JPWO2020138490A1 - Welded structure and its manufacturing method - Google Patents

Welded structure and its manufacturing method Download PDF

Info

Publication number
JPWO2020138490A1
JPWO2020138490A1 JP2020562547A JP2020562547A JPWO2020138490A1 JP WO2020138490 A1 JPWO2020138490 A1 JP WO2020138490A1 JP 2020562547 A JP2020562547 A JP 2020562547A JP 2020562547 A JP2020562547 A JP 2020562547A JP WO2020138490 A1 JPWO2020138490 A1 JP WO2020138490A1
Authority
JP
Japan
Prior art keywords
stainless steel
base material
steel base
duplex stainless
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020562547A
Other languages
Japanese (ja)
Inventor
雄介 及川
柘植 信二
文則 江目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JPWO2020138490A1 publication Critical patent/JPWO2020138490A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、靱性及び汽水環境における耐食性に優れた溶接構造物を提供する。本発明に係る溶接構造物は、下記式(1)で定義されるPREN値が28以上の二相ステンレス鋼母材と、溶接金属及び熱影響部とを含む溶接部とを備え、前記溶接金属は、下記式(1)で定義されるPREN値が30以上で、当該構造物から切り出した前記二相ステンレス鋼母材のオーステナイト量が30〜70面積%、前記溶接金属及び溶接熱影響部のオーステナイト量が15〜70面積%で、前記溶接部の50℃で測定したJIS G0577 A法による孔食電位が0.30V vs SSE以上であることを特徴とする。 The present invention provides a welded structure having excellent toughness and corrosion resistance in a brackish water environment. The welded structure according to the present invention includes a two-phase stainless steel base material having a PREN value of 28 or more defined by the following formula (1), and a welded portion including a welded metal and a heat-affected portion. The PREN value defined by the following formula (1) is 30 or more, the amount of austenite of the two-phase stainless steel base material cut out from the structure is 30 to 70 area%, and the weld metal and the weld heat affected portion. The amount of austenite is 15 to 70 area%, and the pitting potential by the JIS G0577 A method measured at 50 ° C. of the welded portion is 0.30 V vs. SSE or more.

Description

本発明は、二相ステンレス鋼を用いた溶接構造物及びその製造方法に関するものである。 The present invention relates to a welded structure using duplex stainless steel and a method for manufacturing the same.

直近の震災等の自然災害の多発に伴い、津波や水害に対応した構造物の建設及び改修強化が各所で進められている。これらは近年の津波や水害の想定水位の見直しにより、構造がより大規模化している。これらの建造物の中で、河川に建造する水門や堤防の道路部に建造する陸閘門は、可動部であることから鋼材もしくはアルミニウムが使用されている。 With the frequent occurrence of natural disasters such as the latest earthquake, construction and renovation of structures in response to tsunamis and floods are being strengthened in various places. The structure of these has become larger due to the recent revision of the assumed water level of tsunami and flood damage. Among these structures, the floodgates built on rivers and the land locks built on the roads of embankments are made of steel or aluminum because they are movable parts.

最近、これら水門や陸閘門に、オーステナイト系ステンレス鋼又は二相ステンレス鋼を適用することが多くなってきている。 Recently, austenitic stainless steel or duplex stainless steel has been increasingly applied to these floodgates and land locks.

水門のうち、河口部に設置されるものは、海水もしくはそれに近い高塩分濃度の水中に没していることとなり、高い耐食性が必要とされる。オーステナイト系ステンレス鋼の場合、SUS304では耐食性不足となる場合が多く、より耐食性の良好なSUS316Lが使用されることが多い。 Of the floodgates, those installed at the estuary are submerged in seawater or water with a high salinity close to it, and high corrosion resistance is required. In the case of austenitic stainless steel, SUS304 often has insufficient corrosion resistance, and SUS316L having better corrosion resistance is often used.

二相ステンレス鋼は耐食性に加え、強度が他のステンレス鋼や炭素鋼より高く薄肉軽量化できることから、構造の大規模化に伴う重量増を軽減できる大きなメリットがフィットし、広く使われるようになった。 Duplex stainless steel has higher strength than other stainless steels and carbon steels in addition to corrosion resistance and can be made thinner and lighter. rice field.

二相ステンレス鋼のJIS鋼種は、SUS821L1,SUS323L,SUS329J1,SUS329J3L,SUS329J4L,SUS327Lの6鋼種がある。そのうちSUS821L1はSUS304の代替として、SUS323LはSUS316Lの代替として開発された鋼種であり、SUS329J3L,SUS329J4L,SUS327Lはそれより過酷な環境において耐食性を有する高耐食鋼種である。 There are six JIS grades of duplex stainless steel: SUS821L1, SUS323L, SUS329J1, SUS329J3L, SUS329J4L, and SUS327L. Among them, SUS821L1 is a steel grade developed as a substitute for SUS304, SUS323L is a steel grade developed as a substitute for SUS316L, and SUS329J3L, SUS329J4L, and SUS327L are highly corrosion-resistant steel grades having corrosion resistance in a harsher environment.

二相ステンレス鋼の場合、溶接部の靭性、耐食性低下を考慮する必要がある。二相ステンレス鋼に添加されたNは、溶接時の加熱冷却によってCr窒化物として析出する。この窒化物は、割れの伝播を促進することで溶接部の靭性を低下させ、また、析出によりCrが消費されいわゆるCr欠乏層を生じることで耐食性を低下させる。 In the case of duplex stainless steel, it is necessary to consider the decrease in toughness and corrosion resistance of the welded part. N added to duplex stainless steel is precipitated as Cr nitride by heating and cooling during welding. This nitride lowers the toughness of the welded portion by promoting the propagation of cracks, and also lowers the corrosion resistance by consuming Cr by precipitation and forming a so-called Cr-deficient layer.

水門等の溶接構造物の場合、数十mmといった厚手の板を溶接するために、何十パスもの溶接を行うことがあり、その結果窒化物析出及びそれに伴い溶接部の靭性及び耐食性低下も激しいものになることがある。 In the case of a welded structure such as a water gate, in order to weld a thick plate of several tens of mm, dozens of passes may be welded, and as a result, nitride precipitation and accompanying deterioration of the toughness and corrosion resistance of the welded portion are severe. It can be a thing.

前述のSUS323Lは、母材の耐食性はSUS316Lと同等以上であるが、溶接の条件によってはSUS316Lの耐食性レベルを下回ることがある。SUS821L1は特許文献1に示すように溶接部の耐食性低下を抑制しうる成分系であるが、SUS304代替鋼のため、汽水環境における溶接構造物への利用には不向きである。より高耐食の鋼種のうちSUS329J3L,SUS329J4L,SUS327Lは、非常に優れた耐食性を有するが、高価なMoを3%以上含有し非常に高コストである。 The corrosion resistance of the base metal of the above-mentioned SUS323L is equal to or higher than that of SUS316L, but it may be lower than the corrosion resistance level of SUS316L depending on the welding conditions. As shown in Patent Document 1, SUS821L1 is a component system capable of suppressing a decrease in corrosion resistance of a welded portion, but since it is a SUS304 substitute steel, it is not suitable for use in a welded structure in a brackish water environment. Among the higher corrosion resistant steel types, SUS329J3L, SUS329J4L, and SUS327L have very excellent corrosion resistance, but contain 3% or more of expensive Mo and are very costly.

残るSUS329J1は、母材の耐食性はSUS323Lより高くMoの含有量も少ないことから、汽水環境における溶接構造物への利用に適しているが、大きな課題として溶接部の耐食性低下が激しいことがある。これに対する対策として、例えば特許文献2ではNiとの関係で適切なNを添加することで、溶接部の耐食性を向上させたSUS329J1の改良型の二相ステンレス鋼が記載されている。但し、当該鋼はTIG溶接による溶加材無し前提で成分設計されており、前記二相ステンレス鋼を溶接して製造された溶接構造物が母材及び溶接部において靱性をどの程度有するのか、特許文献2には明らかにされていない。 The remaining SUS329J1 is suitable for use in welded structures in a brackish water environment because the corrosion resistance of the base metal is higher than that of SUS323L and the content of Mo is low, but the major problem is that the corrosion resistance of the welded portion is severely deteriorated. As a countermeasure against this, for example, Patent Document 2 describes an improved duplex stainless steel of SUS329J1 in which the corrosion resistance of the welded portion is improved by adding an appropriate N in relation to Ni. However, the composition of the steel is designed on the premise that there is no filler metal by TIG welding, and it is patented how toughness the welded structure manufactured by welding the duplex stainless steel has in the base metal and the welded part. It is not clarified in Document 2.

また、特許文献3では窒素を含む被覆剤を塗布した溶加材を用いて溶接金属内に窒素を混合させる溶接方法が記載されているが、特殊な溶加材を必要とする上、母材の溶接熱影響部についてはなんら改善が為されない。 Further, Patent Document 3 describes a welding method in which nitrogen is mixed in a weld metal using a filler material coated with a coating agent containing nitrogen. However, a special filler metal is required and a base metal is used. No improvement is made for the weld heat affected zone.

特許文献4は、元素成分を適正化することによって、オゾン含有水環境で耐食性を有する二相ステンレス鋼溶接構造体を開示している。但し、母材の溶接熱影響部についての言及は無い。また、特許文献5は、元素成分を適正化することによって、HAZ部での窒化物析出による耐食性低下が抑制された二相ステンレス鋼を開示している。しかし、いずれの発明も、汽水環境における使用を前提としたものではない。 Patent Document 4 discloses a duplex stainless steel welded structure having corrosion resistance in an ozone-containing water environment by optimizing the elemental components. However, there is no mention of the weld heat affected zone of the base metal. Further, Patent Document 5 discloses a duplex stainless steel in which a decrease in corrosion resistance due to nitride precipitation in the HAZ portion is suppressed by optimizing the elemental components. However, neither invention is premised on use in a brackish water environment.

特許第5345070号公報Japanese Patent No. 5345070 特開昭62−267452号公報Japanese Unexamined Patent Publication No. 62-267452 特開2014−14830号公報Japanese Unexamined Patent Publication No. 2014-14830 特開2018−168461号公報JP-A-2018-168461 特開2012−197509号公報Japanese Unexamined Patent Publication No. 2012-197509

本発明は、従来技術の上記事情に鑑み、Mo含有量が3%未満の二相ステンレス鋼を用いて、汽水環境における溶接部の耐食性に優れ、構造物として靱性に優れた溶接構造物を提供することを目的とする。 In view of the above circumstances of the prior art, the present invention provides a welded structure having excellent corrosion resistance of a welded portion in a steam water environment and excellent toughness as a structure by using duplex stainless steel having a Mo content of less than 3%. The purpose is to do.

上記課題を解決するために、本発明者らは、鋼材の成分、溶接金属の成分、鋼材の製造条件、溶接条件に関して、汽水環境における耐食性及び靱性の向上の観点から詳細な研究を行った。 In order to solve the above problems, the present inventors have conducted detailed studies on the components of steel materials, the components of weld metals, the manufacturing conditions of steel materials, and the welding conditions from the viewpoint of improving corrosion resistance and toughness in brackish water environments.

一般にステンレス鋼の耐孔食性は孔食指数で順位付けが行われるが、種々の計算式が提案されている。孔食指数(PREN)としては二相ステンレス鋼ではCr+3.3Mo+16Nの式で表現される場合が多い。 Generally, the pitting corrosion resistance of stainless steel is ranked by the pitting corrosion index, but various calculation formulas have been proposed. The pitting corrosion index (PREN) is often expressed by the formula Cr + 3.3Mo + 16N in duplex stainless steel.

本発明者らは、この式を用いて、SUS329J1の組成範囲にNを含有させることによって、SUS329J1の溶接部の耐食性を高める方法についてシミュレーション計算で見積もり、実験にて確認した。その結果、母材については、溶接熱影響部のCr窒化物析出による耐食性低下を考慮しても、前記PREN(下記の式(1))の値が28以上であれば要求される耐食性を満たしうること、更に溶接金属については、上記に加え成分偏析を生じることによる局所的耐食性低下を考慮しても、後述の通りオーステナイト量を確保したうえで、PREN値を30.0以上かつMoを適宜増量する事で、耐食性がSUS316Lと同等以上の二相ステンレス鋼を得られることを明らかにした。
PREN=Cr+3.3Mo+16N・・・(1)
Using this formula, the present inventors estimated a method for improving the corrosion resistance of the welded portion of SUS329J1 by including N in the composition range of SUS329J1 by simulation calculation, and confirmed it by an experiment. As a result, the base metal satisfies the required corrosion resistance if the value of the PREN (formula (1) below) is 28 or more, even if the corrosion resistance is lowered due to the precipitation of Cr nitride in the weld heat affected zone. In addition to the above, for weld metals, even if the local corrosion resistance is reduced due to component segregation, the amount of austenite is secured as described later, and the PREN value is 30.0 or more and Mo is appropriately set. It was clarified that by increasing the amount, duplex stainless steel having corrosion resistance equal to or higher than that of SUS316L can be obtained.
PREN = Cr + 3.3Mo + 16N ... (1)

ここで、SUS316Lと同等以上の耐食性とは、「50℃で測定したJIS G0577 A法による孔食電位が0.30V vs SSE以上になる」ことである。 Here, the corrosion resistance equal to or higher than that of SUS316L means that "the pitting potential by the JIS G0577 A method measured at 50 ° C. becomes 0.30 V vs. SSE or higher".

また、鋼材の溶接時に鋼材が長時間フェライト単相域に晒される場合、フェライト相の粗大化が助長され、溶接熱影響部の靭性が低下する。溶接熱影響部の靱性の低下を防止するには、鋼材の成分は以下の式(2)を満たすことが好ましいことを本発明者らは見出した。
Tα=1455−13.6Cr+22.7Ni−11.2Mo+2.1Mn+781.8N≧1330・・・(2)
Further, when the steel material is exposed to the ferrite single-phase region for a long time during welding of the steel material, the ferrite phase is promoted to be coarsened, and the toughness of the weld heat-affected zone is lowered. The present inventors have found that the components of the steel material preferably satisfy the following formula (2) in order to prevent a decrease in the toughness of the weld heat-affected zone.
Tα = 1455-13.6Cr + 22.7Ni-11.2Mo + 2.1Mn + 781.8N ≧ 1330 ... (2)

また、ガスシールドアーク溶接及びタングステンアーク溶接によって、溶接熱影響部のオーステナイト量は母材のオーステナイト量を下回り、フェライト過多によって靭性が低下し、オーステナイト相で耐食性が低下するおそれがある。
溶接金属は特に冷却速度が大きいため、オーステナイト相が再析出し得る時間が限られるだけでなく、局所的な成分低下を考慮する必要があり、更に靭性を確保する点から、Ni量を適宜増量する必要があるという観点から、本発明者ら鋭意検討を行った。
その結果、溶接熱影響部及び溶接金属のオーステナイト量の下限をそれぞれ15%とした場合であっても、鋼材及び溶接金属のN量が下記式(3)を満たすように組成を調整することによって、二相ステンレス鋼の強度、耐食性の向上に有効に作用することを、本発明者らは見出した。
N≧(0.08Cr+0.08Mo−0.06Ni−1.21)/0.6×0.15…(3)
Further, due to gas shield arc welding and tungsten arc welding, the amount of austenite in the weld heat affected zone is less than the amount of austenite in the base metal, the toughness is lowered due to the excess ferrite, and the corrosion resistance in the austenite phase may be lowered.
Since the welding metal has a particularly high cooling rate, not only the time during which the austenite phase can be reprecipitated is limited, but also it is necessary to consider a local decrease in the composition, and the amount of Ni is appropriately increased from the viewpoint of ensuring toughness. From the viewpoint that it is necessary to do so, the present inventors have conducted diligent studies.
As a result, even when the lower limit of the austenite amount of the weld heat affected zone and the weld metal is set to 15%, the composition is adjusted so that the N amount of the steel material and the weld metal satisfies the following formula (3). The present inventors have found that they effectively improve the strength and corrosion resistance of duplex stainless steel.
N ≧ (0.08Cr + 0.08Mo-0.06Ni-1.21) /0.6 × 0.15 ... (3)

当該式(3)は、本発明における、溶接熱影響部及び溶接金属のオーステナイト量の下限をそれぞれ15%とした時に、二相ステンレス鋼の強度、耐食性の向上に有効に作用するN量を、主要元素であるCr,Ni,Mo含有量から推定する式である。これらの知見から、本発明を成したものであり、その要旨とするところは以下の通りである。 In the formula (3), when the lower limit of the amount of austenite in the weld heat-affected zone and the weld metal in the present invention is set to 15%, the amount of N that effectively acts to improve the strength and corrosion resistance of the two-phase stainless steel is determined. This formula is estimated from the contents of Cr, Ni, and Mo, which are the main elements. Based on these findings, the present invention was made, and the gist thereof is as follows.

