JPH0718328A - Manufacture of seamless steel tube having grain refining organization - Google Patents

Manufacture of seamless steel tube having grain refining organization

Info

Publication number
JPH0718328A
JPH0718328A JP16250093A JP16250093A JPH0718328A JP H0718328 A JPH0718328 A JP H0718328A JP 16250093 A JP16250093 A JP 16250093A JP 16250093 A JP16250093 A JP 16250093A JP H0718328 A JPH0718328 A JP H0718328A
Authority
JP
Japan
Prior art keywords
rolling
temperature
rolled
shell
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16250093A
Other languages
Japanese (ja)
Inventor
Akira Yagi
明 八木
Masakatsu Ueno
正勝 上野
Eizo Takeuchi
栄三 竹内
Yoshikazu Kikuchi
義和 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16250093A priority Critical patent/JPH0718328A/en
Publication of JPH0718328A publication Critical patent/JPH0718328A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a seamless steel tube having grain fining organization. CONSTITUTION:After a square steel billet is heated to a high temperature of 900 to 1050 deg.C, the billet is rolled with a press rolling mill into a round steel billet. A hollow tube stock which is pierce rolled with a successive front stage inclined rolling/mill is forcively cooled from inside surface or both of inside and outside surfaces. A uniforming treatment from Ar3 point to 1000 deg.C, and inclined rolling of 20 to 70% are applied and continuously hot rolling is performed to corrected the shape. Thus, a seamless steel tube having grain refining organization is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細粒化組織のシームレ
ス鋼管の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe having a fine grain structure.

【0002】[0002]

【従来の技術】熱延シームレス鋼管で細粒化組織のシー
ムレス鋼管を得るには、例えば特開昭52−77813
号公報のように熱延粗圧延した中空素管を、強制的に一
旦鋼の温度をAr1 点以下の温度に下げてから再度オー
ステナイト化温度に加熱し、引き続き仕上げ圧延を終了
した後直ちに焼入れし、その後焼戻しするか、あるいは
通常の仕上げ圧延終了後焼入れ焼戻しする方法がある。
2. Description of the Related Art In order to obtain a seamless steel pipe having a fine grain structure with a hot-rolled seamless steel pipe, for example, JP-A-52-77813 is used.
As described in Japanese Patent Laid-Open Publication No. H11-096, the hollow shell that has been hot-rolled and rough-rolled is forcibly cooled once to a temperature of Ar 1 point or less and then heated again to the austenitizing temperature, and then immediately quenched after finishing rolling is completed. Then, there is a method of tempering after that, or a method of quenching and tempering after completion of usual finish rolling.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような方法はいずれにおいても複数回の加熱処理を行う
ことによる熱効率上の問題のほかに、製造工程が煩雑と
なる欠点があった。一方、これまでの熱間シームレス圧
延後の直接焼入れ処理ではオーステナイト結晶粒度がA
STM No.3〜6と粗粒であり、且つばらつきが大き
いため耐SSC(応力腐食割れ)性、低温靭性等の特性
を具備した細粒化組織の低合金シームレス鋼管が得られ
ない問題があった。
However, in any of the above-mentioned methods, there is a problem in that the manufacturing process is complicated in addition to the problem of thermal efficiency caused by performing heat treatment a plurality of times. On the other hand, in the direct quenching process after the hot seamless rolling so far, the austenite grain size is A
STM No. There was a problem that a low alloy seamless steel pipe with a fine grain structure having characteristics such as SSC (stress corrosion cracking) resistance and low temperature toughness could not be obtained because the grain size was 3 to 6 and the variation was large.

【0004】[0004]

【課題を解決するための手段】本発明者らは、細粒化組
織のシームレス鋼管を製造することを目的として多くの
実験を行い検討した結果、熱間圧延条件を制御すること
により細粒化組織のシームレス鋼管が製造されることを
知見した。
Means for Solving the Problems The inventors of the present invention conducted a number of experiments for the purpose of producing a seamless steel pipe having a fine-grained structure, and as a result, examined the results of fine-graining by controlling hot rolling conditions. It was discovered that a seamless steel pipe with a structure is manufactured.

