JP3059993B2 - Manufacturing method of low alloy seamless steel pipe with fine grain structure - Google Patents

Manufacturing method of low alloy seamless steel pipe with fine grain structure

Info

Publication number
JP3059993B2
JP3059993B2 JP5180470A JP18047093A JP3059993B2 JP 3059993 B2 JP3059993 B2 JP 3059993B2 JP 5180470 A JP5180470 A JP 5180470A JP 18047093 A JP18047093 A JP 18047093A JP 3059993 B2 JP3059993 B2 JP 3059993B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
point
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5180470A
Other languages
Japanese (ja)
Other versions
JPH0734126A (en
Inventor
明 八木
正勝 上野
安典 田野
義和 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5180470A priority Critical patent/JP3059993B2/en
Publication of JPH0734126A publication Critical patent/JPH0734126A/en
Application granted granted Critical
Publication of JP3059993B2 publication Critical patent/JP3059993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、細粒化組織の低合金シ
ームレス鋼管の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low alloy seamless steel pipe having a fine grain structure.

【0002】[0002]

【従来の技術】熱延シームレス鋼管で細粒化組織の低合
金シームレス鋼管を得るには、例えば特開昭52−77
813号公報のように熱延粗圧延した中空素管を強制的
に一旦鋼の温度をAr1 点以下に下げてから再度オース
テナイト化温度に加熱し、引き続き行う仕上げ圧延を終
了した後直ちに焼入れ焼戻しするか、或いは通常の仕上
げ圧延終了後焼入れ焼戻しする方法があった。
2. Description of the Related Art To obtain a low alloy seamless steel pipe having a grain refined structure from a hot-rolled seamless steel pipe, for example, Japanese Patent Application Laid-Open No. 52-77 / 1982
As described in Japanese Patent Publication No. 813, the hollow shell which has been hot-rolled and roughly rolled is forcibly once lowered the temperature of the steel to one point or less of Ar, then heated again to the austenitizing temperature, and quenched and tempered immediately after finishing the subsequent finish rolling. Or quenching and tempering after normal finish rolling.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような方法はいずれにおいても熱効率上の問題のほかに
製造工程が煩雑となる欠点があった。一方、これまでの
熱間シームレス圧延後の直接焼入れ処理ではオーステナ
イト結晶粒度がASTM No.1〜6と粗粒であり且つ
ばらつきが大きいため細粒化組織の低合金シームレス鋼
管が得られない問題があった。
However, any of the above-mentioned methods has a drawback that the manufacturing process is complicated in addition to the problem of thermal efficiency. On the other hand, in the conventional direct quenching treatment after hot seamless rolling, the austenite grain size is ASTM No. There was a problem that a low alloy seamless steel pipe having a grain refined structure could not be obtained because of coarse grains of 1 to 6 and large variations.

【0004】[0004]

【課題を解決するための手段】本発明者らは、細粒化組
織の低合金シームレス鋼管さらには耐硫化物応力割れ性
(以下、耐SSC性と記す。)の優れたシームレス鋼管
或いは高靭性シームレス鋼管を製造することを目的とし
て多くの実験を行い検討した結果、鋼成分、熱間圧延条
件を制御することにより細粒化組織の低合金シームレス
鋼管が製造されることを知見した。
Means for Solving the Problems The present inventors have developed a low alloy seamless steel pipe having a grain refined structure and a seamless steel pipe excellent in sulfide stress cracking resistance (hereinafter referred to as SSC resistance) or high toughness. As a result of conducting many experiments for the purpose of manufacturing a seamless steel pipe, it was found that a low-alloy seamless steel pipe having a refined grain structure can be manufactured by controlling the steel composition and hot rolling conditions.