(1)質量%で、
C:0.001〜0.050%、
Si:0.05〜0.80%、
Mn:0.10%〜2.00%、
Cr:21.50〜26.00%、
Ni:3.00〜7.00%、
Mo:0.50〜2.50%、
N:0.100〜0.250%、
Al:0.003〜0.050%、
を含有し、
Oは0.0060%以下、
Pは0.050%以下、
Sは0.0050%以下に制限し、
かつ下記式(1)で定義されるPREN値が28.0以上で、
残部がFe及び不純物からなる二相ステンレス鋼母材と、
溶接金属及び熱影響部とを含む溶接部とを備える溶接構造物であって、
前記溶接金属は、
質量%で、
C:0.001〜0.060%、
Si:0.05〜0.80%、
Mn:0.10%〜3.00%、
Cr:21.50〜28.00%、
Ni:4.00〜10.00%、
Mo:1.00〜3.50%、
N:0.080〜0.250%、
Al:0.001〜0.100%、
を含有し、
Oは0.150%以下、
Pは0.050%以下、
Sは0.0200%以下に制限し、
かつ下記式(1)で定義されるPREN値が30.0以上で、
残部がFe及び不純物からなり、
前記二相ステンレス鋼母材のオーステナイト量は30〜70面積%、前記溶接金属及び溶接熱影響部のオーステナイト量はそれぞれ15〜70面積%であって、
前記溶接部及び前記二相ステンレス鋼母材を含む孔食試験片の50℃で測定したJIS G0577 A法による孔食電位が0.30V vs SSE以上であることを特徴とする溶接構造物。
PREN=Cr+3.3Mo+16N・・・(1)
ただし、式(1)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
(2)前記二相ステンレス鋼母材の成分が式(2)を満たし、且つ前記二相ステンレス鋼母材及び前記溶接金属のN量が式(3)を満足し、
更に前記二相ステンレス鋼母材がNbを含有する場合、前記二相ステンレス鋼母材のクロム窒化物析出温度TNが1010℃以下であり、前記二相ステンレス鋼母材がNbを含有しない場合、前記二相ステンレス鋼母材のクロム窒化物析出温度TNが980℃以下であることを特徴とする(1)に記載の溶接構造物。
Tα=1455−13.6Cr+22.7Ni−11.2Mo+2.1Mn+781.8N≧1330・・・(2)
N≧(0.08Cr+0.08Mo−0.06Ni−1.21)/0.6×0.15・・・(3)
ただし、式(2)、(3)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
(3)クロム窒化物析出温度TNは、下記推定式(4)又は式(5)であることを特徴とする、(2)に記載の溶接構造物。
8Cr−20Ni+30Mo+50Si−10Mn+550N+730(前記二相ステンレス鋼母材がNbを含有する場合)・・・(4)
8Cr−20Ni+30Mo+50Si−10Mn+550N+700(前記二相ステンレス鋼母材がNbを含有しない場合)・・・(5)
ただし、式(4)、(5)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
(4)前記二相ステンレス鋼母材及び前記溶接金属のうち少なくとも1つは、更に
Nb:0.005〜0.150%
Ti:0.003〜0.020%
Ta:0.005〜0.200%、
Zr:0.001〜0.050%
Hf:0.001〜0.080%
Sn:0.005〜0.100%、
W:0.01〜1.00%
Co:0.01〜1.00%
Cu:0.01〜3.00%
V:0.010〜0.300%
B:0.0001〜0.0050%
Ca:0.0005〜0.0050%
Mg:0.0005〜0.0050%
REM:0.005〜0.050%
のうち1種または2種以上を含有していることを特徴とする(1)乃至(3)のうちいずれかに記載の溶接構造物。
(5)前記二相ステンレス鋼母材の組成を有する熱延用素材を、下記式(6)で示す圧減比が3.0以上、かつ下記式(7)で示す1050℃以下の圧下率が30%以上となるように熱間圧延し、TN+20℃以上1100℃以下で5分以上熱処理して、前記二相ステンレス鋼母材を製造することを特徴とする、(1)乃至(4)のうちいずれかに記載の溶接構造物の製造方法。
熱延用素材の厚さ/二相ステンレス鋼母材の厚さ・・・(6)
(1050℃以下に到達した時の厚さ−二相ステンレス鋼母材の厚さ)/1050℃以下に到達した時の厚さ×100・・・(7)
(6)前記溶接金属は、溶加棒を使用するガスシールドアーク溶接またはタングステンアーク溶接を用いて形成され、下記式(8)で定義される溶接入熱量Qが5,000J/cm以上50,000J/cm以下、下記式(9)で定義される母材希釈率Dが50%以下の溶接条件で形成されたことを特徴とする(5)に記載の溶接構造物の製造方法。
Q=[溶接電流(A)]×[溶接電圧(V)]÷[溶接速度(cm/s)]・・・(8)
D=[二相ステンレス鋼母材の溶融体積]/[全溶接金属体積]×100・・・(9)
(1) By mass%
C: 0.001 to 0.050%,
Si: 0.05 to 0.80%,
Mn: 0.10% to 2.00%,
Cr: 21.50 to 26.00%,
Ni: 3.00 to 7.00%,
Mo: 0.50-2.50%,
N: 0.100 to 0.250%,
Al: 0.003 to 0.050%,
Contains,
O is 0.0060% or less,
P is 0.050% or less,
S is limited to 0.0050% or less
And the PREN value defined by the following formula (1) is 28.0 or more.
Duplex stainless steel base material with the balance consisting of Fe and impurities,
A welded structure including a weld metal and a welded zone including a heat-affected zone.
The weld metal is
By mass%
C: 0.001 to 0.060%,
Si: 0.05 to 0.80%,
Mn: 0.10% to 3.00%,
Cr: 21.50 to 28.00%,
Ni: 4.00-10.00%,
Mo: 1.00 to 3.50%,
N: 0.080 to 0.250%,
Al: 0.001 to 0.100%,
Contains,
O is 0.150% or less,
P is 0.050% or less,
S is limited to 0.0200% or less,
And the PREN value defined by the following formula (1) is 30.0 or more.
The rest consists of Fe and impurities
The amount of austenite in the two-phase stainless steel base material is 30 to 70 area%, and the amount of austenite in the weld metal and the weld heat-affected zone is 15 to 70 area%, respectively.
A welded structure characterized in that the pitting potential of the welded portion and the pitting corrosion test piece containing the duplex stainless steel base material measured at 50 ° C. by the JIS G0577 A method is 0.30 V vs SSE or more.
PREN = Cr + 3.3Mo + 16N ... (1)
However, the element symbol in the formula (1) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.
(2) The components of the duplex stainless steel base material satisfy the formula (2), and the N amounts of the duplex stainless steel base material and the weld metal satisfy the formula (3).
Further, when the duplex stainless steel base material contains Nb, the chromium nitride precipitation temperature TN of the duplex stainless steel base material is 1010 ° C. or lower, and the duplex stainless steel base material does not contain Nb. The welded structure according to (1), wherein the duplex stainless steel base material has a chromium nitride precipitation temperature TN of 980 ° C. or lower.
Tα = 1455-13.6Cr + 22.7Ni-11.2Mo + 2.1Mn + 781.8N ≧ 1330 ... (2)
N ≧ (0.08Cr + 0.08Mo-0.06Ni-1.21) /0.6 × 0.15 ... (3)
However, the element symbol in the formulas (2) and (3) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.
(3) The welded structure according to (2), wherein the chromium nitride precipitation temperature TN is the following estimated formula (4) or formula (5).
8Cr-20Ni + 30Mo + 50Si-10Mn + 550N + 730 (when the duplex stainless steel base material contains Nb) ... (4)
8Cr-20Ni + 30Mo + 50Si-10Mn + 550N + 700 (when the duplex stainless steel base material does not contain Nb) ... (5)
However, the element symbol in the formulas (4) and (5) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.
(4) At least one of the duplex stainless steel base material and the weld metal further contains Nb: 0.005 to 0.150%.
Ti: 0.003 to 0.020%
Ta: 0.005 to 0.200%,
Zr: 0.001 to 0.050%
Hf: 0.001 to 0.080%
Sn: 0.005 to 0.100%,
W: 0.01 to 1.00%
Co: 0.01-1.00%
Cu: 0.01 to 3.00%
V: 0.010 to 0.300%
B: 0.0001 to 0.0050%
Ca: 0.0005 to 0.0050%
Mg: 0.0005 to 0.0050%
REM: 0.005 to 0.050%
The welded structure according to any one of (1) to (3), which comprises one or more of the above.
(5) A heat-rolling material having the composition of the duplex stainless steel base material has a reduction ratio of 3.0 or more represented by the following formula (6) and a reduction ratio of 1050 ° C. or lower represented by the following formula (7). (1) to (4), wherein the duplex stainless steel base material is produced by hot rolling so that the temperature is 30% or more and heat-treating at TN + 20 ° C. or higher and 1100 ° C. or lower for 5 minutes or longer. The method for manufacturing a welded structure according to any one of the above.
Thickness of hot rolling material / thickness of duplex stainless steel base material ... (6)
(Thickness when reaching 1050 ° C or lower-thickness of duplex stainless steel base material) / Thickness when reaching 1050 ° C or lower x 100 ... (7)
(6) The weld metal is formed by gas shielded arc welding or tungsten arc welding using a filler rod, and the welding heat input Q defined by the following formula (8) is 5,000 J / cm or more 50. The method for manufacturing a welded structure according to (5), wherein the base metal dilution ratio D defined by the following formula (9) is formed under welding conditions of 000 J / cm or less and 50% or less.
Q = [Welding current (A)] x [Welding voltage (V)] ÷ [Welding speed (cm / s)] ... (8)
D = [Melted volume of duplex stainless steel base metal] / [Total weld metal volume] x 100 ... (9)

本発明により得られる溶接構造物は、河川の河口付近の水門のような汽水環境においてSUS316Lと同等以上の十分な耐食性を有し、更に高強度による軽量化を図れることから、大幅なコスト削減、高効率化に寄与する事が出来、産業面、環境面に寄与するところは極めて大である。 The welded structure obtained by the present invention has sufficient corrosion resistance equal to or higher than that of SUS316L in a brackish water environment such as a floodgate near the mouth of a river, and can be reduced in weight due to high strength, resulting in a significant cost reduction. It can contribute to high efficiency, and it contributes significantly to the industrial and environmental aspects.

溶接構造物No.51〜88の溶接部分の一部拡大断面図である。Welded structure No. It is a partially enlarged sectional view of the welded part of 51-88.

[二相ステンレス鋼母材の組成]
以下に、まず本発明の溶接構造物を構成する二相ステンレス鋼母材の組成及び組織の限定理由について説明する。なお本明細書において特に断りのない限り成分に関する%は質量%を表す。
[Composition of duplex stainless steel base material]
First, the composition of the duplex stainless steel base material constituting the welded structure of the present invention and the reason for limiting the structure will be described below. Unless otherwise specified in the present specification,% with respect to a component represents mass%.

[必須元素]
Cは、ステンレス鋼の耐食性を確保するために、0.050%以下の含有量に制限する。0.050%を越えて含有させると熱間圧延時にCr炭化物が生成して、耐食性、靱性が劣化する。好ましくは、0.030%以下であり、さらに好ましくは0.025%以下にするとよい。
一方、ステンレス鋼のC量を低減するコストの観点から0.001%を下限とする。
[Essential elements]
C is limited to a content of 0.050% or less in order to ensure the corrosion resistance of stainless steel. If it is contained in excess of 0.050%, Cr carbide is generated during hot rolling, and the corrosion resistance and toughness are deteriorated. It is preferably 0.030% or less, and more preferably 0.025% or less.
On the other hand, 0.001% is set as the lower limit from the viewpoint of cost of reducing the amount of C in stainless steel.

Siは、脱酸のため0.05%以上含有させる。好ましくは、0.10%以上、さらに好ましくは0.20%以上にするとよい。
一方、0.80%を超えて含有させると靱性が劣化する。そのため、0.80%以下にする。好ましくは0.50%以下、さらに好ましくは0.40%以下にするとよい。
Si is contained in an amount of 0.05% or more for deoxidation. It is preferably 0.10% or more, more preferably 0.20% or more.
On the other hand, if it is contained in excess of 0.80%, the toughness deteriorates. Therefore, it should be 0.80% or less. It is preferably 0.50% or less, more preferably 0.40% or less.

Mnはオーステナイト相を増加させ靭性を改善する効果を有する。また窒化物析出温度TNを低下させる効果を有する。母材及び溶接部の靱性のため0.10%以上含有させる。好ましくは0.30%以上、さらに好ましくは0.50%以上にするとよい。
一方、Mnはステンレス鋼の耐食性を低下する元素であるので、Mnを2.00%以下にするとよい。好ましくは1.80%以下、さらに好ましくは1.50%以下にするとよい。
Mn has the effect of increasing the austenite phase and improving toughness. It also has the effect of lowering the nitride precipitation temperature TN. It is contained in an amount of 0.10% or more due to the toughness of the base metal and the welded part. It is preferably 0.30% or more, and more preferably 0.50% or more.
On the other hand, since Mn is an element that lowers the corrosion resistance of stainless steel, it is preferable to set Mn to 2.00% or less. It is preferably 1.80% or less, more preferably 1.50% or less.

Crは、本発明鋼の基本的な耐食性を確保するため21.50%以上含有させる。好ましくは22.00%以上、さらに好ましくは23.00%以上にするとよい。
一方で、Crを、26.00%を超えて含有させるとフェライト相分率が増加し靭性及び溶接部の耐食性を阻害する。このためCrの含有量を26.00%以下とした。好ましくは25.00%以下、さらに好ましくは24.50%以下にするとよい。
Cr is contained in an amount of 21.50% or more in order to ensure the basic corrosion resistance of the steel of the present invention. It is preferably 22.00% or more, more preferably 23.00% or more.
On the other hand, when Cr is contained in excess of 26.00%, the ferrite phase fraction increases and the toughness and corrosion resistance of the welded portion are impaired. Therefore, the Cr content was set to 26.00% or less. It is preferably 25.00% or less, more preferably 24.50% or less.

Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、さらに靭性を改善するため3.00%以上含有させる。Ni含有量を増加することにより窒化物析出温度を低下させることが可能になる。好ましくは、4.00%以上、さらに好ましくは5.00%以上にするとよい。
一方、Niは高価な合金であり、省合金型二相ステンレス鋼を対象とした本発明鋼ではコストの観点より7.00%以下の含有量に制限する。好ましくは6.50%以下、さらに好ましくは6.00%以下にするとよい。
Ni is contained in an amount of 3.00% or more in order to stabilize the austenite structure, improve corrosion resistance to various acids, and improve toughness. By increasing the Ni content, it becomes possible to lower the nitride precipitation temperature. It is preferably 4.00% or more, more preferably 5.00% or more.
On the other hand, Ni is an expensive alloy, and the content of the present invention steel for alloy-saving duplex stainless steel is limited to 7.00% or less from the viewpoint of cost. It is preferably 6.50% or less, more preferably 6.00% or less.

Moは、ステンレス鋼の耐食性を高める非常に有効な元素であり、SUS316以上の耐食性を付与するために0.50%以上含有させる。好ましくは0.80%以上、さらに好ましくは1.00%以上にするとよい。
一方、Moは高価であるとともに、金属間化合物析出を促進する元素であり、本発明鋼では熱間圧延時の析出を抑制する観点と経済的観点からMo含有量は少ない方が好ましいので2.50%以下とする。好ましくは2.00%未満、さらに好ましくは1.80%以下、より好ましくは1.50%以下にするとよい。
Mo is a very effective element for enhancing the corrosion resistance of stainless steel, and is contained in an amount of 0.50% or more in order to impart corrosion resistance of SUS316 or more. It is preferably 0.80% or more, more preferably 1.00% or more.
On the other hand, Mo is an element that promotes precipitation of intermetallic compounds as well as being expensive, and the steel of the present invention preferably has a low Mo content from the viewpoint of suppressing precipitation during hot rolling and from the viewpoint of economy. It shall be 50% or less. It is preferably less than 2.00%, more preferably 1.80% or less, and more preferably 1.50% or less.