【0005】本発明は、この知見に基づいて構成したも
ので、鋼片を900〜1050℃の温度に加熱した後、
プレスロール圧延機で所定サイズの丸鋼片に圧延加工し
て引き続き前段の傾斜圧延機で穿孔圧延を施し、これら
の圧延による加工発熱で1000℃以上の高温となった
中空素管を最終段の傾斜圧延機前で素管内面から強制冷
却を施すか、もしくは素管内面からの強制冷却に加え素
管外面から緩冷却を施し、素管全体をAr3 点〜100
0℃間の温度にする均一化処理を行った後、肉厚断面減
少率で20〜70%の傾斜圧延を実施し、その後形状矯
正熱間連続圧延を行うことを特徴とする細粒化組織のシ
ームレス鋼管の製造法である。
The present invention is constructed on the basis of this finding. After heating a steel slab to a temperature of 900 to 1050 ° C.,
A round steel piece of a predetermined size is rolled by a press roll rolling machine and then pierced and rolled by an inclined rolling machine in the previous stage. Forced cooling is performed from the inner surface of the raw pipe in front of the inclined rolling mill, or gentle cooling is performed from the outer surface of the raw pipe in addition to the forced cooling from the inner face of the raw pipe, and the entire raw pipe is Ar 3 to 100 points.
After performing a homogenizing treatment at a temperature between 0 ° C., a 20 to 70% inclined rolling is performed at a wall thickness reduction rate, and a shape-correcting hot continuous rolling is then performed. Is a method for manufacturing seamless steel pipes.

【0006】[0006]

【作用】以下、本発明のシームレス圧延条件を上記のよ
うに限定した理由について説明する。転炉、電気炉等の
溶解炉であるいは更に真空脱ガス処理を経て溶製され、
連続鋳造法または造塊分塊法で角型、丸型等任意な形状
の鋼片を製造する。このようにして得られた鋼片は、直
ちにあるいは一旦冷却された後高温に加熱し熱間圧延を
行う。加熱温度は、最終段の傾斜圧延機での圧延温度を
如何に低温領域まで拡大できるかによる重要手段であ
る。すなわち、加熱温度が低くなるほど細粒γ組織から
の圧延となり、結果的に最終段の傾斜圧延後のγ粒径を
細粒にできる。
The reason for limiting the seamless rolling conditions of the present invention as described above will be described below. Molten in a melting furnace such as a converter or an electric furnace, or after further vacuum degassing treatment,
A steel piece having an arbitrary shape such as a square shape or a round shape is manufactured by the continuous casting method or the ingot-agglomeration method. The steel piece thus obtained is immediately or once cooled and then heated to a high temperature for hot rolling. The heating temperature is an important means depending on how the rolling temperature in the final stage inclined rolling mill can be expanded to a low temperature region. That is, the lower the heating temperature is, the finer grain γ structure is used for rolling, and as a result, the γ grain size after the final stage tilt rolling can be made finer.

【0007】図1はC:0.21、Si:0.21、M
n:1.02、P:0.019、S:0.004、A
l:0.025、Nb:0.015、Ti:0.02
8、B:0.0010、N:0.0040(wt%)の鋼
片の加熱温度とγ粒度の関係を示し、表1はγ粒度と再
結晶可能温度すなわち、最終段の傾斜圧延機での圧延可
FIG. 1 shows C: 0.21, Si: 0.21, M.
n: 1.02, P: 0.019, S: 0.004, A
1: 0.025, Nb: 0.015, Ti: 0.02
8, B: 0.0010, N: 0.0040 (wt%) shows the relationship between the heating temperature and the γ grain size. Table 1 shows the γ grain size and the recrystallizable temperature. Can be rolled

