JP3815227B2 - Martensitic stainless steel welded joint with excellent strain aging resistance - Google Patents
Martensitic stainless steel welded joint with excellent strain aging resistance Download PDFInfo
- Publication number
- JP3815227B2 JP3815227B2 JP2001023668A JP2001023668A JP3815227B2 JP 3815227 B2 JP3815227 B2 JP 3815227B2 JP 2001023668 A JP2001023668 A JP 2001023668A JP 2001023668 A JP2001023668 A JP 2001023668A JP 3815227 B2 JP3815227 B2 JP 3815227B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- stainless steel
- strain aging
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Arc Welding In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、マルテンサイト系ステンレス鋼の溶接継手に関し、より詳しくは塑性歪みを受けた後に、常温から250℃程度までの温度域において使用して好適な耐歪み時効性に優れたマルテンサイト系ステンレス鋼溶接継手に関する。
【0002】
【従来の技術】
11〜13質量%のCrを含むCr系のステンレス鋼は、経済性に優れた耐食材料として広く用いられている。しかし、溶接構造を前提とする場合には、溶接時の加熱冷却にともなう硬いマルテンサイト組織の生成により、溶接部の靭性低下や溶接割れの発生が問題となりやすい。これらの問題に関しては、特開平11−61347号公報に示されるように、CとNの含有量を0.1質量%以下に抑える対策により解決できることが示されている。
【0003】
しかし、油井用ラインパイプ等では、敷設施工において溶接後に大きな塑性歪みを加えることがある。特に、海底ラインパイプでは、高能率に敷設するため突き合わせ円周溶接して長尺化し、コイル状に巻き取った後にコイルを船に積み、海上でコイルを解きながら海底に敷設していくリールバージと呼ばれる敷設法が多用されている。
【0004】
上記の場合、溶接継手は大きな塑性変形を受けた後、管内の高温流体により250℃まで加熱されながら長年使用される。その際には、塑性歪みと低温加熱に起因する歪み時効と呼ばれる脆化が生じる。
【0005】
しかしながら、11〜13質量%のCrを含むCr系のステンレス鋼とその溶接部での歪み時効脆化現象の防止策については、未解決となっていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、塑性歪みを受けた溶接部が250℃以下で長期使用された場合においても歪み時効脆化が生じることがない耐歪み時効性に優れたマルテンサイト系ステンレス鋼溶接継手を提供することにある。
【0007】
【課題を解決するための手段】
本発明の要旨は下記(1)、(2)の耐歪み時効性に優れたマルテンサイト系ステンレス鋼溶接継手にある。
(1)母材および溶接金属が、いずれも、質量%で、C:0.02%以下、Si:1%以下、Mn:1.5%以下、Cr:7〜14%、Ni:0.5〜9%、Ti:0〜0.3%、Mo:0〜5%、W:0〜5%、Cu:0〜5%、V:0〜0.1%、Nb:0〜0.05%、Ca:0〜0.015を含み、残部は実質的にFeからなり、不純物としてのPが0.03%以下、Sが0.01%以下、Alが0.1%以下、Nが0.07%以下で、C、NおよびTiの関係が下記式を満たし、かつ鋼中に含まれる平均粒径が10μm以上の介在物の量が1.5×105 個/m2 以下の鋼からなることを特徴とする耐歪み時効性に優れたマルテンサイト系ステンレス鋼溶接継手(第1発明)。
【0008】
N+(C/5)−(Ti/4)≦0.015
ここで、上記式中の元素記号は、母材および溶接金属の鋼中に含まれる各元素の含有量(質量%)を意味する。
(2)母材が、質量%で、C:0.02%以下、Si:1%以下、Mn:1.5%以下、Cr:7〜14%、Ni:0.5〜9%、Ti:0〜0.3%、Mo:0〜5%、W:0〜5%、Cu:0〜5%、V:0〜0.1%、Nb:0〜0.05%、Ca:0〜0.015を含み、残部は実質的にFeからなり、不純物としてのPが0.03%以下、Sが0.01%以下、Alが0.1%以下、Nが0.07%以下で、C、NおよびTiの関係が下記式を満たし、かつ鋼中に含まれる平均粒径が10μm以上の介在物の量が1.5×105 個/m2 以下の鋼であり、溶接金属が、母材および溶接熱影響部とのビッカース硬度差の絶対値が50以下の硬さで、かつオーステナイト相の面積割合が30〜80%のオーステナイト相とフェライト相のみからなる2相ステンレス鋼であることを特徴とする耐歪み時効性に優れたマルテンサイト系ステンレス鋼溶接継手(第2発明)。
【0009】
N+(C/5)−(Ti/4)≦0.015
ここで、上記式中の元素記号は、母材の鋼中に含まれる各元素の含有量(質量%)を意味する。
【0010】
なお、上記本発明にいう介在物とは、JIS G 0555に規定される試験方法において対象とされる非金属介在物のことであり、その平均粒径とは、長径と短径の平均値のことである。
【0011】
また、上記介在物量とは、JIS G 0555に規定されている点算法による顕微鏡試験方法に準拠して、100倍の顕微鏡視野でカウントすることにより測定される値とする。
【0012】
さらに、上記オーステナイト相の面積割合とは、上記と同様に、JIS G 0555に規定されている点算法による顕微鏡試験方法に準拠して、測定される値とする。
【0013】
また更に、上記本発明にいう溶接継手とは、アーク溶接、電気抵抗溶接、レーザ溶接などにより接合された部位で、母材、溶接金属および溶接熱影響部で構成される部位を指す。したがって、継目無鋼管同士の突き合わ円周溶接部位や、管長手方向に溶接接合して製造された溶接鋼管のシーム溶接部位とこの溶接鋼管同士の突き合わ円周溶接部位なども本発明にいう溶接継手の対象となる。
【0014】
本発明者等は、上記の課題を達成するために鋭意実験研究を行い、以下のことを知見し、上記の本発明を完成させた。
【0015】
(a)高Crマルテンサイト系ステンレス鋼における溶接熱影響部(以下、HAZという)、溶接金属での歪み時効は、マルテンサイトを構成するラス組織に塑性加工時に転位が多数導入され、この転位が導入されたラス組織にその後の加熱により固溶したC、Nが固着されることにより生じる。特にHAZでは、結晶粒が大きく、また急熱急冷の熱サイクルを受けるため、過飽和の固溶C、Nを含んだ組織となりやすく、そのために歪み時効による脆化が顕著となる。
【0016】
上記の現象を解析し、その防止手段を見出すために、HAZを含めた溶接部に3%の引張塑性歪みを与えた後、歪みが0%となるまで圧縮歪みを加える歪みサイクルを5回与え、その後300℃に2時間保持する時効処理を行ない、歪み時効脆化を評価するという試験を重ねた。
【0017】
その結果、質量%で、Cr:7〜14%、Ni:0.5〜9%を含むマルテンサイト系ステンレス鋼においては、C含有量を0.015%以下、N含有量を0.07%以下に抑えた上で、その合計含有量を下記(1) 式を満たす量以下に制限するか、より望ましくは下記(2) 式を満たす量のTiを積極的に添加含有させると、溶接部の歪み時効脆化が大幅に抑制されることを知見した。
【0018】
N+(C/5)≦0.015 ・・・・・・・・・・ (1)
N+(C/5)−(Ti/4)≦0.015 ・・・・ (2)
ここで、Cに比べてNの方が許容上限値が高いのは、Nの方が溶接熱サイクルによる融点直下の高温への加熱によってもTi化合物としてより安定に固定できるためである。
【0019】
ただし、上記の要件を満足させただけでは、歪み時効後の衝撃靭性が不十分であり、十分な衝撃靭性を確保するための手段を見出すために、さらに研究を重ねた結果、酸化物や硫化物などの介在物の影響を抑えることも重要であることがわかった。すなわち、大きな介在物が多く存在すると、その周囲に塑性歪みの局部的な集中が生じ、その結果、大きな介在物の周囲で歪み時効脆化が生じることが判明した。
