JP2567151B2 - Manufacturing method of oil well steel pipe with excellent SSC resistance - Google Patents

Manufacturing method of oil well steel pipe with excellent SSC resistance

Info

Publication number
JP2567151B2
JP2567151B2 JP2409630A JP40963090A JP2567151B2 JP 2567151 B2 JP2567151 B2 JP 2567151B2 JP 2409630 A JP2409630 A JP 2409630A JP 40963090 A JP40963090 A JP 40963090A JP 2567151 B2 JP2567151 B2 JP 2567151B2
Authority
JP
Japan
Prior art keywords
temperature
less
steel pipe
hot
ssc resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2409630A
Other languages
Japanese (ja)
Other versions
JPH04232209A (en
Inventor
明 八木
均 朝日
正勝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2409630A priority Critical patent/JP2567151B2/en
Publication of JPH04232209A publication Critical patent/JPH04232209A/en
Application granted granted Critical
Publication of JP2567151B2 publication Critical patent/JP2567151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化物応力腐食環境に
おいても良好な耐硫化物応力腐食割れ性を有する油井管
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing oil country tubular goods having good sulfide stress corrosion cracking resistance even in a sulfide stress corrosion environment.

【0002】[0002]

【従来の技術】従来、硫化物応力腐食環境においても良
好な耐硫化物応力腐食割れ性(以下、耐SSC性と記
す)を得るには、例えばCAMP−ISIJ Vol.
1(1988)−1932のように焼入性向上元素を添
加した鋼を圧延後に再加熱焼入−焼戻処理を行う必要が
あった。
2. Description of the Related Art Conventionally, in order to obtain good sulfide stress corrosion cracking resistance (hereinafter referred to as SSC resistance) even in a sulfide stress corrosion environment, for example, CAMP-ISIJ Vol.
No. 1 (1988) -1932, it was necessary to perform reheating quenching-tempering treatment after rolling the steel to which the hardenability improving element was added.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような工程は熱効率上の問題のほかに製造工程が煩雑と
なり、また焼入性向上元素の大量の添加は焼割れの原因
となるため適用範囲が限定され高強度化には問題があっ
た。本発明はこのような従来の問題点を解決するもので
あって、鋼中に添加する成分と、熱間圧延条件を制御す
ることにより硫化物応力腐食環境においても良好な耐S
SC性のすぐれた油井用鋼管の製造法を提供することを
目的とする。
However, in addition to the problem of thermal efficiency, the above-mentioned process complicates the manufacturing process, and addition of a large amount of the hardenability-improving element causes quench cracking. However, there was a problem in increasing the strength. The present invention solves such a conventional problem, and by controlling the components added to steel and hot rolling conditions, it is possible to obtain good S resistance even in a sulfide stress corrosion environment.
An object of the present invention is to provide a method for manufacturing a steel pipe for oil wells having excellent SC property.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は以下の構成を要旨とする。すなわち、重量%
として、 C:0.05〜0.35%、Si:0.01〜0.5
%、 Mn:0.15〜1.0%、S:0.01%以下、 P:0.02%以下、Al:0.005〜0.1%、 Ti;0.005〜0.2%、B;0.0003〜0.
003、 N;70ppm以下を含有し、さらに Cr:0.1〜1.5%、、Mo:0.05〜0.4
%、 Ni:0.1〜2.0%、V:0.01〜0.1%、 の1種または2種以上を含有し、さらに、 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、 Co:0.05〜0.5%、Cu:0.1〜0.5% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片に熱間穿孔連続圧延を行い、その最終過程で
900℃〜700℃の温度で圧下率3〜15%の加工を
施してAr3 −100℃〜Ar3 +50℃の温度に降下
させた中空素管を、900℃〜1000℃に再加熱して
仕上げ温度がAr3 点+50℃以上の熱間仕上圧延を施
し、得られた鋼管をAr3 点以上の温度から急冷する焼
入処理を施し、続いてAc1 以下の温度に加熱して空冷
する焼戻処理を施すことを特徴とする耐SSC性の優れ
た油井用鋼管の製造法である。
In order to achieve the above object, the present invention has the following structures. That is, wt%
As C: 0.05 to 0.35%, Si: 0.01 to 0.5
%, Mn: 0.15-1.0%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%, Ti; 0.005-0.2% , B; 0.0003-0.
003, N; contains 70 ppm or less, further Cr: 0.1 to 1.5%, Mo: 0.05 to 0.4
%, Ni: 0.1 to 2.0%, V: 0.01 to 0.1%, one or more kinds, and a rare earth element: 0.001 to 0.05%, Ca : 0.00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0.1 to 0.5% to a steel slab containing one or more and the balance substantially Fe. A hollow shell that is hot-pierced and continuously rolled, and in the final process, processed at a temperature of 900 ° C to 700 ° C with a reduction rate of 3 to 15% and lowered to a temperature of Ar 3 -100 ° C to Ar 3 + 50 ° C. Is reheated to 900 ° C. to 1000 ° C., hot finish rolling is performed at a finishing temperature of Ar 3 points + 50 ° C. or higher, and the obtained steel pipe is subjected to a quenching treatment to be rapidly cooled from the temperature of Ar 3 points or higher. And a tempering process of heating to a temperature of Ac 1 or lower and air cooling is performed to produce a steel pipe for oil wells having excellent SSC resistance.