【0005】本発明は、この知見に基づいて構成したも
ので、その要旨は、重量%としてC :0.03〜0.
35%、 Si:0.01〜0.5%、Mn:0.15
〜2.5%、 P :0.020%以下、S :0.
010%以下、 Al:0.005〜0.1%、T
i:0.005〜0.1%、 Nb:0.005〜0.
1%、N :0.01%以下を含有し、さらに必要に応
じてCr:0.1〜1.5%、 Mo:0.05〜
0.5%、Ni:0.1〜2.0%、 V :0.
01〜0.1%、B :0.0003〜0.0030%
の1種または2種以上と、或いは、さらに必要に応じて
希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、Co:0.05〜0.5%、 C
u:0.1〜0.5%の1種または2種以上を含有して
残部が実質的にFeからなる鋼片を1000〜1250
℃に加熱した後熱間穿孔圧延を施し、この圧延の加工発
熱で1000℃以上になった中空素管を最終段の傾斜圧
延機前で素管内面から強制冷却し、素管全体をAr3
〜1100℃間の温度にする均一化処理を行った後、肉
厚断面減少率で20〜70%の傾斜圧延を施し、さらに
形状矯正熱間連続圧延を行った後、Ar3 点〜900℃
の温度まで降下した中空素管を、該温度より高いAr3
点+50℃〜1000℃に再加熱後、仕上げ温度がAr
3 点+50℃以上の熱間仕上げ圧延を施すか、或いは該
素管がAr3 点+50℃以上の十分高い温度が確保され
た場合は再加熱することなく仕上げ温度がAr3 点+5
0℃以上の熱間仕上げ圧延を施し、その後Ar3 点以上
の温度から急冷する焼入れ処理を施した後、続いてAc
1 点以下の温度に加熱して冷却する焼戻し処理を行う細
粒化組織の低合金シームレス鋼管の製造法である。
The present invention has been made on the basis of this finding, and the gist of the invention is that C: 0.03-0.
35%, Si: 0.01 to 0.5%, Mn: 0.15
~ 2.5%, P: 0.020% or less, S: 0.
010% or less, Al: 0.005 to 0.1%, T
i: 0.005 to 0.1%, Nb: 0.005 to 0.
1%, N: 0.01% or less, Cr: 0.1-1.5%, Mo: 0.05-
0.5%, Ni: 0.1 to 2.0%, V: 0.
01-0.1%, B: 0.0003-0.0030%
Or one or more of the above, or if necessary, a rare earth element: 0.001 to 0.05%, Ca: 0.00
1-0.02%, Co: 0.05-0.5%, C
u: a steel slab containing 0.1 to 0.5% of one or more kinds and the balance substantially consisting of Fe is 1000 to 1250
° C and then subjected to hot piercing and rolling. The hollow shell, which was heated to 1000 ° C or higher due to the heat generated by the rolling, was forcibly cooled from the inner surface of the shell in front of the final inclined rolling mill, and the whole shell was Ar 3 After performing a homogenization treatment at a temperature between the point and 1100 ° C., performing an inclined rolling at a reduction rate of 20 to 70% in thickness cross section, and further performing a shape correcting hot continuous rolling, and then performing an Ar 3 point to 900 ° C
The hollow shell was lowered to a temperature higher than the temperature Ar 3
After reheating to the point + 50 ° C. to 1000 ° C., the finishing temperature is Ar
Either hot finish rolling at 3 points + 50 ° C. or more is performed, or when the raw tube is maintained at a sufficiently high temperature of Ar 3 points + 50 ° C. or more, the finishing temperature is Ar 3 points + 5 without reheating.
After hot finish rolling at 0 ° C. or higher, and then quenching treatment for quenching from a temperature of Ar 3 points or higher, then Ac
This is a method for manufacturing a low-alloy seamless steel pipe having a grain refined structure that performs a tempering process of heating and cooling to a temperature of one point or less.

【0006】[0006]

【作用】以下本発明の製造法について詳細に説明する。
先ず、本発明において上記のような鋼成分に限定した理
由について説明する。C,Mnは、焼入れ効果を増して
強度を高め降伏点40〜80kgf/mm2 の高張力鋼を安定
して得るためおよび細粒化を図るため重要である。少な
過ぎるとその効果がなく、多過ぎると焼割れの誘発およ
び高硬度化し耐SSC性の低下をきたすためそれぞれ
0.03〜0.35%、0.15〜2.5%とした。S
iは、脱酸剤が残存したもので強度を高める有効な成分
である。少な過ぎるとその効果がなく、多過ぎると介在
物を増加して耐SSC性を低下させるため0.01〜
0.5%とした。Pは、粒界偏析を起こして加工の際き
裂を生じ易く有害な成分であり、また低温靭性の劣化を
きたすためその含有量を0.020%以下とした。S
は、MnS系介在物を形成して熱間連続圧延で延伸し層
状組織を形成し、鋼の破壊伝播性能を改善する。少な過
ぎるとその効果がなく、多過ぎると介在物を増加して鋼
の性質を脆化するため0.01%とした。Alは、Si
と同様脱酸剤が残存したもので、鋼中の不純物成分とし
て含まれるNと結合して結晶粒の成長を抑えて鋼の破壊
伝播性能を改善する。少な過ぎるとその効果がなく、多
過ぎると介在物を増加して鋼の性質を脆化するため0.
005〜0.1%とした。
The production method of the present invention will be described below in detail.
First, the reason why the present invention is limited to the above steel components will be described. C and Mn are important for increasing the quenching effect, increasing the strength, stably obtaining a high-tensile steel having a yield point of 40 to 80 kgf / mm 2 , and reducing the grain size. If the amount is too small, the effect is not obtained, and if the amount is too large, quenching cracks are induced and the hardness is increased, and the SSC resistance is lowered. Therefore, the content is set to 0.03 to 0.35% and 0.15 to 2.5%, respectively. S
i is an effective component for increasing the strength with the deoxidizing agent remaining. When the amount is too small, the effect is not obtained. When the amount is too large, the number of inclusions is increased and the SSC resistance is reduced.
0.5%. P is a harmful component that easily causes cracks during processing due to grain boundary segregation, and its content is set to 0.020% or less because it causes deterioration of low-temperature toughness. S
Forms a layered structure by forming MnS-based inclusions and stretching by continuous hot rolling to improve the fracture propagation performance of steel. If the amount is too small, the effect is not obtained, and if the amount is too large, inclusions increase and the properties of the steel become brittle, so that the content is set to 0.01%. Al is Si
In the same manner as described above, the deoxidizing agent remains and combines with N contained as an impurity component in steel to suppress the growth of crystal grains and improve the fracture propagation performance of steel. If the amount is too small, the effect is not obtained. If the amount is too large, inclusions increase to embrittle the properties of the steel.
005 to 0.1%.