【0020】
しかし、平均粒径が10μm以上の介在物の量を、1.5×105 個/m2以下に抑えると、介在物周辺での転位集積が実質的に生じなくなり、介在物周辺の転位集積起因による歪み時効脆化がほとんど生じなくなることを知見した。
【0021】
なお、平均粒径が10μm以上の大きな介在物の量は、鋼の化学組成に依存することはいうまでもないが、化学組成が同じでも、その大きさは鋼の鋳込み温度や凝固速度にも左右され、例えば高温で鋳込むほど大きくなりやすい傾向があるので、その大きさと量を制御することが可能である。
【0022】
(b)母材に近い化学組成のいわゆる共金系の溶接材料を使用する場合には、溶接金属についても、母材およびHAZと同じ要件を満たせば、歪み時効脆化が大幅に抑制されるとともに、十分な歪み時効後の衝撃靭性が確保されることを知見した。
【0023】
(c)一方、場合によっては、特開平9−812072号公報に示されるように、溶接後の後熱処理を省略するため、溶接のままでも硬さが母材の硬さよりも著しく高くなることがない2相ステンレス鋼を溶接金属として用いる場合がある。
【0024】
この2相ステンレス鋼を溶接金属として用いる場合でも、母材が、上記(a)に記載の2条件を満たし、溶接金属が、母材および溶接熱影響部とのビッカース硬度差の絶対値が50以下の硬さで、かつオーステナイト相の面積割合が30〜80%のオーステナイト相とフェライト相のみからなる2相ステンレス鋼であれば、上記(a)、(b)の場合と同様に、歪み時効脆化が大幅に抑制されるとともに、十分な歪み時効後の衝撃靭性が確保されることを知見した。
【0025】
ここで、上記(c)の場合に、歪み時効脆化が大幅に抑制されるとともに、十分な歪み時効後の衝撃靭性が確保されるのは、次の理由によることもわかった。
【0026】
2相ステンレス鋼は、周知のように、フェライト相とオーステナイト相の2相からなり、マルテンサイトは含まないが、強度確保の観点から高Nであることが必須となる。このため、溶接金属中のNが溶融境界を通してマルテンサイトのHAZに拡散し、過飽和に固溶されることで歪み時効脆化がより促進される。
【0027】
しかし、溶接金属のオーステナイト量が面積割合で30%以上であると、溶接金属中のNの活量が低減して溶接金属内にNが滞留するようになり、マルテンサイト組織のHAZへのNの拡散が抑制される。
【0028】
また、溶接金属の硬さが母材およびHAZの硬さよりも高い場合でも、その差がビッカース硬さで50以下、すなわち、母材および溶接熱影響部とのビッカース硬度差の絶対値が50以下の硬さであると、歪み付加時に溶融境界での塑性歪み集中が生じにくくなり、上記オーステナイト量30%以上との相乗効果によって歪み時効脆化が抑制される。
【0029】
ただし、オーステナイト率が面積割合で80%を超えると、溶接部(溶接金属)の強度が母材の強度に比べて低くなるり、継手全体の強度が実用に適さなくなる。
【0030】
【発明の実施の形態】
以下、本発明のマルテンサイト系ステンレス鋼溶接継手を前記のように規定した理由について詳細に説明する。なお、以下において、「%」は特に断らない限り「質量%」を意味する。また、各元素の説明は、母材および溶接金属ともに共通である。
【0031】
先ず、本発明になる第1発明と第2発明の溶接継手に共通な点について説明する。
【0032】
鋼の化学組成;
C:0.02%以下
C含有量が0.02%を超えると、他の添加元素の含有量にもよるが、焼入れままのマルテンサイト率(面積割合)95%以上の鋼の硬度が高くなり、ロックウエルCスケール硬度(HRc)が26を超えてカソード防食下での割れを生じる。このため、C含有量は0.02%以下とする。好ましい上限は0.015%である。なお、C含有量は低ければ低いほどよく、この場合には溶接のままでの靭性が良好となる。よって、C含有量の下限は特に定める必要はないが、過度の低減はコスト上昇を招くので、経済性の観点からは0.001%以上とするのがよい。
【0033】
Si:1%以下
Siは脱酸剤として添加されるが、その含有量が1%を超えると熱間加工性が劣化するので、1%以下とする。好ましい上限は0.7%、より好ましい上限は0.5%である。なお、下限は特に定めないが、脱酸効果を確実に得るためには0.01%以上とするのがよい。
【0034】
Mn:1.5%以下
Mnは、上記のSiと同様に、脱酸剤として添加されるが、その含有量が1.5%を超えると熱間加工性が劣化するので、1.5%以下とする。好ましい上限は1%、より好ましい上限は0.8%である。なお、下限は特に定めないが、脱酸効果を確実に得るためには0.1%以上とするのがよい。
【0035】
Cr:7〜14%
Crは、耐炭酸ガス腐食性を向上させる成分である。しかし、7%未満では十分な耐炭酸ガス腐食性が得られない。一方、14%を超えると、焼入れままでマルテンサイト率90%以上の組織を得ることが困難になる。よって、Cr含有量は7〜14%とする。好ましい範囲は8〜13%、より好ましい範囲は10〜13%である。
【0036】
Ni:0.5〜9%
Niは、溶接のままで、フェライト率(面積割合)が5%以下のマルテンサイト組織を得るためには、最低でも0.5%以上が必要である。しかし、9%を超えて過剰に含有させると、残留オーステナイト量が増加し、強度低下を招く。よって、Niは0.5〜9%とする。好ましい範囲は1〜8%、より好ましい範囲は1〜7%である
P:0.03%以下
Pは不純物成分であり、その含有量が0.03%を超えると、硫化水素環境での硫化物割れ性を高める作用が顕著に現われるので、0.03%以下とする。なお、P含有量は低ければ低いほどよい。
【0037】
S:0.01以下
Sは、上記のPと同様に、不純物成分であり、その含有量が0.01%を超えると、溶接時の高温割れ感受性、多層溶接時の再熱割れ感受性を上昇させるので、0.01%以下とする。なお、S含有量は低ければ低いほどよい。
【0038】
Al:0.1%以下
Alは、上記のSi、Mnと同様に、脱酸剤として添加されるが、その含有量が0.1%を超えると、粒径の大きな介在物量が急激に増加し、脆化しやすいので、0.1%以下とする。好ましい上限は0.06%、より好ましい上限は0.03%である。なお、下限は特に定めないが、脱酸効果を確実に得るためには0.004%以上、より好ましくは0.006%以上とするのがよい。
【0039】
Ti:0〜0.3%
Tiは添加しなくてもよい。添加すれば、C、Nを固定し、耐歪み時効性の向上に寄与するだけでなく、焼入れ焼戻し後の靭性、強度を向上させる作用を有する元素である。このため、これらの効果を得たい場合には添加してもよく、その効果は0.04%以上で顕著になる。しかし、0.3%を超えて含有させると、溶接高温割れ感受性を増大させる。よって、添加する場合のTi含有量は0.04〜0.3%とするのがよい。ただし、その含有量は、後述するように、C、Nとの関係を満足する量とする必要がある。
【0040】
Mo、W、Cu:いずれも0〜5%
これらの元素は添加しなくてもよい。添加すれば、いずれの元素も、耐歪み時効性および靭性を損なうことなく、Crとの共存下で炭酸ガス環境での局部腐食を防止するとともに、強度を向上させる作用がある。このため、これらの効果を得たい場合には1種以上を添加してもよく、その効果はいずれの元素も0.5%以上で顕著になるが、5%で耐局部腐食性の向上効果は飽和する。よって、添加する場合のこれら元素の含有量は、いずれの元素も0.5〜5%とするのがよい。
【0041】
V、Nb:それぞれ、0〜0.1%、0〜0.05%
これらの元素は添加しなくてもよい。添加すれば、いずれの元素も、耐歪み時効性および靭性を損なうことなく、強度を向上させる他、強度ばらつきを小さくする作用もある。このため、その効果を得たい場合には1種以上を添加してもよく、その効果は、Vでは0.02%以上、Nbでは0.01%以上で顕著になる。しかし、Vについては0.1%、Nbについては0.05%を超えて含有させると、かえって靭性の低下を招く。よって、添加する場合のこれら元素の含有量は、Vについては0.02〜0.1%、Nbについては0.01〜0.05%とするのがよい。
【0042】
Ca:0〜0.015%