Nは、オーステナイト相に固溶して二相ステンレス鋼の強度、耐食性を高める有効な元素であるため、0.100%以上含有させる。好ましくは0.120%以上、さらに好ましくは0.150%以上にするとよい。
一方、固溶限度はCr含有量に応じて高くなるが、本発明鋼においては0.250%超含有させるとCr窒化物を析出して靭性及び耐食性を阻害するようになる。そのため、N含有量を0.250%以下とした。好ましくは0.230%以下、さらに好ましくは0.200%以下にするとよい。
Since N is an effective element that dissolves in the austenite phase to enhance the strength and corrosion resistance of the duplex stainless steel, it is contained in an amount of 0.100% or more. It is preferably 0.120% or more, more preferably 0.150% or more.
On the other hand, the solid solution limit increases according to the Cr content, but in the steel of the present invention, if it is contained in excess of 0.250%, Cr nitride is precipitated and the toughness and corrosion resistance are impaired. Therefore, the N content was set to 0.250% or less. It is preferably 0.230% or less, more preferably 0.200% or less.

Alは、鋼の脱酸のための重要な元素であり、また本鋼の介在物の組成を制御するため、Ca及びMgとともに含有させる。Alは鋼中の酸素を低減するためにSiとあわせて含有させてもよい。Alは介在物の組成を制御し耐孔食性を高めるために0.003%以上含有させる。好ましくは0.005%以上にするとよい。
一方、AlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlの窒化物を生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.050%を超えると靭性低下が著しくなるためその含有量を0.050%以下にするとよい。好ましくは0.040%以下、より好ましくは0.030%以下にするとよい。
Al is an important element for deoxidation of steel, and is contained together with Ca and Mg in order to control the composition of inclusions in the steel. Al may be contained together with Si in order to reduce oxygen in the steel. Al is contained in an amount of 0.003% or more in order to control the composition of inclusions and enhance pitting corrosion resistance. It is preferably 0.005% or more.
On the other hand, Al is an element having a relatively large affinity for N, and when it is added in excess, a nitride of Al is generated and the toughness of stainless steel is impaired. The degree depends on the N content, but if Al exceeds 0.050%, the toughness is significantly reduced, so the content should be 0.050% or less. It is preferably 0.040% or less, more preferably 0.030% or less.

[残部]
本発明の溶接構造物を構成する二相ステンレス鋼母材の化学組成において、残部は、Fe及び不純物である。ここで、不純物とは、前記鋼母材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、当該鋼に悪影響を与えない範囲で許容されるものを意味する。主な不純物としては、P、S、Oが挙げられるが、これに限定されず、他の元素も不純物として含有されうる。
[Remaining]
In the chemical composition of the duplex stainless steel base material constituting the welded structure of the present invention, the balance is Fe and impurities. Here, impurities are those that are mixed in from ore, scrap, manufacturing environment, etc. as raw materials when the steel base material is industrially manufactured, and are allowed as long as they do not adversely affect the steel. Means what is done. Examples of the main impurities include, but are not limited to, P, S, and O, and other elements may be contained as impurities.

O(酸素)は、不純物であり、ステンレス鋼の熱間加工性、靱性、耐食性を阻害する元素であるため、できるだけ少なくすることが好ましい。そのため、O含有量は0.006%以下に限定する。また、酸素を極端に低減するには精錬に非常に大きなコストが必要となるため、経済性を考慮すると酸素量は0.001%以上あってもよい。 O (oxygen) is an impurity and is an element that impairs the hot workability, toughness, and corrosion resistance of stainless steel, so it is preferable to reduce it as much as possible. Therefore, the O content is limited to 0.006% or less. Further, since a very large cost is required for refining in order to extremely reduce oxygen, the amount of oxygen may be 0.001% or more in consideration of economic efficiency.

Pは原料から不可避に混入する元素であり、熱間加工性及び靱性を劣化させるため、できるだけ少ない方が好ましく、0.050%以下に限定する。好ましくは、0.040%以下にするとよい。Pを極低量に低減するには、精錬時のコストが高くなる。このため、コストの見合いよりP量の下限を0.010%にするとよい。 P is an element that is inevitably mixed from the raw material, and since it deteriorates hot workability and toughness, it is preferably as small as possible, and is limited to 0.050% or less. Preferably, it is 0.040% or less. In order to reduce P to an extremely low amount, the cost at the time of refining becomes high. Therefore, it is preferable to set the lower limit of the amount of P to 0.010% in consideration of the cost.

Sは原料から不可避に混入する元素であり、熱間加工性、靱性及び耐食性をも劣化させるため、できるだけ少ない方が好ましく、上限を0.0050%以下に限定する。好ましくは、0.0020%以下、更に好ましくは0.0010%以下にするとよい。Sを極低量に低減するには、精錬時のコストが高くなる。このため、コストの見合いよりS量の下限を0.0001%にしてもよい。 S is an element that is inevitably mixed from the raw material, and since it also deteriorates hot workability, toughness, and corrosion resistance, it is preferably as small as possible, and the upper limit is limited to 0.0050% or less. It is preferably 0.0020% or less, more preferably 0.0010% or less. In order to reduce S to an extremely low amount, the cost at the time of refining becomes high. Therefore, the lower limit of the amount of S may be set to 0.0001% in consideration of the cost.

[28.0≦PREN;オーステナイト量が30面積%以上〜70面積%以下]
河川の淡水、汽水等の自然水の環境下では、微生物の活動により二相ステンレス鋼の自然電位が高くなる。自然電位が高い環境下ではCr濃度の僅かな低下であっても耐食性に大きな影響を及ぼす。このため、本発明鋼が適用される環境下では、二相ステンレス鋼を溶接してCr窒化物が析出した場合、Cr窒化物周囲のCr欠乏層が孔食の起点となる。
[28.0 ≤ PREN; Austenite amount is 30 area% or more to 70 area% or less]
In the environment of natural water such as fresh water and brackish water of rivers, the natural potential of duplex stainless steel increases due to the activity of microorganisms. In an environment with a high natural potential, even a slight decrease in Cr concentration has a great effect on corrosion resistance. Therefore, in an environment to which the steel of the present invention is applied, when Cr nitride is deposited by welding duplex stainless steel, the Cr-deficient layer around the Cr nitride becomes the starting point of pitting corrosion.

一般に二相ステンレス鋼においてオーステナイト量は、フェライト量と等量に近い方が好ましい。フェライト過多の場合は靭性が低下し、Cr窒化物の析出が起こりやすくなる。一方、オーステナイト過多の場合は応力腐食割れ、熱間圧延中の耳割れが起きやすくなる。更にいずれの場合もフェライト相,オーステナイト相間の成分差が激しくなり、どちらかの相で耐食性が低下する。本発明では、本発明の成分系において上記課題が生じ難いオーステナイト量の下限を30面積%とし、上限を70面積%と規定する。 Generally, in a two-phase stainless steel, the amount of austenite is preferably close to the amount of ferrite. When the amount of ferrite is excessive, the toughness is lowered and Cr nitrides are likely to be precipitated. On the other hand, when austenite is excessive, stress corrosion cracking and ear cracking during hot rolling are likely to occur. Further, in either case, the component difference between the ferrite phase and the austenite phase becomes large, and the corrosion resistance decreases in either phase. In the present invention, the lower limit of the amount of austenite in which the above problem is unlikely to occur in the component system of the present invention is defined as 30 area%, and the upper limit is defined as 70 area%.

また、二相ステンレス鋼の場合、溶接熱影響部の耐食性低下を考慮して、同等の耐食性を狙う場合にオーステナイト系ステンレス鋼より高めのPRENを確保することが望ましい。実験を行った結果、耐孔食性の指標である下記(1)で定義されるPRENが28.0未満になると、二相ステンレス鋼母材のオーステナイト量が30.0〜70.0面積%であっても汽水環境下において溶接熱影響部でSUS316Lを下回る耐食性となった。
PREN=Cr+3.3Mo+16N・・・(1)
ただし、式(1)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
Further, in the case of duplex stainless steel, it is desirable to secure a higher PREN than austenitic stainless steel when aiming for the same corrosion resistance in consideration of the decrease in corrosion resistance of the weld heat affected zone. As a result of the experiment, when the PREN defined in (1) below, which is an index of pitting corrosion resistance, is less than 28.0, the amount of austenite in the duplex stainless steel base material is 30.0 to 70.0 area%. Even if there was, the corrosion resistance was lower than SUS316L in the weld heat affected zone under the steam environment.
PREN = Cr + 3.3Mo + 16N ... (1)
However, the element symbol in the formula (1) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.

汽水等の環境下で溶接金属に孔食を発生させないために、本発明に係る溶接構造物用の二相ステンレス鋼母材は、オーステナイト量が30.0〜70.0面積%、かつ前記式(1)で定義されるPREN値が28.0以上とする。二相ステンレス鋼母材の好ましいPREN値の下限は、30.0である。 In order to prevent pitting corrosion in the weld metal in an environment such as steam water, the duplex stainless steel base material for the welded structure according to the present invention has an austenite content of 30.0 to 70.0 area% and the above formula. The PREN value defined in (1) is 28.0 or more. The lower limit of the preferable PREN value of the duplex stainless steel base material is 30.0.

但し、二相ステンレス鋼母材のPRENを高めるためにCr、Moの含有量を過大にすると合金コストの増加を招き、Nの含有量を過大にするとCr窒化物を析出して靭性及び耐食性を阻害する。そのため、本発明において、二相ステンレス鋼のPREN値は、35.0以下が好ましい。尚、二相ステンレス鋼母材のオーステナイト量の好ましい下限は40.0面積%であり、好ましい上限は60.0面積%である。 However, if the Cr and Mo contents are excessive in order to increase the PREN of the duplex stainless steel base material, the alloy cost will increase, and if the N content is excessive, Cr nitride will be precipitated to improve toughness and corrosion resistance. Inhibit. Therefore, in the present invention, the duplex value of duplex stainless steel is preferably 35.0 or less. The preferable lower limit of the amount of austenite in the duplex stainless steel base material is 40.0 area%, and the preferable upper limit is 60.0 area%.

本発明におけるオーステナイト量は、二相ステンレス鋼母材の場合、母材鋼板のt/4(tは板厚)に相当する位置から厚鋼板の圧延方向と平行な断面を採取し、樹脂に埋込み鏡面研磨し、KOH水溶液中で電解エッチングを行った後、光学顕微鏡観察により画像解析を行うことによってフェライト分率(面積%)を測定し、残りの部分をオーステナイト量とすることによって求める。 In the case of a duplex stainless steel base material, the amount of austenite in the present invention is obtained by collecting a cross section parallel to the rolling direction of the thick steel plate from a position corresponding to t / 4 (t is the plate thickness) of the base steel plate and embedding it in the resin. After mirror polishing and electrolytic etching in a KOH aqueous solution, the ferrite fraction (area%) is measured by performing image analysis by observing with an optical microscope, and the remaining portion is determined as the amount of austenite.

また、溶接金属及び溶接熱影響部のオーステナイト量は、溶接部(溶接金属及び溶接熱影響部)とその近傍の母材を含むように試験片を採取し、前記二相ステンレス鋼母材の圧延方向断面を鏡面研磨したものを用いて、二相ステンレス鋼母材の場合と同様の手法にて、エッチング処理、光学顕微鏡による観察及び画像解析を行うことにより、溶接金属及び溶接熱影響部のそれぞれの金属組織中のオーステナイト量を測定する。 Further, the amount of austenite in the weld metal and the weld heat-affected portion is determined by collecting a test piece so as to include the weld portion (weld metal and the weld heat-affected portion) and the base material in the vicinity thereof, and rolling the two-phase stainless steel base material. Weld metal and weld heat-affected parts are each subjected to etching treatment, observation with an optical microscope, and image analysis in the same manner as for a two-phase stainless steel base material using a mirror-polished directional cross section. The amount of austenite in the metal structure of the metal structure is measured.

[溶接金属の組成]
次に、本発明における溶接構造物に形成される溶接金属の成分組成の限定理由を以下に説明する。なお、以下に示す「%」は、特に説明がない限り「質量%」を意味するものとする。
[Composition of weld metal]
Next, the reason for limiting the component composition of the weld metal formed in the welded structure in the present invention will be described below. In addition, "%" shown below means "mass%" unless otherwise specified.

以下に説明する溶接金属の各成分含有量は、ソリッドワイヤまたはフラックス入りワイヤの何れかを用いて、上記二相ステンレス鋼母材の成分の溶接金属への希釈を考慮し、ワイヤ中の成分を調整することで所定範囲に調整できる。 The content of each component of the weld metal described below is determined by using either a solid wire or a flux-filled wire, taking into consideration the dilution of the components of the duplex stainless steel base metal into the weld metal, and determining the components in the wire. It can be adjusted within a predetermined range by adjusting.

[必須元素]
Cは耐食性に有害であるが、強度の観点からある程度の含有が好ましいため、C含有量は0.001%以上である。また、その含有量が0.060%超では溶接のままの状態及び再熱を受けるとCはCrと結合してCr炭化物を析出し、耐粒界腐食性及び耐孔食性が著しく劣化するとともに、溶接金属の靱性、延性が著しく低下するため、その含有量を0.001〜0.060%に限定した。
[Essential elements]
Although C is harmful to corrosion resistance, it is preferably contained to some extent from the viewpoint of strength, so the C content is 0.001% or more. Further, when the content exceeds 0.060%, C is combined with Cr to precipitate Cr carbides in the state of being welded and when reheated, and the intergranular corrosion resistance and pitting corrosion resistance are significantly deteriorated. Since the toughness and ductility of the weld metal are significantly reduced, the content thereof is limited to 0.001 to 0.060%.

Siは脱酸元素として添加されるが、0.05%未満ではその効果が十分でなく、一方、その含有量が0.80%超では延性低下に伴い、靱性が大きく低下するとともに、溶接時の溶融溶込みも減少し、実用溶接上の問題になる。したがって、その含有量を0.05〜0.80%に限定した。 Si is added as a deoxidizing element, but its effect is not sufficient if it is less than 0.05%, while if its content exceeds 0.80%, the toughness is greatly reduced as the ductility decreases, and at the time of welding. The melt penetration of silicon is also reduced, which becomes a problem in practical welding. Therefore, its content was limited to 0.05 to 0.80%.

Mnは脱酸元素として、及びNの溶解度を増加させる元素として添加するが、その含有量が0.10%未満では効果が十分でなく、一方、3.00%を越えて含有すると延性が低下するのでその含有量の下限を0.10とし、上限を3.00%に限定した。Mn含有量は、好ましくは2.00%以下にすると良い。 Mn is added as a deoxidizing element and as an element that increases the solubility of N, but the effect is not sufficient when the content is less than 0.10%, while the ductility decreases when the content exceeds 3.00%. Therefore, the lower limit of the content was set to 0.10, and the upper limit was limited to 3.00%. The Mn content is preferably 2.00% or less.

Crはステンレス鋼の主要元素として不働態皮膜を形成し耐食性の向上に寄与する。汽水環境下で優れた耐食性を得るには21.50%以上を含有させる。一方、Cr含有量が多いほど汽水環境下での耐孔食性は向上するが、シグマ相(σ相)などの脆い金属間化合物が析出しやすくなるため靱性が低下する。また、Crはフェライト生成元素であるため、オーステナイト相を確保するには、Ni、Cu、Nも増量させる必要があり、溶接に用いるワイヤの製造性が低下するとともに製造コストも高くなるため、その含有量の上限を28.00%とした。好ましくは26.00%以下にすると良い。 Cr forms a passivation film as a main element of stainless steel and contributes to improvement of corrosion resistance. In order to obtain excellent corrosion resistance in a brackish water environment, 21.50% or more is contained. On the other hand, the higher the Cr content, the better the pitting corrosion resistance in a steam environment, but the toughness decreases because brittle intermetallic compounds such as the sigma phase (σ phase) are likely to precipitate. Further, since Cr is a ferrite-forming element, it is necessary to increase the amounts of Ni, Cu, and N in order to secure the austenite phase, which lowers the manufacturability of the wire used for welding and increases the manufacturing cost. The upper limit of the content was set to 28.00%. It is preferably 26.00% or less.

Niは中性塩化物環境での腐食に対し、顕著な抵抗性を与え、かつ、不働態皮膜を強化するため、Ni含有量は多いほど耐食性に有効である。また、Niはオーステナイト生成元素であり、オーステナイト相を生成・安定にする。前述の通り、溶接金属は特に冷却速度が大きくオーステナイト相が再析出し得る時間が限られること、局所的な成分低下を考慮する必要があること、更に靭性を確保する点から、Ni量を適宜増量することが望ましい。本発明では、溶接金属において十分なオーステナイト生成を確保するため、溶接金属がフェライト生成元素であるCrを21.50〜28.00%含有する場合の相バランスの観点から、鋼母材よりもNi含有量を高めることが好ましく、溶接金属では下限を4.00%とし、上限を10.00%とした。なお、Ni含有量の上限10.00%の限定理由は、溶接に用いるワイヤの製造コストが高くなるためである。好ましくは6.00%以上にすると良い。 Ni gives remarkable resistance to corrosion in a neutral chloride environment and strengthens the passive film. Therefore, the higher the Ni content, the more effective the corrosion resistance. In addition, Ni is an austenite-forming element, which forms and stabilizes the austenite phase. As described above, the amount of Ni of the weld metal is appropriately adjusted from the viewpoints that the cooling rate is particularly high, the time during which the austenite phase can be reprecipitated is limited, it is necessary to consider a local decrease in the composition, and the toughness is ensured. It is desirable to increase the amount. In the present invention, in order to ensure sufficient austenite formation in the weld metal, Ni is more than the steel base material from the viewpoint of phase balance when the weld metal contains 21.50 to 28.00% of Cr, which is a ferrite forming element. It is preferable to increase the content, and for weld metals, the lower limit is set to 4.00% and the upper limit is set to 10.00%. The reason for limiting the upper limit of the Ni content to 10.00% is that the manufacturing cost of the wire used for welding is high. It is preferably 6.00% or more.