【表1】 温度を示す。鋼片の加熱温度を1050℃以下にすると
γ粒度約7番が達成できるがそれ以上の高温では急激な
粗大化が起こる。また、γ粒度を現状の4番から7番へ
と細粒にすることによって傾斜圧延機での圧延可能温度
は50℃低下させることができる。しかしながら、角鋼
片を丸鋼片に圧延後直ちに熱間穿孔圧延を行うためには
加熱温度は十分高くしておかねばならないが900℃以
上の温度であれば角鋼片の丸鋼片への熱間加工および熱
間穿孔加工上なんら支障が生じないので下限温度は90
0℃とし、上限温度は前記の理由により1050℃とし
た。
[Table 1] Indicates temperature. When the heating temperature of the steel slab is set to 1050 ° C. or less, the γ grain size of about 7 can be achieved, but at a higher temperature than that, rapid coarsening occurs. Further, by making the γ grain size finer from No. 4 to No. 7 at present, the rollable temperature in the inclined rolling mill can be lowered by 50 ° C. However, in order to perform hot piercing and rolling immediately after rolling the square billet into the round billet, the heating temperature must be sufficiently high, but if the temperature is 900 ° C. or higher, the hot rolling of the square billet into the round billet is performed. The lower limit temperature is 90 because there is no hindrance in processing and hot drilling.
The temperature was 0 ° C., and the upper limit temperature was 1050 ° C. for the above reason.

【0008】900〜1050℃の温度に加熱された鋼
片は、プレスロール圧延機で要求されるサイズの鋼管に
対応して所定サイズの丸鋼片に圧延加工し、引き続く前
段の傾斜圧延機で穿孔圧延を施す。圧延後の鋼片および
中空素管は圧延による加工発熱で1000℃以上の高温
度となり、このままの状態で最終段の傾斜圧延機を行う
と圧延後のγ粒径は粗粒且つばらつきが大きくなる。し
たがって、最終段の傾斜圧延機前で所要のγ粒径を得る
ためには素管温度を低下させると同時に、素管全体を均
一温度にしなければならない。最終段の傾斜圧延機を行
った後の素管肉厚方向のγ粒度と圧延温度を図2に示
す。素管内の温度範囲が100℃以下、望ましくは50
℃以内に制御すると素管肉厚方向でγ粒度差がなくなり
整粒γ状態となる。整粒γの粒度は、温度レベルで異な
り低温度ほど細粒となる。今日の油井開発環境の過酷さ
特に耐SSC性と極低温での使用を鑑みると、γ粒度は
8番以上は必要でありこの点から最終段の傾斜圧延機前
温度をAr3 点〜1000℃間にする必要がある。ま
た、強制冷却は、外表側に比べて温度が高い内表面側を
強制的に冷却しなければ素管内の温度の均一化は達成で
きない。冷却は、水単独あるいはミスト、圧縮空気のい
ずれでもよい。
The steel slab heated to a temperature of 900 to 1050 ° C. is rolled into a round steel slab of a predetermined size corresponding to the steel pipe of the size required by the press roll rolling machine, and then the inclined rolling machine of the preceding stage. Perform piercing and rolling. The steel billet and the hollow shell after rolling are heated to a high temperature of 1000 ° C or higher due to the heat generated by rolling, and if the final stage of the inclined rolling mill is used in this state, the γ grain size after rolling becomes coarse and has large variations. . Therefore, in order to obtain the required γ grain size before the final stage of the inclined rolling mill, it is necessary to reduce the temperature of the raw pipe and at the same time make the entire raw pipe a uniform temperature. FIG. 2 shows the γ grain size in the thickness direction of the raw pipe and the rolling temperature after the final stage tilt rolling mill was performed. The temperature range within the tube is 100 ° C or less, preferably 50
If the temperature is controlled to within ℃, there will be no difference in γ particle size in the direction of wall thickness of the raw tube, and a sized γ state will be obtained. The particle size of the sized γ varies depending on the temperature level, and becomes finer at lower temperatures. In view of the use in severity, especially SSC resistance and cryogenic today oil well development environment, gamma grain size number 8 or more is required to tilt rolling mill before the temperature of the final stage Ar 3 point to 1000 ° C. From this point You need to be in between. Further, in the forced cooling, it is impossible to make the temperature uniform in the raw pipe unless the inner surface side, which has a higher temperature than the outer surface side, is forcibly cooled. The cooling may be water alone, mist, or compressed air.