Caは添加しなくてもよい。添加すれば、耐歪み時効性および靭性を損なうことなく、熱間加工性を向上させる作用がある。このため、その効果を得たい場合には添加してもよく、その効果は0.001%以上で顕著になるが、0.015%を超えて含有させると、耐食性の低下を招くだけでなく、溶融状態の溶接金属中の浮遊スラグ量を増加させ溶接作業性を損なう。よって、添加する場合のCa含有量は、0.001〜0.015%とするのがよい。
【0043】
C、NおよびTiの関係式:
C、NおよびTiの含有量は、上記の範囲内において、Ti無添加鋼の場合には下記の(1) 式、Ti添加鋼の場合には下記の(2) 式を満足する必要がある。
【0044】
N+(C/5)≦0.015 ・・・・・・・・・・ (1)
N+(C/5)−(Ti/4)≦0.015 ・・・・ (2)
これは、前述したように、上記の(1) 式または(2) 式を満たさない場合には、塑性加工時に転位が導入されたラス組織にその後の加熱により固溶したC、Nが固着し、過飽和の固溶C、Nを含んだ組織となって歪み時効による脆化が顕著となる。これに対し、上記の(1) 式または(2) 式を満たす場合には、過剰な固溶C、Nが存在しないか、存在する場合でもTiCまたはTiNとして固定されるために、過飽和の固溶C、Nを含んだ組織にはならず、転位が導入されたラス組織にC、Nが固着されることがなく、歪み時効による脆化が抑制される。
【0045】
介在物の大きさと量;
本発明の溶接継手を構成する母材および第1発明の溶接継手を構成する溶接金属は、鋼中に存在する平均粒径が10μm以上の介在物量が1.5×105 個/m2 以下でなければならない。これは、前述したように、平均粒径が10μm以上の介在物量が1.5×105 個/m2 を超える場合には、介在物の周囲に対する塑性歪みの局部的な集中が顕著になり、その結果、介在物の周囲で歪み時効脆化が生じるようになるからである。
【0046】
ここで、本発明にいう介在物とは、前述したように、JIS G 0555に規定される試験方法において対象とされる非金属介在物のことである。
【0047】
また、上記介在物量とは、JIS G 0555に規定されている点算法による顕微鏡試験方法に準拠して、100倍の顕微鏡視野でカウントすることにより測定される値である。
【0048】
次に、本発明になる第2発明の溶接継手について説明する。
【0049】
本発明になる第2発明の溶接継手は、溶接金属を2相ステンレス鋼としたものであるが、その2相ステンレス鋼は、オーステナイト相の面積割合が30〜80%のオーステナイト相とフェライト相のみからなる2相ステンレス鋼で、かつその硬さは母材およびHAZの硬さとのビッカース硬度差の絶対値が50以下の硬さでなければならない。
【0050】
これは、前述したように、オーステナイト相が面積割合で30%以上の場合には、溶接金属中のNの活量が減少して溶接金属内にNが滞留し、HAZへのNの拡散が抑制され、その結果として溶接部での歪み時効脆化が抑制させる。ただし、溶接金属のオーステナイト相が面積割合で80%を超えると、溶接部(溶接金属)の強度が母材の強度に比べて低くなって継手全体の強度が実用に適さなくなる。 また、その硬さが母材およびHAZの硬さとの差がある場合でも、その差の絶対値がビッカース硬さで50以下の場合には、歪み付加時に溶融境界での塑性歪み集中が生じにくくなり、両者の相乗効果によって歪み時効脆化が抑制されるようになるからである。
【0051】
ここで、上記オーステナイト相の面積割合とは、前述したように、JIS G0555に規定されている点算法による顕微鏡試験方法に準拠して、測定される値である。
【0052】
以上に説明した本発明の溶接継手は、上記の要件を満たす板材、管材をアーク溶接にて突き合わせ溶接することにより得られる。その際に用いる溶接材料は、母材に近い共金系の溶接材料または2相ステンレス鋼製の溶接材料で、本発明で規定する条件を満たす溶接金属が得られるものであればよく、その化学組成は特に制限されない。
【0053】
しかし、第1発明の溶接継手を構成する溶接金属を得るための共金系の溶接材料としては、上記本発明の溶接継手を構成する母材に近い化学組成を有するものを用いるのが好ましい。
【0054】
また、第2発明の溶接継手を構成する溶接金属である2相ステンレス鋼としては、下記の化学組成を有するものであることが好ましい。
【0055】
質量%で、Cr:22〜27%、Ni:7〜11%、Mo:1.5〜5%、Si:1%以下、Mn:2%以下、sol.Al:0.1%以下、N:0.15〜0.4%を含み、必要に応じて、2%以下のCu、3.5%以下のW、0.15%以下のTi、0.15%以下のNb、0.15%以下のZr、0.01%Caおよび0.01%以下のBのうちの1種以上を含み、残部は実質的にFeで、不純物としてのCが0.03%以下、Pが0.02%以下、Sが0.01%以下の2相ステンレス鋼。
【0056】
【実施例】
化学組成および平均粒径10μm以上の介在物量が表1に示す値の16種類のマルテンサイト系ステンレス鋼からなり、同じく表1に示す降伏強さ(YS:MPa)を有する外径168mm、厚さ12mmの鋼管を準備した。その際、代符CとPの鋼管は、同じ溶湯を分湯し、鋳込み温度を変えて鋳込むことによって平均粒径10μm以上の介在物量を異ならせた鋼を用いて製造した。
【0057】
【表1】
また、上記鋼管の母材と同一の各鋼片を線材に加工し、線径2mmの共金系溶接材料16種類を準備する一方、表2に示す化学組成を有する2種類の2相ステンレス鋼からなる線径2mmの溶接材料を準備した。
【0058】
その際、共金系溶接材料の素材である16種類の各鋼の熱間加工性を、試験温度1000℃で捻り試験をおこなって調べた結果、代符JおよびKの鋼の破断に至るまでの捻り回数は25回以上であったが、代符A〜IおよびL〜Pの鋼は15〜20回であった。
【0059】
【表2】
準備した各鋼管は、管端にV開先を加工し同じ代符の鋼管同士を突き合わせ、管を水平に固定して全姿勢にて、溶接電流130A、溶接電圧12V、溶接速度15cm/minの条件で、TIG溶接による円周溶接をおこなった。その際、準備した鋼管と溶接材料とを種々に組合せ、表3に示す化学組成を有する20種類の溶接継手を作製した。
【0060】
【表3】
得られた各溶接継手のうち、2相ステンレス鋼製の溶接材料を用いた以外の溶接継手は、650℃に5分間加熱保持する後熱処理を施した後、HAZを含む溶接部に3%の引張塑性歪み付与後、歪みが0%になるまで圧縮歪みを付与する操作を1サイクルとする歪みサイクルを5回与え、次いで、300℃に2時間加熱保持する時効処理を施し、下記の歪み時効脆化評価試験と耐食性試験に供した。
【0061】
一方、2相ステンレス鋼製の溶接材料を用いた各溶接継手は、母材のHAZ部と非HAZ部の硬度差と、溶接金属のオーステナイト率を調べる一方、溶接のままのHAZを含む溶接部に、上記と同じ条件で、歪みサイクルと時効処理を施し、下記の歪み時効脆化評価試験と耐食性試験に供した。
【0062】
歪み時効脆化評価試験:
各溶接継手から、溶融線がノッチ底に位置するJIS Z 2202に規定されるVノッチ試験片を各3個づつ採取し、試験温度−30℃でシャルピー衝撃試験をおこなってシャルピー衝撃値を調べ、3個の試験片ともにシャルピー衝撃値が100J/cm2 を上回ったものを耐歪み時効性が良好(○)、3個の試験片ともにシャルピー衝撃値が100J/cm2 を下回ったものを耐歪み時効性が不芳(×)として評価した。
【0063】
耐食性試験:
各溶接継手から、長手方向の中央部に溶接金属が位置する長さ100mm、幅20mm、厚さ2mmの試験を採取し、この試験片を温度175℃の3MPaCO2 +25質量%NaClの水溶液中に15日間浸漬し、腐食減量を調べた。
【0064】
評価は、腐食減量が0.2mm/年以下のものを優良(◎)、0.2mm/年を超え0.4mm/年以下のものを良好(○)として評価した。
【0065】
以上の結果を、表4に、2相ステンレス鋼製の溶接材料を用いた各溶接継手の母材のHAZ部と非HAZ部の硬度差と溶接金属のオーステナイト率とともに併せて示した。
【0066】
【表4】
表4からわかるように、母材および溶接金属とも、本発明で規定する条件を満たす継手代符AJ1〜AJ13の溶接継手は、いずれも、耐歪み時効特性が良好である。
【0067】
これに対し、母材および溶接金属のいずれか一方または両方が、本発明で規定する条件を満たしていない継手代符BJ1〜BJ7の溶接継手は、いずれも耐歪み時効特性が不芳である。
【0068】