Moは不働態皮膜を安定化して高い耐食性を得るのに極めて有効な元素であり、特に塩化物環境での耐孔食性向上は顕著である。更に溶接金属については、上記に加え成分偏析を生じることによる局所的耐食性低下を考慮する必要がある。実験の結果、1.00%未満では耐食性向上効果は不十分であることが判った。また、溶接金属中のオーステナイトの減少を補償するため、溶接金属中のMo含有量を鋼母材よりも高めることが好ましい。
但し、その含有量が3.50%を越えるとシグマ相など脆い金属間化合物を生成して溶接金属の靱性が低下するため、下限を1.00とし、上限を3.50%に制限する。好ましくは2.00%以上で、3.00%以下にするとよい。
Mo is an extremely effective element for stabilizing the passivation film and obtaining high corrosion resistance, and the improvement in pitting corrosion resistance in a chloride environment is particularly remarkable. Furthermore, for weld metals, in addition to the above, it is necessary to consider the local deterioration of corrosion resistance due to component segregation. As a result of the experiment, it was found that the effect of improving the corrosion resistance was insufficient if it was less than 1.00%. Further, in order to compensate for the decrease in austenite in the weld metal, it is preferable to increase the Mo content in the weld metal as compared with the steel base material.
However, if the content exceeds 3.50%, a brittle intermetallic compound such as a sigma phase is generated and the toughness of the weld metal is lowered. Therefore, the lower limit is set to 1.00 and the upper limit is limited to 3.50%. It is preferably 2.00% or more and 3.00% or less.

Nは強力なオーステナイト生成元素であり、塩化物環境下での耐孔食性を向上させる。0.080%以上で耐孔食性及び耐隙間腐食性を向上させ、含有量が多いほどその効果は大きい。一方、N含有量を多くすると、特に、0.250%を越えると溶接中にブローホールが発生しやすい。したがって、N含有量の下限は0.080%、上限は0.250%に制限する。好ましくは0.100%以上で、0.200%以下にするとよい。 N is a strong austenite-forming element, which improves pitting corrosion resistance in a chloride environment. At 0.080% or more, pitting corrosion resistance and crevice corrosion resistance are improved, and the larger the content, the greater the effect. On the other hand, when the N content is increased, blow holes are likely to occur during welding, especially when it exceeds 0.250%. Therefore, the lower limit of the N content is limited to 0.080% and the upper limit is limited to 0.250%. It is preferably 0.100% or more and 0.200% or less.

Alは脱酸元素として添加されるとともに溶滴移行現象を向上させる元素として添加されるが、0.001%未満ではその効果が十分でなく、一方、その過剰な添加はNと反応してAlNを形成し、靱性を阻害する。その程度はN含有量にも依存するが、Alが0.100%を越えると靱性低下が著しくなるため、その含有量の下限を0.001%とし、上限を0.100%に限定した。 Al is added as a deoxidizing element and as an element for improving the droplet transfer phenomenon, but if it is less than 0.001%, the effect is not sufficient, while its excessive addition reacts with N to AlN. And inhibit toughness. The degree depends on the N content, but when Al exceeds 0.100%, the toughness is significantly reduced. Therefore, the lower limit of the content is 0.001% and the upper limit is limited to 0.100%.

[残部]
本発明の溶接構造物に形成される溶接金属の化学組成において、残部は、Fe及び不純物である。ここで、不純物とは、前記鋼母材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、当該鋼に悪影響を与えない範囲で許容されるものを意味する。主な不純物としては、P、S、Oが挙げられるが、これに限定されず、他の元素も不純物として含有されうる。
[Remaining]
In the chemical composition of the weld metal formed in the welded structure of the present invention, the balance is Fe and impurities. Here, impurities are those that are mixed in from ore, scrap, manufacturing environment, etc. as raw materials when the steel base material is industrially manufactured, and are allowed as long as they do not adversely affect the steel. Means what is done. Examples of the main impurities include, but are not limited to, P, S, and O, and other elements may be contained as impurities.

O、P、Sは溶接金属において不可避成分であり、以下の理由で少なく制限する。 O, P, and S are unavoidable components in weld metals, and are limited to a small number for the following reasons.

Oは酸化物を生成し、過剰な含有は靱性を著しく低下させるため、その含有量の上限を0.150%とした。 Since O produces oxides and excessive content significantly reduces toughness, the upper limit of the content is set to 0.150%.

Pは多量に存在すると凝固時の耐高温溶接割れ性及び靱性を低下させるので少ない方が好ましく、その含有量の上限を0.050%とした。 When a large amount of P is present, the resistance to high temperature weld cracking and toughness during solidification are lowered, so a small amount is preferable, and the upper limit of the content is set to 0.050%.

Sも多量に存在すると耐高温割れ性、延性及び耐食性を低下させるので少ない方が好ましく、0.0200%を上限とした。 If a large amount of S is also present, the high temperature cracking resistance, ductility and corrosion resistance are lowered, so a small amount is preferable, and 0.0200% is the upper limit.

[PREN≧30.0; オーステナイト量が15面積%以上70面積%以下]
河川の淡水、汽水等の自然水の環境下では、微生物の活動により二相ステンレス鋼の自然電位が高くなる。自然電位が高い環境下ではCr濃度の僅かな低下であっても耐食性に大きな影響を及ぼす。このため、本発明鋼が適用される環境下では、二相ステンレス鋼を溶接してCr窒化物が析出した場合、Cr窒化物周囲のCr欠乏層が孔食の起点となる。本発明者らは、溶接構造物の二相ステンレス鋼溶接部のオーステナイト量が15面積%未満となるか、70面積%超となる場合、SUS316Lを下回る耐食性となることを明らかにした。
[PREN ≧ 30.0; Austenite amount is 15 area% or more and 70 area% or less]
In the environment of natural water such as fresh water and brackish water of rivers, the natural potential of duplex stainless steel increases due to the activity of microorganisms. In an environment with a high natural potential, even a slight decrease in Cr concentration has a great effect on corrosion resistance. Therefore, in an environment to which the steel of the present invention is applied, when Cr nitride is deposited by welding duplex stainless steel, the Cr-deficient layer around the Cr nitride becomes the starting point of pitting corrosion. The present inventors have clarified that when the amount of austenite in the two-phase stainless steel welded portion of the welded structure is less than 15 area% or more than 70 area%, the corrosion resistance is less than SUS316L.

鋼母材と同様に、溶接金属においても、オーステナイト量はフェライト量と等量に近い方が好ましい。しかし、溶接熱影響部及び溶接金属は、オーステナイト相生成量が少なくなりがちであり、出来る限りのオーステナイト相増量を図ることに加え、溶接金属については、溶接熱影響部より更にオーステナイト量が低下する事を抑制すべく、鋼溶接用ワイヤ等の溶加棒によって成分を改善する。その上で、SUS316Lと比べて耐食性が低下する課題を生じないオーステナイト量として15面積%以上〜70面積%以下と規定する。 Similar to the steel base material, the amount of austenite in the weld metal is preferably close to the amount of ferrite. However, the amount of austenite phase produced in the weld heat-affected zone and the weld metal tends to be small, and in addition to increasing the amount of austenite phase as much as possible, the amount of austenite in the weld metal is further reduced than that in the weld heat-affected zone. In order to suppress this, the composition is improved by a filler rod such as a steel welding wire. In addition, the amount of austenite that does not cause a problem that the corrosion resistance is lowered as compared with SUS316L is defined as 15 area% or more and 70 area% or less.

また、耐孔食性の指標であるPRENについて、溶接金属のPRENが30.0未満になると、溶接金属のオーステナイト量が15面積%以上70面積%以下であっても、成分偏析を生じることによって局所的に耐食性が低下して、汽水環境下において溶接金属でSUS316Lの耐食性を下回る。 Further, regarding PREN, which is an index of pitting corrosion resistance, when the PREN of the weld metal is less than 30.0, even if the amount of austenite in the weld metal is 15 area% or more and 70 area% or less, component segregation occurs to cause locality. Corrosion resistance is lowered, and the corrosion resistance of weld metal is lower than that of SUS316L in a steam environment.

このため、溶接金属では、オーステナイト量が15面積%以上70面積%以下、かつ溶接金属のPRENが30.0以上とする。溶接金属のオーステナイト量の好ましい下限は18.0面積%、更に好ましい下限は20.0面積%である。溶接金属のオーステナイト量の好ましい上限は60.0面積%であり、更に好ましい上限は50.0面積%である。また、溶接金属のPREN値は、二相ステンレス鋼母材のPREN値よりも高いことが好ましい。しかし、溶接金属のPRENを高めるためにCr、Moの含有量を過大にすると合金コストの増加を招き、Nの含有量を過大にすると溶接中にブローホールが発生しやすくなる。そのため、本発明において、溶接金属のPREN値は、35.0以下が好ましい。 Therefore, in the weld metal, the amount of austenite is 15 area% or more and 70 area% or less, and the PREN of the weld metal is 30.0 or more. The preferable lower limit of the amount of austenite in the weld metal is 18.0 area%, and the more preferable lower limit is 20.0 area%. The preferable upper limit of the amount of austenite in the weld metal is 60.0 area%, and the more preferable upper limit is 50.0 area%. Further, the PREN value of the weld metal is preferably higher than the PREN value of the duplex stainless steel base material. However, if the contents of Cr and Mo are excessive in order to increase the PREN of the weld metal, the alloy cost will increase, and if the content of N is excessive, blow holes are likely to occur during welding. Therefore, in the present invention, the PREN value of the weld metal is preferably 35.0 or less.

また、ガスシールドアーク溶接及びタングステンアーク溶接において、本発明の溶接構造物の溶接部の耐食性を確保するために、溶接熱影響部も、溶接金属と同様に、オーステナイト量を15面積%以上70面積%とする。 Further, in gas shielded arc welding and tungsten arc welding, in order to ensure the corrosion resistance of the welded portion of the welded structure of the present invention, the weld heat affected zone also has an austenite amount of 15 area% or more and 70 areas, similarly to the weld metal. %.

[二相ステンレス鋼母材及び溶接金属の任意添加成分]
さらに、本発明の溶接構造物を構成する二相ステンレス鋼母材及び溶接金属(以下、単に「本発明の溶接構造物の母材及び溶接金属」ともいう。)は、以下の元素のうち1種または2種以上を必要に応じて0%以上含有することができる。もっとも、これらの元素をいずれも含有しなくとも本発明の目的は達成できる。
[Arbitrary additive components of duplex stainless steel base metal and weld metal]
Further, the duplex stainless steel base material and weld metal constituting the welded structure of the present invention (hereinafter, also simply referred to as “base material and weld metal of the welded structure of the present invention”) are one of the following elements. Species or two or more species can be contained in an amount of 0% or more as required. However, the object of the present invention can be achieved without containing any of these elements.

Nbは、Nと親和力が強く、クロム窒化物の析出速度をさらに低下する作用を有する元素である。このため、本発明の溶接構造物の母材及び溶接金属では0.005%を下限として含有しても良い。好ましくは0.010%以上、さらに好ましくは0.020%以上、より好ましくは0.030%以上にするとよい。
一方、Nbが0.150%を越えて含有させるとNbの窒化物が多量に析出し、靱性を阻害するようになることから、その含有量を0.150%以下と定めた。好ましくは0.090%以下、さらに好ましくは0.070%以下、より好ましくは0.050%以下にするとよい。
なお、Nbは高価な元素であるが、品位の低いスクラップに含有されるNbを積極的に利用することで、ステンレス溶解原料コストを安価にすることができる。このような方法により、Nb含有鋼の溶解コストの低減を図ることが好ましい。
Nb is an element that has a strong affinity for N and has an effect of further reducing the precipitation rate of chromium nitride. Therefore, the base material and the weld metal of the welded structure of the present invention may contain 0.005% as the lower limit. It is preferably 0.010% or more, more preferably 0.020% or more, and more preferably 0.030% or more.
On the other hand, when Nb is contained in an amount of more than 0.150%, a large amount of nitride of Nb is precipitated and the toughness is inhibited. Therefore, the content is set to 0.150% or less. It is preferably 0.090% or less, more preferably 0.070% or less, and more preferably 0.050% or less.
Although Nb is an expensive element, the cost of the stainless steel melting raw material can be reduced by positively using Nb contained in low-grade scrap. It is preferable to reduce the melting cost of the Nb-containing steel by such a method.

Tiは、Nとの間に非常に強い親和力があり、鋼中でTiの窒化物を形成するため、Tiを含有させる場合は非常に少量とすることが望ましい。0.020%を超えて含有させるとTiの窒化物により靱性を阻害するようになることから、その含有量を0.020%以下、好ましくは0.015%以下、さらに好ましくは0.010%以下にするとよい。Tiを含有する場合、その効果を得るため0.003%以上含有させるとよく、好ましくは0.005%以上、さらに好ましくは0.006%以上にするとよい。 Ti has a very strong affinity with N and forms a nitride of Ti in steel. Therefore, when Ti is contained, it is desirable to use a very small amount. If the content exceeds 0.020%, the toughness will be inhibited by the nitride of Ti. Therefore, the content thereof is 0.020% or less, preferably 0.015% or less, more preferably 0.010%. It should be as follows. When Ti is contained, it is preferable to contain it in an amount of 0.003% or more, preferably 0.005% or more, and more preferably 0.006% or more in order to obtain the effect.

Taは、介在物の改質により耐食性を向上させる元素であり、必要に応じて含有してもよい。0.005%以上のTaの含有によって、効果が発揮されるため、Ta量の下限を0.005%以上として含有しても良い。Ta量が0.200%超の場合、常温延性の低下や靭性の低下を招くため、Ta量の上限は、好ましくは0.200%以下であり、より好ましくは0.100%以下である。少量のTa量で効果を発現させる場合には、Ta量を0.050%以下とすることが好ましい。 Ta is an element that improves corrosion resistance by modifying inclusions, and may be contained if necessary. Since the effect is exhibited by the content of Ta of 0.005% or more, the lower limit of the amount of Ta may be set to 0.005% or more. When the Ta amount exceeds 0.200%, the ductility at room temperature is lowered and the toughness is lowered. Therefore, the upper limit of the Ta amount is preferably 0.200% or less, more preferably 0.100% or less. When the effect is exhibited with a small amount of Ta, the amount of Ta is preferably 0.050% or less.

Wは、Moと同様にステンレス鋼の耐食性を向上させる元素であり、含有してもよい。本発明鋼において耐食性を高める目的のために含有させてもよい。しかし、高価な元素であるので、1.00%以下にするとよい。好ましくは0.70%以下、さらに好ましくは0.50%以下にするとよい。添加する場合、好ましくは0.05以上含有するとよい。Wを含有する場合、その効果を得るため、W含有量は、0.01%以上とするとよく、好ましくは0.05%以上、さらに好ましくは0.10%以上にするとよい。 W is an element that improves the corrosion resistance of stainless steel like Mo, and may be contained. It may be contained in the steel of the present invention for the purpose of enhancing corrosion resistance. However, since it is an expensive element, it should be 1.00% or less. It is preferably 0.70% or less, more preferably 0.50% or less. When added, it is preferably contained in an amount of 0.05 or more. When W is contained, the W content is preferably 0.01% or more, preferably 0.05% or more, and more preferably 0.10% or more in order to obtain the effect.

Vは、Nと親和力があり、クロム窒化物の析出速度を低下する作用を有する元素である。このため、含有させてもよい。しかし、0.300%を越えて含有させるとVの窒化物が多量に析出し、靱性を阻害するようになることから、Vの含有量は0.300%以下、好ましくは0.250%以下、さらに好ましくは0.200%以下にするとよい。Vを含有する場合、その効果を得るため、V含有量は0.010%以上とするとよく、好ましくは0.030%以上、さらに好ましくは0.080%以上にするとよい。 V is an element that has an affinity for N and has an action of lowering the precipitation rate of chromium nitride. Therefore, it may be contained. However, if the content exceeds 0.300%, a large amount of V nitride is precipitated and the toughness is inhibited. Therefore, the V content is 0.300% or less, preferably 0.250% or less. , More preferably 0.200% or less. When V is contained, the V content is preferably 0.010% or more, preferably 0.030% or more, and more preferably 0.080% or more in order to obtain the effect.

