JPH07197125A - Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance - Google Patents

Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance

Info

Publication number
JPH07197125A
JPH07197125A JP1206494A JP1206494A JPH07197125A JP H07197125 A JPH07197125 A JP H07197125A JP 1206494 A JP1206494 A JP 1206494A JP 1206494 A JP1206494 A JP 1206494A JP H07197125 A JPH07197125 A JP H07197125A
Authority
JP
Japan
Prior art keywords
rolling
temperature
billet
steel pipe
seamless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1206494A
Other languages
Japanese (ja)
Inventor
Yoshiro Kuriki
良郎 栗木
Katsumi Nakajima
勝己 中島
Masahiko Yasukawa
雅彦 安川
Noriaki Oyadomari
則明 親泊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1206494A priority Critical patent/JPH07197125A/en
Publication of JPH07197125A publication Critical patent/JPH07197125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel pipe having excellent SSCC resistance and strength by acceleration-cooling after hot pierce-rolling a specific composition of steel billet, successively, mandrel-rolling to make a seamless steel pipe and, thereafter, immediately quenching and tempering. CONSTITUTION:The composition of the steel is made to be, by wt.%, 0.15-0.4 C, 0.1-1 Si, 0.3-1 Mn, 0.1-1.5 Cr, 0.3-1 Mo, 0.0005-0.003 B, 0.01-0.1 Al, 0.003-0.01 N, <=0.015 P, <=0.005 S, and further, one or more kinds of 0.01-0.05 V, 0.01-0.05 Nb and 0.01-0.03% Ti and the balance Fe. This steel billet is heated to 1250-1350 deg.C and the Mannesmann type seamless rolling is applied to execute hot-piercing. This pipe is acceleration-cooled to the recrystallizing temp. +50 deg.C to the recrystallizing temp. +100 deg.C. Rolling reduction is executed to this pipe by the mandrel-rolling at <=30% and at the recrystallizing temp. to the recrystallizing temp. +30 deg.C, and finished at <=Ar3 transformation point to make the seamless steel pipe. This pipe is immediately water-hardened and, thereafter, the tempering is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、特に湿潤硫化水素と応
力の組み合わされた環境下で発生する硫化物応力腐食割
れ(以下SSCCと略する) に対し高い抵抗性を有し、
降伏強度が75kgf/mm2 以上の高強度を有する油
井あるいはガス井用シームレス鋼管を製造する方法に関
するものである。
The present invention has a high resistance to sulfide stress corrosion cracking (hereinafter abbreviated as SSCC) which occurs particularly in an environment in which wet hydrogen sulfide and stress are combined.
The present invention relates to a method for producing a seamless steel pipe for oil wells or gas wells having a high yield strength of 75 kgf / mm 2 or more.

【0002】[0002]

【従来の技術】近年のエネルギー事情の遍迫に伴い、こ
れまで開発されていない深層部でかつ硫化水素を含む油
井又はガス井も開発の対象となり、これらに使用する油
井管として高強度と、SSCCに対する高い抵抗性を具
備したシームレス鋼管の製造が強く望まれている。油井
管として使用される鋼管は通常一回の焼入れ焼戻しの熱
処理が施されているが、これまでの経験からSSCCを
防止するには、硬度をロックウェルCスケールで20〜
22以下に規制することが有効とされている。
2. Description of the Related Art With the recent urgency of energy circumstances, deep wells and hydrogen wells containing hydrogen sulfide, which have not been developed up to now, are also targets for development, and have high strength as oil well pipes to be used for them. The production of seamless steel pipes with high resistance to SSCC is highly desirable. Steel pipes used as oil well pipes are usually subjected to a single heat treatment of quenching and tempering, but from experience to date, to prevent SSCC, the hardness should be 20 to 20 on the Rockwell C scale.
It is considered effective to regulate it to 22 or less.