具体的に説明すると、継手代符BJ1とBJ2の溶接継手は、母材のC、NおよびTiの関係が本発明で規定する式「N+(C/5)−(Ti/4)≦0.015」を満たさないため、耐歪み時効性が不芳である。
【0069】
継手代符BJ3とBJ4の溶接継手は、母材は本発明で規定する条件を満たすものの、溶接金属のC、NおよびTiの関係が本発明で規定する式「N+(C/5)−(Ti/4)≦0.015」を満たさないため、耐歪み時効性が不芳である。
【0070】
継手代符BJ5の溶接継手は、2相ステンレス鋼からなる溶接金属のオーステナイト量が少なすぎるため、耐歪み時効性が不芳である。
【0071】
継手代符BJ6の溶接継手は、2相ステンレス鋼からなる溶接金属のオーステナイト量は本発明で規定する範囲内であるが、その硬さが硬すぎるため、耐歪み時効性が不芳である。
【0072】
継手代符BJ7の溶接継手は、母材と溶接材料が同じ溶湯を分湯した鋼であるので、母材と溶接金属の化学組成は実質同じで本発明の範囲内であるが、母材の鋼中の平均粒径10μm以上の介在物量が多すぎるため、耐歪み時効性が不芳である。
【0073】
【発明の効果】
本発明の溶接継手は、塑性歪みを受けた後に時効されても脆化が生じず、耐歪み時効性に優れている。このため、例えば、突き合わせ円周溶接して長尺化され、リールバージと呼ばれる敷設法が適用される海底ラインパイプに適用して好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a martensitic stainless steel welded joint, and more specifically, martensitic stainless steel excellent in strain aging resistance suitable for use in a temperature range from room temperature to about 250 ° C. after being subjected to plastic strain. It relates to steel welded joints.
[0002]
[Prior art]
Cr-based stainless steel containing 11 to 13% by mass of Cr is widely used as a corrosion-resistant material having excellent economic efficiency. However, in the case of assuming a welded structure, the generation of a hard martensite structure accompanying heating and cooling at the time of welding tends to cause problems such as a decrease in toughness of welds and the occurrence of weld cracks. As shown in Japanese Patent Application Laid-Open No. 11-61347, it has been shown that these problems can be solved by measures for suppressing the contents of C and N to 0.1% by mass or less.
[0003]
However, in an oil well line pipe or the like, a large plastic strain may be applied after welding in laying construction. In particular, in the case of submarine line pipes, a reel barge that is butt-circumferentially welded and lengthened to lay it in a highly efficient manner, wound in a coil shape, loaded onto a ship, and laid on the sea floor while unwinding the coil at sea. The laying method called is often used.
[0004]
In the above case, the welded joint is subjected to a large plastic deformation and then used for many years while being heated to 250 ° C. by the high temperature fluid in the pipe. At that time, embrittlement called strain aging caused by plastic strain and low-temperature heating occurs.
[0005]
However, the prevention measures for the strain aging embrittlement phenomenon in Cr-based stainless steel containing 11 to 13% by mass of Cr and its welded portion have not been solved.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a martensitic stainless steel welded joint having excellent strain aging resistance that does not cause strain aging embrittlement even when a welded portion subjected to plastic strain is used for a long time at 250 ° C. or lower. There is to do.
[0007]
[Means for Solving the Problems]
The gist of the present invention resides in the following martensitic stainless steel welded joints (1) and (2) having excellent strain aging resistance.
(1) The base metal and the weld metal are all in mass%, C: 0.02% or less, Si: 1% or less, Mn: 1.5% or less, Cr: 7 to 14%, Ni: 0.00. 5-9%, Ti: 0-0.3%, Mo: 0-5%, W: 0-5%, Cu: 0-5%, V: 0-0.1%, Nb: 0-0. 05%, Ca: 0 to 0.015, with the balance being substantially Fe, P as impurities being 0.03% or less, S being 0.01% or less, Al being 0.1% or less, N Is 0.07% or less, the relationship between C, N and Ti satisfies the following formula, and the amount of inclusions having an average particle size of 10 μm or more contained in the steel is 1.5 × 10 5 pieces / m 2 or less. A martensitic stainless steel welded joint excellent in strain aging resistance, characterized by comprising the following steel (first invention).