Ca及びMgは本発明鋼の介在物の組成を制御し、本発明鋼の耐孔食性と熱間加工性を高めるために添加される。Ca及びMgを添加する鋼では、0.0030%以上0.0500%以下のAlとともに溶解原料を用いて添加され、もしくは脱酸及び脱硫操業を通じてその含有量が調整され、Caの含有量を0.0005%以上、Mgの含有量を0.0001%以上に制御する。好ましくはCaを0.0010%以上、Mgを0.0003%以上、さらに好ましくはCaを0.0015%以上、Mgを0.0005%以上にするとよい。 Ca and Mg are added to control the composition of inclusions in the steel of the present invention and to enhance the pitting corrosion resistance and hot workability of the steel of the present invention. In steels to which Ca and Mg are added, the Ca content is reduced to 0 by adding it together with Al of 0.0030% or more and 0.0500% or less using a dissolving raw material, or by adjusting the content through deoxidation and desulfurization operations. The Mg content is controlled to 0.0001% or more and 0.0001% or more. It is preferable that Ca is 0.0010% or more, Mg is 0.0003% or more, and more preferably Ca is 0.0015% or more and Mg is 0.0005% or more.

一方、Ca及びMgは、いずれも過剰な添加は逆に熱間加工性及び靭性を低下するため、Caについては0.0050%以下、Mgについては0.0050%以下に含有量を制御するとよい。好ましくはCaを0.0040%以下、Mgを0.0025%以下、さらに好ましくはCaを0.0035%以下、Mgを0.0020%以下にするとよい。 On the other hand, the contents of Ca and Mg should be controlled to 0.0050% or less for Ca and 0.0050% or less for Mg because excessive addition of both Ca and Mg deteriorates hot workability and toughness. .. Ca is preferably 0.0040% or less, Mg is 0.0025% or less, and more preferably Ca is 0.0035% or less and Mg is 0.0020% or less.

Coは、鋼の靭性と耐食性を高めるために有効な元素であり、含有してもよい。Coは、1.00%を越えて含有させても高価な元素であるためにコストに見合った効果が発揮されないようになるため、1.00%以下含有するとよい。好ましくは0.70%以下、さらに好ましくは0.50%以下含有するとよい。Coを含有する場合、その効果を得るため、Co含有量は0.01%以上とするとよく、好ましくは0.03%以上、さらに好ましくは0.10%以上にするとよい。 Co is an element effective for enhancing the toughness and corrosion resistance of steel, and may be contained. Even if Co is contained in an amount of more than 1.00%, it is an expensive element and therefore an effect commensurate with the cost is not exhibited. Therefore, it is preferable to contain Co in an amount of 1.00% or less. It is preferably contained in an amount of 0.70% or less, more preferably 0.50% or less. When Co is contained, the Co content is preferably 0.01% or more, preferably 0.03% or more, and more preferably 0.10% or more in order to obtain the effect.

Cuは、ステンレス鋼の酸に対する耐食性を付加的に高める元素であり、かつ靭性を改善する作用を有するため、含有してもよい。Cuを3.00%超含有させると熱間圧延後の冷却時に固溶度を超えてεCuが析出し脆化するので3.00%以下含有するとよい。好ましくは1.70%以下、さらに好ましくは1.50%以下含有するとよい。Cuを含有する場合、0.01%以上、好ましくは0.33%以上、さらに好ましくは0.45%以上含有させるとよい。 Cu may be contained because it is an element that additionally enhances the corrosion resistance of stainless steel to acid and has an action of improving toughness. If Cu is contained in an amount of more than 3.00%, εCu is precipitated and embrittled in excess of the solid solubility during cooling after hot rolling. Therefore, it is preferable to contain Cu in an amount of 3.00% or less. It is preferably contained in an amount of 1.70% or less, more preferably 1.50% or less. When Cu is contained, it is preferable to contain it in an amount of 0.01% or more, preferably 0.33% or more, and more preferably 0.45% or more.

Bは、鋼の熱間加工性を改善する元素であり、必要に応じて含有させてもよい。また、Nとの親和力が非常に強い元素であり、多量に含有させるとBの窒化物が析出して、靱性を阻害するようになる。このため、その含有量を0.0050%以下、好ましくは0.0040%以下、さらに好ましくは0.0030%以下にするとよい。Bを含有する場合、その効果を得るため、B含有量は0.0001%以上とするとよく、好ましくは0.0005%以上、さらに好ましくは0.0014%以上にするとよい。 B is an element that improves the hot workability of steel, and may be contained if necessary. Further, it is an element having a very strong affinity for N, and when it is contained in a large amount, the nitride of B is precipitated and the toughness is inhibited. Therefore, the content may be 0.0050% or less, preferably 0.0040% or less, and more preferably 0.0030% or less. When B is contained, the B content is preferably 0.0001% or more, preferably 0.0005% or more, and more preferably 0.0014% or more in order to obtain the effect.

REMは鋼の熱間加工性を改善する元素であり、その目的で0.005%以上含有させても良い。好ましくは0.010%以上、さらに好ましくは0.020%以上含有するとよい。一方で過剰な添加は逆に熱間加工性及び靭性を低下するため、REMは0.050%以下で含有するとよい。好ましくは0.040%以下、さらに好ましくは0.030%以下にするとよい。
ここでREMはLaやCe等のランタノイド系希土類元素の含有量の総和とする。
REM is an element that improves the hot workability of steel, and may be contained in an amount of 0.005% or more for that purpose. It is preferably contained in an amount of 0.010% or more, more preferably 0.020% or more. On the other hand, excessive addition lowers hot workability and toughness, so the REM should be contained in an amount of 0.050% or less. It is preferably 0.040% or less, more preferably 0.030% or less.
Here, REM is the sum of the contents of lanthanoid rare earth elements such as La and Ce.

Zr、Hf、Snは粒界に偏析して溶接時の結晶粒の粗大化を抑制する。また、Zr、Hfは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素である。Snは表面近傍に濃化してCrの酸化を抑制する。 Zr, Hf, and Sn segregate at the grain boundaries to suppress coarsening of crystal grains during welding. Further, Zr and Hf are conventionally effective elements for improving hot workability, cleanliness of steel, and oxidation resistance. Sn is concentrated near the surface and suppresses the oxidation of Cr.

これらの効果を得るため、Zr:0.001%以上、Hf:0.001%以上、Sn:0.005%以上を含有しても良い。本発明の溶接構造物は、その溶接金属部が、Ni、Cu、Mo、Wの元素群の代わりに、Zr、Hf、Snの元素群のうちの少なくとも1種の元素を前述の含有量の範囲で含有しても良い。 In order to obtain these effects, Zr: 0.001% or more, Hf: 0.001% or more, Sn: 0.005% or more may be contained. In the welded structure of the present invention, the weld metal portion contains at least one element of the Zr, Hf, Sn element group instead of the Ni, Cu, Mo, W element group as described above. It may be contained in a range.

一方、これらの元素の過度な添加は粒界強度低下による粒界破壊を助長するため、Zr:0.050%以下、Hf:0.080%以下、Sn:0.100%以下とする。 On the other hand, since excessive addition of these elements promotes grain boundary destruction due to a decrease in grain boundary strength, Zr: 0.050% or less, Hf: 0.080% or less, Sn: 0.100% or less.

[フェライト単相化温度]
本発明において、二相ステンレス鋼母材の成分は以下の式(2)を満たすことが好ましい。
Tα=1455−13.6Cr+22.7Ni−11.2Mo+2.1Mn+781.8N≧1330・・・(2)
Tαは二相ステンレス鋼母材を加熱した際に、オーステナイトが消失しフェライト単相となる温度(以下、「フェライト単相化温度」という。単位は℃である。)を推定する成分式である。このフェライト単相化温度が低いと、溶接時に長時間フェライト単相域に晒されることになり、フェライト相の粗大化が助長され、溶接熱影響部の靭性が低下する。実験の結果、Tαが1320℃を下回ると極端に熱影響部の靭性が低下することを見出したため、1330℃以上とした方が好ましい。より好ましくは1340℃以上である。
この式は、サーモカルク社の熱力学計算ソフト「Thermo−Calc 」(登録商標) を用いた平衡計算により求め、実験により修正した。
[Ferrite single-phase temperature]
In the present invention, the components of the duplex stainless steel base material preferably satisfy the following formula (2).
Tα = 1455-13.6Cr + 22.7Ni-11.2Mo + 2.1Mn + 781.8N ≧ 1330 ... (2)
Tα is a component formula for estimating the temperature at which austenite disappears and becomes a ferrite single phase when the two-phase stainless steel base material is heated (hereinafter, referred to as “ferrite monophase temperature”; the unit is ° C.). .. If the ferrite single-phase temperature is low, the ferrite single-phase region is exposed for a long time during welding, which promotes coarsening of the ferrite phase and reduces the toughness of the weld heat-affected zone. As a result of the experiment, it was found that the toughness of the heat-affected zone is extremely lowered when the Tα is lower than 1320 ° C. Therefore, it is preferable to set the temperature to 1330 ° C. or higher. More preferably, it is 1340 ° C. or higher.
This formula was obtained by equilibrium calculation using Thermo-Calc's thermodynamic calculation software "Thermo-Calc" (registered trademark), and was corrected experimentally.

[クロム窒化物析出温度とN量]
本発明において、二相ステンレス鋼母材及び溶接金属のN量は、以下の式(3)を満たすことが好ましい。
N≧(0.08Cr+0.08Mo−0.06Ni−1.21)/0.6×0.15・・・(3)
ただし、式(3)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
[Chromium nitride precipitation temperature and N amount]
In the present invention, the N amount of the duplex stainless steel base material and the weld metal preferably satisfies the following formula (3).
N ≧ (0.08Cr + 0.08Mo-0.06Ni-1.21) /0.6 × 0.15 ... (3)
However, the element symbol in the formula (3) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.

式(3)は、本発明における、溶接熱影響部及び溶接金属のオーステナイト量の下限をそれぞれ15%とした時に、溶接熱影響部及び溶接金属のオーステナイト相に固溶して二相ステンレス鋼の強度、耐食性の向上に有効に作用する量を、主要元素であるCr,Ni,Mo含有量から推定する式である。 In the formula (3), when the lower limit of the austenite amount of the welding heat-affected portion and the welding metal in the present invention is set to 15%, the two-phase stainless steel is dissolved in the austenite phase of the welding heat-affected portion and the welding metal. It is an equation that estimates the amount that effectively acts to improve strength and corrosion resistance from the contents of Cr, Ni, and Mo, which are the main elements.

二相ステンレス鋼のオーステナイト量を推定する成分式は、例えば特許文献1に記載のNi−bal.等多数あるが、これらはいずれも溶体化熱処理された鋼材のオーステナイト量を推定するものである。この場合、フェライト相にCr、Mo、オーステナイト相にNi,Nが分配濃化してそれぞれの相を形成する。 The component formula for estimating the austenite content of the two-phase stainless steel is described in, for example, Ni-bal. All of these estimate the amount of austenite in the solution-heat-treated steel material. In this case, Cr and Mo are distributed and concentrated in the ferrite phase, and Ni and N are distributed and concentrated in the austenite phase to form each phase.

溶接熱影響部及び溶接金属の場合、加熱時に一旦フェライト単相となり、その後冷却時にオーステナイト相が生成する。実験の結果、溶接熱影響部及び溶接金属が冷却される際にはCr,Ni,Moはオーステナイト相にほとんど濃化せず、Nのみがオーステナイト相に濃化することによってオーステナイト相を形成することが分かった。また、前記冷却の際にオーステナイト相に濃化するN量はおおよそCr,Ni,Moの量によって変化し、オーステナイト生成元素のNiが高い場合は少ないN量となり、Cr,Moが高い場合では生成したオーステナイト相のN量が増加することが分かった。前記知見から、Nの濃化量が少ない場合は、溶接熱影響部及び溶接金属に含まれるNi量を増やすことによって、少ないN量で多量のオーステナイトを生成することが出来ると見込まれる。 In the case of the weld heat affected zone and the weld metal, a ferrite single phase is once formed during heating, and then an austenite phase is formed during cooling. As a result of the experiment, when the weld heat-affected zone and the weld metal are cooled, Cr, Ni, and Mo are hardly concentrated in the austenite phase, and only N is concentrated in the austenite phase to form the austenite phase. I found out. Further, the amount of N concentrated in the austenite phase during the cooling varies depending on the amount of Cr, Ni, and Mo, and when the austenite-forming element Ni is high, the amount of N is small, and when Cr and Mo are high, the amount of N is small. It was found that the amount of N in the austenite phase was increased. From the above findings, when the amount of N enrichment is small, it is expected that a large amount of austenite can be produced with a small amount of N by increasing the amount of Ni contained in the weld heat affected zone and the weld metal.

本発明の溶接構造物を構成する二相ステンレス鋼母材の材質に対して、主に影響する析出物はクロム窒化物である。
クロム窒化物は、CrとNが結合した析出物であり、二相ステンレス鋼においては立方晶のCrNまたは六方晶のCrNがフェライト粒内もしくはフェライト粒界に析出することが多い。これらのクロム窒化物が生成すると、衝撃特性を低下させるとともに、析出にともなって生成するクロム欠乏層により耐食性が低下する。
The precipitate that mainly affects the material of the duplex stainless steel base material constituting the welded structure of the present invention is chromium nitride.
Chromium nitride is a precipitate in which Cr and N are bonded, and in duplex stainless steel, cubic Cr N or hexagonal Cr 2 N is often precipitated in ferrite grains or at ferrite grain boundaries. When these chromium nitrides are formed, the impact characteristics are deteriorated, and the corrosion resistance is lowered due to the chromium-deficient layer formed by the precipitation.

このようなクロム窒化物の熱間圧延中における析出に関する指標となるクロム窒化物析出温度TNは、以下の手順により実験的に求められる特性値である。
(1) 10mm厚の供試鋼を、熱延後一旦1050℃×20分の熱処理を行ったのち800〜1100℃の任意の温度で20分間均熱処理を行い、その後5秒以内に水冷を行う。
(2) 冷却後の供試鋼表層を#500研磨する。
(3) 3g試料を分取し、室温の非水溶液(3%マレイン酸と、1%テトラメチルアンモニウムクロライドとを含み、残部がメタノール)中で電解(100mV定電圧)してマトリックスを溶解する。
(4) 0.2μm穴径のフィルターで残渣(すなわち、析出物)を濾過し、析出物を抽出する。
(5) ICPを用いて、残渣の化学組成を分析し、前記残渣に含有されるクロム含有量(質量%)を求める。この残渣中のクロム含有量をクロム窒化物の析出量の指標とする。
(6) (1)の均熱処理温度を種々変化させ、残渣中のクロム含有量が0.03%以下となる均熱処理温度のうちの最低温度をTNとする。
The chromium nitride precipitation temperature TN, which is an index for precipitation of such chromium nitride during hot rolling, is a characteristic value experimentally obtained by the following procedure.
(1) A 10 mm thick test steel is heat-rolled and then heat-treated at 1050 ° C for 20 minutes, then soaked at an arbitrary temperature of 800 to 1100 ° C for 20 minutes, and then water-cooled within 5 seconds. ..
(2) Polish the surface layer of the test steel after cooling with # 500.
(3) A 3 g sample is separated and electrolyzed (100 mV constant voltage) in a non-aqueous solution (containing 3% maleic acid and 1% tetramethylammonium chloride, the balance being methanol) at room temperature to dissolve the matrix.
(4) The residue (that is, the precipitate) is filtered through a filter having a hole diameter of 0.2 μm, and the precipitate is extracted.
(5) Using ICP, the chemical composition of the residue is analyzed to determine the chromium content (mass%) contained in the residue. The chromium content in this residue is used as an index of the amount of chromium nitride precipitated.
(6) The soaking heat treatment temperature of (1) is variously changed, and the lowest temperature among the soaking heat treatment temperatures at which the chromium content in the residue is 0.03% or less is defined as TN.

TNが低いほどクロム窒化物の析出する温度域が低温側に限定されるため、クロム窒化物の析出速度や析出量が抑制され、二相ステンレス鋼母材の耐食性が維持される。 As the TN is lower, the temperature range in which chromium nitride is deposited is limited to the low temperature side, so that the precipitation rate and amount of chromium nitride are suppressed, and the corrosion resistance of the duplex stainless steel base material is maintained.