【0007】Ti,Nbは、いずれもシームレス圧延中
の結晶粒径制御元素として本発明の成分の中で最も重要
な元素である。Tiは、鋼中の不純物成分として含まれ
るNと結合して、熱間圧延中の結晶粒制御および熱間圧
延後の結晶粒の成長を抑え鋼の破壊伝播性能を改善する
と共に、脱酸、脱窒の作用から後述のBの焼入れ性を発
揮させ強度を高める。少な過ぎるとその効果がなく、多
過ぎるとTiCを析出して鋼を脆化させるため0.00
5〜0.1%とした。一方、Nbは傾斜圧延中の結晶粒
成長抑制および連続圧延後温度降下した該素管を該温度
より高いAr3点〜1000℃に加熱した場合のγ粒の
異常粗大化を抑制する重要な元素である。少な過ぎると
その効果がなく、多過ぎてもその効果が飽和し、しかも
非常に高価であるため0.005〜0.1%とした。N
は、後述のBの焼入れ性を低下させる有害な成分として
その含有量を0.01%以下とした。上記の成分組成の
鋼でさらに鋼の強度を高める場合Cr等の成分を必要に
応じて選択的に添加する。
[0007] Both Ti and Nb are the most important elements among the components of the present invention as crystal grain size controlling elements during seamless rolling. Ti combines with N contained as an impurity component in steel to control the crystal grains during hot rolling and suppress the growth of crystal grains after hot rolling, improve the fracture propagation performance of the steel, deoxidize, Due to the action of denitrification, quenching properties of B described below are exhibited to increase the strength. If the amount is too small, the effect is not obtained. If the amount is too large, TiC is precipitated and the steel is embrittled.
It was set to 5 to 0.1%. On the other hand, Nb is an important element for suppressing the growth of crystal grains during inclined rolling and for suppressing the abnormal coarsening of γ grains when the pipe, whose temperature has been lowered after continuous rolling, is heated to an Ar 3 point to 1000 ° C. higher than the temperature. It is. If the amount is too small, the effect is not obtained, and if the amount is too large, the effect is saturated and the cost is extremely high. N
Has a content of 0.01% or less as a harmful component that lowers the hardenability of B described later. In the case of further increasing the strength of the steel having the above composition, components such as Cr are selectively added as necessary.

【0008】Cr,Mo,Ni,Vは、鋼の焼入れ性を
増して、強度を高めるために添加するものである。少な
過ぎるとその効果がなく、多過ぎてもその効果が飽和
し、しかも非常に高価であるため、それぞれ0.1〜
1.5%、0.05〜0.5%、0.1〜2.0%、
0.01〜0.1%とした。Bは、焼入れ性を著しく向
上せしめて強度を高める。少な過ぎるとその効果がな
く、多過ぎても効果は変わらず、靭性や熱間加工性を劣
化させるので0.0003〜0.0030%とした。
[0008] Cr, Mo, Ni, V are added to increase the hardenability of steel and to increase the strength. If the amount is too small, the effect is not obtained. If the amount is too large, the effect saturates and is very expensive.
1.5%, 0.05-0.5%, 0.1-2.0%,
It was set to 0.01 to 0.1%. B remarkably improves the hardenability and increases the strength. If the amount is too small, the effect is not obtained, and if the amount is too large, the effect does not change, and the toughness and the hot workability are deteriorated.