[0008]
N + (C / 5)-(Ti / 4) ≦ 0.015
Here, the element symbol in the above formula means the content (% by mass) of each element contained in the base metal and the steel of the weld metal.
(2) Base material is mass%, C: 0.02% or less, Si: 1% or less, Mn: 1.5% or less, Cr: 7-14%, Ni: 0.5-9%, Ti : 0-0.3%, Mo: 0-5%, W: 0-5%, Cu: 0-5%, V: 0-0.1%, Nb: 0-0.05%, Ca: 0 .About.0.015 with the balance being substantially Fe, P as impurities being 0.03% or less, S being 0.01% or less, Al being 0.1% or less, and N being 0.07% or less And the relationship between C, N and Ti satisfies the following formula, and the amount of inclusions having an average particle size of 10 μm or more contained in the steel is 1.5 × 10 5 pieces / m 2 or less, and welding The austenite phase and ferrite phase in which the metal has a hardness of 50 or less in absolute value of Vickers hardness difference from the base metal and the weld heat affected zone, and the area ratio of the austenite phase is 30 to 80% Martensitic stainless steel welded joint having excellent resistance to strain aging resistance characterized in that it is a two-phase stainless steel consisting of only (second invention).
[0009]
N + (C / 5)-(Ti / 4) ≦ 0.015
Here, the element symbol in the above formula means the content (% by mass) of each element contained in the steel of the base material.
[0010]
The inclusions referred to in the present invention are non-metallic inclusions targeted in the test method defined in JIS G 0555, and the average particle diameter is the average value of the major axis and the minor axis. That is.
[0011]
Further, the amount of inclusion is a value measured by counting in a 100 × microscope field of view in accordance with a microscope test method based on a point calculation method defined in JIS G 0555.
[0012]
Furthermore, the area ratio of the austenite phase is a value measured in accordance with a microscope test method based on a point arithmetic method defined in JIS G 0555, as described above.
[0013]
Furthermore, the welded joint referred to in the present invention refers to a part joined by arc welding, electric resistance welding, laser welding, or the like, and a part composed of a base material, a weld metal, and a weld heat affected zone. Therefore, the butt circumferential welding part of seamless steel pipes, the seam welding part of the welded steel pipe manufactured by welding and joining in the longitudinal direction of the pipe, the butt circumferential welding part of the welded steel pipes, etc. are also referred to in the present invention. Subject to welded joints.
[0014]
The inventors of the present invention conducted intensive experimental research in order to achieve the above-mentioned problems, discovered the following, and completed the above-described present invention.
[0015]
(a) Weld heat-affected zone (hereinafter referred to as HAZ) in high Cr martensitic stainless steel and strain aging in weld metal are caused by many dislocations introduced into the lath structure constituting martensite during plastic working. This is caused by the fact that C and N that are solid-solved by the subsequent heating are fixed to the introduced lath structure. In particular, HAZ has large crystal grains and is subjected to a rapid and rapid thermal cycle, and therefore tends to have a structure containing supersaturated solid solution C and N. Therefore, embrittlement due to strain aging becomes remarkable.
[0016]
In order to analyze the above phenomenon and find the prevention means, after giving 3% tensile plastic strain to the weld zone including HAZ, give 5 strain cycles to apply compressive strain until the strain becomes 0%. Then, an aging treatment was performed by holding at 300 ° C. for 2 hours, and a test for evaluating strain aging embrittlement was repeated.
[0017]
As a result, in the martensitic stainless steel containing Cr: 7-14% and Ni: 0.5-9% by mass%, the C content is 0.015% or less and the N content is 0.07%. When the total content is limited to the amount that satisfies the following formula (1) or more desirably Ti is added in an amount that satisfies the following formula (2), It was found that strain aging embrittlement of the steel was greatly suppressed.
[0018]
N + (C / 5) ≦ 0.015 (1)
N + (C / 5) − (Ti / 4) ≦ 0.015 (2)
Here, N has a higher allowable upper limit value than C because N can be more stably fixed as a Ti compound by heating to a high temperature just below the melting point by a welding heat cycle.
[0019]
However, the impact toughness after strain aging is insufficient only by satisfying the above requirements, and as a result of further research to find a means to ensure sufficient impact toughness, oxides and sulfides It was also found important to suppress the influence of inclusions such as objects. That is, when there are many large inclusions, local concentration of plastic strain occurs around the inclusions, and as a result, strain aging embrittlement occurs around the large inclusions.
[0020]
However, when the amount of inclusions having an average particle size of 10 μm or more is suppressed to 1.5 × 10 5 pieces / m 2 or less, dislocation accumulation around inclusions does not substantially occur, and dislocation accumulation around inclusions occurs. It was found that strain aging embrittlement due to the cause hardly occurred.
[0021]
Needless to say, the amount of large inclusions having an average particle size of 10 μm or more depends on the chemical composition of the steel, but even if the chemical composition is the same, the size depends on the casting temperature and solidification rate of the steel. Since it tends to become larger as casting is performed at a higher temperature, for example, the size and amount can be controlled.
[0022]
(b) When using a so-called metallurgical welding material having a chemical composition close to that of the base material, strain aging embrittlement can be significantly suppressed if the weld metal satisfies the same requirements as the base material and HAZ. At the same time, it was found that sufficient impact toughness after strain aging is ensured.
[0023]
(c) On the other hand, in some cases, as shown in Japanese Patent Application Laid-Open No. 9-812072, the post heat treatment after welding is omitted, so that the hardness may be significantly higher than the hardness of the base material even in the welding state. Duplex stainless steel may be used as the weld metal.
[0024]
Even when this duplex stainless steel is used as a weld metal, the base material satisfies the two conditions described in (a) above, and the weld metal has an absolute value of 50 Vickers hardness difference between the base material and the weld heat affected zone. In the case of a duplex stainless steel having only the following hardness and an austenite phase and an austenite phase area ratio of 30 to 80% and consisting of only an austenite phase and a ferrite phase, strain aging is performed in the same manner as in the cases (a) and (b) above. It was found that embrittlement was greatly suppressed and sufficient impact toughness after strain aging was ensured.
[0025]
Here, in the case of the above (c), it was also found that the strain aging embrittlement is significantly suppressed and the sufficient impact toughness after strain aging is ensured for the following reason.
[0026]
As is well known, the duplex stainless steel is composed of two phases of a ferrite phase and an austenite phase, and does not include martensite, but it is essential that it is high N from the viewpoint of securing strength. For this reason, strain aging embrittlement is further promoted by N in the weld metal diffusing into the HAZ of martensite through the melting boundary and being dissolved in supersaturation.
[0027]
However, when the austenite amount of the weld metal is 30% or more in terms of area ratio, the activity of N in the weld metal is reduced and N stays in the weld metal, and N in the martensite structure HAZ Diffusion is suppressed.
[0028]
Even when the hardness of the weld metal is higher than the hardness of the base metal and the HAZ, the difference is 50 or less in terms of Vickers hardness, that is, the absolute value of the Vickers hardness difference between the base material and the weld heat affected zone is 50 or less. When the strain is added, it becomes difficult for the plastic strain concentration at the melting boundary to occur when strain is applied, and the strain aging embrittlement is suppressed by the synergistic effect with the austenite amount of 30% or more.