【0003】しかし、この硬度の規制に従うと降伏強度
は高々70kgf/mm2 とせざるを得ず、それ以上の
高強度と耐SSCC性を兼ね備えた鋼管を製造すること
は困難であった。一方、耐SSCC性の評価方法として
は米国におけるNACEの規格TM−01−77に定め
られている硫化水素飽和5%NaCl−0.5%酢酸水
溶液中での定荷重引張試験がよく知られている。ここに
規定されているSSCCを発生しない最高応力(σt
h)と材料の公称降伏応力(YS)との比を百分率で表
した「割れ限界比(σth/YS) 」で85%以上の耐
SSCCと降伏強度75kgf/mm2 以上の高強度を
両立させる方法として結晶粒の微細化が有効であること
が知られている。
However, according to the regulation of the hardness, the yield strength must be 70 kgf / mm 2 at most, and it is difficult to manufacture a steel pipe having higher strength and SSCC resistance. On the other hand, as a method for evaluating the SSCC resistance, a constant load tensile test in a 5% aqueous solution of hydrogen sulfide saturated NaCl-0.5% acetic acid defined in NACE standard TM-01-77 in the United States is well known. There is. Maximum stress (σt) that does not cause SSCC specified here
"Crack limit ratio (σth / YS)", which is a ratio of h) to the nominal yield stress (YS) of the material, expressed as a percentage, achieving both SSCC resistance of 85% or more and high strength of yield strength 75 kgf / mm 2 or more. As a method, it is known that miniaturization of crystal grains is effective.

【0004】これを具現化するための方策として、特開
昭59−232220号公報に開示されているように、
製造された鋼管に対し、焼入れ、焼戻しの処理を2回以
上施すもの、あるいは特開昭59−119324号公報
に開示されているように、焼入れ処理前の昇温温度を著
しく大とする方法が提案されている。一方、油井あるい
はガス井に用いられるシームレス鋼管(継ぎ目なし鋼
管)は、近年省エネルギー、省コストの観点から、例え
ば特開昭57−39129号公報に開示されている通
り、熱間でのパイプ圧延後その保有する温度を利用して
c3点以上の温度から水焼入れし、しかる後に焼戻しを
行うことが行われている。この方法はいわゆる直接焼入
れ法と呼ばれ、最近では多く利用されている。
As a measure for realizing this, as disclosed in Japanese Patent Laid-Open No. 59-232220,
The manufactured steel pipe is subjected to quenching and tempering treatments twice or more, or as disclosed in JP-A-59-119324, a method of significantly increasing the temperature rise before quenching treatment is used. Proposed. On the other hand, seamless steel pipes (seamless steel pipes) used for oil wells or gas wells have been used after hot pipe rolling, as disclosed in JP-A-57-39129, from the viewpoint of energy saving and cost saving in recent years. Utilizing the temperature held therein, water quenching is performed from a temperature of A c3 point or higher, followed by tempering. This method is called the so-called direct quenching method and has been widely used recently.