【0009】さらに本発明は、近年のシームレス鋼管の
使用環境を鑑み上記の成分組成で構成される鋼の耐SS
C性を改善するために希土類元素等の成分を必要に応じ
て選択的に添加する。希土類元素、Caは、介在物の形
態を球状化させて無害化する有効な成分である。少な過
ぎるとその効果がなく、多過ぎると介在物を増加して耐
SSC性を低下させるのでそれぞれ0.001〜0.0
5%、0.001〜0.02%とした。Co,Cuは、
鋼中への水素侵入抑制効果があり耐SSC性に有効に働
く。少な過ぎるとその効果がなく、多過ぎるとその効果
が飽和するためそれぞれ0.05〜0.5%、0.1〜
0.5%とした。
Further, the present invention has been developed in view of the use environment of seamless steel pipes in recent years.
In order to improve the C property, a component such as a rare earth element is selectively added as needed. The rare earth element, Ca, is an effective component that makes the form of inclusions spherical and harmless. If the amount is too small, the effect is not obtained. If the amount is too large, the number of inclusions increases and the SSC resistance is lowered.
5%, 0.001 to 0.02%. Co and Cu are
It has the effect of suppressing hydrogen intrusion into steel and works effectively on SSC resistance. If the amount is too small, the effect is not obtained. If the amount is too large, the effect is saturated.
0.5%.

【0010】次に熱間シームレス圧延条件を上記のよう
に限定した理由について説明する。上記のような成分組
成の鋼は転炉、電気炉等の溶解炉で或いはさらに真空脱
ガス処理を経て溶製され、連続鋳造法または造塊分塊法
で鋼片を製造する。鋼片は、直ちに或いは一旦冷却され
た後高温に加熱し熱間穿孔圧延を行う。加熱温度は、熱
間穿孔圧延を容易にするため十分高くしておかねばなら
ないと同時に細粒オーステナイト組織を得る観点からは
極力低い方が望ましい。本発明の成分範囲内であれば1
000℃以上の温度で熱間穿孔加工上なんら支障が生じ
ずまた細粒化の観点から1250℃以上では粗粒となる
ため、その温度は1000〜1250℃とした。
Next, the reason why the hot seamless rolling conditions are limited as described above will be described. The steel having the above composition is melted in a melting furnace such as a converter or an electric furnace or further subjected to a vacuum degassing process, and a steel slab is manufactured by a continuous casting method or an ingot lump method. The slab is heated immediately after or once cooled and then subjected to hot piercing and rolling. The heating temperature must be sufficiently high to facilitate hot piercing and rolling, and is preferably as low as possible from the viewpoint of obtaining a fine-grained austenite structure. 1 within the range of the component of the present invention.
At a temperature of 000 ° C. or higher, there is no problem in hot drilling, and from 1250 ° C. or higher, coarse particles are formed from the viewpoint of grain refinement.

【0011】熱間穿孔圧延が行われた中空素管は、加工
による発熱現象で1000℃以上の高温で、しかも素管
の温度は内表面で高く不均一となり、一方最終段の傾斜
圧延機による結晶粒径微細化効果を図1に示すように、
結晶粒径は主に圧延温度に支配される。よって最終段の
傾斜圧延機で均一且つ細粒オーステナイトを得るには圧
延直前の素管温度を低下させると同時に素管温度を均一
にしなければならない。本発明の成分範囲内で細粒組織
を得るには最終段の傾斜圧延機前温度はAr3点〜11
00℃にする必要があり、また、素管温度の均一化は、
外表面に比べて温度が高い内表面側を強制的に冷却する
必要がある。冷却は、水単独或いはミスト、圧縮空気の
いずれでもよい。
The hollow shell subjected to hot piercing and rolling has a high temperature of 1000 ° C. or more due to a heat generation phenomenon due to processing, and the temperature of the shell is high and uneven on the inner surface. As shown in FIG.
The crystal grain size is mainly governed by the rolling temperature. Therefore, in order to obtain uniform and fine-grained austenite in the final-stage inclined rolling mill, it is necessary to lower the tube temperature immediately before rolling and at the same time to make the tube temperature uniform. In order to obtain a fine grain structure within the component range of the present invention, the temperature before the final stage of the tilt rolling mill is Ar 3 point to 11 points.
It is necessary to raise the temperature to 00 ° C.
It is necessary to forcibly cool the inner surface side where the temperature is higher than the outer surface. The cooling may be water alone, mist, or compressed air.