[0029]
However, if the austenite ratio exceeds 80% in terms of area ratio, the strength of the welded portion (welded metal) becomes lower than the strength of the base material, and the strength of the entire joint becomes unsuitable for practical use.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the martensitic stainless steel welded joint of the present invention is defined as described above will be described in detail. In the following, “%” means “mass%” unless otherwise specified. The description of each element is common to both the base material and the weld metal.
[0031]
First, points common to the welded joints of the first and second inventions according to the present invention will be described.
[0032]
Chemical composition of steel;
C: 0.02% or less When the C content exceeds 0.02%, depending on the content of other additive elements, the hardness of steel with a martensite ratio (area ratio) of 95% or more as-quenched is high. Thus, the Rockwell C scale hardness (HRc) exceeds 26, and cracking occurs under cathodic protection. For this reason, C content shall be 0.02% or less. A preferable upper limit is 0.015%. In addition, the lower the C content, the better. In this case, the toughness as welded becomes better. Therefore, the lower limit of the C content is not particularly required, but excessive reduction leads to an increase in cost, so 0.001% or more is preferable from the viewpoint of economy.
[0033]
Si: 1% or less Si is added as a deoxidizer, but if its content exceeds 1%, hot workability deteriorates, so 1% or less. A preferable upper limit is 0.7%, and a more preferable upper limit is 0.5%. The lower limit is not particularly defined, but is preferably 0.01% or more in order to ensure the deoxidation effect.
[0034]
Mn: 1.5% or less Mn is added as a deoxidizer in the same manner as Si, but if its content exceeds 1.5%, hot workability deteriorates, so 1.5% The following. A preferable upper limit is 1%, and a more preferable upper limit is 0.8%. The lower limit is not particularly defined, but it is preferably 0.1% or more in order to ensure the deoxidation effect.
[0035]
Cr: 7-14%
Cr is a component that improves carbon dioxide corrosion resistance. However, if it is less than 7%, sufficient carbon dioxide corrosion resistance cannot be obtained. On the other hand, if it exceeds 14%, it becomes difficult to obtain a structure with a martensite ratio of 90% or more as it is quenched. Therefore, the Cr content is 7 to 14%. A preferable range is 8 to 13%, and a more preferable range is 10 to 13%.
[0036]
Ni: 0.5-9%
In order to obtain a martensite structure having a ferrite ratio (area ratio) of 5% or less while Ni is still welded, Ni needs to be 0.5% or more at a minimum. However, if it exceeds 9% and is contained excessively, the amount of retained austenite increases and the strength is reduced. Therefore, Ni is 0.5 to 9%. A preferable range is 1 to 8%, and a more preferable range is 1 to 7%. P: 0.03% or less P is an impurity component, and when its content exceeds 0.03%, it is sulfided in a hydrogen sulfide environment. Since the effect | action which improves a thing cracking property appears notably, it is 0.03% or less. In addition, the lower the P content, the better.
[0037]
S: 0.01 or less S is an impurity component as in the case of the above P. If the content exceeds 0.01%, the hot cracking susceptibility during welding and the reheat cracking susceptibility during multilayer welding are increased. Therefore, the content is made 0.01% or less. In addition, the lower the S content, the better.
[0038]
Al: 0.1% or less Al is added as a deoxidizer in the same manner as Si and Mn, but when the content exceeds 0.1%, the amount of inclusions having a large particle size increases rapidly. However, since it tends to become brittle, the content is made 0.1% or less. A preferable upper limit is 0.06%, and a more preferable upper limit is 0.03%. The lower limit is not particularly defined, but is 0.004% or more, more preferably 0.006% or more in order to ensure the deoxidation effect.
[0039]
Ti: 0 to 0.3%
Ti may not be added. If added, it is an element that not only fixes C and N and contributes to improvement in strain aging resistance, but also has an effect of improving toughness and strength after quenching and tempering. For this reason, when it is desired to obtain these effects, it may be added, and the effect becomes remarkable at 0.04% or more. However, if the content exceeds 0.3%, the weld hot cracking susceptibility is increased. Therefore, when Ti is added, the Ti content is preferably 0.04 to 0.3%. However, as described later, the content needs to satisfy the relationship with C and N.
[0040]
Mo, W, Cu: all 0-5%
These elements need not be added. If added, any element has the effect of preventing local corrosion in a carbon dioxide environment and improving the strength in the coexistence with Cr without impairing strain aging resistance and toughness. For this reason, when it is desired to obtain these effects, one or more of them may be added. The effect of any of these elements becomes significant at 0.5% or more, but the effect of improving local corrosion resistance at 5%. Is saturated. Therefore, the content of these elements when added is preferably 0.5 to 5% for all elements.
[0041]
V and Nb: 0 to 0.1% and 0 to 0.05%, respectively
These elements need not be added. If added, any element improves the strength without impairing the strain aging resistance and toughness, and also has the effect of reducing the strength variation. For this reason, when it is desired to obtain the effect, one or more kinds may be added, and the effect becomes remarkable at 0.02% or more for V and 0.01% or more for Nb. However, if V is contained in an amount exceeding 0.1% and Nb is contained in an amount exceeding 0.05%, the toughness is reduced. Therefore, the content of these elements when added is preferably 0.02 to 0.1% for V and 0.01 to 0.05% for Nb.
[0042]
Ca: 0 to 0.015%
Ca need not be added. If added, it has the effect of improving hot workability without impairing strain aging resistance and toughness. For this reason, it may be added when it is desired to obtain the effect, and the effect becomes remarkable at 0.001% or more. However, if it is contained over 0.015%, not only the corrosion resistance is lowered, but also This increases the amount of floating slag in the molten weld metal and impairs the welding workability. Therefore, the Ca content when added is preferably 0.001 to 0.015%.
[0043]
Relational expression of C, N and Ti:
The contents of C, N and Ti must satisfy the following formula (1) in the case of Ti-free steel and the following formula (2) in the case of Ti-added steel within the above range. .
[0044]
N + (C / 5) ≦ 0.015 (1)
N + (C / 5) − (Ti / 4) ≦ 0.015 (2)
As described above, when the above formula (1) or (2) is not satisfied, C and N that are dissolved in the lath structure into which dislocations are introduced during plastic working are fixed by subsequent heating. In addition, it becomes a structure containing supersaturated solid solution C and N, and embrittlement due to strain aging becomes remarkable. On the other hand, when the above formula (1) or (2) is satisfied, excessive solid solution C or N does not exist, or even if it exists, it is fixed as TiC or TiN. The structure does not contain dissolved C and N, and C and N are not fixed to the lath structure into which dislocations are introduced, and embrittlement due to strain aging is suppressed.
[0045]
The size and amount of inclusions;
In the base metal constituting the welded joint of the present invention and the weld metal constituting the welded joint of the first invention, the amount of inclusions having an average particle size of 10 μm or more present in steel is 1.5 × 10 5 pieces / m 2 or less. Must. As described above, when the amount of inclusions having an average particle diameter of 10 μm or more exceeds 1.5 × 10 5 pieces / m 2 , the local concentration of plastic strain around the inclusions becomes remarkable. As a result, strain aging embrittlement occurs around the inclusions.
[0046]
Here, the inclusions referred to in the present invention are nonmetallic inclusions that are targeted in the test method defined in JIS G 0555, as described above.
[0047]
Further, the amount of inclusion is a value measured by counting in a 100 × microscope field of view in accordance with a microscope test method based on a point method defined in JIS G 0555.