そのため、本発明の溶接構造物を構成する二相ステンレス鋼母材は、Nbを含有する場合、クロム窒化物析出温度TNが1010℃以下であり、Nbを含有しない場合、クロム窒化物析出温度TNが980℃以下であることが好ましい。 Therefore, the duplex stainless steel base material constituting the welded structure of the present invention has a chromium nitride precipitation temperature TN of 1010 ° C. or lower when it contains Nb, and a chromium nitride precipitation temperature TN when it does not contain Nb. Is preferably 980 ° C. or lower.

前述したクロム窒化物析出温度TNは、下記式(4)又は式(5)を用いて推定しても良い。
8Cr−20Ni+30Mo+50Si−10Mn+550N+730(二相ステンレス鋼母材がNbを含有する場合)・・・(4)
8Cr−20Ni+30Mo+50Si−10Mn+550N+700(二相ステンレス鋼母材がNbを含有しない場合)・・・(5)
ただし、式(4)、(5)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
The above-mentioned chromium nitride precipitation temperature TN may be estimated using the following formula (4) or formula (5).
8Cr-20Ni + 30Mo + 50Si-10Mn + 550N + 730 (when duplex stainless steel base material contains Nb) ... (4)
8Cr-20Ni + 30Mo + 50Si-10Mn + 550N + 700 (when duplex stainless steel base material does not contain Nb) ... (5)
However, the element symbol in the formulas (4) and (5) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.

[本発明の溶接構造物の製造方法]
次に、本発明の溶接構造物の製造方法について説明する。
[二相ステンレス鋼母材の製造方法]
[Method for manufacturing welded structure of the present invention]
Next, a method for manufacturing the welded structure of the present invention will be described.
[Manufacturing method of duplex stainless steel base material]

水門等に用いられる鋼材は例えば20mmや50mmといった、厚手のものが用いられることが多い。これら二相ステンレス鋼を製造する場合、母材の衝撃値が低下しその結果熱影響部では更に靭性が低下し問題となることがある。その現象を回避するためには、前述した二相ステンレス鋼母材の組成を有する熱延用素材を、下記式(6)で示す圧減比が3.0以上、かつ下記式(7)で示す1050℃以下の圧下率30%以上となるように熱間圧延することにより、適正なひずみを加え微細な組織とすることが有効である。
熱延用素材の厚さ/本発明の溶接構造物の二相ステンレス鋼母材の厚さ・・・(6)
(1050℃以下に到達した時の厚さ−本発明の溶接構造物の二相ステンレス鋼母材の厚さ)/1050℃以下に到達した時の厚さ×100・・・(7)
なお、「1050℃以下に到達した時の厚さ」とは、熱間圧延中に前記熱延用素材の表面温度を逐次測定し、1050℃以下に到達した際の厚さを測定して求める。
Thick steel materials such as 20 mm and 50 mm are often used for water gates and the like. When these two-phase stainless steels are manufactured, the impact value of the base metal is lowered, and as a result, the toughness of the heat-affected portion is further lowered, which may cause a problem. In order to avoid this phenomenon, the hot-rolling material having the composition of the duplex stainless steel base material described above has a compression reduction ratio of 3.0 or more represented by the following formula (6) and the following formula (7). It is effective to apply appropriate strain to obtain a fine structure by hot rolling so that the rolling reduction ratio is 30% or more at 1050 ° C. or lower.
Thickness of hot rolling material / Thickness of duplex stainless steel base material of welded structure of the present invention ... (6)
(Thickness when reaching 1050 ° C or lower-thickness of duplex stainless steel base metal of the welded structure of the present invention) / Thickness when reaching 1050 ° C or lower x 100 ... (7)
The "thickness when the temperature reaches 1050 ° C. or lower" is obtained by sequentially measuring the surface temperature of the hot rolling material during hot rolling and measuring the thickness when the temperature reaches 1050 ° C. or lower. ..

また、二相ステンレス鋼において耐食性を低下させる金属間化合物やクロム窒化物を消失させるため、熱間圧延鋼板を、クロム窒化物析出温度(TN)+20℃以上1100℃以下で5分以上熱処理する。熱処理温度がTN+20℃未満であるか、熱処理時間が5分未満であると、熱間圧延によって析出したクロム窒化物が固溶せず、靭性,耐食性を損なう。また、熱処理温度が1100℃超であると、フェライト量が過多になる恐れがある。この熱処理は、熱間圧延工程から連続的に行っても良く、また、熱間圧延鋼板の冷却後、冷却された鋼板を再加熱することによって行っても良い。 Further, in order to eliminate intermetallic compounds and chromium nitrides that reduce corrosion resistance in duplex stainless steel, hot rolled steel sheets are heat-treated at a chromium nitride precipitation temperature (TN) + 20 ° C. or higher and 1100 ° C. or lower for 5 minutes or longer. If the heat treatment temperature is less than TN + 20 ° C. or the heat treatment time is less than 5 minutes, the chromium nitride precipitated by hot rolling does not dissolve in solid solution, and the toughness and corrosion resistance are impaired. Further, if the heat treatment temperature exceeds 1100 ° C., the amount of ferrite may become excessive. This heat treatment may be continuously performed from the hot rolling step, or may be performed by reheating the cooled steel sheet after cooling the hot rolled steel sheet.

[溶接工程]
本発明では、優れた靱性と海水環境下での耐食性を有する溶接部を形成するために溶接金属を形成する際の溶接条件について以下のように限定するのが好ましい。
[Welding process]
In the present invention, it is preferable to limit the welding conditions when forming the weld metal in order to form the welded portion having excellent toughness and corrosion resistance in the seawater environment as follows.

本発明の溶接金属は、ガスシールドアーク溶接またはタングステンアーク溶接の何れの方法を用いて形成することができるが、溶接入熱量Q、母材希釈率Dを以下の理由から規定するのが好ましい。 The weld metal of the present invention can be formed by either gas shielded arc welding or tungsten arc welding, but it is preferable to specify the welding heat input amount Q and the base metal dilution ratio D for the following reasons.

[溶接入熱量Q]
Cr、Moを含有する二相ステンレス鋼は、約700℃〜900℃の温度域に保持されると、靭性に有害なシグマ相などの脆い金属間化合物が析出し、耐食性、靱性が著しく低下する。また、同様に耐食性、靭性に有害なCr窒化物は、約600℃から800℃の温度域で析出する。溶接金属は、凝固後の冷却過程において900℃〜600℃を通過する時間が長くなると、シグマ相もしくはCr窒化物が多量に析出する。また、多層パス溶接により形成された溶接金属では、前層パスが後続パスによる熱サイクルを受け、600℃〜900℃の温度域となる時間が長くなる場合も同様である。
[Welding heat input Q]
When a duplex stainless steel containing Cr and Mo is held in a temperature range of about 700 ° C. to 900 ° C., brittle intermetallic compounds such as a sigma phase, which is harmful to toughness, are precipitated, and corrosion resistance and toughness are significantly reduced. .. Similarly, Cr nitride, which is also harmful to corrosion resistance and toughness, precipitates in a temperature range of about 600 ° C to 800 ° C. When the weld metal passes through 900 ° C. to 600 ° C. for a long time in the cooling process after solidification, a large amount of sigma phase or Cr nitride is precipitated. Further, in the weld metal formed by the multi-layer pass welding, the same applies when the front layer pass undergoes a thermal cycle by the subsequent pass and the time to reach the temperature range of 600 ° C. to 900 ° C. becomes long.

本発明では、上述したように二相ステンレス鋼母材及び溶接金属の成分組成を規定することにより、シグマ相などの金属間化合物及びCr窒化物の析出を抑え、靱性,耐食性に優れた二相ステンレス鋼母材及び溶接金属からなる溶接構造物が得られる。しかし、ガスシールドアーク溶接またはタングステンアーク溶接において、溶接入熱量Qが50,000J/cm超と過大になると、後述の母材希釈率が高くなるうえ冷却速度が小さくなり、900℃〜600℃の冷却時間が長くなって、シグマ相などの金属間化合物やCr窒化物が析出し、耐食性、靱性が低下する危険性がある。このため、溶接構造物の耐食性、靱性を安定して確保するために、溶接構造物の製造条件、つまり溶接時の溶接入熱量は、50,000J/cm以下に限定するのが好ましい。 In the present invention, by defining the component compositions of the duplex stainless steel base material and the weld metal as described above, the precipitation of intermetal compounds such as sigma phase and Cr nitride is suppressed, and the duplex excellent in toughness and corrosion resistance. A welded structure made of a stainless steel base metal and a weld metal can be obtained. However, in gas shielded arc welding or tungsten arc welding, if the welding heat input Q exceeds 50,000 J / cm, the base metal dilution rate described later increases and the cooling rate decreases, resulting in 900 ° C to 600 ° C. There is a risk that the cooling time will be long and intermetallic compounds such as the sigma phase and Cr nitride will precipitate, resulting in deterioration of corrosion resistance and toughness. Therefore, in order to stably secure the corrosion resistance and toughness of the welded structure, it is preferable to limit the manufacturing conditions of the welded structure, that is, the amount of heat input to the weld at the time of welding to 50,000 J / cm or less.

尚、溶接入熱量Q(J/cm)は、以下の式(8)で定義される。
Q(J/cm)=[溶接電流(A)]×[溶接電圧(V)]÷[溶接速度(cm/s)]・・・(8)
The welding heat input Q (J / cm) is defined by the following equation (8).
Q (J / cm) = [welding current (A)] x [welding voltage (V)] ÷ [welding speed (cm / s)] ... (8)

一方、溶接入熱量が5,000J/cm未満と過小になると、冷却速度が大きくなり、本発明のような成分規定を行ってもオーステナイト析出量が過少となる。 On the other hand, if the welding heat input amount is too small, less than 5,000 J / cm, the cooling rate becomes high, and the austenite precipitation amount becomes too small even if the component is specified as in the present invention.

[母材希釈率D]
本発明では、溶接金属の耐食性及びオーステナイト量を確保するために、溶接金属は、二相ステンレス鋼母材に対して、Mo含有量及びNi含有量、PRENの少なくとも1種が高いことが好ましい。しかしながら、母材による希釈率が高すぎると、適正な溶加棒を使用しても母材の混合が大きく、狙いの成分を得難くなる。つまり溶接条件として、溶接時の母材希釈率は、50%以下に限定するのが好ましい。母材希釈率Dは、以下の式で定義される。
D=[二相ステンレス鋼母材の溶融体積]/[全溶接金属体積]×100・・・(9)
[Base material dilution rate D]
In the present invention, in order to secure the corrosion resistance and the austenite content of the weld metal, it is preferable that the weld metal has a higher Mo content, Ni content, and PREN than the two-phase stainless steel base material. However, if the dilution ratio with the base material is too high, even if an appropriate filler rod is used, the base material is mixed in a large amount, and it becomes difficult to obtain the target component. That is, as a welding condition, the base metal dilution rate at the time of welding is preferably limited to 50% or less. The base metal dilution ratio D is defined by the following formula.
D = [Melted volume of duplex stainless steel base metal] / [Total weld metal volume] x 100 ... (9)

なお、本発明の溶接構造物は、適切な溶加棒及び溶接入熱制御を行う前提で、サブマージアーク溶接、プラズマ溶接等でも製造することができる。さらに、当該製造方法は、溶接構造物の製造に適用するだけではなく、それら構造物の補修溶接あるいは肉盛りなどにも適用できる。 The welded structure of the present invention can also be manufactured by submerged arc welding, plasma welding, etc. on the premise that appropriate filler rods and welding heat input control are performed. Further, the manufacturing method can be applied not only to the manufacture of welded structures but also to repair welding or overlaying of those structures.

本発明では、上述のように成分含有量を規定した二相ステンレス鋼母材と溶接金属からなる溶接構造物を製造する際に、上述した溶接条件にて溶接を行うことにより、優れた靱性と汽水環境下での耐食性が確保された溶接金属を有する溶接構造物が安定して得られる。 In the present invention, when a welded structure composed of a duplex stainless steel base material and a weld metal having a defined component content as described above is manufactured, welding is performed under the above-mentioned welding conditions to obtain excellent toughness. A welded structure having a weld metal whose corrosion resistance is ensured in a steam water environment can be stably obtained.

[50℃で測定したJIS G0577 A法による溶接部の孔食電位が0.30V vs SSE以上]
本発明の溶接構造物は、溶接金属及び熱影響部とを含む溶接部について50℃で測定したJIS G0577 A法による孔食電位が0.30V vs SSE以上になる。このように、本発明の溶接構造物は、汽水環境においてSUS316Lと同等以上の耐食性を有する。
[Pitting potential of welded part by JIS G0577 A method measured at 50 ° C is 0.30V vs SSE or more]
In the welded structure of the present invention, the pitting potential of the welded portion including the weld metal and the heat-affected zone measured at 50 ° C. by the JIS G0577 A method is 0.30 V vs. SSE or more. As described above, the welded structure of the present invention has corrosion resistance equal to or higher than that of SUS316L in a brackish water environment.

[溶接構造物の靭性]
本発明の溶接構造物を構成する二相ステンレス鋼母材は、JIS Z 2202に規定されたシャルピー衝撃試験方法により測定されたシャルピー衝撃値が、−20℃で100J/cm以上である。
また、本発明の溶接構造物の溶接熱影響部及び溶接金属は、JIS Z 2202に規定されたシャルピー衝撃試験方法により測定されたシャルピー衝撃値が、いずれも−20℃で50J/cm以上である。
[Toughness of welded structures]
The duplex stainless steel base material constituting the welded structure of the present invention has a Charpy impact value of 100 J / cm 2 or more at −20 ° C. measured by the Charpy impact test method specified in JIS Z 2202.
Further, in the weld heat-affected zone and the weld metal of the welded structure of the present invention, the Charpy impact value measured by the Charpy impact test method specified in JIS Z 2202 is 50 J / cm 2 or more at −20 ° C. be.

以下、実施例にて本発明を説明する。尚、以下の実施例において、便宜上、同一の鋼母材で構成された突き合わせ型の継手に基づいて本発明例が説明されるが、本発明に係る溶接構造物は、図示された構造に限定されない。本発明に係る溶接構造物は、突合せ継手だけでなく、T継手、十字継手、重ね継手等の一般の溶接継手の構造を有することができ、互いに異なる種類の溶接継手が組み合わされた構造を有していても良い。また、鋼母材が本発明の範囲を逸脱しない限りにおいて、本発明に係る溶接構造物は、鋼組成及び金属組織のうち少なくとも一種が異なる鋼母材が溶接された構造であっても良い。 Hereinafter, the present invention will be described with reference to Examples. In the following examples, for convenience, an example of the present invention will be described based on a butt-type joint made of the same steel base material, but the welded structure according to the present invention is limited to the illustrated structure. Not done. The welded structure according to the present invention can have not only a butt joint but also a general welded joint structure such as a T joint, a cross joint, and a lap joint, and has a structure in which different types of welded joints are combined. You may be doing it. Further, as long as the steel base material does not deviate from the scope of the present invention, the welded structure according to the present invention may have a structure in which a steel base material having at least one different steel composition and metal structure is welded.

鋼No.24を除き、表1−1、表1−2に示す成分を有する二相ステンレス鋼を実験室の50kg真空誘導炉によりMgOるつぼ中で溶製し、扁平鋼塊に鋳造した。この扁平鋼塊の表面が平滑になるように前記扁平鋼塊を研削して約100mmの熱延用素材を作成した。前記熱延用素材を1180℃の温度に1〜2h加熱後、1050℃以下の圧下率が35%となるように圧延し、板厚12mm×約700mm長の熱間圧延厚鋼板を得た。なお熱間圧延直後の温度が800℃以上の状態から200℃以下までスプレー冷却を実施した。その後、冷却された前記鋼板を加熱して1050℃×20分均熱する熱処理を行い、前記熱処理後に鋼板を水冷した。 Duplex stainless steel having the components shown in Table 1-1 and Table 1-2, except for Steel No. 24, was melted in an MgO crucible in a 50 kg vacuum induction furnace in the laboratory and cast into a flat steel ingot. The flat steel ingot was ground so that the surface of the flat steel ingot was smooth to prepare a material for hot rolling of about 100 mm. The hot-rolled material was heated to a temperature of 1180 ° C. for 1 to 2 hours and then rolled so that the reduction ratio of 1050 ° C. or lower was 35% to obtain a hot-rolled thick steel sheet having a plate thickness of 12 mm and a length of about 700 mm. The temperature immediately after hot rolling was spray-cooled from 800 ° C. or higher to 200 ° C. or lower. Then, the cooled steel sheet was heated and heat-treated to equalize the heat at 1050 ° C. for 20 minutes, and after the heat treatment, the steel sheet was water-cooled.