【0012】また、傾斜圧延機では再結晶は大部分動的
に起こるので、結晶粒度は加工量によらない。しかし、
再結晶する臨界ひずみは超えている必要がある。圧下率
は、再結晶が圧延終了後にも静的に起こることを考慮し
て下限を20%とした。一方、圧下率が余り大き過ぎる
と、圧延が困難になりパイプの成形性や表面品位の低下
が起こるため、上限を70%とした。
[0012] In the inclined rolling mill, since recrystallization occurs mostly dynamically, the crystal grain size does not depend on the processing amount. But,
The critical strain for recrystallization must be exceeded. The lower limit of the rolling reduction was set to 20% in consideration of the fact that recrystallization occurs statically even after the end of rolling. On the other hand, if the rolling reduction is too large, rolling becomes difficult and the formability and surface quality of the pipe deteriorate, so the upper limit was set to 70%.

【0013】最終段の傾斜圧延により微細化された該素
管は圧延終了後、形状矯正のための連続圧延を行い、A
3 点〜900℃の温度まで降下した中空素管は、該温
度より高いAr3 点+50℃〜1000℃に再加熱する
か或いは該素管がAr3 点+50℃以上の十分高い温度
が確保された場合は再加熱せずに、熱間最終仕上げ圧延
を施す。再加熱温度は、最終仕上げ後オーステナイトか
らの焼入れ温度を確保するため高温にする必要があるが
高過ぎると酸化スケールが多く生じ疵発生の原因となる
ためAr3 点+50℃〜1000℃とした。
[0013] After the end of the rolling, the blank refined by the final-stage inclined rolling is subjected to continuous rolling for shape correction.
hollow shell was lowered to a temperature of r 3 point to 900 ° C. is reheated to or the plain tube is Ar 3 point + 50 ℃ above temperature high enough to secure a high Ar 3 point + 50 ℃ to 1000 ° C. than the temperature If so, hot final rolling is performed without reheating. Reheating temperature must be at a high temperature to ensure the quenching temperature from the final finishing after austenite has been a too high and the oxide scale is causative for Ar 3 point of many resulting scratches occur + 50 ℃ ~1000 ℃.

【0014】形状矯正のための連続圧延直後或いは再加
熱後、Ar3 点+50℃以上の温度で熱間最終仕上げ圧
延を行う。圧延温度は、あまり低くなると形状の確保が
困難となるためAr3 点+50℃以上とした。最終仕上
げ圧延後の完全オーステナイトの状態から急冷する焼入
れ処理を行う。焼入れ開始温度は、十分な焼入れ組織を
確保し必要とする強度、耐サワー性および靭性を確保す
るためAr3 点以上とした。焼入れ時の冷却速度は特に
限定しないが空冷より速い速度とする。焼入れ処理後、
焼戻し処理を行う。焼戻し温度は、強度、耐サワー性お
よび靭性の安定化を確保するためから行うもので、Ac
1 点以下とした。その加熱方法については特に限定しな
い。以上の製造条件で得られるγ粒度のばらつきがな
く、細粒化組織の低合金シームレス鋼管の製造に有効で
ある。
Immediately after continuous rolling for shape correction or after reheating, hot final finishing rolling is performed at a temperature of 3 points of Ar + 50 ° C. or more. Rolling temperature was Ar 3 point + 50 ℃ or it becomes difficult becomes too low secure shape. A quenching process is performed to rapidly cool from a completely austenite state after the final finish rolling. The quenching start temperature was set to three points or more of Ar in order to secure a sufficient quenched structure and required strength, sour resistance and toughness. The cooling rate during quenching is not particularly limited, but is set to a rate faster than air cooling. After quenching
Perform tempering. The tempering temperature is set to ensure the stabilization of strength, sour resistance and toughness.
1 point or less. The heating method is not particularly limited. There is no variation in the γ grain size obtained under the above manufacturing conditions, and this is effective for manufacturing a low alloy seamless steel pipe having a refined grain structure.

【0015】[0015]