[0048]
Next, the welded joint of the second invention according to the present invention will be described.
[0049]
The weld joint of the second invention according to the present invention is a weld metal made of duplex stainless steel, but the duplex stainless steel is composed of only an austenite phase and a ferrite phase with an austenite phase area ratio of 30 to 80%. And the hardness of the stainless steel must be such that the absolute value of the Vickers hardness difference between the base metal and the HAZ is 50 or less.
[0050]
As described above, when the austenite phase is 30% or more in the area ratio, the activity of N in the weld metal decreases, N stays in the weld metal, and N diffuses into the HAZ. As a result, the strain aging embrittlement at the weld is suppressed. However, if the austenite phase of the weld metal exceeds 80% in area ratio, the strength of the welded portion (welded metal) becomes lower than the strength of the base metal, and the strength of the entire joint becomes unsuitable for practical use. Even if the hardness is different from the hardness of the base material and HAZ, if the absolute value of the difference is 50 or less in terms of Vickers hardness, it is difficult for plastic strain concentration to occur at the melting boundary when strain is applied. This is because the strain aging embrittlement is suppressed by the synergistic effect of both.
[0051]
Here, the area ratio of the austenite phase is a value measured in accordance with the microscope test method based on the point arithmetic method defined in JIS G0555 as described above.
[0052]
The weld joint of the present invention described above can be obtained by butt welding a plate material and a pipe material that satisfy the above requirements by arc welding. The welding material used in that case may be a co-metal welding material close to the base material or a welding material made of duplex stainless steel, as long as a weld metal satisfying the conditions specified in the present invention can be obtained. The composition is not particularly limited.
[0053]
However, it is preferable to use a material having a chemical composition close to that of the base material constituting the weld joint of the present invention as a common metal welding material for obtaining the weld metal constituting the weld joint of the first invention.
[0054]
In addition, the duplex stainless steel that is a weld metal constituting the welded joint of the second invention preferably has the following chemical composition.
[0055]
In mass%, Cr: 22-27%, Ni: 7-11%, Mo: 1.5-5%, Si: 1% or less, Mn: 2% or less, sol. Al: 0.1% or less, N: 0.15 to 0.4%, 2% or less of Cu, 3.5% or less of W, 0.15% or less of Ti, 0.1% or less as necessary. 15% or less of Nb, 0.15% or less of Zr, 0.01% Ca and 0.01% or less of B and one or more of B, the balance being substantially Fe, and C as an impurity being 0 0.03% or less, P is 0.02% or less, and S is 0.01% or less duplex stainless steel.
[0056]
【Example】
It consists of 16 types of martensitic stainless steels whose chemical composition and average particle size of 10 μm or more are the values shown in Table 1, and also has an outer diameter of 168 mm and a thickness having the yield strength (YS: MPa) shown in Table 1. A 12 mm steel pipe was prepared. At that time, steel pipes of the symbols C and P were manufactured using steels in which the same molten metal was divided, and the amount of inclusions having an average particle size of 10 μm or more was varied by changing the casting temperature.
[0057]
[Table 1]
In addition, each steel slab identical to the base material of the steel pipe is processed into a wire rod to prepare 16 kinds of co-welded welding materials having a wire diameter of 2 mm, while two kinds of duplex stainless steels having the chemical composition shown in Table 2 A welding material having a wire diameter of 2 mm was prepared.
[0058]
At that time, as a result of investigating the hot workability of each of the 16 types of steels that are the materials of the common metal welding materials by performing a torsion test at a test temperature of 1000 ° C. The number of twists of the steel was 25 or more, but the steels of the symbols A to I and L to P were 15 to 20 times.
[0059]
[Table 2]
Each of the prepared steel pipes is processed with a V groove at the pipe end, the steel pipes of the same symbol are butted together, and the pipes are fixed horizontally, with a welding current of 130 A, a welding voltage of 12 V, and a welding speed of 15 cm / min. Circumferential welding by TIG welding was performed under the conditions. At that time, the prepared steel pipes and welding materials were variously combined to produce 20 types of welded joints having chemical compositions shown in Table 3.
[0060]
[Table 3]
Among the obtained welded joints, the welded joints other than those using a duplex stainless steel welding material were heated and held at 650 ° C. for 5 minutes, and then subjected to heat treatment, and then 3% of the welded joint containing HAZ After applying the tensile plastic strain, the strain aging process is performed by applying 5 times a strain cycle in which the operation of applying the compressive strain until the strain becomes 0%, and then heating and holding at 300 ° C. for 2 hours. It used for the embrittlement evaluation test and the corrosion resistance test.
[0061]
On the other hand, each welded joint using a welding material made of duplex stainless steel is examined for the hardness difference between the HAZ part and the non-HAZ part of the base metal and the austenite ratio of the weld metal, while the welded part contains the HAZ as welded. In addition, a strain cycle and an aging treatment were performed under the same conditions as described above, and subjected to the following strain aging embrittlement evaluation test and corrosion resistance test.
[0062]
Strain aging embrittlement evaluation test:
From each welded joint, three V-notch test pieces specified in JIS Z 2202 where the melting line is located at the bottom of the notch are sampled, and a Charpy impact test is conducted at a test temperature of −30 ° C. All three specimens have good resistance to strain aging when the Charpy impact value exceeds 100 J / cm 2 (○). All three specimens have strain resistance when the Charpy impact value falls below 100 J / cm 2. The aging property was evaluated as poor (×).
[0063]
Corrosion resistance test:
From each welded joint, a test having a length of 100 mm, a width of 20 mm, and a thickness of 2 mm, in which the weld metal is located in the center in the longitudinal direction, was taken, and this test piece was placed in an aqueous solution of 3 MPaCO 2 +25 mass% NaCl at a temperature of 175 ° C. It was immersed for 15 days and examined for corrosion weight loss.
[0064]
The evaluation was evaluated as excellent (◎) when the corrosion weight loss was 0.2 mm / year or less, and as good (◯) when it was more than 0.2 mm / year and not more than 0.4 mm / year.
[0065]
The above results are shown in Table 4 together with the hardness difference between the HAZ part and the non-HAZ part of the base metal of each welded joint using a duplex stainless steel welding material and the austenite ratio of the weld metal.
[0066]
[Table 4]
As can be seen from Table 4, both the base metal and the weld metal have joint strain marks AJ1 to AJ13 that satisfy the conditions defined in the present invention, and all have good strain aging resistance.
[0067]
On the other hand, any one or both of the base metal and the weld metal does not satisfy the conditions defined in the present invention.
[0068]
More specifically, in the welded joints of the joint symbols BJ1 and BJ2, the expression “N + (C / 5) − (Ti / 4) ≦ 0. Since “015” is not satisfied, strain aging resistance is poor.
[0069]
In the welded joints of the joint symbols BJ3 and BJ4, the base material satisfies the conditions defined in the present invention, but the relationship between the weld metals C, N and Ti is defined by the formula “N + (C / 5) − ( Ti / 4) ≦ 0.015 ”is not satisfied, and the strain aging resistance is poor.
[0070]
The weld joint of the joint symbol BJ5 has poor strain aging resistance because the amount of austenite of the weld metal made of duplex stainless steel is too small.
[0071]
In the welded joint of joint symbol BJ6, the amount of austenite of the weld metal made of duplex stainless steel is within the range specified in the present invention, but the hardness is too hard, so the strain aging resistance is poor.