【0005】ところが、パイプ圧延後室温温度まで冷却
し、再加熱によって所定の焼入れ温度まで昇温させ、続
いて焼入れを行う従前のパイプ製造法に比べ、直接焼入
れにより製造されたパイプは、オーステナイト→フェラ
イト変態及びその逆方向の変態過程が省略されるため結
晶粒が粗大化する傾向を示し、そのため耐SSCC性が
劣化することは避けられなかった。
However, in comparison with the conventional pipe manufacturing method in which the pipe is cooled to room temperature after rolling, the temperature is raised to a predetermined quenching temperature by reheating, and then quenching is performed, the pipe manufactured by direct quenching is austenite Since the ferrite transformation and the transformation process in the opposite direction are omitted, the crystal grains tend to be coarsened, and thus the SSCC resistance is unavoidably deteriorated.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、直
接焼入れによって製造されるシームレス鋼管は省エネル
ギーあるいは省コストの面では有利であるが、結晶粒径
が粗大化する傾向にあるため、耐SSCC性を要求され
る油井あるいはガス井に使用される鋼管に適用すること
は困難とされていた。従って、本発明は省エネルギーの
観点から、1度の焼入れ焼き戻し熱処理によって「割れ
限界比(σth/YS) 」で85%以上の耐SSCCと
降伏強度75kgf/mm2 以上の高強度を両立させる
細粒組織を有する高強度シームレス鋼管を製造すること
を目的とする。具体的には、シームレス鋼管圧延プロセ
スの中のマンドレル圧延において制御圧延を適用し、圧
延終了後前述の直接焼入れを施すことによって細粒組織
を得て、優れた耐SSCC性と降伏点強度75kgf/
mm2 以上の高強度を実現することを目的とするもので
ある。
As described above, the seamless steel pipe produced by direct quenching is advantageous in terms of energy saving or cost saving, but since the crystal grain size tends to become coarse, SSCC resistance is high. It has been considered difficult to apply it to steel pipes used in oil wells or gas wells that require high performance. Therefore, from the viewpoint of energy saving, the present invention provides a fine crack that achieves both a SSCC resistance of 85% or more and a high yield strength of 75 kgf / mm 2 or more in “crack limit ratio (σth / YS)” by one-time quenching and tempering heat treatment. The purpose is to produce a high-strength seamless steel pipe having a grain structure. Specifically, controlled rolling is applied in the mandrel rolling in the seamless steel tube rolling process, and after the rolling is finished, the above-mentioned direct quenching is performed to obtain a fine grain structure, which has excellent SSCC resistance and yield point strength of 75 kgf /
The purpose is to achieve high strength of mm 2 or more.

【0007】[0007]

【課題を解決するための手段】本発明に係るシームレス
鋼管の製造法は、直接焼入れ、焼き戻し熱処理によって
微細な結晶粒を有し、優れた耐SSCC性を発揮するシ
ームレス鋼管を提供することを特徴とするものであり、
この特徴を実現するための方策を検討した結果、以下の
ような製造法を発明するに至った。
The method for producing a seamless steel pipe according to the present invention is to provide a seamless steel pipe having fine crystal grains by direct quenching and tempering heat treatment and exhibiting excellent SSCC resistance. It is a feature,
As a result of studying the measures for realizing this feature, the inventors have invented the following manufacturing method.

【0008】(1)請求項1の発明は、下記の工程を備
えた耐硫化物応力腐食割れ性に優れた高強度鋼管(成分
組成はwt%である)の製造方法である。 (a)主成分として、 C:0.15〜0.4 % 、 Si:0.1〜1 % Mn:0.3〜1 % 、 Cr:0.1〜1.5 % 、Mo:0.1〜
1 % 、 B:0.0005〜0.003 %、Al:0.01 〜0.1
% 、 N:0.003 〜0.01 % P:0.015 %以下、 S:0.005 %以下を含有し、さ
らに、V:0.01〜0.05%、 Nb:0.01 〜0.05%、Ti:
0.01 〜 0.03 %のうち1種または2種以上を含有し、
残部が実質的にFeからなるビレットを用意する工程
と、(b) 前記ビレットを1250〜1350℃の間に加熱した
後、マンネスマン式シームレス圧延によって熱間穿孔す
る工程と、(c) 前記熱間穿孔されたビレットを、再結
晶温度+50℃以上再結晶温度+100℃以下の温度域
まで加速冷却する工程と、(d)前記温度域に加速され
たビレットをマンドレル圧延により、30%以上の圧下
を行い、再結晶温度以上再結晶温度+30℃以下で、か
つAr3変態点以上の温度で圧延を終了してシームレス鋼
管とする工程と、(e)前記シームレス鋼管を直ちに水
焼入れする工程と、(f)水焼入れした前記シームレス
鋼管をAC1変態点以下の温度で焼き戻す工程。
(1) The invention of claim 1 is a method for producing a high-strength steel pipe (component composition is wt%) excellent in sulfide stress corrosion cracking resistance, which comprises the following steps. (A) As a main component, C: 0.15 to 0.4%, Si: 0.1 to 1% Mn: 0.3 to 1%, Cr: 0.1 to 1.5%, Mo: 0.1 to
1%, B: 0.0005 to 0.003%, Al: 0.01 to 0.1
%, N: 0.003 to 0.01% P: 0.015% or less, S: 0.005% or less, V: 0.01 to 0.05%, Nb: 0.01 to 0.05%, Ti:
Contains one or more of 0.01-0.03%,
A step of preparing a billet whose balance consists essentially of Fe; (b) a step of heating the billet between 1250 and 1350 ° C., followed by hot perforation by Mannesmann seamless rolling; and (c) the hot A step of accelerating and cooling the perforated billet to a temperature range of recrystallization temperature + 50 ° C or higher and recrystallization temperature + 100 ° C or lower, and (d) rolling the billet accelerated to the temperature range by mandrel rolling to reduce the rolling amount by 30% or more. And (e) immediately quenching the seamless steel pipe with water (e) immediately after the rolling to complete the rolling at a temperature not lower than the recrystallization temperature and not higher than the recrystallization temperature + 30 ° C. and not lower than the Ar 3 transformation point. f) A step of tempering the water-quenched seamless steel pipe at a temperature below the A C1 transformation point.