【実施例】次に本発明の実施例について説明する。表1
は転炉で溶製し連続鋳造を経て製造された鋼片を熱間シ
ームレス圧延を行って直接焼入れ焼戻しした鋼管のγ粒
度、耐サワー、靭性を示す。尚耐SSC性は、NACE
TM01−77に従った荷重方式によるσth(Thresh
old Stress)を求めて評価した。本発明によって製造さ
れた鋼管は、γ粒度は微細であり耐サワー性、高靭性が
得られることがわかる。
Next, an embodiment of the present invention will be described. Table 1
Shows the γ-grain size, sour resistance, and toughness of a steel pipe produced by smelting in a converter and performing continuous casting and then directly quenching and tempering steel slabs by hot seamless rolling. The SSC resistance is NACE
Σth (Thresh) by the load method according to TM01-77
old Stress). It can be seen that the steel pipe manufactured according to the present invention has a fine γ grain size and can obtain sour resistance and high toughness.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】上記のような本発明法によって製造され
た鋼管は、細粒であるため耐サワー性に優れ、極北の寒
冷地において使用するのに好適である。
The steel pipe manufactured by the method of the present invention as described above is excellent in sour resistance because of its fine grain, and is suitable for use in cold regions in the far north.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通常の鋼板圧延法と傾斜圧延後のγ粒度と圧延
温度の影響を示す。
FIG. 1 shows the influence of the γ-grain size and rolling temperature after a conventional steel plate rolling method and inclined rolling.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊池 義和 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平1−278902(JP,A) 特開 平3−64415(JP,A) 特開 平7−18327(JP,A) 特開 平6−88128(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/10,9/08 B21B 17/00 - 25/06 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Yoshikazu Kikuchi 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (56) References JP-A-1-278902 (JP, A) JP-A-3-64415 (JP, A) JP-A-7-18327 (JP, A) JP-A-6-88128 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) C21D 8 / 10,9 / 08 B21B 17/00-25/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%として、 C :0.03〜0.35%、 Si:0.01〜0.
5%、 Mn:0.15〜2.5%、 P :0.020%以
下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下 を含有して残部が実質的にFeからなる鋼片を1000
〜1250℃に加熱した後熱間穿孔圧延を施し、この圧
延の加工発熱で1000℃以上になった中空素管を最終
段の傾斜圧延機前で素管内面から強制冷却して素管全体
をAr3 点〜1100℃間の温度にする均一化処理を行
った後、肉厚断面減少率で20〜70%の傾斜圧延を施
し、さらに形状矯正熱間連続圧延を行った後、Ar3
〜900℃の温度まで降下した中空素管を、該温度より
高いAr3 点+50℃〜1000℃に再加熱後、仕上げ
温度がAr3 点+50℃以上の熱間仕上げ圧延を施す
か、或いは該素管がAr3 点+50℃以上の十分高い温
度が確保された場合は再加熱することなく仕上げ温度が
Ar3 点+50℃以上の熱間仕上げ圧延を施し、その後
Ar3 点以上の温度から急冷する焼入れ処理を施した
後、続いてAc1 点以下の温度に加熱して冷却する焼戻
し処理を行うことを特徴とする細粒化組織の低合金シー
ムレス鋼管の製造法。
C .: 0.03 to 0.35%, Si: 0.01 to 0.1% by weight.
5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, and the balance is substantially 1000%.
After heating to 121250 ° C., hot piercing and rolling is performed, and the hollow shell, which has been heated to 1000 ° C. or more due to the heat generated by the rolling, is forcibly cooled from the inner surface of the hollow shell in front of the final stage of the inclined rolling mill, and the entire hollow shell is cooled. After performing a homogenization process at a temperature between Ar 3 points and 1100 ° C., performing an inclined rolling at a reduction rate of 20 to 70% in a thickness section reduction rate, further performing a shape correcting hot continuous rolling, and then performing an Ar 3 point After the hollow shell dropped to a temperature of about 900 ° C. is reheated to an Ar 3 point higher than that temperature + 50 ° C. to 1000 ° C., hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C. or higher, or mother tube is subjected to hot finish rolling finishing temperature is above Ar 3 point + 50 ℃ without if it is ensured Ar 3 point + 50 ℃ more sufficiently high temperature reheat, then quenched from Ar 3 point or more temperature after performing hardening processing of, followed by less than 1 point Ac warm A method for producing a low-alloy seamless steel pipe having a fine-grained structure, comprising performing a tempering treatment of heating and cooling each time.
【請求項2】 重量%として、 C :0.03〜0.35%、 Si:0.01〜0.
5%、 Mn:0.15〜2.5%、 P :0.020%以
下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下 を含有して、さらに Cr:0.1〜1.5%、 Mo:0.05〜0.
5%、 Ni:0.1〜2.0%、 V :0.01〜0.
1%、 B :0.0003〜0.0030%の1種または2種
以上 を含有して残部が実質的にFeからなる鋼片を1000
〜1250℃に加熱した後熱間穿孔圧延を施し、この圧
延の加工発熱で1000℃以上になった中空素管を最終
段の傾斜圧延機前で素管内面から強制冷却し、素管全体
をAr3 点〜1100℃間の温度にする均一化処理を行