表1−1、表1−2のTα(℃)は、前記式(2)で定義される温度の値であり、「(3)式の値」は、前記式(3)で定義されるN量であり、「TN推定値(℃)」は、前記式(4)又は式(5)で定義される温度の値である。表1−1、表1−2に示すTN実測値は、各鋼母材のクロム窒化物析出温度の実測値であり、鋼No.24以外の各鋼母材から10mm厚の供試鋼を切り出し、前述した手順にて、前記切り出された供試鋼を均熱処理、均熱処理後の供試鋼からの析出物の抽出を行い、前記析出物中のクロム含有量が0.03%以下となる均熱処理温度のうちの最低温度を求めることにより測定した。 Tα (° C.) in Tables 1-1 and 1-2 is the temperature value defined by the above formula (2), and the “value of the formula (3)” is defined by the above formula (3). It is the amount of N, and the "TN estimated value (° C.)" is the value of the temperature defined by the above formula (4) or the formula (5). The TN measured values shown in Tables 1-1 and 1-2 are the measured values of the chromium nitride precipitation temperature of each steel base material, and the steel Nos. A 10 mm-thick test steel was cut out from each steel base material other than 24, and the cut-out test steel was subjected to soaking heat treatment and precipitation from the test steel after the soaking heat treatment was performed by the above-mentioned procedure. It was measured by determining the lowest temperature among the soaking heat treatment temperatures at which the chromium content in the precipitate was 0.03% or less.

表1−1及び表1−2において、鋼No.1〜8は、表3及び表5に示される通り、本発明例の溶接構造物No.51〜61を構成する二相ステンレス鋼母材である。 In Tables 1-1 and 1-2, steel Nos. 1 to 8 refer to the welded structure Nos. of the examples of the present invention as shown in Tables 3 and 5. It is a duplex stainless steel base material constituting 51 to 61.

鋼No.9〜25は、比較例の溶接構造物No.62〜73、81、84〜88を構成する二相ステンレス鋼母材である。鋼No.9〜17、20、21、24は、本発明の溶接構造物の鋼母材の成分組成の要件を満たさない鋼母材であり、鋼No.13、15、21はPREN値が本発明の溶接構造物の鋼母材の要件を満たさない二相ステンレス鋼母材である。鋼No.18は、N量が前記式(3)を満たさない二相ステンレス鋼母材である。鋼No.19は、フェライト量が過多となり、オーステナイト量が不十分になった二相ステンレス鋼母材である(表3、表5の溶接構造物No.73)。鋼No.22は、オーステナイト量が過多になった二相ステンレス鋼母材である(表3、表5の溶接構造物No.85)。鋼No.24は、市販品のSUS316Lで形成された12mm厚×約700mm長のステンレス鋼母材である。 Steel Nos. 9 to 25 are welded structure Nos. of Comparative Examples. It is a duplex stainless steel base material constituting 62 to 73, 81, 84 to 88. Steel No. Reference numerals 9 to 17, 20, 21, and 24 are steel base materials that do not satisfy the requirements for the composition of the steel base material of the welded structure of the present invention. Reference numerals 13, 15 and 21 are duplex stainless steel base materials whose PREN values do not meet the requirements for the steel base material of the welded structure of the present invention. Steel No. Reference numeral 18 denotes a duplex stainless steel base material in which the amount of N does not satisfy the above formula (3). Steel No. Reference numeral 19 denotes a two-phase stainless steel base material in which the amount of ferrite is excessive and the amount of austenite is insufficient (welded structure No. 73 in Tables 3 and 5). Steel No. Reference numeral 22 denotes a two-phase stainless steel base material in which the amount of austenite is excessive (welded structure No. 85 in Tables 3 and 5). Steel No. 24 is a stainless steel base material having a thickness of 12 mm and a length of about 700 mm, which is made of commercially available SUS316L.

表1−1、表1−2の鋼No.1〜25を鋼母材11a、11bとして、図1に示すように、開先角度を片側90°片側35°、ルート間隔4mmの開先を作成した。図1において、鋼母材11a及び11bは同一の鋼No.の鋼母材である。 Steel Nos. In Table 1-1 and Table 1-2. As shown in FIG. 1, a groove having a groove angle of 90 ° on one side and 35 ° on one side and a root spacing of 4 mm was prepared by using steel base materials 11a and 11b as 1 to 25. In FIG. 1, the steel base materials 11a and 11b have the same steel No. It is a steel base material of.

表2−1及び表2−2には、前記溶接構造物No.51〜88を製造するために用いられた鋼溶接用ワイヤのNo.31〜43の成分組成を示す。なお、ワイヤ径は1.2mmφである。前記溶接構造物No.51〜88は、図1に示す突き合わせ型の溶接継手1であり、これらの溶接ワイヤを用いて、表1−1、表1−2の鋼No.1〜25の鋼母材を当該鋼母材の裏面に裏当て金2を添え当てつつ突き合わせて溶接することにより製造した。溶接の条件は、表3に示す通りである。尚、ガスシールドアーク溶接(GMAW)の場合は、溶接電流:150〜200A、アーク電圧:23〜31V、溶接速度:5〜40cm/min、CO2シールドガス流量:20リットル/minの条件で、溶接継手1を作製した。また、タングステンアーク溶接(GTAW)の場合は、溶接電流:180〜220A、アーク電圧:11〜14V、溶接速度:15〜25cm/min、100%Arシールドガス流量:15リットル/minの条件で、溶接継手1を作製した。Tables 2-1 and 2-2 show the welded structure Nos. No. of steel welding wire used to manufacture 51-88. The component compositions of 31 to 43 are shown. The wire diameter is 1.2 mmφ. Welded structure No. Reference numerals 51 to 88 are butt-type welded joints 1 shown in FIG. 1, and the steel Nos. It was manufactured by welding the steel base materials 1 to 25 against each other while attaching a backing metal 2 to the back surface of the steel base material. The welding conditions are as shown in Table 3. In the case of gas shielded arc welding (GMAW), the conditions are: welding current: 150 to 200 A, arc voltage: 23 to 31 V, welding speed: 5 to 40 cm / min, and CO 2 shield gas flow rate: 20 liters / min. Welded joint 1 was manufactured. In the case of tungsten arc welding (GTAW), the welding current is 180 to 220 A, the arc voltage is 11 to 14 V, the welding speed is 15 to 25 cm / min, and the 100% Ar shield gas flow rate is 15 liters / min. Welded joint 1 was manufactured.

Figure 2020138490
Figure 2020138490

Figure 2020138490
Figure 2020138490

Figure 2020138490
Figure 2020138490

Figure 2020138490
Figure 2020138490

表3に、溶接構造物No.51〜88の製造に使用した鋼母材と溶接ワイヤの組み合わせ、溶接方法、溶接入熱量を示す。なお、表3に示す溶接方法は、GMAWがガスシールドアーク溶接、GTAWがタングステンアーク溶接を示す。 Table 3 shows the welded structure No. The combination of the steel base material and the welding wire used in the production of 51 to 88, the welding method, and the amount of heat input for welding are shown. In the welding method shown in Table 3, GMAW indicates gas shielded arc welding and GTAW indicates tungsten arc welding.

Figure 2020138490
Figure 2020138490

表4−1〜表4−3は、表3の条件により形成された溶接金属12の組成、母材希釈率、PREN及び前記式(3)で定義されるN量(質量%)(「式(3)の値」)、前記式(4)又は式(5)から推定される温度(表4の項目「TN推定値(℃)」)を示す。 Tables 4-1 to 4-3 show the composition of the weld metal 12 formed under the conditions of Table 3, the dilution ratio of the base metal, PREN, and the amount of N (mass%) defined by the above formula (3) (“Formula”. (3) value ”), the temperature estimated from the above formula (4) or the formula (5) (item“ TN estimated value (° C.) ”in Table 4) is shown.

尚、表4−1〜表4−3において、空欄は、該当する成分が添加されていないことを示す。また、下線は、本発明の溶接構造物を構成する溶接金属の組成の範囲外であることを示す。 In Tables 4-1 to 4-3, blanks indicate that the corresponding component was not added. The underline indicates that the composition of the weld metal constituting the welded structure of the present invention is outside the range.

Figure 2020138490
Figure 2020138490

Figure 2020138490
Figure 2020138490

Figure 2020138490
Figure 2020138490

溶接構造物No.62は、本発明例の溶接構造物No.61と同じ鋼母材及び鋼溶接用ワイヤを用いて製造したが、溶接時に油等が溶接部分に混入したため、溶接金属の炭素含有量が過剰になった。 Welded structure No. 62 was manufactured using the same steel base material and steel welding wire as the welded structure No. 61 of the example of the present invention, but the carbon content of the weld metal was excessive because oil and the like were mixed in the welded portion during welding. became.

また、表3に示される溶接構造物No.51〜88から、溶接熱影響部及び溶接金属を全て含むように、前記溶接熱影響部及び溶接金属近傍の鋼母材から孔食試験片を採取し、50℃の3.5%NaCl溶液中にて孔食電位の測定をJIS G0577に規定される方法に準拠して実施した。 In addition, the welded structure No. shown in Table 3 Perforated test pieces were collected from the steel base material in the vicinity of the weld heat affected zone and the weld metal so as to include all the weld heat affected zone and the weld metal from 51 to 88, and were contained in a 3.5% NaCl solution at 50 ° C. The pitting potential was measured in accordance with the method specified in JIS G0577.

更に、溶接構造物No.51〜86、No.88のそれぞれから、表層から板厚の1/4の深さにおいて、溶接継手の鋼母材、溶接熱影響部(溶接線から0.1mm外側)および溶接金属部がノッチ試験片のノッチ部分に対応するように、圧延直角方向にJIS Z 2202に規定シャルピー衝撃試験方法に基づいてVノッチ試験片を採取した。これらのVノッチ試験片のそれぞれに対して、試験温度−20℃でシャルピー衝撃試験を実施した。前記孔食電位及び前記シャルピー衝撃試験の結果を表5に示す。 Furthermore, the welded structure No. From each of 51 to 86 and No. 88, the steel base material of the welded joint, the weld heat affected zone (0.1 mm outside from the weld line) and the weld metal portion are notched at a depth of 1/4 of the plate thickness from the surface layer. A V-notch test piece was sampled in the direction perpendicular to the rolling direction according to the Charpy impact test method specified in JIS Z 2202 so as to correspond to the notch portion of the test piece. Each of these V-notch test pieces was subjected to a Charpy impact test at a test temperature of −20 ° C. The results of the pitting potential and the Charpy impact test are shown in Table 5.

また、溶接構造物No.51〜86、No.88の二相ステンレス鋼母材、溶接金属及び溶接熱影響部のそれぞれの金属組織に含有されるオーステナイト量は、前述した方法により測定した。その結果を表5に示す。溶接構造物No.51〜86、88のそれぞれの金属組織は、表5に示されたオーステナイト相面積率(%)を含み、残部がフェライトである。 In addition, the welded structure No. The amount of austenite contained in each of the two-phase stainless steel base materials of 51 to 86 and No. 88, the weld metal, and the weld heat-affected zone was measured by the method described above. The results are shown in Table 5. Welded structure No. Each of the metal structures of 51 to 86 and 88 contains the austenite phase area ratio (%) shown in Table 5, and the balance is ferrite.

表5の下線は、本発明の範囲外であることを示す。溶接構造物No.87は、市販品のSUS316Lを用いて製造されたものであり、オーステナイト相面積率及びシャルピー衝撃値の測定を省略した。 The underline in Table 5 indicates that it is outside the scope of the present invention. Welded structure No. 87 was manufactured using a commercially available product SUS316L, and the measurement of the austenite phase area ratio and the Charpy impact value was omitted.

表5から、本発明例No.51〜61は、SUS316Lと同等以上の十分な耐食性を有することが分かる。また、本発明例No.51〜61は、二相ステンレス鋼母材のシャルピー衝撃値が−20℃で100J/cm以上であり、且つ、溶接熱影響部及び溶接金属のシャルピー衝撃値が−20℃で50J/cm以上である。このように、本発明例No.51〜61は、優れた耐食性に加えて、優れた靭性を有することが分かる。From Table 5, it can be seen that Examples No. 51 to 61 of the present invention have sufficient corrosion resistance equal to or higher than that of SUS316L. Further, in Examples No. 51 to 61 of the present invention, the Charpy impact value of the duplex stainless steel base material is 100 J / cm 2 or more at −20 ° C., and the Charpy impact value of the weld heat affected zone and the weld metal is −. It is 50 J / cm 2 or more at 20 ° C. As described above, it can be seen that Examples No. 51 to 61 of the present invention have excellent toughness in addition to excellent corrosion resistance.

比較例の溶接構造物No.86は、溶接金属のPREN値が30.0未満になったために、耐食性がSUS316Lに達していない。

Figure 2020138490
In the welded structure No. 86 of the comparative example, the corrosion resistance of the welded metal does not reach SUS316L because the PREN value of the weld metal is less than 30.0.
Figure 2020138490

表6−1の製造条件にて、表1−1、表1−2の二相ステンレス鋼No.1、3、5と同一組成の熱間圧延厚鋼板(鋼母材No.1、3、5)を得た。「圧減比」は、前記式(6)で定義される値であり、「1050℃以下の圧下率」は、前記式(7)で定義される値である。「TN(℃)(実測値)」は、表1−1及び表1−2の鋼No.1〜8等の二相ステンレス鋼母材と「TN(℃)(実測値)」と同様の方法にて測定した。なお、表6−1の製造条件以外の製造条件は、表1−1及び表1−2の鋼No.1〜8等の二相ステンレス鋼母材の製造条件と同じとした。次いで、前記鋼母材No.1、3、5を用いて、表2の鋼溶接用ワイヤNo.31を用いて、表6−1に示す条件にて溶接構造物No.101〜107を製造した。溶接構造物No.101〜107の製造条件は、表6−1の製造条件を除いて、前記溶接構造物No.51〜86、No.88と同じである。 Under the manufacturing conditions shown in Table 6-1 5) was obtained. The "pressure reduction ratio" is a value defined by the above formula (6), and the "reduction rate of 1050 ° C. or lower" is a value defined by the above formula (7). "TN (° C.) (actual measurement value)" is the same as that of "TN (° C.) (actual measurement value)" with duplex stainless steel base materials such as steel Nos. 1 to 8 in Table 1-1 and Table 1-2. Measured by method. The manufacturing conditions other than the manufacturing conditions in Table 6-1 were the same as the manufacturing conditions for duplex stainless steel base materials such as Steel Nos. 1 to 8 in Tables 1-1 and 1-2. Next, using the steel base materials Nos. 1, 3, and 5, the steel welding wire Nos. Welded structures No. 101-107 were manufactured using 31 under the conditions shown in Table 6-1. The manufacturing conditions of the welded structure Nos. 101 to 107 are the same as those of the welded structure No. 101 to 107, except for the manufacturing conditions shown in Table 6-1. It is the same as 51-86 and No.88.

溶接構造物No.101〜107のそれぞれについて、前記溶接構造物No.51〜86等と同様の方法でシャルピー衝撃試験及び孔食電位の測定を実施した。その結果を表6−2に示す。尚、表6−2の下線は、本発明の範囲外であることを示す。 For each of the welded structures Nos. 101 to 107, the welded structure Nos. The Charpy impact test and the measurement of the pitting potential were carried out in the same manner as in 51-86 and the like. The results are shown in Table 6-2. The underline in Table 6-2 indicates that it is outside the scope of the present invention.

Figure 2020138490
Figure 2020138490
Figure 2020138490
Figure 2020138490

溶接構造物No.1、5は本発明の製造方法により製造されているので、シャルピー衝撃値が100J/cm超であった。これに対して、比較例のNo.2、3、6、7は、シャルピー衝撃値が100J/cm未満であり、比較例の溶接構造物No.4は、耐食性が低かった。Welded structure No. Since Nos. 1 and 5 were manufactured by the manufacturing method of the present invention, the Charpy impact value was more than 100 J / cm 2. On the other hand, No. In Nos. 2 , 3, 6 and 7, the Charpy impact value is less than 100 J / cm 2 and the welded structure No. 2 of the comparative example. No. 4 had low corrosion resistance.

本発明によれば、河川の河口付近の水門のような汽水環境においてSUS316Lと同等以上の十分な耐食性を有し、更に高強度による軽量化を図れることから、大幅なコスト削減,高効率化に寄与する事が出来、産業面、環境面に寄与するところは極めて大である。 According to the present invention, in a brackish water environment such as a sluice near the mouth of a river, it has sufficient corrosion resistance equal to or higher than that of SUS316L, and can be reduced in weight due to its high strength. It is possible to contribute, and the place that contributes to the industrial and environmental aspects is extremely large.