【0009】(2)請求項2の発明は、上記請求項1記
載のビレットの成分組成に、さらに、Ca:0.000
5〜0.01%を含有させたものであり、請求項1の工
程と同一の工程を備えた耐硫化物応力腐食割れ性に優れ
た高強度鋼管の製造方法である。
(2) The invention of claim 2 is the composition of the billet according to claim 1, further comprising Ca: 0.000.
A method for producing a high-strength steel pipe excellent in sulfide stress corrosion cracking resistance, which comprises the same steps as those of claim 1, containing 5 to 0.01%.

【0010】[0010]

【作用】本発明に係るシームレス鋼管の製造方法の特
徴、すなわち、省エネルギー、省コストの観点から、直
接焼入れおよび焼戻しによる製造を採用する一方、この
場合においても微細な結晶粒を有し、優れた耐SSCC
性を具備するシームレス鋼管を得ることができるという
特徴を実現するための方策を種々検討した結果以下のよ
うな所見を得た。すなわち、所望の高強度および耐SS
CC性を得るために必須となる焼き戻しマルテンサイト
組織の旧オーステナイト結晶粒度と耐SSCCとの間に
相関関係があることを見いだした。図1にσth/YS
が0.85以上となる結晶粒度と降伏強度の関係を示
す。従前の製造法では、パイプ圧延を終了した後に空冷
し、しかるのちに焼入れ焼戻し熱処理を行うが、この場
合、結晶粒度番号は高々ASTM No.8で、σth
/YSが0.85以上となる降伏強度は65kgf/m
2 にとどまる。
In view of the features of the method for producing a seamless steel pipe according to the present invention, that is, from the viewpoint of energy saving and cost saving, direct quenching and tempering are adopted, and in this case as well, it has fine crystal grains and is excellent. Resistance to SSCC
As a result of various studies on various measures for realizing the feature that a seamless steel pipe having excellent properties can be obtained, the following findings were obtained. That is, desired high strength and SS resistance
It was found that there is a correlation between the prior austenite grain size of the tempered martensite structure and the SSCC resistance, which are essential for obtaining CC properties. Figure 1 shows σth / YS
Shows the relationship between the grain size and the yield strength at which is 0.85 or more. In the conventional manufacturing method, after pipe rolling is finished, air cooling is carried out, followed by quenching and tempering heat treatment. In this case, the grain size number is at most ASTM No. In 8, σth
The yield strength at which / YS is 0.85 or more is 65 kgf / m
Stay at m 2 .