った後、肉厚断面減少率で20〜70%の傾斜圧延を施
し、さらに形状矯正熱間連続圧延を行った後、Ar3
〜900℃の温度まで降下した中空素管を、該温度より
高いAr3 点+50℃〜1000℃に再加熱後、仕上げ
温度がAr3 点+50℃以上の熱間仕上げ圧延を施す
か、或いは該素管がAr3 点+50℃以上の十分高い温
度が確保された場合は再加熱することなく仕上げ温度が
Ar3 点+50℃以上の熱間仕上げ圧延を施し、その後
Ar3 点以上の温度から急冷する焼入れ処理を施した
後、続いてAc1 点以下の温度に加熱して冷却する焼戻
し処理を行うことを特徴とする細粒化組織の低合金シー
ムレス鋼管の製造法。
2. C: 0.03 to 0.35%, and Si: 0.01 to 0.
5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, Cr: 0.1-1.5%, Mo: 0.05-0.
5%, Ni: 0.1-2.0%, V: 0.01-0.
1%, B: A steel slab containing one or more of 0.0003 to 0.0030%, and the balance substantially consisting of Fe
After heating to 1250 ° C., hot piercing and rolling is performed, and the hollow shell, which has been heated to 1000 ° C. or more due to the heat generated by the rolling, is forcibly cooled from the inner surface of the hollow shell in front of the final inclined rolling mill. After performing a homogenization process at a temperature between Ar 3 points and 1100 ° C., performing an inclined rolling at a reduction rate of 20 to 70% in a thickness section reduction rate, further performing a shape correcting hot continuous rolling, and then performing an Ar 3 point After the hollow shell dropped to a temperature of about 900 ° C. is reheated to an Ar 3 point higher than the temperature + 50 ° C. to 1000 ° C., hot finishing rolling at a finishing temperature of Ar 3 points + 50 ° C. or higher is performed, or mother tube is subjected to hot finish rolling finishing temperature is above Ar 3 point + 50 ℃ without if it is ensured Ar 3 point + 50 ℃ more sufficiently high temperature reheat, then quenched from Ar 3 point or more temperature after performing hardening processing of, followed by less than 1 point Ac warm A method for producing a low-alloy seamless steel pipe having a fine-grained structure, comprising performing a tempering treatment of heating and cooling each time.
【請求項3】 重量%として、 C :0.03〜0.35%、 Si:0.01〜0.
5%、 Mn:0.15〜2.5%、 P :0.020%以
下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下 を含有して、さらに 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、 Co:0.05〜0.5%、 Cu:0.1〜0.5
% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1000〜1250℃に加熱した後熱間穿
孔圧延を施し、この圧延の加工発熱で1000℃以上に
なった中空素管を最終段の傾斜圧延機前で素管内面から
強制冷却して素管全体をAr3 点〜1100℃間の温度
にする均一化処理を行った後、肉厚断面減少率で20〜
70%の傾斜圧延を施し、さらに形状矯正熱間連続圧延
を行った後、Ar3 点〜900℃の温度まで降下した中
空素管を、該温度より高いAr3 点+50℃〜1000
℃に再加熱後、仕上げ温度がAr3 点+50℃以上の熱
間仕上げ圧延を施すか、或いは該素管がAr3 点+50
℃以上の十分高い温度が確保された場合は再加熱するこ
となく仕上げ温度がAr3 点+50℃以上の熱間仕上げ
圧延を施し、その後Ar3 点以上の温度から急冷する焼
入れ処理を施した後、続いてAc1 点以下の温度に加熱
して冷却する焼戻し処理を行うことを特徴とする細粒化
組織の低合金シームレス鋼管の製造法。
3. As% by weight, C: 0.03 to 0.35%, Si: 0.01 to 0.
5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, Rare earth element: 0.001 to 0.05%, Ca: 0.00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0.1 to 0.5
% Of a steel slab containing one or two or more kinds and the balance substantially consisting of Fe was heated to 1000 to 1250 ° C., and then subjected to hot piercing and rolling. The hollow shell is forcibly cooled from the inner surface of the shell in front of the final stage of the inclined rolling mill, and the entire shell is homogenized to a temperature between Ar 3 point and 1100 ° C., and then, the wall thickness reduction rate is 20%. ~
After performing 70% inclined rolling and further performing shape-correcting hot continuous rolling, the hollow shell dropped to a temperature of Ar 3 point to 900 ° C. is cooled to an Ar 3 point higher than the temperature and 50 ° C. to 1000 ° C.
After reheating ° C., the finishing or the temperature is subjected to hot finish rolling or Ar 3 point + 50 ° C., or the plain tube is Ar 3 point + 50
If a sufficiently high temperature of at least 3 ° C. is secured, hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C. or more without reheating, and then a quenching process of rapidly cooling from a temperature of Ar 3 or more is performed. And a tempering treatment of heating and cooling to a temperature of not more than one point of Ac, followed by performing a tempering treatment of the low alloy seamless steel pipe having a grain refined structure.
【請求項4】 重量%として、 C :0.03〜0.35%、 Si:0.01〜0.
5%、 Mn:0.15〜2.5%、 P :0.020%以
下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下 を含有するとともに、 Cr:0.1〜1.5%、 Mo:0.05〜0.
5%、 Ni:0.1〜2.0%、 V :0.01〜0.
1%、 B :0.0003〜0.0030%の1種または2種
以上と、 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、 Co:0.05〜0.5%、 Cu:0.1〜0.5
% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1000〜1250℃に加熱した後熱間穿
孔圧延を施し、この圧延の加工発熱で1000℃以上に
なった中空素管を最終段の傾斜圧延機前で素管内面から
強制冷却し、素管全体をAr3 点〜1100℃間の温度
にする均一化処理を行った後、肉厚断面減少率で20〜
70%の傾斜圧延を施し、さらに形状矯正熱間連続圧延
を行った後、Ar3 点〜900℃の温度まで降下した中
空素管を、該温度より高いAr3 点+50℃〜1000
℃に再加熱後、仕上げ温度がAr3 点+50℃以上の熱
間仕上げ圧延を施すか、或いは該素管がAr3 点+50
℃以上の十分高い温度が確保された場合は再加熱するこ
となく仕上げ温度がAr3 点+50℃以上の熱間仕上げ
圧延を施し、その後Ar3 点以上の温度から急冷する焼
入れ処理を施した後、続いてAc1 点以下の温度に加熱
して冷却する焼戻し処理を行うことを特徴とする細粒化
組織の低合金シームレス鋼管の製造法。
4. C: 0.03 to 0.35%, and Si: 0.01 to 0.
5%, Mn: 0.15 to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005 to
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, Cr: 0.1-1.5%, Mo: 0.05-0.
5%, Ni: 0.1-2.0%, V: 0.01-0.
1%, B: one or more of 0.0003 to 0.0030%, rare earth element: 0.001 to 0.05%, Ca: 0.00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0.1 to 0.5
% Of a steel slab containing one or two or more kinds and the balance substantially consisting of Fe was heated to 1000 to 1250 ° C., and then subjected to hot piercing and rolling. The hollow shell is forcibly cooled from the inner surface of the shell in front of the final stage of the inclined rolling mill, and the entire shell is subjected to a homogenization treatment at a temperature between Ar 3 point and 1100 ° C., and then the reduction rate of the wall thickness is 20%. ~
After performing 70% inclined rolling and further performing shape-correcting hot continuous rolling, the hollow shell dropped to a temperature of Ar 3 point to 900 ° C. is cooled to an Ar 3 point higher than the temperature and 50 ° C. to 1000 ° C.
After reheating ° C., the finishing or the temperature is subjected to hot finish rolling or Ar 3 point + 50 ° C., or the plain tube is Ar 3 point + 50
If a sufficiently high temperature of at least 3 ° C. is secured, hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C. or more without reheating, and then a quenching process of rapidly cooling from a temperature of Ar 3 or more is performed. And a tempering treatment of heating and cooling to a temperature of not more than one point of Ac, followed by performing a tempering treatment of the low alloy seamless steel pipe having a grain refined structure.
JP5180470A 1993-07-21 1993-07-21 Manufacturing method of low alloy seamless steel pipe with fine grain structure Expired - Lifetime JP3059993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5180470A JP3059993B2 (en) 1993-07-21 1993-07-21 Manufacturing method of low alloy seamless steel pipe with fine grain structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5180470A JP3059993B2 (en) 1993-07-21 1993-07-21 Manufacturing method of low alloy seamless steel pipe with fine grain structure

Publications (2)

Publication Number Publication Date
JPH0734126A JPH0734126A (en) 1995-02-03
JP3059993B2 true JP3059993B2 (en) 2000-07-04

Family

ID=16083784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5180470A Expired - Lifetime JP3059993B2 (en) 1993-07-21 1993-07-21 Manufacturing method of low alloy seamless steel pipe with fine grain structure

Country Status (1)

Country Link
JP (1) JP3059993B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540848B2 (en) * 2000-02-02 2003-04-01 Kawasaki Steel Corporation High strength, high toughness, seamless steel pipe for line pipe
WO2008126865A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Toner
JP5115015B2 (en) 2007-04-20 2013-01-09 富士ゼロックス株式会社 Toner cartridge
JP6225795B2 (en) * 2014-03-31 2017-11-08 Jfeスチール株式会社 Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking

Also Published As

Publication number Publication date
JPH0734126A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH09111343A (en) Production of high strength and low yield ratio seamless steel pipe
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3059993B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3680764B2 (en) Method for producing martensitic stainless steel pipe
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JP2556643B2 (en) Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method
JP3145515B2 (en) Manufacturing method of low yield ratio high toughness seamless steel pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000222