1 溶接継手
11a 鋼母材
11b 鋼母材
12 溶接金属12
1 Welded joint 11a Steel base material 11b Steel base material 12 Welded metal 12

Claims (6)

質量%で、
C:0.001〜0.050%、
Si:0.05〜0.80%、
Mn:0.10%〜2.00%、
Cr:21.50〜26.00%、
Ni:3.00〜7.00%、
Mo:0.50〜2.50%、
N:0.100〜0.250%、
Al:0.003〜0.050%、
を含有し、
Oは0.0060%以下、
Pは0.050%以下、
Sは0.0050%以下に制限し、
かつ下記式(1)で定義されるPREN値が28.0以上で、
残部がFeおよび不純物からなる二相ステンレス鋼母材と、
溶接金属及び熱影響部とを含む溶接部とを備える溶接構造物であって、
前記溶接金属は、
質量%で、
C:0.001〜0.060%、
Si:0.05〜0.80%、
Mn:0.10%〜3.00%、
Cr:21.50〜28.00%、
Ni:4.00〜10.00%、
Mo:1.00〜3.50%、
N:0.080〜0.250%、
Al:0.001〜0.100%、
を含有し、
Oは0.150%以下、
Pは0.050%以下、
Sは0.0200%以下に制限し、
かつ下記式(1)で定義されるPREN値が30.0以上で、
残部がFeおよび不純物からなり、
前記二相ステンレス鋼母材のオーステナイト量は30〜70面積%、前記溶接金属及び溶接熱影響部のオーステナイト量はそれぞれ15〜70面積%であって、
前記溶接部及び前記二相ステンレス鋼母材を含む孔食試験片の50℃で測定したJIS G0577 A法による孔食電位が0.30V vs SSE以上であることを特徴とする溶接構造物。
PREN=Cr+3.3Mo+16N・・・(1)
ただし、式(1)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
By mass%
C: 0.001 to 0.050%,
Si: 0.05 to 0.80%,
Mn: 0.10% to 2.00%,
Cr: 21.50 to 26.00%,
Ni: 3.00 to 7.00%,
Mo: 0.50-2.50%,
N: 0.100 to 0.250%,
Al: 0.003 to 0.050%,
Contains,
O is 0.0060% or less,
P is 0.050% or less,
S is limited to 0.0050% or less
And the PREN value defined by the following formula (1) is 28.0 or more.
Duplex stainless steel base material with the balance consisting of Fe and impurities,
A welded structure including a weld metal and a welded zone including a heat-affected zone.
The weld metal is
By mass%
C: 0.001 to 0.060%,
Si: 0.05 to 0.80%,
Mn: 0.10% to 3.00%,
Cr: 21.50 to 28.00%,
Ni: 4.00-10.00%,
Mo: 1.00 to 3.50%,
N: 0.080 to 0.250%,
Al: 0.001 to 0.100%,
Contains,
O is 0.150% or less,
P is 0.050% or less,
S is limited to 0.0200% or less,
And the PREN value defined by the following formula (1) is 30.0 or more.
The rest consists of Fe and impurities
The amount of austenite in the two-phase stainless steel base material is 30 to 70 area%, and the amount of austenite in the weld metal and the weld heat-affected zone is 15 to 70 area%, respectively.
A welded structure characterized in that the pitting potential of the welded portion and the pitting corrosion test piece containing the duplex stainless steel base material measured at 50 ° C. by the JIS G0577 A method is 0.30 V vs SSE or more.
PREN = Cr + 3.3Mo + 16N ... (1)
However, the element symbol in the formula (1) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.
前記二相ステンレス鋼母材の成分が式(2)を満たし、且つ前記二相ステンレス鋼母材及び前記溶接金属のN量が式(3)を満足し、
更に前記二相ステンレス鋼母材がNbを含有する場合、前記二相ステンレス鋼母材のクロム窒化物析出温度TNが1010℃以下であり、前記二相ステンレス鋼母材がNbを含有しない場合、前記二相ステンレス鋼母材のクロム窒化物析出温度TNが980℃以下であることを特徴とする、請求項1に記載の溶接構造物。
Tα=1455−13.6Cr+22.7Ni−11.2Mo+2.1Mn+781.8N≧1330・・・(2)
N≧(0.08Cr+0.08Mo−0.06Ni−1.21)/0.6×0.15・・・(3)
ただし、式(2)、(3)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
The components of the duplex stainless steel base material satisfy the formula (2), and the N amounts of the duplex stainless steel base material and the weld metal satisfy the formula (3).
Further, when the duplex stainless steel base material contains Nb, the chromium nitride precipitation temperature TN of the duplex stainless steel base material is 1010 ° C. or lower, and the duplex stainless steel base material does not contain Nb. The welded structure according to claim 1, wherein the duplex stainless steel base material has a chromium nitride precipitation temperature TN of 980 ° C. or lower.
Tα = 1455-13.6Cr + 22.7Ni-11.2Mo + 2.1Mn + 781.8N ≧ 1330 ... (2)
N ≧ (0.08Cr + 0.08Mo-0.06Ni-1.21) /0.6 × 0.15 ... (3)
However, the element symbol in the formulas (2) and (3) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.
クロム窒化物析出温度TNは、下記推定式(4)又は式(5)であることを特徴とする、請求項2に記載の溶接構造物。
8Cr−20Ni+30Mo+50Si−10Mn+550N+730(前記二相ステンレス鋼母材がNbを含有する場合)・・・(4)
8Cr−20Ni+30Mo+50Si−10Mn+550N+700(前記二相ステンレス鋼母材がNbを含有しない場合)・・・(5)
ただし、式(4)、(5)中における元素記号は、それぞれの元素の含有量(質量%)を示し、含有していない場合は0を代入する。
The welded structure according to claim 2, wherein the chromium nitride precipitation temperature TN is the following estimated formula (4) or formula (5).
8Cr-20Ni + 30Mo + 50Si-10Mn + 550N + 730 (when the duplex stainless steel base material contains Nb) ... (4)
8Cr-20Ni + 30Mo + 50Si-10Mn + 550N + 700 (when the duplex stainless steel base material does not contain Nb) ... (5)
However, the element symbol in the formulas (4) and (5) indicates the content (mass%) of each element, and if it is not contained, 0 is substituted.
前記二相ステンレス鋼母材及び前記溶接金属のうち少なくとも1つは、更に
Nb:0.005〜0.150%
Ti:0.003〜0.020%
Ta:0.005〜0.200%、
Zr:0.001〜0.050%
Hf:0.001〜0.080%
Sn:0.005〜0.100%、
W:0.01〜1.00%
Co:0.01〜1.00%
Cu:0.01〜3.00%
V:0.010〜0.300%
B:0.0001〜0.0050%
Ca:0.0005〜0.0050%
Mg:0.0005〜0.0050%
REM:0.005〜0.050%
のうち1種または2種以上を含有していることを特徴とする請求項1乃至3のうちいずれか1項に記載の溶接構造物。
At least one of the duplex stainless steel base metal and the weld metal further contains Nb: 0.005 to 0.150%.
Ti: 0.003 to 0.020%
Ta: 0.005 to 0.200%,
Zr: 0.001 to 0.050%
Hf: 0.001 to 0.080%
Sn: 0.005 to 0.100%,
W: 0.01 to 1.00%
Co: 0.01-1.00%
Cu: 0.01 to 3.00%
V: 0.010 to 0.300%
B: 0.0001 to 0.0050%
Ca: 0.0005 to 0.0050%
Mg: 0.0005 to 0.0050%
REM: 0.005 to 0.050%
The welded structure according to any one of claims 1 to 3, wherein the welded structure contains one or more of the two or more.
前記二相ステンレス鋼母材の組成を有する熱延用素材を、下記式(6)で示す圧減比が3.0以上、かつ下記式(7)で示す1050℃以下の圧下率が30%以上となるように熱間圧延し、TN+20℃以上1100℃以下で5分以上熱処理して、前記二相ステンレス鋼母材を製造することを特徴とする、請求項1乃至4のうちいずれか1項に記載の溶接構造物の製造方法。
熱延用素材の厚さ/二相ステンレス鋼母材の厚さ・・・(6)
(1050℃以下に到達した時の厚さ−二相ステンレス鋼母材の厚さ)/1050℃以下に到達した時の厚さ×100・・・(7)
The heat-rolling material having the composition of the duplex stainless steel base material has a reduction ratio of 3.0 or more represented by the following formula (6) and a reduction ratio of 30% at 1050 ° C or lower represented by the following formula (7). Any one of claims 1 to 4, characterized in that the duplex stainless steel base material is produced by hot rolling so as to be as described above and heat-treating at TN + 20 ° C. or higher and 1100 ° C. or lower for 5 minutes or longer. The method for manufacturing a welded structure according to the section.
Thickness of hot rolling material / thickness of duplex stainless steel base material ... (6)
(Thickness when reaching 1050 ° C or lower-thickness of duplex stainless steel base material) / Thickness when reaching 1050 ° C or lower x 100 ... (7)
前記溶接金属は、溶加棒を使用するガスシールドアーク溶接またはタングステンアーク溶接を用いて形成され、下記式(8)で定義される溶接入熱量Qが5,000J/cm以上50,000J/cm以下、下記式(9)で定義される母材希釈率Dが50%以下の溶接条件で形成されたことを特徴とする、請求項5に記載の溶接構造物の製造方法。
Q=[溶接電流(A)]×[溶接電圧(V)]÷[溶接速度(cm/s)]・・・(8)
D=[二相ステンレス鋼母材の溶融体積]/[全溶接金属体積]×100・・・(9)
The weld metal is formed by gas shielded arc welding using a filler rod or tungsten arc welding, and the welding heat input Q defined by the following formula (8) is 5,000 J / cm or more and 50,000 J / cm. The method for manufacturing a welded structure according to claim 5, wherein the base metal dilution ratio D defined by the following formula (9) is formed under welding conditions of 50% or less.
Q = [Welding current (A)] x [Welding voltage (V)] ÷ [Welding speed (cm / s)] ... (8)
D = [Melted volume of duplex stainless steel base metal] / [Total weld metal volume] x 100 ... (9)
JP2020562547A 2018-12-28 2019-12-27 Welded structure and its manufacturing method Pending JPWO2020138490A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018248459 2018-12-28
JP2018248459 2018-12-28
PCT/JP2019/051604 WO2020138490A1 (en) 2018-12-28 2019-12-27 Weld structure and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2020138490A1 true JPWO2020138490A1 (en) 2021-10-14

Family

ID=71125810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562547A Pending JPWO2020138490A1 (en) 2018-12-28 2019-12-27 Welded structure and its manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2020138490A1 (en)
KR (1) KR102520119B1 (en)
CN (1) CN113227409B (en)
WO (1) WO2020138490A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234739A1 (en) * 2020-10-23 2023-08-30 Nippon Steel Corporation Two-phase stainless steel welded joint
CN113369496B (en) * 2021-06-10 2022-08-02 天津大学 Duplex stainless steel wire material for arc additive and duplex stainless steel member
KR20230158578A (en) * 2021-06-15 2023-11-20 제이에프이 스틸 가부시키가이샤 welded structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111535A1 (en) * 2011-02-14 2012-08-23 住友金属工業株式会社 Welded duplex stainless joint
WO2012121380A1 (en) * 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
JP2017179427A (en) * 2016-03-29 2017-10-05 新日鐵住金ステンレス株式会社 Welded joint of duplex stainless steel, welding method of duplex stainless steel and manufacturing method of welded joint of duplex stainless steel
JP2019218613A (en) * 2018-06-21 2019-12-26 日鉄ステンレス株式会社 Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619500A (en) * 1969-06-04 1971-11-09 Hughes Aircraft Co Electronic image motion stabilization system
JPS5345070B2 (en) 1972-01-10 1978-12-04
JPS62267452A (en) 1986-05-15 1987-11-20 Nisshin Steel Co Ltd Two-phase stainless steel excellent in corrosion resistance in weld zone
WO1997012072A1 (en) * 1995-09-27 1997-04-03 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
JP3815227B2 (en) * 2001-01-31 2006-08-30 住友金属工業株式会社 Martensitic stainless steel welded joint with excellent strain aging resistance
JP3745722B2 (en) * 2002-10-02 2006-02-15 新日本製鐵株式会社 Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP4528089B2 (en) * 2003-10-22 2010-08-18 新日本製鐵株式会社 Large heat input butt welded joints for ship hulls with brittle fracture resistance
KR101767016B1 (en) * 2008-03-26 2017-08-09 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
CN101972903B (en) * 2010-10-08 2012-08-29 洛阳双瑞特种装备有限公司 Repair welding wire for flaws of cast two-phase stainless steel 6A
CN102319941A (en) * 2011-08-26 2012-01-18 蓬莱巨涛海洋工程重工有限公司 Welding technique for super duplex stainless steel thin-walled pipes
CN102605288B (en) * 2012-03-13 2015-03-25 宝山钢铁股份有限公司 Economical double-phase stainless steel with good welding property and manufacturing method for stainless steel
JP2014014830A (en) 2012-07-06 2014-01-30 Sumitomo Chemical Co Ltd Welding method for duplex stainless steel
CN102962562A (en) * 2012-12-03 2013-03-13 永胜机械工业(昆山)有限公司 Control method for ferrite of duplex stainless steel welded joint
JP6038093B2 (en) * 2014-10-14 2016-12-07 新日鐵住金ステンレス株式会社 Duplex stainless steel welded joint and manufacturing method thereof
JP6614785B2 (en) * 2015-03-30 2019-12-04 日鉄ステンレス株式会社 Alloy-saving duplex stainless steel laser welded member with good laser weld characteristics and manufacturing method of alloy-saving duplex stainless steel laser welded member
CN106250468B (en) 2016-07-29 2019-07-19 捷开通讯(深圳)有限公司 Storage method, back method, storage-playback and the terminal of environmental information
WO2018181990A1 (en) * 2017-03-30 2018-10-04 新日鐵住金ステンレス株式会社 Two-phase stainless steel and manufacturing method therefor
JP6782660B2 (en) 2017-03-30 2020-11-11 日鉄ステンレス株式会社 Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
CN108942097A (en) * 2018-07-16 2018-12-07 杰森能源技术有限公司 A kind of corrosion-resistant coiled tubing of high frequency induction welding high alloy and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111535A1 (en) * 2011-02-14 2012-08-23 住友金属工業株式会社 Welded duplex stainless joint
WO2012121380A1 (en) * 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
JP2017179427A (en) * 2016-03-29 2017-10-05 新日鐵住金ステンレス株式会社 Welded joint of duplex stainless steel, welding method of duplex stainless steel and manufacturing method of welded joint of duplex stainless steel
JP2019218613A (en) * 2018-06-21 2019-12-26 日鉄ステンレス株式会社 Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"アーク溶接の分類", 日鉄テクノロジー株式会社>技術分類>材料接合部の評価>溶接(溶融接合)>アーク溶接, JPN6022054764, 14 December 2022 (2022-12-14), ISSN: 0004959846 *
荒田吉明、西口公之, 溶接法の基礎, vol. 初版第6刷, JPN6022041823, 1 June 1996 (1996-06-01), pages 33 - 48, ISSN: 0004959845 *

Also Published As

Publication number Publication date
KR102520119B1 (en) 2023-04-10
WO2020138490A1 (en) 2020-07-02
CN113227409B (en) 2023-07-25
KR20210069097A (en) 2021-06-10
CN113227409A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
JP5868206B2 (en) Duplex stainless steel with excellent weld corrosion resistance
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
KR101846759B1 (en) Steel plate and method for manufacturing same
JP5013030B1 (en) Duplex stainless steel welded joint
US20100054983A1 (en) Austenitic stainless steel
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
CN110225989B (en) Duplex stainless steel clad steel and method for producing same
JP5370537B2 (en) Martensitic stainless steel for welded structures
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
KR102520119B1 (en) Welded structure and its manufacturing method
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP5170351B1 (en) Duplex stainless steel
KR101539520B1 (en) Duplex stainless steel sheet
KR20200125715A (en) Two-phase stainless steel clad steel plate and its manufacturing method
US8865060B2 (en) Austenitic stainless steel
KR20200124750A (en) Two-phase stainless steel clad steel plate and its manufacturing method
JP6421638B2 (en) Low-temperature H-section steel and its manufacturing method
CN113631732B (en) Duplex stainless steel welded joint and method for manufacturing same
JP7469707B2 (en) Duplex stainless steel welded joints
JP7119888B2 (en) Steel plate for UOE steel pipe and manufacturing method thereof
JP2833385B2 (en) Corrosion resistant austenitic Fe-based alloy
JP2022152427A (en) Duplex stainless steel forging and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230419

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230425

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230519