【0011】図1に従えば、限界降伏強度が75kgf
/mm2 以上となる結晶粒度はASTM No.10で
あり、細粒化のためには、直接焼入れ直前、すなわち、
圧延終了時の粒度を細粒にしておくことが肝要である。
この点に注目して、マンドレル圧延の圧延温度と圧下率
を種々変化させて圧延を行い、しかるのちに直接焼入
れ、焼戻し熱処理を施して得られる焼戻しマルテンサイ
ト組織の旧オーステナイト粒度を調べた。その結果、最
も細粒の組織が得られるのは、ビレット穿孔終了後マン
ドレル圧延開始までの冷却を速やかに行い、この間の結
晶粒の成長を抑制し、同圧延を再結晶温度直上で終了さ
せた場合であることが明らかになった。かかる知見に基
き、本発明を完成させた。
According to FIG. 1, the critical yield strength is 75 kgf.
The grain size of not less than / mm 2 is ASTM No. 10 is, for fine graining, immediately before direct quenching, that is,
It is important to make the grain size fine at the end of rolling.
Paying attention to this point, rolling was performed while varying the rolling temperature and the reduction ratio of the mandrel rolling, and then the prior austenite grain size of the tempered martensite structure obtained by performing direct quenching and tempering heat treatment was investigated. As a result, the structure of the finest grain is obtained is that cooling is rapidly performed after the end of billet drilling until the start of mandrel rolling, the growth of crystal grains during this period is suppressed, and the rolling is finished immediately above the recrystallization temperature. It turned out to be the case. The present invention has been completed based on these findings.

【0012】鋼の成分組成について 以下、本発明において鋼の成分組成を請求項の通りに限
定した理由について述べる。 C:0.15〜0.4%とする。 Cは低合金鋼の強度を確保する作用のほか、焼入れ性や
焼戻し抵抗を向上させるための必須な元素として、その
含有量を0.15%以上とした。しかし、0.4%を超
える多量の含有量は焼入れ時に割れを生じたり、靱性の
劣化を招いたりすることとなるので、C含有量を上記の
範囲とする。
Regarding the chemical composition of the steel, the reasons why the chemical composition of the steel is limited as claimed in the present invention will be described below. C: 0.15 to 0.4%. C is an essential element for improving the hardenability and the tempering resistance in addition to the function of ensuring the strength of the low alloy steel, and its content is set to 0.15% or more. However, a large content exceeding 0.4% causes cracks during quenching and deterioration of toughness, so the C content is set to the above range.

【0013】Si:0.1〜1%とする。 Siは鋼の脱酸剤としての作用のほか、鋼材の強度を向
上させる作用があるので、0.1%以上の添加を必要と
するが、1%を超えて含有させると靱性の劣化をきた
し、粒界強度も減少させるのでその上限を1%とする。
Si: 0.1 to 1% Si has a function as a deoxidizing agent for steel, as well as a function for improving the strength of the steel material, so it is necessary to add 0.1% or more, but if it exceeds 1%, toughness deteriorates. Since the grain boundary strength is also reduced, its upper limit is set to 1%.

【0014】Mn:0.3〜1%とする。 Mnは鋼の脱酸剤としての作用のほか、焼入れ性を向上
させ、赤熱脆性を防止するのに有効な成分で0.3%以
上を添加する。他方、1%を越えて含有させると靭性の
劣化をきたし、粒界強度も減少させるので、その上限を
1%とする。
Mn: 0.3 to 1% Mn acts as a deoxidizing agent for steel, improves the hardenability, and is an effective component for preventing red heat embrittlement, and is added in an amount of 0.3% or more. On the other hand, if the content exceeds 1%, the toughness deteriorates and the grain boundary strength also decreases, so the upper limit is made 1%.