【0005】[0005]

【作用】以下本発明の製造法について詳細に説明する。
先ず、本発明において上記の様な鋼成分に限定した理由
について説明する。Cは、強度を高め降伏点60〜80
kgf/mm2 の高張力鋼を安定して得るため重要である。
少な過ぎるとその効果がなく、多過ぎると、比較的粗粒
なオーステナイト粒からの焼入を行う本発明においては
焼割れを誘発する原因となる。そのため0.05〜0.
35%の範囲とした。Mnは、焼入効果を増して強度を
高め降伏点60〜80kgf/mm2 高張力鋼を安定して得
るため重要である。少な過ぎるとその効果がなく、多過
ぎると耐SSC性の劣化をきたし、また比較的粗粒なオ
ーステナイト粒からの焼入を行う本発明においては、低
温靱性の劣化の原因となるため、0.15〜1.0%と
した。Siは、脱酸剤が残存したもので、強度を高める
有効な成分である。少な過ぎるとその効果がなく、多過
ぎると介在物を増加して鋼の性質を脆化するため0.0
1〜0.5%とした。Pは、粒界偏析を起こして加工の
際き裂を生じ易く有害な成分として、その含有量を0.
02%以下とした。Sは、MnS系介在物を形成して熱
間圧延で延伸し低温靱性に有害な成分としてその含有量
0.01%以下とした。
The operation of the present invention will be described in detail below.
First, the reason why the present invention is limited to the above steel components will be described. C enhances strength and yield point 60-80
It is important for stably obtaining high-strength steel of kgf / mm 2 .
If it is too small, the effect is not obtained, and if it is too large, it causes quench cracking in the present invention in which quenching is performed from relatively coarse austenite grains. Therefore, 0.05-0.
The range was 35%. Mn is important because it enhances the quenching effect to increase strength and yield a yield point of 60 to 80 kgf / mm 2 high strength steel. If the amount is too small, the effect is not obtained, and if the amount is too large, the SSC resistance is deteriorated, and in the present invention in which quenching is performed from relatively coarse austenite particles, it causes deterioration of the low temperature toughness. It was set to 15 to 1.0%. Si is a residual deoxidizer, and is an effective component for increasing strength. If it is too small, the effect will not be obtained, and if it is too large, inclusions will increase and the properties of the steel will become brittle.
It was set to 1 to 0.5%. P is a harmful component that causes grain boundary segregation and easily causes cracks during processing, and its content is 0.
It was set to 02% or less. S is a component harmful to the low temperature toughness formed by forming MnS inclusions and stretching by hot rolling, and the content thereof is 0.01 % or less.

【0006】Alは、Siと同様脱酸剤が残存したもの
で、鋼中の不純物成分として含まれるNと結合して結晶
粒の成長を抑えて鋼の遷移温度を低下させて低温靱性を
改善する。少な過ぎるとその効果がなく、多過ぎると介
在物を増加して鋼の性質を脆化するため、0.005〜
0.1%とした。Tiは、鋼中の不純物成分として含ま
れるNと結合して結晶粒の成長を抑えて強度を高めると
共に、脱酸、脱窒の作用からBによる焼入性を発揮させ
る。少な過ぎるとその効果がなく、多過ぎるとTiCを
析出して鋼を脆化し、また介在物を増加し鋼の性質を脆
化するため、0.005〜0.2%とした。Bは、焼入
性を著しく向上せしめて強度を高める。少な過ぎるとそ
の効果がなく、多過ぎても効果は変わらず、靱性や熱間
加工性を劣化させるので、0.0003〜0.003%
とした。Nは、Bの効果を低下させる有害な成分とし
て、その含有量を70ppm以下とした。
Al, like Si, has a deoxidizing agent remaining, and is combined with N contained as an impurity component in the steel to suppress the growth of crystal grains and lower the transition temperature of the steel to improve the low temperature toughness. To do. If it is too small, the effect will not be obtained, and if it is too large, inclusions will increase and the properties of the steel will become brittle.
It was set to 0.1%. Ti combines with N, which is contained as an impurity component in the steel, to suppress the growth of crystal grains and increase the strength, and to exert the hardenability of B due to the effects of deoxidation and denitrification. If it is too small, the effect is not obtained, and if it is too large, TiC is precipitated to embrittle the steel, and inclusions increase to embrittle the properties of the steel, so the content was made 0.005 to 0.2 %. B remarkably improves the hardenability and enhances the strength. If it is too small, the effect will not be obtained, and if it is too large, the effect will not change and the toughness and hot workability will be deteriorated, so 0.0003 to 0.003%
And N is a harmful component that reduces the effect of B, and its content is 70 ppm or less.

【0007】上記の成分組成の鋼でさらに鋼の強度を高
める場合Cr,Mo,Ni,V等の成分を必要に応じて
選択的に添加する。これらの元素は、鋼の焼入性を増し
て、強度を高めるために添加するものである。少な過ぎ
るとその効果がなく、多過ぎると比較的粗粒なオーステ
ナイト粒からの焼入を行う本発明においては、焼割れを
誘発する原因となり、しかも非常に高価であるため
れぞれの成分の含有量を0.1〜1.5%、0.05〜
0.4%、0.1〜2.0%、0.01〜0.1%とし
た。
When the strength of the steel is further increased in the steel having the above component composition, components such as Cr, Mo, Ni and V are selectively added as required. These elements are added in order to enhance the hardenability of steel and the strength. If too little without the effect, in the present invention for performing quenching from the too many relatively coarse austenite grains, cause inducing quenching cracks, since moreover is very expensive, content of each component amount of 0.1 to 1.5 percent, 0.05
It was set to 0.4%, 0.1 to 2.0%, and 0.01 to 0.1%.

【0008】さらに本発明は、近年の鋼管の使用環境を
鑑み上記の成分組成で構成される鋼のSSCを改善する
ために希土類元素や、Ca,Co,Cu等の成分を必要
に応じて選択的に添加する。希土類元素、Caは、介在
物の形態を球状化させて無害化する有効な成分である。
少な過ぎるとその効果がなく、多過ぎると介在物を増加
して耐SSC性を低下させるので、それぞれ0.001
〜0.05%、0.001〜0.02%とした。Co,
Cuは、鋼中への水素侵入抑制効果があり耐SSC性に
有効に働く。少な過ぎるとその効果がなく、多過ぎると
その効果が飽和するため、それぞれ0.05〜0.5
%、0.1〜0.5%とした。
Further, in view of the recent environment of use of steel pipes, the present invention selects rare earth elements and components such as Ca, Co and Cu as necessary in order to improve the SSC of the steel having the above composition. To be added. The rare earth element, Ca, is an effective component that makes the inclusions spherical and harmless.
If it is too small, the effect is not obtained, and if it is too large, inclusions increase and SSC resistance is reduced.
.About.0.05% and 0.001 to 0.02%. Co,
Cu has an effect of suppressing hydrogen invasion into the steel and effectively acts on SSC resistance. If it is too small, the effect will not be obtained, and if it is too large, the effect will be saturated.
% And 0.1 to 0.5%.

【0009】次に熱間押込連続圧延の最終過程の圧延条
件を上記のように限定した理由について説明する。上記
のような成分組成の鋼は転炉、電気炉等の溶解炉である
いはさらに真空脱ガス処理を経て溶製され、連続鋳造法
または造塊分塊法で鋼片を製造する。直ちにあるいは一
旦冷却された後高温度に加熱された鋼片は熱間穿孔連続
圧延機に搬送され、目標の外径、肉厚に圧延されて中空
素管に粗成形する。
Next, the reason for limiting the rolling conditions in the final step of hot indenting continuous rolling as described above will be explained. The steel having the above composition is melted in a melting furnace such as a converter or an electric furnace or further subjected to a vacuum degassing process, and a steel slab is manufactured by a continuous casting method or an ingot lump method. Immediately or once cooled and then heated to a high temperature, the steel slab is conveyed to a hot piercing continuous rolling mill, rolled to a target outer diameter and wall thickness, and roughly formed into a hollow shell.

【0010】この圧延は製造された鋼管の材質に大きな
影響を及ぼす。すなわち、図1および図2に、圧延後直
接焼入処理された鋼のオーステナイト(以下、γと記
す)粒度と熱間穿孔連続圧延の最終過程での圧下条件、
再加熱開始温度、再加熱炉温度の関係を示すが、直接焼
入処理後のγ粒度は、これらの条件によりASTM No.
0〜8と大きく変化する。
This rolling has a great influence on the material of the manufactured steel pipe. That is, in FIG. 1 and FIG. 2, the austenite (hereinafter referred to as γ) grain size of the steel that has been directly quenched after rolling and the rolling reduction conditions in the final step of hot-rolling continuous rolling,
The relationship between the reheating start temperature and the reheating furnace temperature is shown. The γ grain size after direct quenching treatment is ASTM No.
It changes greatly from 0 to 8.

【0011】本発明者等の研究によると、高強度鋼の耐
SSC性はγ粒径が粗大化すると劣化し、逆に細粒γと
なりすぎても焼入処理後のマルテンサイト率が低下し劣
化すること、さらに安定した耐SSC性が確保できる適
当なγ粒度はASTM No.3〜6であることを突き止め
た。また、ASTM No.3〜6のγ粒度を得るには熱間
穿孔連続圧延の最終過程〜再加熱過程で起こるひずみ誘
起粒成長後の二次再結晶により引き起こされるγ粗粒大
化現象の利用が不可欠であることを知見した。ひずみ誘
起粒成長を利用したγ粒度制御は、熱間穿孔連続圧延の
最終過程での圧延条件、再加熱開始温度、再加熱炉温度
を以下のように規定することにより可能となる。すなわ
ち、熱間穿孔連続圧延の最終過程での圧下温度は900
℃以上では加工により導入されたひずみエネルギーが回
復、再結晶により低下するためひずみ誘起粒成長の駆動
力が低下し、700℃以下の圧下では蓄積されるひずみ
エネルギーが大きくなりすぎて圧下後あるいはその後の
再加熱過程でひずみを持たないγ粒が発生しひずみ誘起
粒成長の駆動力は消失する。よって、熱間穿孔連続圧延
の最終過程での圧下温度は900℃〜700℃に限定し
た。かかる圧下温度条件で、圧下量が0〜2%ではひず
み誘起粒成長の駆動力となるひずみエネルギーが不十分
であり、15%以上では蓄積されるひずみエネルギーが
大きくなりすぎ圧下後あるいはその後の再加熱過程でひ
ずみを持たないγ粒が生成しひずみ誘起粒成長の駆動力
は消失する。よって、熱間穿孔連続圧延の最終過程での
圧下量は3〜15%に限定した。
According to the study by the present inventors, the SSC resistance of high strength steel deteriorates when the γ grain size becomes coarse, and conversely, if the grain size becomes too fine, the martensite ratio after quenching decreases. It was found that the suitable γ grain size that can ensure deterioration and further stable SSC resistance is ASTM Nos. 3 to 6. Further, in order to obtain γ grain size of ASTM No. 3 to 6, use of γ coarse grain enlargement phenomenon caused by secondary recrystallization after strain-induced grain growth that occurs in the final process of hot piercing continuous rolling to reheating process. It was found that is essential. The γ grain size control utilizing the strain-induced grain growth can be performed by defining the rolling conditions, the reheating start temperature, and the reheating furnace temperature in the final process of hot piercing continuous rolling as follows. That is, the reduction temperature in the final step of hot-rolling continuous rolling is 900
Above ℃, the strain energy introduced by processing recovers and decreases due to recrystallization, so the driving force for strain-induced grain growth decreases, and at 700 ° C or less, the accumulated strain energy becomes too large and after or after rolling. During the reheating process, γ grains without strain are generated and the driving force for strain-induced grain growth disappears. Therefore, the rolling reduction temperature in the final step of the hot piercing continuous rolling is limited to 900 ° C to 700 ° C. Under these rolling temperature conditions, if the rolling amount is 0 to 2%, the strain energy that serves as the driving force for strain-induced grain growth is insufficient, and if it is 15% or more, the strain energy accumulated becomes too large and the strain energy is reduced after the rolling or after the rolling. In the heating process, γ grains without strain are generated and the driving force for strain-induced grain growth disappears. Therefore, the amount of reduction in the final process of hot piercing continuous rolling was limited to 3 to 15%.

【0012】圧下後の再加熱開始温度はAr3 −100
℃〜Ar3 −150℃間ではγ粒の急激な異常粗大化が
起こり耐SSC性が著しく劣化する。また、Ar3 +5
0℃以上ではひずみ誘起粒成長の駆動力が解放される。
よって、圧下後の再加熱開始温度は、Ar3 −100℃
〜Ar3 +50℃に限定した。
The reheating start temperature after reduction is Ar 3 -100.
Between ℃ and Ar 3 -150 ℃, abrupt coarsening of γ grains occurs and the SSC resistance is significantly deteriorated. Also, Ar 3 +5
At 0 ° C. or higher, the driving force for strain-induced grain growth is released.
Therefore, the reheating start temperature after rolling is, Ar 3 -100 ° C.
˜Ar 3 + 50 ° C.

【0013】再加熱温度は、900℃以下ではγ粒径の
成長に不十分でありまた1000℃以上ではγ粒が急激
に粗大化し耐SSC性が著しく劣化するため900〜1
000℃の温度に限定した。また、熱間最終仕上温度
は、あまり低くなると高強度を得るために必要とされる
焼入れ時の完全γの状態が確保できないためAr3 +5
0℃以上とした。
If the reheating temperature is 900 ° C. or lower, the γ grain size is insufficient to grow, and if the reheating temperature is 1000 ° C. or higher, the γ grains are suddenly coarsened and the SSC resistance is significantly deteriorated.
The temperature was limited to 000 ° C. Also, if the hot final finishing temperature is too low, the state of perfect γ at the time of quenching, which is necessary for obtaining high strength, cannot be secured, so Ar 3 +5
It was set to 0 ° C. or higher.

【0014】焼入温度は、耐SSC性の安定化を図るた
めに重要である。Ar3 以下では均一な組織が得られな
いため耐SSC性は不安定となる。よって、焼入温度は
Ar 3 以上とした。焼入れ時の冷却温度は特に限定しな
いが空冷より速い速度とする。焼戻し温度は、強度およ
び靱性の安定化を確保する必要からAc 1 以下とした。
その加熱方法については特に限定しない。
The quenching temperature is important for stabilizing the SSC resistance. If Ar 3 or less, a uniform structure cannot be obtained, and the SSC resistance becomes unstable. Therefore, the quenching temperature is
It was set to Ar 3 or more . The cooling temperature at the time of quenching is not particularly limited, but it is faster than air cooling. The tempering temperature was set to Ac 1 or less because it is necessary to ensure the stability of strength and toughness.
The heating method is not particularly limited.

【0015】以上の製造条件で得られる鋼は硫化物応力
腐食環境においても良好な耐SSC性を示す油井管の製
造に有効である。
The steel obtained under the above manufacturing conditions is effective for manufacturing oil country tubular goods which exhibits good SSC resistance even in a sulfide stress corrosion environment.

【0016】[0016]

【実施例】次に本発明の実施例について説明する。転炉
で溶製し連続鋳造を経て製造された表2に示す化学成分
の鋼片を、表2に示す圧延条件で、熱間押込連続圧延後
再加熱してその後熱間最終仕上圧延を行って焼入−焼戻
処理した鋼管を製造し、これらの鋼管における強度、γ
粒径および耐SSC性を示す。尚、耐SSC性はNAC
E TM01−77に従って定荷重方式によりσth
(Threshld Stress)を求めて評価し
た。
EXAMPLES Next, examples of the present invention will be described. Steel pieces having the chemical composition shown in Table 2 produced by melting in a converter and through continuous casting were hot-pressed continuously and then reheated under the rolling conditions shown in Table 2 and then hot final finish rolling was performed. Quenching-tempering steel pipes are manufactured, and the strength, γ
The particle size and SSC resistance are shown. SSC resistance is NAC
Σth by constant load method according to ETM01-77
(Threshold Stress) was obtained and evaluated.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】本発明によって製造された鋼管は、高強度
を有しかつ従来法に比べて耐SSC性はσthで0.2
σy以上向上することがわかる。
The steel pipe manufactured according to the present invention has high strength and has an SSC resistance of 0.2 at σth as compared with the conventional method.
It can be seen that it is improved by σy or more.

【0020】[0020]

【発明の効果】上記のような本発明法によって製造され
た鋼管は、高強度で且つ耐SSC性が優れ、硫化物応力
腐食環境において使用される。
The steel pipe produced by the method of the present invention as described above has high strength and excellent SSC resistance, and is used in a sulfide stress corrosion environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間穿孔連続圧延の最終過程での圧下条件、再
加熱開始温度、とオーステナイト粒度の関係を示す。
FIG. 1 shows a relationship between a rolling condition, a reheating start temperature, and an austenite grain size in a final process of hot-piercing continuous rolling.

【図2】熱間穿孔連続圧延の最終過程での圧下条件、再
加熱開始温度とオーステナイト粒度の関係を示す。
FIG. 2 shows a relationship between a rolling condition, a reheating start temperature and an austenite grain size in a final process of hot-piercing continuous rolling.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−213620(JP,A) 特開 平4−52226(JP,A) 特開 平5−98350(JP,A) 特開 平4−221018(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 63-213620 (JP, A) JP 4-52226 (JP, A) JP 5-98350 (JP, A) JP 4- 221018 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%として、 C:0.05〜0.35%、Si:0.01〜0.5
%、 Mn:0.15〜1.0%、S:0.01%以下、 P:0.02%以下、Al:0.005〜0.1%、 Ti;0.005〜0.2%、B;0.0003〜0.
003、 N;70ppm以下を含有し、残部が実質的にFeから
なる鋼片に熱間穿孔連続圧延を行い、その最終過程で9
00℃〜700℃の温度で圧下率3〜15%の加工を施
してAr3 −100℃〜Ar3 +50℃の温度に降下さ
せた中空素管を、900℃〜1000℃に再加熱して仕
上げ温度がAr3 +50℃以上の熱間仕上圧延を施し、
得られた鋼管をAr3 点以上の温度から急冷する焼入処
理を施し、続いてAc1 以下の温度に加熱して空冷する
焼戻処理を施すことを特徴とする耐SSC性の優れた油
井用鋼管の製造法。
1. C: 0.05 to 0.35%, Si: 0.01 to 0.5 as weight%
%, Mn: 0.15-1.0%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%, Ti; 0.005-0.2% , B; 0.0003-0.
003, N; 70 ppm or less, and the balance being substantially Fe, the hot piercing continuous rolling is performed on the steel slab, and in the final process, 9
The hollow shell that has been processed at a reduction rate of 3 to 15% at a temperature of 00 ° C to 700 ° C and lowered to a temperature of Ar 3 -100 ° C to Ar 3 + 50 ° C is reheated to 900 ° C to 1000 ° C. Hot finish rolling with a finishing temperature of Ar 3 + 50 ° C or higher,
An oil well having excellent SSC resistance, characterized in that the obtained steel pipe is subjected to quenching treatment by rapidly cooling from a temperature of Ar 3 or higher, and subsequently, tempering treatment by heating to a temperature of Ac 1 or lower and air cooling. Steel pipe manufacturing method.
【請求項2】 重量%として、 C:0.05〜0.35%、Si:0.01〜0.5
%、 Mn:0.15〜1.0%、S:0.01%以下、 P:0.02%以下、Al:0.005〜0.1%、 Ti;0.005〜0.2%、B;0.0003〜0.
003、 N;70ppm以下を含有し、さらに Cr:0.1〜1.5%、、Mo:0.05〜0.4
%、 Ni:0.1〜2.0%、V:0.01〜0.1%、 の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片に熱間穿孔連続圧延を行い、その最終過程で
900℃〜700℃の温度で圧下率3〜15%の加工を
施してAr3 −100℃〜Ar3 +50℃の温度に降下
させた中空素管を、900℃〜1000℃に再加熱して
仕上げ温度がAr3 +50℃以上の熱間仕上圧延を施
し、得られた鋼管をAr3 点以上の温度から急冷する焼
入処理を施し、続いてAc1 以下の温度に加熱して空冷
する焼戻処理を施すことを特徴とする耐SSC性の優れ
た油井用鋼管の製造法。
2. C: 0.05 to 0.35%, Si: 0.01 to 0.5 as weight%
%, Mn: 0.15-1.0%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%, Ti; 0.005-0.2% , B; 0.0003-0.
003, N; contains 70 ppm or less, further Cr: 0.1 to 1.5%, Mo: 0.05 to 0.4
%, Ni: 0.1 to 2.0%, V: 0.01 to 0.1%, continuous hot drilling to a steel slab containing one or two or more and the balance being substantially Fe. The hollow shell that has been rolled and then processed at a temperature of 900 ° C to 700 ° C with a reduction rate of 3 to 15% and lowered to a temperature of Ar 3 -100 ° C to Ar 3 + 50 ° C is rolled at 900 ° C. Reheated to ~ 1000 ° C and subjected to hot finish rolling with a finishing temperature of Ar 3 + 50 ° C or higher, and quenching the obtained steel pipe from the temperature of Ar 3 or higher, followed by Ac 1 or lower. A method for producing a steel pipe for oil well having excellent SSC resistance, which is characterized by performing a tempering treatment of heating to a temperature and air cooling.
【請求項3】 重量%として、 C:0.05〜0.35%、Si:0.01〜0.5
%、 Mn:0.15〜1.0%、S:0.01%以下、 P:0.02%以下、Al:0.005〜0.1%、 Ti;0.005〜0.2%、B;0.0003〜0.
003、 N;70ppm以下を含有し、さらに、 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、 Co:0.05〜0.5%、Cu:0.1〜0.5% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片に熱間穿孔連続圧延を行い、その最終過程で
900℃〜700℃の温度で圧下率3〜15%の加工を
施してAr3 −100℃〜Ar3 +50℃の温度に降下
させた中空素管を、900℃〜1000℃に再加熱して
仕上げ温度がAr3 +50℃以上の熱間仕上圧延を施
し、得られた鋼管をAr3 点以上の温度から急冷する焼
入処理を施し、続いてAc1 以下の温度に加熱して空冷
する焼戻処理を施すことを特徴とする耐SSC性の優れ
た油井用鋼管の製造法。
3. C: 0.05 to 0.35%, Si: 0.01 to 0.5 as weight%
%, Mn: 0.15-1.0%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%, Ti; 0.005-0.2% , B; 0.0003-0.
003, N; contains 70 ppm or less, and further, rare earth element: 0.001 to 0.05%, Ca: 0.00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0.1 to 0.5% to a steel slab containing one or more and the balance substantially Fe. A hollow shell that is hot-pierced and continuously rolled, and in the final process, processed at a temperature of 900 ° C to 700 ° C with a reduction rate of 3 to 15% and lowered to a temperature of Ar 3 -100 ° C to Ar 3 + 50 ° C. Is reheated to 900 ° C. to 1000 ° C., hot finish rolling is performed at a finishing temperature of Ar 3 + 50 ° C. or more, and the obtained steel pipe is subjected to a quenching treatment in which it is rapidly cooled from a temperature of Ar 3 points or more. A method for producing a steel pipe for oil well having excellent SSC resistance, which is characterized by performing a tempering treatment of heating to a temperature of Ac 1 or less and air cooling.
【請求項4】 重量%として、 C:0.05〜0.35%、Si:0.01〜0.5
%、 Mn:0.15〜1.0%、S:0.01%以下、 P:0.02%以下、Al:0.005〜0.1%、 Ti;0.005〜0.2%、B;0.0003〜0.
003、 N;70ppm以下を含有し、さらに Cr:0.1〜1.5%、Mo:0.05〜0.4%、 Ni:0.1〜2.0%、V:0.01〜0.1%、 の1種または2種以上を含有すると共にさらに 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、 Co:0.05〜0.5%、Cu:0.1〜0.5% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片に熱間穿孔連続圧延を行い、その最終過程で
900℃〜700℃の温度で圧下率3〜15%の加工を
施してAr3 −100℃〜Ar3 +50℃の温度に降下
させた中空素管を、900℃〜1000℃に再加熱して
仕上げ温度がAr3 +50℃以上の熱間仕上圧延を施
し、得られた鋼管をAr3 以上の温度から急冷する焼入
処理を施し、続いてAc1 以下の温度に加熱して空冷す
る焼戻処理を施すことを特徴とする耐SSC性の優れた
油井用鋼管の製造法。
4. C: 0.05 to 0.35%, Si: 0.01 to 0.5 as weight%
%, Mn: 0.15-1.0%, S: 0.01% or less, P: 0.02% or less, Al: 0.005-0.1%, Ti; 0.005-0.2% , B; 0.0003-0.
003, N; contains 70 ppm or less, and further Cr: 0.1-1.5%, Mo: 0.05-0.4%, Ni: 0.1-2.0%, V: 0.01-. 0.1%, 1 type, or 2 or more types, and further contains rare earth elements: 0.001 to 0.05%, Ca: 0.00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0.1 to 0.5% to a steel slab containing one or more and the balance substantially Fe. A hollow shell that is hot-pierced and continuously rolled, and in the final process, processed at a temperature of 900 ° C to 700 ° C with a reduction rate of 3 to 15% and lowered to a temperature of Ar 3 -100 ° C to Ar 3 + 50 ° C. Is reheated to 900 ° C. to 1000 ° C. and subjected to hot finish rolling with a finishing temperature of Ar 3 + 50 ° C. or higher, and the obtained steel pipe is subjected to a quenching treatment of rapidly cooling from a temperature of Ar 3 or higher, and then Ac. A method for producing a steel pipe for oil well having excellent SSC resistance, which is characterized by performing a tempering treatment of heating to a temperature of 1 or less and air cooling.
JP2409630A 1990-12-28 1990-12-28 Manufacturing method of oil well steel pipe with excellent SSC resistance Expired - Lifetime JP2567151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409630A JP2567151B2 (en) 1990-12-28 1990-12-28 Manufacturing method of oil well steel pipe with excellent SSC resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409630A JP2567151B2 (en) 1990-12-28 1990-12-28 Manufacturing method of oil well steel pipe with excellent SSC resistance

Publications (2)

Publication Number Publication Date
JPH04232209A JPH04232209A (en) 1992-08-20
JP2567151B2 true JP2567151B2 (en) 1996-12-25

Family

ID=18518947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409630A Expired - Lifetime JP2567151B2 (en) 1990-12-28 1990-12-28 Manufacturing method of oil well steel pipe with excellent SSC resistance

Country Status (1)

Country Link
JP (1) JP2567151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
CN100587083C (en) * 2005-07-25 2010-02-03 住友金属工业株式会社 Method for producing seamless steel pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
EA010037B1 (en) * 2004-01-30 2008-06-30 Сумитомо Метал Индастриз, Лтд. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
AU2005209562B2 (en) * 2004-01-30 2008-09-25 Nippon Steel Corporation Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
CN100523256C (en) * 2004-01-30 2009-08-05 住友金属工业株式会社 Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
US9017494B2 (en) 2004-01-30 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless steel pipe for oil wells excellent in sulfide stress cracking resistance
NO337651B1 (en) * 2004-01-30 2016-05-23 Sumitomo Metal Ind Seamless oil well steel pipes with excellent resistance to sulphide stress cracking and method of making them
CN100587083C (en) * 2005-07-25 2010-02-03 住友金属工业株式会社 Method for producing seamless steel pipe

Also Published As

Publication number Publication date
JPH04232209A (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JPH09111343A (en) Production of high strength and low yield ratio seamless steel pipe
JP3362565B2 (en) Manufacturing method of high strength and high corrosion resistant seamless steel pipe
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP2567151B2 (en) Manufacturing method of oil well steel pipe with excellent SSC resistance
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2556643B2 (en) Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
JP3059993B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JPH06172855A (en) Production of seamless steel tube with low yield ratio and high toughness
JPH0250912A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP3293289B2 (en) Manufacturing method of high collapse strength steel pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730