【0009】素管内の温度の均一化後、最終段の傾斜圧
延機により延伸圧延を行うが傾斜圧延では再結晶は大部
分動的に起こるので、結晶粒度は加工量によらない。し
かし、再結晶する臨界ひずみは超えている必要がある。
圧下率は、再結晶が圧延終了後にも静的に起こることを
考慮して下限を20%とした。一方、圧下率が余り大き
すぎると、圧延が困難になりパイプの成形性や表面品位
の低下が起こるため、上限を70%とした。最終段の傾
斜圧延により微細化された該素管は圧延終了後、形状矯
正連続圧延を行う。圧延温度は、特に限定しないが成形
性からオーステナイト域温度以上が望ましい。以上の製
造条件で得られるγ粒度のばらつきがなく、細粒化組織
のシームレス鋼管の製造に有効である。
After the temperature in the tube is made uniform, stretch rolling is carried out by a final-stage tilt rolling machine. In tilt rolling, recrystallization mostly occurs dynamically, so that the grain size does not depend on the processing amount. However, the critical strain for recrystallization needs to be exceeded.
The lower limit of the rolling reduction was set to 20% in consideration of the fact that recrystallization statically occurs even after the rolling is completed. On the other hand, if the reduction ratio is too large, rolling becomes difficult and the formability and surface quality of the pipe deteriorate, so the upper limit was made 70%. After the completion of rolling, the element pipe refined by the final stage of tilt rolling is subjected to shape-correction continuous rolling. Although the rolling temperature is not particularly limited, it is desirable that it is not lower than the austenite range temperature from the viewpoint of formability. There is no variation in γ grain size obtained under the above production conditions, and it is effective for producing a seamless steel pipe having a fine-grained structure.

【0010】[0010]

【実施例】次に本発明の実施例について説明する。表2
に転炉で溶製し連続鋳造を経て製造された鋼成分:0.
2C−0.2Si−1.0Mn−0.2Mo−0.01
5Ti−0.015Nb−0.0010B−0.004
0N(wt%)、残部実質的にFeよりなる鋼片を熱間シ
ームレス圧延を行った鋼管のγ粒度を示す。この際、加
熱温度を1000℃とし、最終段の傾斜圧延機前素管温
度範囲を1000〜1100℃とした。
EXAMPLES Next, examples of the present invention will be described. Table 2
Steel composition produced by melting in a converter and continuous casting: 0.
2C-0.2Si-1.0Mn-0.2Mo-0.01
5Ti-0.015Nb-0.0010B-0.004
The γ grain size of a steel pipe obtained by hot-seam rolling a steel slab of 0 N (wt%) and the balance substantially Fe is shown. At this time, the heating temperature was set to 1000 ° C., and the temperature range of the raw material pipe before the final stage inclined rolling mill was set to 1000 to 1100 ° C.

【0011】[0011]

【表2】 [Table 2]

【0012】本発明によって製造された鋼管は、比較材
に比べてγ粒度は微細且つ整粒であることがわかる。
It can be seen that the steel pipe produced according to the present invention has a fine γ grain size and a controlled grain size as compared with the comparative material.

【0013】[0013]

【発明の効果】上記のような本発明法によって製造され
た鋼管は、細粒であるため耐サワーに優れ、極北の寒冷
地において使用される。
The steel pipe produced by the method of the present invention as described above is fine-grained and thus has excellent sour resistance and is used in cold regions in the far north.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱温度とγ粒度の関係を示す。FIG. 1 shows the relationship between heating temperature and γ particle size.

【図2】最終段の傾斜圧延機後の素管肉厚方向のγ粒度
を示す。
FIG. 2 shows the γ grain size in the thickness direction of the raw pipe after the final stage of the inclined rolling mill.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊池 義和 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshikazu Kikuchi Inventor, 1-1 Hibahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corp. Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼片を900〜1050℃の温度に加熱
した後、プレスロール圧延機で所定サイズの丸鋼片に圧
延加工して、引き続き前段の傾斜圧延機で穿孔圧延を施
し、これらの圧延による加工発熱で1000℃以上の高
温となった中空素管を、最終段の傾斜圧延機前で素管内
面から強制冷却を施して素管全体をAr3 点〜1000
℃間の温度にする均一化処理を行った後、肉厚断面減少
率で20〜70%の傾斜圧延を実施し、その後形状矯正
熱間連続圧延を行うことを特徴とする細粒化組織のシー
ムレス鋼管の製造法。
1. A steel slab is heated to a temperature of 900 to 1050 ° C., then rolled into a round steel slab of a predetermined size by a press roll rolling machine, and subsequently pierced and rolled by an inclined rolling machine in the preceding stage. The hollow shell that has reached a temperature of 1000 ° C. or higher due to the heat generated by processing during rolling is forcibly cooled from the inner surface of the shell before the final stage of the inclined rolling mill, and the entire shell is set to Ar 3 to 1000 points.
After performing homogenization treatment at a temperature between ℃, 20 ~ 70% of the thickness reduction cross-sectional inclination rolling is carried out, and then shape-correcting hot continuous rolling is carried out. Seamless steel pipe manufacturing method.
【請求項2】 鋼片を900〜1050℃の温度に加熱
した後、プレスロール圧延機で丸鋼片に圧延して引き続
き前段の傾斜圧延機で穿孔圧延を施し、これらの圧延に
よる加工発熱で1000℃以上の高温となった中空素管
を、最終段の傾斜圧延機前で素管内面から強制冷却更に
は素管外面から緩冷却を施して素管全体をAr3 点〜1
000℃間の温度にする均一化処理を行った後、肉厚断
面減少率で20〜70%の傾斜圧延を実施し、その後形
状矯正熱間連続圧延を行うことを特徴とする細粒化組織
のシームレス鋼管の製造法。
2. A steel slab is heated to a temperature of 900 to 1050 ° C., rolled into a round steel slab by a press roll rolling machine, and subsequently pierced and rolled by an inclined mill in the preceding stage. The hollow shell that has reached a temperature of 1000 ° C. or higher is subjected to forced cooling from the inner surface of the shell in front of the final stage of the inclined rolling mill and further to slow cooling from the outer surface of the shell, so that the entire shell is Ar 3 to 1 points.
After performing a homogenizing treatment at a temperature between 000 ° C., an inclined rolling of 20 to 70% is performed at a wall thickness reduction rate, and then a shape-correcting hot continuous rolling is performed, which is a fine-grained structure. Seamless steel pipe manufacturing method.
JP16250093A 1993-06-30 1993-06-30 Manufacture of seamless steel tube having grain refining organization Withdrawn JPH0718328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16250093A JPH0718328A (en) 1993-06-30 1993-06-30 Manufacture of seamless steel tube having grain refining organization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16250093A JPH0718328A (en) 1993-06-30 1993-06-30 Manufacture of seamless steel tube having grain refining organization

Publications (1)

Publication Number Publication Date
JPH0718328A true JPH0718328A (en) 1995-01-20

Family

ID=15755807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16250093A Withdrawn JPH0718328A (en) 1993-06-30 1993-06-30 Manufacture of seamless steel tube having grain refining organization

Country Status (1)

Country Link
JP (1) JPH0718328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419868A (en) * 2013-09-05 2015-03-18 鞍钢股份有限公司 P110 externally-thickened oil well tube and manufacturing method thereof
CN104438336A (en) * 2014-12-06 2015-03-25 常熟市东鑫钢管有限公司 Rolling method for 35CrMo ultra-thick wall seamless steel pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419868A (en) * 2013-09-05 2015-03-18 鞍钢股份有限公司 P110 externally-thickened oil well tube and manufacturing method thereof
CN104438336A (en) * 2014-12-06 2015-03-25 常熟市东鑫钢管有限公司 Rolling method for 35CrMo ultra-thick wall seamless steel pipe

Similar Documents

Publication Publication Date Title
US5938865A (en) Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
EP2006396B1 (en) Process for production of seamless pipes
JPH08311551A (en) Production of high strength seamless steel pipe excellent in sulfide stress cracking resistance
JPH09235617A (en) Production of seamless steel tube
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH0718328A (en) Manufacture of seamless steel tube having grain refining organization
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JPH11302785A (en) Steel for seamless steel pipe
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH09287029A (en) Production of high strength seamless steel pipe excellent in toughness
JP3059993B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JPH0959719A (en) Production of seamless steel tube with high strength and high corrosion resistance
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JPH0959718A (en) Production of seamless steel tube with high strength and high corrosion resistance
JP3120927B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3145515B2 (en) Manufacturing method of low yield ratio high toughness seamless steel pipe
JPH06172855A (en) Production of seamless steel tube with low yield ratio and high toughness
JPH0547603B2 (en)
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JPH0678571B2 (en) Stainless steel seamless pipe manufacturing method
JP3429156B2 (en) Manufacturing method of seamless steel pipe for building with excellent fire resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905