[0072]
The weld joint of joint symbol BJ7 is a steel in which the base metal and the welding material are divided from the same molten metal. Since the amount of inclusions having an average particle size of 10 μm or more in the steel is too large, the strain aging resistance is unsatisfactory.
[0073]
【The invention's effect】
The welded joint of the present invention does not cause embrittlement even if it is aged after receiving plastic strain, and is excellent in strain aging resistance. For this reason, for example, it is suitable for application to a submarine line pipe that is elongated by butt circumference welding and to which a laying method called a reel barge is applied.
Claims (2)
N+(C/5)−(Ti/4)≦0.015
ここで、上記式中の元素記号は、母材および溶接金属の鋼中に含まれる各元素の含有量(質量%)を意味する。Both the base material and the weld metal are in mass%, C: 0.02% or less, Si: 1% or less, Mn: 1.5% or less, Cr: 7-14%, Ni: 0.5-9 %, Ti: 0 to 0.3%, Mo: 0 to 5%, W: 0 to 5%, Cu: 0 to 5%, V: 0 to 0.1%, Nb: 0 to 0.05%, Ca: 0 to 0.015, with the balance being substantially Fe, P as an impurity is 0.03% or less, S is 0.01% or less, Al is 0.1% or less, and N is 0.00. From steel with a relationship of C, N, and Ti satisfying the following formula and the amount of inclusions having an average particle size of 10 μm or more contained in the steel of 1.5 × 10 5 pieces / m 2 or less A martensitic stainless steel welded joint with excellent strain aging resistance.
N + (C / 5)-(Ti / 4) ≦ 0.015
Here, the element symbol in the above formula means the content (% by mass) of each element contained in the base metal and the steel of the weld metal.
N+(C/5)−(Ti/4)≦0.015
ここで、上記式中の元素記号は、母材の鋼中に含まれる各元素の含有量(質量%)を意味する。Base material is mass%, C: 0.02% or less, Si: 1% or less, Mn: 1.5% or less, Cr: 7-14%, Ni: 0.5-9%, Ti: 0 0.3%, Mo: 0-5%, W: 0-5%, Cu: 0-5%, V: 0-0.1%, Nb: 0-0.05%, Ca: 0-0. And the balance is substantially Fe, P as an impurity is 0.03% or less, S is 0.01% or less, Al is 0.1% or less, N is 0.07% or less, C , N and Ti satisfy the following formula, and the amount of inclusions having an average particle size of 10 μm or more contained in the steel is 1.5 × 10 5 pieces / m 2 or less, and the weld metal is: Whether the absolute value of the Vickers hardness difference between the base metal and the weld heat-affected zone is 50 or less, and the area ratio of the austenite phase is 30 to 80%. Martensitic stainless steel welded joint having excellent resistance to strain aging resistance characterized in that it is a two-phase stainless steel comprising.
N + (C / 5)-(Ti / 4) ≦ 0.015
Here, the element symbol in the above formula means the content (% by mass) of each element contained in the steel of the base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001023668A JP3815227B2 (en) | 2001-01-31 | 2001-01-31 | Martensitic stainless steel welded joint with excellent strain aging resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001023668A JP3815227B2 (en) | 2001-01-31 | 2001-01-31 | Martensitic stainless steel welded joint with excellent strain aging resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002226947A JP2002226947A (en) | 2002-08-14 |
JP3815227B2 true JP3815227B2 (en) | 2006-08-30 |
Family
ID=18888923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001023668A Expired - Fee Related JP3815227B2 (en) | 2001-01-31 | 2001-01-31 | Martensitic stainless steel welded joint with excellent strain aging resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3815227B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9284634B2 (en) | 2011-04-11 | 2016-03-15 | Nkk Tubes | Martensitic stainless steel having excellent corrosion resistance |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007321181A (en) * | 2006-05-31 | 2007-12-13 | Jfe Steel Kk | Method for forming martenstic stainless steel material welded part |
JP5408031B2 (en) * | 2010-05-17 | 2014-02-05 | 新日鐵住金株式会社 | Circumferential welded joint of high-strength steel pipe with excellent low cycle fatigue resistance and its manufacturing method |
JP5846868B2 (en) * | 2011-11-16 | 2016-01-20 | 日新製鋼株式会社 | Manufacturing method of stainless steel diffusion bonding products |
JP6036645B2 (en) * | 2013-10-31 | 2016-11-30 | Jfeスチール株式会社 | Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same |
CN113227409B (en) * | 2018-12-28 | 2023-07-25 | 日铁不锈钢株式会社 | Welded structure and method for manufacturing same |
CN110241364B (en) * | 2019-07-19 | 2021-03-26 | 东北大学 | High-strength plastic nano/submicron crystal cold-rolled 304 stainless steel strip and preparation method thereof |
WO2021015141A1 (en) * | 2019-07-24 | 2021-01-28 | 日本製鉄株式会社 | Martensitic stainless steel pipe, and method for manufacturing martensitic stainless steel pipe |
CN115287555A (en) * | 2022-02-18 | 2022-11-04 | 唐山盛航环保机车制造有限公司 | S-shaped steel for forklift attachment and rolling process |
CN115261745A (en) * | 2022-06-30 | 2022-11-01 | 河钢股份有限公司 | High-strength maraging stainless steel and preparation method thereof |
-
2001
- 2001-01-31 JP JP2001023668A patent/JP3815227B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9284634B2 (en) | 2011-04-11 | 2016-03-15 | Nkk Tubes | Martensitic stainless steel having excellent corrosion resistance |
Also Published As
Publication number | Publication date |
---|---|
JP2002226947A (en) | 2002-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3427387B2 (en) | High strength welded steel structure with excellent corrosion resistance | |
JP5088323B2 (en) | Martensitic stainless steel for welded structures | |
JP5870665B2 (en) | High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking | |
CA2867673C (en) | Process for producing welded joint, and welded joint | |
JP2010202916A (en) | Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel | |
JP3815227B2 (en) | Martensitic stainless steel welded joint with excellent strain aging resistance | |
JP4400423B2 (en) | Martensitic stainless steel pipe | |
JP5501795B2 (en) | Low-chromium stainless steel with excellent corrosion resistance in welds | |
JP2001009589A (en) | Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it | |
JP5088457B1 (en) | Welding materials and welded joints | |
JP3576472B2 (en) | Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel | |
JP5640777B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JP3303647B2 (en) | Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance | |
KR20170138505A (en) | After steel plate and welding joint | |
JP2003301241A (en) | Two-phase stainless steel for urea-producing plant, welding material, urea-producing plant and equipment therefor | |
JP2007321181A (en) | Method for forming martenstic stainless steel material welded part | |
JP3555579B2 (en) | High corrosion resistance martensitic stainless steel | |
KR102692774B1 (en) | Austenitic heat-resistant steel | |
JP2000015447A (en) | Welding method of martensitic stainless steel | |
JP4774588B2 (en) | Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint | |
JP2001140040A (en) | Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance | |
JP5870664B2 (en) | High strength welded steel pipe and manufacturing method thereof | |
JP2004230392A (en) | Welding material for martensitic stainless steel pipe and welding method therefor | |
JP3165902B2 (en) | High Cr steel welding method | |
JP2004261858A (en) | Wire for welding martensitic stainless steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040309 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060529 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3815227 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100616 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100616 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110616 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110616 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120616 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130616 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130616 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130616 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |