JP2003268453A - METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION - Google Patents

METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION

Info

Publication number
JP2003268453A
JP2003268453A JP2002071334A JP2002071334A JP2003268453A JP 2003268453 A JP2003268453 A JP 2003268453A JP 2002071334 A JP2002071334 A JP 2002071334A JP 2002071334 A JP2002071334 A JP 2002071334A JP 2003268453 A JP2003268453 A JP 2003268453A
Authority
JP
Japan
Prior art keywords
cooling
temperature
winding
ferrite
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002071334A
Other languages
Japanese (ja)
Inventor
Takeshi Hanada
健 花田
Atsushi Sugimoto
淳 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2002071334A priority Critical patent/JP2003268453A/en
Publication of JP2003268453A publication Critical patent/JP2003268453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-Si spring steel with reduced ferrite decarbonization, from which a coiled spring for suspension superior in fatigue strength can be manufactured without needing a peeling process. <P>SOLUTION: The method for manufacturing the high-Si spring steel wire with reduced ferrite decarbonization comprises, when producing a wire rod by heating and hot-rolling a slab of the high-Si spring steel containing 1.0% Si or more by weight ratio, finishing the final rolling in a surface temperature range of 800-1,000°C, winding it into a coil shape without water cooling before winding, and cooling it at an air-cooling rate or less until the metamorphosis completes, without suddenly changing a cooling condition in a cooling step after winding. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、自動車等の懸架用コイ
ルばね用材料への適用に適し、コイルばねへの製造後に
おいて安定して高い疲労強度が確保できるフェライト脱
炭の少ない高Siばね鋼線材の製造方法に関する。 【0002】 【従来技術】自動車の懸架用ばね鋼は、従来ばね鋼の中
でもSi含有率の高いSUP6、SUP7あるいはSA
E9254等が使用されていた。これは、懸架用ばねと
して使用した場合、使用中に少しずつばね高さが低くな
る「へたり」と呼ばれる現象が無視できなくなり、この
現象が起きるとバンパー高さが低下して安全上問題とな
るため、その防止のためにSi含有率を高めた方が良い
ことが、1970年代において明らかにされたからであ
る。その後、Nb、V等の炭窒化物を形成する元素を添
加し、析出硬化により使用中の転位の動きを抑制して、
さらに耐へたり性を改善する鋼等多数の新鋼種が開発、
提案され、特許も出願されているが、20年以上経過し
た現在においても懸架用コイルばね用鋼には、高Siば
ね鋼が依然として使用されている。これは、Si以外の
元素添加量に関係なく、Siを多めに添加することが優
れた耐へたり性を維持する際に必要不可欠であるからで
ある。 【0003】しかしながら、高Siばね鋼には大きな欠
点がある。それは、圧延時の加熱、冷却時において他の
ばね鋼に比べ脱炭層が厚くなりやすいことである。特に
問題なのは、炭素含有率がほとんど0に近いフェライト
脱炭がSi含有率の低いSUP9、SUP10等のばね
鋼に比べ表面に厚く生成されやすいことである。このフ
ェライト脱炭が生成したままの状態の線材をそのまま焼
入焼もどしすると、表面硬さが大きく低下し、当然のこ
とながら疲労特性が大幅に低下するため、フェライト脱
炭を小さく抑えるための製造方法の確立が強く求められ
ていた。 【0004】このための対策として表面脱炭層を皮むき
して脱炭層を除去した後焼入焼もどし処理する方法も選
択できないわけではないが、素材の歩留の低下に加え、
皮むき工程追加に伴う加工コストが余分に必要となるた
め、最近の厳しいコスト要求に対応するためには、この
方法を選択することが難しくなってきている。特に、線
材をオイルテンパー処理(焼入焼もどし)した後冷間で
コイリングするという冷間成形コイルばねにおいては、
コスト低減への強い要求から皮むき工程を省略するケー
スが多い。この場合には圧延素材の表面状態がそのまま
製品に残ることになるため、圧延ままの状態でフェライ
ト脱炭を防止するための方法を見出すことが必要となっ
ていた。 【0005】この高Siばね鋼の脱炭低減対策として従
来提案されている方法として、化学成分を脱炭しにくい
成分に変更することによる対策と加熱温度等の圧延条件
の最適化による脱炭低減対策の大きく2つに分けること
ができ、それぞれについて特許出願がされている。 【0006】前者に該当する発明としては、例えば特開
昭62−274058号、特開平7−278747号
(特許第3031816号)、特開平8−176737
号等がある。このうち、特開昭62−274058号、
特開平7−278747号公報に記載の発明は、ばね鋼
に通常では積極添加されることのないSbやSeを添加
して脱炭を低減しようとするものである。また、特開平
8−176737号公報に記載の発明は、通常のばね鋼
でも不純物として少量含有しているS、Ni、Cu等の
添加が脱炭低減に効果的であることを見出し、これらを
適量積極添加して脱炭の低減を図ることを特徴とするも
のである。 【0007】一方、後者に該当する発明としては、例え
ば特開昭55−100931号、特開昭57−4783
5号、特開昭57−82428号等に開示された発明が
ある。この3件の発明はその内容が完全に一致している
わけではないが、共通している点は、最もフェライト脱
炭しやすいα(フェライト)とγ(オーステナイト)の
2相が存在する温度領域をできるだけ短時間に通過さ
せ、フェライト脱炭を防止しようとすることを特徴とす
るものである。 【0008】 【発明が解決しようとする課題】しかしながら、従来提
案されている発明には以下の問題がある。まず、前者の
発明についてであるが、実際に新鋼種を従来から使用し
ている鋼種から変更して適用する際には決められた使用
硬さとなる温度で焼入焼もどし処理した場合において、
耐へたり性、衝撃値、疲労特性等の数多くの特性が問題
ないことを確認し、全ての特性において問題なしと判断
される必要がある。特に、懸架用コイルばねとして使用
する際には、成分をどうしたら脱炭がどうなるかという
点は当業者でも明確に分からない場合が多い(Si以外
の元素の影響は明確になっていない。)ことから、脱炭
層が形成されやすいかどうかという点よりも優れた耐へ
たり性や疲労強度等コイルばねとしての要求特性の確保
を優先して成分設計がされるのがほとんどである。従っ
て、結果として採用された鋼がどの程度脱炭で問題とな
るかは、成分決定後試作テストを繰返してはじめて把握
されるというのが一般的である。また、合金添加による
脱炭防止策は、素材のコストアップを招くという問題が
あるとともに、成分設計時に耐へたり性等の他の特性を
劣化させないことが必須となり、成分設計が難しくなる
という問題がある。 【0009】そこで、製造条件への対策により脱炭低減
を図ることができれば、脱炭低減と同時に耐へたり性の
優れたばね鋼の成分設計を容易にするという大きなメリ
ットがあり、利用価値は極めて高い。 【0010】一方、後者に該当する発明についてである
が、本発明者等が詳細に実験を行って脱炭現象を調査し
た結果、確かにフェライト脱炭がしやすい温度域はαと
γの2相温度領域であることが確認できたが、前記公報
に記載の通り冷却速度を速くした場合、当然の結果とし
て線材の中心部と表面部との間の温度差が大きくなり、
その冷却途中において内部がまだγ領域の温度であるに
もかかわらず表面近傍のみ2相温度領域という状態が冷
却速度が遅い場合に比べ発生しやすくなる。そのような
状態となった場合、初析フェライトの成長が表面部にお
いて集中的に起こることとなり、かえってフェライト脱
炭層の生成が促進されるため、速く冷却しても、フェラ
イト脱炭を十分に低減することができないことがわかっ
た。 【0011】また、線材圧延工場では、一般的にコイル
状に巻取る直前において巻取り温度の調整のために水冷
帯を装備しており、前記した公報の発明を実施するため
にこの水冷帯を活用することが可能である。さらに巻き
取り後コンベアーで運ばれていく際に強制空冷したり、
巻取り後の搬送中の線材リングの重なりの割合を小さく
したりして冷却速度を速くすることもできる。 【0012】しかしながら、懸架用コイルばねの素材で
あるφ10〜14程度の線径の線材の実際の圧延速度
は、秒速20〜80m程度と極めて速く、水冷帯の長さ
には限界があることから実際に水冷できる時間は数秒以
内の極めて短時間に限られる。また、一方で表面温度を
低下させすぎると、水冷帯通過後の巻取りが正常にでき
なくなる可能性があるため、極端な急冷はできないとい
う制約がある。このような制約条件のもとで水冷された
場合、水冷帯通過直後の線材温度は、表面ないし表面に
近い位置においては、αとγの2相域温度まで低下する
が、内部は依然としてγ相の温度領域のままとなる可能
性が高く、その後に表面温度がより温度の高い内部から
の熱伝導によって温度上昇し、結果的に却って表面にお
ける2相の温度領域での停滞時間が長くなり、フェライ
ト脱炭が増加してしまうことが判明した。 【0013】また、水冷帯における強制冷却だけでな
く、巻取り後の冷却を速くして、表面部の2相域温度で
の停滞時間の短縮を図った場合、今度は圧延後の素材に
焼きが入って硬さが異常に高くなる可能性が高くなり、
オイルテンパー処理前の引抜加工等、後工程での製造に
支障がでるという問題がある。 【0014】本発明は、以上説明した問題点を解決する
ために成されたものであり、その目的とするところは、
表面にフェライト脱炭の少ない懸架用コイルばね用線材
の新規な製造方法を提供することを目的とするものであ
る。 【0015】 【課題を解決するための手段】本発明は、 Siを重量
比で1.0%以上含有する高Siばね鋼の鋼片を加熱し
熱間圧延して線材を製造する際において、仕上圧延を表
面温度が800〜1000℃の温度範囲で終了させた
後、巻取り前に水冷することなくコイル状に巻取り、巻
取り後の冷却過程において、冷却条件を急変させること
なく空冷以下の速度で変態完了まで冷却することを特徴
とするフェライト脱炭の少ない高Siばね鋼線材の製造
方法にある。 【0016】本発明において最も注目すべきことは、S
iを1%以上含有する高Siばね鋼の圧延を2相域温度
よりわずかに高いγ領域の温度で終了させ、巻取り前の
水冷帯で水冷せず、巻取り後においても空冷以下の速度
で、かつ途中に冷却条件を急変することなく冷却させる
ことによって、表面温度が内部からの熱伝導によって一
時的に温度上昇することがないように冷却することであ
る。 【0017】フェライト脱炭層が圧延後の2相域温度領
域での冷却途中に形成されることは、特開昭57−47
835号公報に記載されている通りで、既に公知となっ
ている。しかしながら、従来の発明では、この温度領域
を速く冷却することしか考えておらず、その場合に生じ
る鋼材内の温度分布、及びその後変態終了までの冷却方
法についての検討が不十分であることが十分な脱炭低減
効果が得られない原因となっていた。 【0018】すなわち、2相域の温度領域を強制的に速
く冷却すると、必ず鋼材内に温度分布が生じる。従っ
て、鋼材中心部まで完全に2相域の温度領域を通過した
低い温度領域まで冷却しようとすると表面がかなり低い
温度になるまで継続して速く冷却しなければならず、結
果として焼きの入った硬い圧延組織となってしまい、そ
の後の製造工程で支障をきたす結果となる。一方、強制
冷却を中途半端な状態すなわち、表面部のみ2相域温度
を通過させ、中心部はまだγ領域の温度にある状態で強
制冷却をやめた場合には、その後表面部の温度が中心部
からの熱伝導によって温度上昇し、結果的に表面部にお
ける2相域温度領域での滞留時間が長くなってフェライ
ト脱炭層の生成が促進されるため、脱炭低減効果が得ら
れないという結果になるのである。 【0019】実際には、前記したように水冷帯通過後の
巻取りを正常に行うために表面温度をあまり低く下げら
れないという制約と、水冷帯の通過時間の関係から、巻
取りが正常に行える表面温度となることを考慮した条件
で水冷帯での水冷を実施した場合、必ず前記した後者に
該当する状態となる。そして、巻取り後においても圧延
硬さの上昇を避ける必要から極端な急冷をすることは困
難なことから、この場合には表面部において一時的な温
度上昇が起き、結果として表面のフェライト脱炭が厚く
なってしまう。従って、本発明者等は過去に提案された
発明がこの点で発明の完成が不十分であることを確認し
たものである。 【0020】そこで、本発明者等は、従来提案されてい
る圧延方法が圧延材内部に必ず発生する温度分布を十分
に考慮していなかったことが十分な脱炭低減効果が得ら
れない原因となっていたことに注目し、従来の提案内容
とは逆に水冷帯等を利用した水冷によって2相域の温度
領域を速く通過させるという作業を実施せず、かつ圧延
後の水冷帯通過時、コイル巻取り中及び巻取り後変態完
了に到る全ての間において、冷却条件を急変させること
なく空冷以下の速度で継続して冷却することによって、
冷却途中に表面部が中心部からの熱伝導によって一時的
に温度上昇することを可能な限り防止し、かつ表面と内
部の温度差が大きくならないような条件で冷却するとい
うテストを実施し、その結果を整理した。その結果フェ
ライト脱炭が大幅に低減できることを確認し、本発明の
完成に到ったものである。 【0021】本発明により圧延材表面におけるフェライ
ト脱炭低減効果の得られた理由は明確ではないが次の理
由によるものと推定される。すなわち、水冷帯での冷却
を含め、圧延後から変態完了に到るまでの途中の段階に
おいて、一時的に水冷等の急速冷却を行った場合には、
鋼材内部は表面と中心部の温度差が大きくなり、表面部
が2相温度領域である状態の時に中心部はまだγ相の温
度領域となる状態が当然のごとく発生する。従って、A
r3変態による初析フェライトの析出反応は表面部に集
中して起きることになり結果として表面に厚いフェライ
ト層が生成されると予想される。それに対し、水冷等の
急速冷却を施さず、空冷以下の速度で冷却を実施する場
合には、表面部と中心部において若干の温度差は生じる
がその差は前者の場合に比べ極端に小さくなる。従っ
て、初析フェライトの析出は表面だけに集中して起きる
ことはなく、表面よりも少し中心部に近い内部において
も同時に初析フェライトの析出反応が進行する。従っ
て、フェライトが鋼材内でより均一に析出した状態の圧
延組織が得られ、結果として表面部のフェライトの集中
的析出が少なく抑えられるものと考えられる。 【0022】また、本発明は1%以上のSiを含有する
ばね鋼に効果的に適応できる。具体的には、SUP6、
SUP7、SUP12、SAE9254等の規格鋼に適
用できる。また、これらの鋼にNb、V、Mo等の炭窒
化物形成元素を添加したり、Niを適量添加して耐へた
り性を改善した鋼にも適用できる。 【0023】次に、本発明の圧延条件限定理由について
説明する。仕上圧延終了時の表面温度を800℃〜10
00℃としたのは、γ相の温度領域の範囲内であってで
きるだけ低い温度領域で圧延を行うことにより、微細な
圧延組織を得るとともに、全脱炭層の厚さをできるだけ
低減するためである。今までフェライト脱炭の低減につ
いてのみ記載してきたが、温度が高いほど加熱中に表面
の炭素が大気中の酸素と反応することによる脱炭反応が
促進され、炭素濃度が中心部の炭素含有率と一致する位
置における深さ(すなわち全脱炭層深さ)が深くなる。
フェライト脱炭を少なく抑えることができても、全脱炭
層の厚さが厚い状態では熱処理後に優れた疲労特性が得
られなくなるので、上限温度を1000℃に限定した。
なお、温度が低い方が好ましいことは勿論であり、95
0℃以下、より望ましくは900℃以下とすることによ
り、より脱炭量を低減することができる。 【0024】また、下限温度を800℃としたのは、こ
の温度より低くなると、圧延中に鋼材表面において一時
的にAr3変態温度以下になることを防止できなくな
り、フェライト脱炭の低減効果を十分に得られなくなる
ためである。すなわち、圧延中においては加工熱の影響
があるため、温度が単調に低下せず、一時的に上昇する
場合もあるため、圧延終了温度を低くしすぎると、表面
部における2相温度域の滞留時間が結果的に長くなって
フェライト脱炭が増加する可能性があるからである。 【0025】次に、圧延終了後コイル状に巻き取るまで
の間において水冷しないのは、前述したように巻き取り
前の水冷帯の箇所を通過する時間は圧延速度から考えて
極めて短時間にならざるをえず、ここで水冷による強制
冷却をすると表面及び表面に近い部分が中心部に比べ大
幅に温度が低下することになり、水冷帯を通過した後に
中心部からの熱伝導によって表面部において一時的に温
度上昇が起き、結果的に表面部における2相温度域滞留
時間が長くなって、フェライト脱炭が増加するためであ
る。従って、本発明では圧延終了後巻取り開始までの間
は通常の空冷ないし、ブロアで冷却風を当てる等の空冷
によって通過させることとなる。 【0026】次に、コイル状に巻取り開始後変態完了ま
での間についても、巻き取り開始前と同様により温度の
高い中心部からの熱伝導によって表面部の温度が一時的
に上昇することを可能な限り防止するため、空冷以下の
速度で冷却する。表面の一時的温度上昇を可能な限り防
止するには、冷却条件を途中で急変させなければ容易に
達成することができる。例えば巻取り後においてコンベ
アーの速度を遅くしてコイルの重なりの多くなる状態
で、かつコンベアーカバーを閉じ、ブロアも使用しない
条件を実施すると、コンベアー内に入る前と冷却条件が
変化し、線材表面から大気中に伝わる熱量より温度の高
い内部からの熱伝導による熱量が上回って一時的な復熱
が生じる可能性が高くなるので、注意が必要である。こ
ういった方法は圧延硬さを下げるために良く行われる方
法であるが、フェライト脱炭が増加する可能性があるの
で、硬さに問題がない限り、行わない方が良い。そし
て、空冷以下の速度での冷却条件を変態完了まで継続す
ることによって、鋼材温度は表面と中心部の温度差が小
さい状態を維持し、変態完了までの間に一時的に温度上
昇を伴うことなく冷却することができる。 【0027】なお、水冷帯で水冷しない場合でも、圧延
時の加工熱の生成によって、仕上圧延直後に一時的に表
面温度が上昇することがある。しかし、これは2相域温
度より完全に高い温度領域での復熱であり、何ら問題は
ない。復熱が起きても、しばらくすると温度が低下し始
め、その後において復熱が起きないように冷却すれば、
本発明の効果を十分に得ることができる。請求の範囲の
「巻取り後の冷却過程」とは、この一時的な復熱を除く
意味で記載したものである。 【0028】また、ここで言う空冷以下の条件とは、焼
きが入る等の理由で、後工程に支障がない条件であれば
良い。従って、単純に何もせず大気中で冷却させる場合
だけでなく、前記した復熱が起きない程度にブロアなど
で冷却風を当てる等の方法も含まれる。復熱が起きない
よう冷却すればフェライト脱炭防止の目的は達成される
からである。このように変態完了まで、一時的な復熱の
起きない条件で冷却することにより、初析フェライトの
析出が表面部で集中して起きることが抑制され、フェラ
イト脱炭層の厚さを最小限に抑えることが可能となる。 【0029】但し、線径が細くなると、同じ条件でも線
材自身の冷却速度は速くなるため、当然焼きが入りやす
くなる。従って、線径が細い場合には、前記したような
復熱が起きない範囲でコンベアーを遅くしてコイルの重
なり具合を密にする等の方法で冷却速度が遅くなるよう
調整する必要が生じる。 【0030】 【実施例】次に、本発明の効果を実施例によって明らか
にする。表1は実施例として用いた鋼の化学成分を示す
ものである。 【0031】 【表1】 【0032】表1に示す鋼のうち、1鋼は、SAE92
54にVを0.2%添加した鋼であり、2鋼はSUP7
にNb、Vを添加して耐へたり性を改善した鋼であり、
3鋼はSUP7である。この3種類の鋼は、電気炉にて
溶解し、2.6ton鋼塊を製造した後、分塊圧延、粗
圧延を実施し、160mm角の鋼片を製造した。これ
を、さらに粗圧延し、線材圧延機でφ13mmの線材を
製造した。その線材圧延機による仕上圧延の際に表2に
示すように、圧延仕上温度、水冷帯での水冷実施の有
無、コンベアーの速度、コンベアーカバーの開閉等の条
件を変化させ、巻取り開始温度、巻取り後の温度変化、
脱炭層の厚さ(DM−F、DM−T)を測定した。な
お、粗圧延中の圧延条件は全く同一とし、圧延仕上温度
の調整は加熱炉からの抽出温度の調整により行った。脱
炭層はJISG0558に準拠した顕微鏡による測定方
法により実施した。結果を表2に示す。 【0033】 【表2】【0034】表2の結果から明らかなように、試験No.
1、2、5、6、9、11のように、水冷帯での冷却を
実施した場合には、全て0.02mmを超えるフェライ
ト脱炭を生じていた。また、水冷帯での冷却を実施した
中でも特にコンベア冷却条件を徐冷(詳細は表2参照)
とした場合には、風冷(詳細は表2参照)とした場合に
比べて、さらにフェライト脱炭が増加した。これは、徐
冷とした方が直前の水冷との冷却条件の差が大きくな
り、水冷帯通過後の表面部の復熱が顕著となって、結果
的に2相温度領域における停滞時間が長くなったことが
原因と推定される。 【0035】さらに、試験No.1〜4のように、圧延仕
上温度が高い場合には、Dm−Tが増加した。 【0036】これらの比較例に対し、本発明のように水
冷帯での冷却を実施しない場合には、コンベアーの冷却
条件に大きく左右されることなく、フェライト脱炭層の
厚みを0.005mm以下に抑えることができることを
確認できた。また、異なる3鋼種について実験したが、
全て同様な効果の得られることが確認できた。 【0037】 【発明の効果】 【0038】以上説明したように、本発明の高Siばね
鋼線材の製造方法では、圧延後に水冷という一時的に速
く冷却する手段をとらず、空冷以下の速度でかつ冷却条
件を急変することなく変態完了まで冷却し、表面温度が
内部からの熱伝導により復熱しないよう冷却することに
よって、フェライト脱炭を極めて少ない厚さに抑えるこ
とが可能となった。 【0039】また、コンベアーの冷却条件に関係なくフ
ェライト脱炭を少なく抑えられるので、圧延する材料の
焼入性、線径に応じて最適なコンベアー冷却条件を選択
することができ、焼きの入らない条件に調整しやすいと
いう、製造する側にとって大きな効果を得ることができ
る。 【0040】従って、本発明の方法を高Siばね鋼に適
用することによって、安定してフェライト脱炭の少ない
線材の製造が可能となり、皮むき工程を省略しても疲労
強度の優れたコイルばねの製造が可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use as a material for a suspension coil spring for an automobile or the like, and has a high and stable fatigue strength after being manufactured into a coil spring. The present invention relates to a method for producing a high Si spring steel wire rod capable of ensuring a low ferrite decarburization. 2. Description of the Related Art Suspension spring steels for automobiles are SUP6, SUP7 or SA having a high Si content among conventional spring steels.
E9254 or the like was used. This is because when used as a suspension spring, the phenomenon called "set", in which the spring height gradually decreases during use, cannot be ignored, and when this phenomenon occurs, the bumper height decreases and there is a safety problem. This is because it was revealed in the 1970s that it was better to increase the Si content in order to prevent the above. Thereafter, elements forming carbonitrides such as Nb and V are added, and the dislocation movement during use is suppressed by precipitation hardening,
Numerous new steel types have been developed, including steel that further improves sag resistance.
Although a proposal has been made and a patent has been filed, high Si spring steel is still used as a coil spring steel for suspension even after more than 20 years have passed. This is because irrespective of the addition amount of elements other than Si, it is essential to add a large amount of Si in order to maintain excellent sag resistance. [0003] However, high Si spring steels have significant disadvantages. That is, the thickness of the decarburized layer tends to be thicker than other spring steels during heating and cooling during rolling. What is particularly problematic is that ferrite decarburization having a carbon content close to 0 is more likely to be generated on the surface than spring steels such as SUP9 and SUP10 having a low Si content. If quenching and tempering the wire in the state in which this ferrite decarburization is generated as it is, the surface hardness will be greatly reduced, and naturally the fatigue characteristics will be significantly reduced. The establishment of a method was strongly required. As a countermeasure for this, a method of peeling the surface decarburized layer and removing the decarburized layer and then quenching and tempering is not inevitable. However, in addition to the reduction of the material yield,
Since an additional processing cost is required due to the addition of the peeling step, it is becoming difficult to select this method in order to meet recent severe cost requirements. In particular, in a cold-formed coil spring in which a wire is oil-tempered (quenched and tempered) and then coiled cold.
In many cases, the peeling step is omitted due to strong demand for cost reduction. In this case, since the surface state of the rolled material remains on the product as it is, it has been necessary to find a method for preventing ferrite decarburization in the as-rolled state. Conventionally proposed methods for reducing the decarburization of high-Si spring steel include reducing the decarburization by changing the chemical components to components that are difficult to decarburize and optimizing the rolling conditions such as the heating temperature. The measures can be broadly divided into two, and patent applications have been filed for each. As the invention corresponding to the former, for example, JP-A-62-274058, JP-A-7-278747 (Japanese Patent No. 3031816), and JP-A-8-176737.
No. etc. Among them, Japanese Patent Application Laid-Open No. Sho 62-274058,
The invention described in JP-A-7-278747 is intended to reduce decarburization by adding Sb or Se, which is not usually positively added to spring steel. Further, the invention described in Japanese Patent Application Laid-Open No. 8-176737 has found that the addition of S, Ni, Cu, etc., which are contained as impurities in a small amount even in ordinary spring steel, is effective in reducing decarburization. It is characterized in that an appropriate amount is positively added to reduce decarburization. On the other hand, as the invention corresponding to the latter, there are, for example, JP-A-55-100931 and JP-A-57-4783.
No. 5, JP-A-57-82428 and the like. Although these three inventions do not completely match in their contents, they have a common feature in the temperature range where two phases of α (ferrite) and γ (austenite) are most likely to decarburize. In a time as short as possible to prevent ferrite decarburization. [0008] However, the conventionally proposed invention has the following problems. First, regarding the former invention, when a new steel type is actually changed from a steel type conventionally used and applied, when quenching and tempering is performed at a temperature at which a determined use hardness is obtained,
It is necessary to confirm that many properties such as set resistance, impact value, fatigue properties and the like are not problematic, and to judge that there is no problem in all properties. In particular, when used as a suspension coil spring, those skilled in the art often cannot clearly understand how to decarburize the components (the effects of elements other than Si are not clear). For this reason, it is almost always the case that a component is designed with priority given to securing characteristics required for a coil spring, such as superior set resistance and fatigue strength, rather than whether or not a decarburized layer is easily formed. Therefore, it is general that the degree of decarburization of the steel adopted as a result is determined only by repeating the trial production test after determining the composition. In addition, measures to prevent decarburization by adding alloys have the problem of increasing the cost of the material, and it is essential that the other properties such as set resistance are not degraded at the time of component design, making component design difficult. There is. Therefore, if decarburization can be reduced by taking measures against the manufacturing conditions, there is a great merit that the decarburization can be reduced and at the same time, the component design of spring steel having excellent sag resistance can be easily designed. high. On the other hand, as for the invention corresponding to the latter, the present inventors have conducted detailed experiments and investigated the decarburization phenomenon. Although it was confirmed that it is a phase temperature region, when the cooling rate is increased as described in the publication, the temperature difference between the central portion and the surface portion of the wire becomes large as a natural result,
In the course of the cooling, a state in which the temperature is in the two-phase temperature region only in the vicinity of the surface even though the internal temperature is still in the γ region is more likely to occur than when the cooling rate is low. In such a state, the growth of proeutectoid ferrite occurs intensively on the surface, and instead the formation of a ferrite decarburized layer is promoted. I found out I couldn't do it. Further, the wire rolling mill is generally provided with a water cooling zone for adjusting the winding temperature immediately before winding into a coil shape. It can be used. Furthermore, after being wound up, forced air cooling is carried out when it is carried on the conveyor,
The cooling rate can also be increased by reducing the rate of overlap of the wire rods during conveyance after winding. However, the actual rolling speed of the wire rod having a diameter of about φ10 to 14 which is the material of the suspension coil spring is extremely high, about 20 to 80 m / sec, and the length of the water cooling zone is limited. The actual time for water cooling is limited to a very short time within several seconds. On the other hand, if the surface temperature is lowered too much, there is a possibility that winding after passing through the water-cooled zone may not be performed normally, so that there is a restriction that extremely rapid cooling cannot be performed. When water-cooled under such constraints, the wire temperature immediately after passing through the water-cooled zone decreases to the two-phase temperature of α and γ at the surface or at a position close to the surface, but the inside still has the γ phase. Temperature region is likely to remain in the temperature range, and then the surface temperature rises due to heat conduction from the higher temperature inside, resulting in a longer stagnation time in the two-phase temperature region on the surface, It has been found that ferrite decarburization increases. In addition to the forced cooling in the water-cooled zone, the cooling after winding is accelerated to shorten the stagnation time at the two-phase region temperature of the surface portion. Is likely to increase abnormally high hardness,
There is a problem that production in a later process such as drawing before oil tempering is hindered. The present invention has been made to solve the above-described problems, and has as its object the following.
It is an object of the present invention to provide a novel method of manufacturing a wire for a suspension coil spring with less ferrite decarburization on the surface. SUMMARY OF THE INVENTION The present invention relates to a method for producing a wire rod by heating and hot rolling a slab of high Si spring steel containing 1.0% or more by weight of Si. After finishing the finish rolling in the temperature range of surface temperature of 800 to 1000 ° C., winding in a coil shape without water cooling before winding, and in the cooling process after winding, air cooling or less without abruptly changing cooling conditions. A method for producing a high Si spring steel wire with less ferrite decarburization, wherein the wire is cooled at the speed of completion of the transformation. The most remarkable point of the present invention is that S
Rolling of high Si spring steel containing 1% or more of i is completed at a temperature in the γ region slightly higher than the two-phase region temperature, and is not water-cooled in the water-cooling zone before winding, but is equal to or lower than air-cooling even after winding. In addition, the cooling is performed without suddenly changing the cooling conditions in the middle, so that the surface temperature does not temporarily rise due to heat conduction from the inside. The formation of the decarburized ferrite layer during cooling in the two-phase temperature range after rolling is disclosed in Japanese Patent Application Laid-Open No. 57-47.
It is already known as described in JP-A-835. However, in the conventional invention, only cooling in this temperature region is considered at a high speed, and it is sufficient that the temperature distribution in the steel material generated in that case and the cooling method until the end of the transformation are insufficiently studied. It is a cause that the effect of reducing decarburization cannot be obtained. That is, when the temperature region in the two-phase region is forcibly cooled rapidly, a temperature distribution always occurs in the steel material. Therefore, when trying to cool down to a low temperature region completely passing through the temperature region of the two-phase region to the center of the steel material, the surface must be cooled rapidly and continuously until the surface temperature becomes considerably low. This results in a hard rolled structure, which may hinder the subsequent manufacturing process. On the other hand, when the forced cooling is stopped halfway, that is, when the forced cooling is stopped in a state where only the surface portion passes the two-phase region temperature and the center portion is still in the temperature of the γ region, the surface temperature is thereafter reduced to the central portion. The temperature rises due to heat conduction from the surface, and as a result, the residence time in the two-phase region temperature region on the surface becomes longer and the formation of a ferrite decarburized layer is promoted, so that the effect of reducing the decarburization cannot be obtained. It becomes. In actuality, as described above, since the surface temperature cannot be lowered so much that the winding after passing through the water-cooled zone is normally performed, and the passing time of the water-cooled zone, the winding can be performed normally. When the water cooling in the water cooling zone is performed under the condition that the surface temperature can be achieved, the state always corresponds to the latter. Also, even after winding, it is difficult to perform rapid quenching because it is necessary to avoid an increase in the rolling hardness. In this case, a temporary temperature rise occurs at the surface, resulting in decarburization of ferrite on the surface. Becomes thicker. Therefore, the present inventors have confirmed that the inventions proposed in the past are not sufficiently completed in this respect. Therefore, the present inventors have considered that the conventional rolling method did not sufficiently consider the temperature distribution that always occurs inside the rolled material, and that the reason why the sufficient decarburization reduction effect could not be obtained. Noting that, contrary to the conventional proposal contents, the work of quickly passing through the temperature region of the two-phase region by water cooling using a water cooling zone or the like was not performed, and at the time of passing through the water cooling zone after rolling, During coil winding and during the entire period after the completion of winding transformation, by continuously cooling at a speed equal to or less than air cooling without suddenly changing the cooling conditions,
A test was conducted to prevent as much as possible a temporary rise in temperature of the surface due to heat conduction from the center during cooling, and to cool under conditions where the temperature difference between the surface and the inside does not increase. The results were organized. As a result, it has been confirmed that ferrite decarburization can be significantly reduced, and the present invention has been completed. The reason why the effect of reducing the decarburization of ferrite on the rolled material surface according to the present invention is not clear, but is presumed to be due to the following reason. That is, including cooling in the water-cooled zone, when performing rapid cooling such as water cooling temporarily in the middle stage after rolling to the completion of transformation,
Inside the steel material, the temperature difference between the surface and the center increases, and when the surface is in the two-phase temperature region, the center still has the γ-phase temperature region as a matter of course. Therefore, A
The precipitation reaction of pro-eutectoid ferrite by the r3 transformation occurs intensively on the surface portion, and as a result, a thick ferrite layer is expected to be generated on the surface. On the other hand, when rapid cooling such as water cooling is not performed and cooling is performed at a speed equal to or less than air cooling, a slight temperature difference occurs between the surface portion and the center portion, but the difference is extremely small compared to the former case. . Therefore, the precipitation of pro-eutectoid ferrite does not occur concentrated only on the surface, and the precipitation reaction of pro-eutectoid ferrite proceeds simultaneously in the interior slightly closer to the center than the surface. Therefore, it is considered that a rolled structure in which ferrite is more uniformly precipitated in the steel material is obtained, and as a result, intensive precipitation of ferrite on the surface is reduced. Further, the present invention can be effectively applied to a spring steel containing 1% or more of Si. Specifically, SUP6,
It can be applied to standard steels such as SUP7, SUP12, and SAE9254. In addition, the present invention can be applied to steels in which a carbonitride forming element such as Nb, V, Mo, or the like is added to these steels, or an appropriate amount of Ni is added to improve the set resistance. Next, the reasons for limiting the rolling conditions of the present invention will be described. The surface temperature at the end of finish rolling is 800 ° C to 10 ° C.
The reason for setting the temperature to 00 ° C. is to obtain a fine rolled structure by performing rolling in a temperature range as low as possible within the temperature range of the γ phase and to reduce the thickness of the entire decarburized layer as much as possible. . Until now, only the reduction of ferrite decarburization has been described, but the higher the temperature, the more the carbon on the surface reacts with oxygen in the atmosphere during heating to accelerate the decarburization reaction, and the carbon concentration in the central part increases. At the position corresponding to (ie, the total decarburized layer depth).
Even if ferrite decarburization can be suppressed to a low level, excellent fatigue characteristics cannot be obtained after heat treatment in a state where the thickness of the entire decarburized layer is large. Therefore, the upper limit temperature is limited to 1000 ° C.
It is needless to say that a lower temperature is preferable.
By setting the temperature to 0 ° C. or lower, more desirably 900 ° C. or lower, the amount of decarburization can be further reduced. The reason why the lower limit temperature is set to 800 ° C. is that if the temperature is lower than 800 ° C., it becomes impossible to prevent the steel material surface from temporarily becoming lower than the Ar3 transformation temperature during rolling, and the effect of reducing the decarburization of ferrite is not sufficiently achieved. This is because they cannot be obtained. In other words, during rolling, the temperature does not decrease monotonically and sometimes rises temporarily due to the influence of processing heat. If the rolling end temperature is too low, the two-phase temperature region stays on the surface portion. This is because the time may consequently increase and ferrite decarburization may increase. Next, the reason why water cooling is not performed between the end of rolling and the winding into a coil shape is that, as described above, the time required to pass through the water cooling zone before winding is extremely short in view of the rolling speed. Inevitably, if forced cooling by water cooling here, the temperature of the surface and the part close to the surface will drop significantly compared to the center, and after passing through the water cooling zone, heat conduction from the center will cause This is because the temperature rises temporarily, and as a result, the residence time in the two-phase temperature region on the surface becomes longer, and ferrite decarburization increases. Therefore, in the present invention, the air is passed through normal air cooling or air cooling such as applying cooling air with a blower from the end of rolling to the start of winding. Next, during the period from the start of winding into the coil until the completion of the transformation, the temperature of the surface is temporarily increased by heat conduction from the hotter center as in the case before the start of winding. Cool at a rate less than air cooling to prevent as much as possible. In order to prevent the temporary temperature rise of the surface as much as possible, it can be easily achieved unless the cooling conditions are changed suddenly on the way. For example, if the conveyor speed is slowed down after winding and the coil overlap is large, and the conveyor cover is closed and the blower is not used, the cooling conditions will change before entering the conveyor and the wire surface will change. Care must be taken because the amount of heat due to heat conduction from the inside, which is higher in temperature than the amount of heat transmitted to the atmosphere, increases the possibility of temporary recuperation. Such a method is a method that is often performed to reduce the rolling hardness, but since there is a possibility that ferrite decarburization increases, it is better not to perform the method unless there is a problem with the hardness. By continuing the cooling conditions at a rate equal to or lower than air cooling until the completion of the transformation, the temperature of the steel material maintains a state where the temperature difference between the surface and the central part is small, and there is a temporary rise in temperature until the completion of the transformation. Without cooling. Note that even when water cooling is not performed in the water cooling zone, the surface temperature may rise temporarily immediately after finish rolling due to generation of processing heat during rolling. However, this is a recuperation in a temperature region completely higher than the two-phase region temperature, and there is no problem. Even if recuperation occurs, the temperature starts to decrease after a while, and if it is cooled so that recuperation does not occur,
The effect of the present invention can be sufficiently obtained. The term “cooling process after winding” in the claims is intended to exclude this temporary reheating. The condition of air cooling or lower referred to here may be any condition as long as it does not hinder the subsequent process due to burning or the like. Therefore, not only a case where cooling is performed in the atmosphere without any operation but also a method of applying a cooling air with a blower or the like to such an extent that the reheating does not occur is included. This is because the purpose of preventing decarburization of ferrite can be achieved by cooling so that reheating does not occur. By cooling under the condition that temporary reheating does not occur until the completion of transformation, precipitation of proeutectoid ferrite is prevented from concentrating on the surface part and minimizing the thickness of the ferrite decarburized layer. It can be suppressed. However, if the wire diameter becomes smaller, the cooling speed of the wire itself increases even under the same conditions, so that the wire is naturally easily burned. Therefore, when the wire diameter is small, it is necessary to adjust the cooling speed to be slow by a method such as slowing down the conveyer so that the coil overlaps tightly within a range where the reheating does not occur as described above. Next, the effects of the present invention will be clarified by examples. Table 1 shows the chemical components of the steel used in the examples. [Table 1] One of the steels shown in Table 1 was SAE92.
54 is a steel obtained by adding 0.2% of V to the steel.
Steel with improved sag resistance by adding Nb and V to
The three steels are SUP7. These three types of steel were melted in an electric furnace to produce a 2.6 ton steel ingot, and then subjected to slab rolling and rough rolling to produce a 160 mm square steel slab. This was further coarsely rolled, and a wire rod of φ13 mm was manufactured by a wire rod rolling mill. At the time of finish rolling by the wire rolling mill, as shown in Table 2, the rolling finish temperature, whether or not to perform water cooling in a water cooling zone, the speed of the conveyor, the opening and closing of the conveyor cover, etc. are changed, and the winding start temperature, Temperature change after winding,
The thickness (DM-F, DM-T) of the decarburized layer was measured. The rolling conditions during the rough rolling were exactly the same, and the finishing temperature of the rolling was adjusted by adjusting the extraction temperature from the heating furnace. The decarburized layer was measured by a measuring method using a microscope in accordance with JIS G0558. Table 2 shows the results. [Table 2] As is clear from the results in Table 2, the test No.
When cooling was performed in a water-cooled zone as in 1, 2, 5, 6, 9, and 11, ferrite decarburization exceeding 0.02 mm all occurred. In addition, even when cooling in the water-cooled zone, especially the cooling condition of the conveyor is gradually cooled (see Table 2 for details).
, Ferrite decarburization further increased as compared with the case of air cooling (for details, see Table 2). This is because the difference between the cooling conditions with the immediately preceding water cooling becomes larger when the cooling is performed gradually, and the recuperation of the surface portion after passing through the water cooling zone becomes remarkable, resulting in a longer stagnation time in the two-phase temperature region. It is presumed to be the cause. Further, the test No. When the rolling finishing temperature was high as in Nos. 1 to 4, Dm-T increased. In contrast to the comparative examples, when the cooling in the water-cooled zone was not performed as in the present invention, the thickness of the ferrite decarburized layer was reduced to 0.005 mm or less without being largely influenced by the cooling conditions of the conveyor. It was confirmed that it could be suppressed. We also experimented with three different steel types,
It was confirmed that the same effect was obtained in all cases. As described above, in the method of manufacturing a high Si spring steel wire of the present invention, a method of temporarily cooling rapidly, that is, water cooling after rolling, is not used, but at a speed lower than air cooling. In addition, by cooling until the transformation is completed without suddenly changing the cooling conditions and cooling so that the surface temperature does not recover by heat conduction from the inside, it has become possible to suppress ferrite decarburization to an extremely small thickness. Further, since ferrite decarburization can be suppressed to a small degree regardless of the cooling condition of the conveyor, the optimum cooling condition of the conveyor can be selected according to the hardenability and the wire diameter of the material to be rolled, and no hardening occurs. It is possible to obtain a great effect on the manufacturing side that the condition can be easily adjusted. Accordingly, by applying the method of the present invention to high Si spring steel, it is possible to stably produce a wire rod with less ferrite decarburization, and to provide a coil spring having excellent fatigue strength even if the peeling step is omitted. Can be manufactured.

Claims (1)

【特許請求の範囲】 【請求項1】 Siを重量比で1.0%以上含有する高
Siばね鋼の鋼片を加熱し熱間圧延して線材を製造する
際において、仕上圧延を表面温度が800〜1000℃
の温度範囲で終了させた後、巻取り前に水冷することな
くコイル状に巻取り、巻取り後の冷却過程において、冷
却条件を急変させることなく空冷以下の速度で変態完了
まで冷却することを特徴とするフェライト脱炭の少ない
高Siばね鋼線材の製造方法。
Claims 1. When a steel piece of high Si spring steel containing 1.0% or more by weight of Si is heated and hot-rolled to produce a wire, finish rolling is performed at a surface temperature. Is 800-1000 ° C
After finishing in the temperature range of above, winding into a coil without water cooling before winding, and in the cooling process after winding, cool down to the transformation completion at a speed less than air cooling without suddenly changing the cooling conditions. A method for producing a high-Si spring steel wire rod with less ferrite decarburization.
JP2002071334A 2002-03-15 2002-03-15 METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION Pending JP2003268453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071334A JP2003268453A (en) 2002-03-15 2002-03-15 METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071334A JP2003268453A (en) 2002-03-15 2002-03-15 METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION

Publications (1)

Publication Number Publication Date
JP2003268453A true JP2003268453A (en) 2003-09-25

Family

ID=29201644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071334A Pending JP2003268453A (en) 2002-03-15 2002-03-15 METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION

Country Status (1)

Country Link
JP (1) JP2003268453A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017358A3 (en) * 2007-07-20 2009-04-29 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
WO2013122261A1 (en) 2012-02-14 2013-08-22 Jfeスチール株式会社 Spring steel
CN112899466A (en) * 2021-02-08 2021-06-04 新疆八一钢铁股份有限公司 Heating furnace control method for preventing spring steel from decarbonization
US11059261B2 (en) 2013-04-02 2021-07-13 Toray Industries, Inc. Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
CN115261702A (en) * 2021-04-29 2022-11-01 宝山钢铁股份有限公司 Smelting method of hot-rolled spring steel and hot-rolled spring steel prepared by same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017358A3 (en) * 2007-07-20 2009-04-29 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
EP2374904A1 (en) * 2007-07-20 2011-10-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire material for spring and its producing method
US8382918B2 (en) 2007-07-20 2013-02-26 Kobe Steel, Ltd. Steel wire material for spring and its producing method
WO2013122261A1 (en) 2012-02-14 2013-08-22 Jfeスチール株式会社 Spring steel
US11059261B2 (en) 2013-04-02 2021-07-13 Toray Industries, Inc. Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
US11969984B2 (en) 2013-04-02 2024-04-30 Toray Industries, Inc. Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
CN112899466A (en) * 2021-02-08 2021-06-04 新疆八一钢铁股份有限公司 Heating furnace control method for preventing spring steel from decarbonization
CN115261702A (en) * 2021-04-29 2022-11-01 宝山钢铁股份有限公司 Smelting method of hot-rolled spring steel and hot-rolled spring steel prepared by same
CN115261702B (en) * 2021-04-29 2023-08-11 宝山钢铁股份有限公司 Smelting method of hot-rolled spring steel and hot-rolled spring steel prepared by smelting method

Similar Documents

Publication Publication Date Title
JP5667977B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
EP3715478B1 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP4123672B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JPH04365816A (en) Production of steel wire rod for cold working
JPH0432514A (en) Production of soft wire rod free from surface abnormal phase in as-rolled state
JPH039168B2 (en)
JP2003268453A (en) METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION
KR101819431B1 (en) High-carbon steel wire rod for cold forging, processed good using the same, and methods for manufacturing thereof
JPH08295934A (en) Production of high carbon electric resistance welded tube excellent in wear resistance
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP2003183733A (en) Method for manufacturing wire rod
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPS6159379B2 (en)
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPH08199309A (en) Stainless steel excellent in workability and its production
JP5972823B2 (en) Manufacturing method of steel for cold forging
EP0707089B1 (en) High-carbon steel wire or steel therefor excellent in workability in wire drawing and process for producing the same
JPH1025521A (en) Method to spheroidizing wire rod
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature