of high toughness steel plate by means of separation
JPS596355A (en) Welding steel material reduced in softening of welding heat affected part
JPH04187716A (en) Production of steel plate having high toughness and reduced in ultrasonic anisotropy
JPS5855529A (en) Preparation of thick high-tensile strength hot-rolled steel sheet excellent in low-temperature toughness
JPS6357741A (en) High-strength steel for low temperature service for large heat input welding