【0015】Cr:0.1〜1.5%とする。 Crは焼入れ性の向上に著しく効果を示す元素で、鋼の
強度も増加せしめる作用があるが、その含有量が0.1
%未満では前記作用に所望の効果を得ることができず、
多量に添加すると明らかに耐SSCC性を低下させるの
でその上限を1.5%とする。
Cr: 0.1 to 1.5% Cr is an element that has a significant effect on the improvement of hardenability, and has the effect of increasing the strength of steel, but its content is 0.1.
If it is less than%, the desired effect cannot be obtained in the above action,
Addition of a large amount obviously lowers the SSCC resistance, so the upper limit is made 1.5%.

【0016】Mo:0.1〜1%とする。 Moには鋼の焼戻し抵抗を高める作用があるが、0.1
%以下ではその効果が小さく、他方1%を超えて含有さ
せると鋼の脆化や靱性の劣化をきたすようになることか
らMoの含有量は上記範囲とする。
Mo: 0.1 to 1%. Mo has the effect of increasing the tempering resistance of steel, but 0.1
%, The effect is small. On the other hand, if the content exceeds 1%, the steel becomes brittle and the toughness deteriorates. Therefore, the Mo content is in the above range.

【0017】 B:0.0005%〜0.003%とする。 Bは鋼の焼入れ性を向上し、0.005%以上含有させ
ることができるが、多量に添加してもその効果が飽和す
るのみならず、熱間加工時の割れを生じることからBの
含有量は上記範囲とする。
B: 0.0005% to 0.003% B improves the hardenability of steel and can be contained in an amount of 0.005% or more. However, the addition of a large amount not only saturates the effect, but also causes cracking during hot working, so B is included. The amount is in the above range.

【0018】Al:0.01〜0.1%とする。 Alは鋼の脱酸剤として有用な元素であり、Tiとなら
んで鋼中のNと結合して窒化物を形成し、Bの作用を顕
在化させる元素であり、その含有量を0.01%以上と
する。また、0.1%を超える過剰な含有量はAl2
3 を増加させ、耐SSCC性を低下させることからAl
の含有量は0.01〜0.1%とする。
Al: 0.01 to 0.1%. Al is an element useful as a deoxidizing agent for steel, is an element that combines with Ti to form N by combining with N in the steel to form a nitride, and makes the effect of B manifest 0.01. % Or more. Further, an excessive content exceeding 0.1% is Al 2 O.
3 is increased and the SSCC resistance is lowered, so Al
Content of 0.01 to 0.1%.

【0019】N:0.003〜0.01%とする。 NはTiおよびAlと窒化物を形成し、特にTiNは鋼
の粒成長を抑制し、微細化する作用がある。従って、添
加したTiを結晶粒微細化に有効に作用するTiNとし
て鋼中に析出させるためには、化学量論的考慮から、
0.003%以上とする。他方0.01%を超えて含有
させると、B添加の効果を減少し、焼入れ性劣化を招く
ようになるので、N含有量を0.003〜0.01%と
する。
N: 0.003 to 0.01%. N forms a nitride with Ti and Al, and particularly TiN has a function of suppressing grain growth of steel and refining it. Therefore, in order to precipitate the added Ti in the steel as TiN that effectively acts on the grain refinement, in consideration of stoichiometry,
It is made 0.003% or more. On the other hand, if the content is more than 0.01%, the effect of B addition is reduced and the hardenability is deteriorated. Therefore, the N content is set to 0.003 to 0.01%.

【0020】P:0.015%以下とする。 Pは粒界強度を低下させる有害な元素であり、特にその
含有量が0.015%を超えると耐SSCC性が劣化す
ることから、その含有量を0.015%以下とする。
P: 0.015% or less. P is a harmful element that lowers the grain boundary strength, and particularly if its content exceeds 0.015%, the SSCC resistance deteriorates, so its content is made 0.015% or less.

【0021】S:0.005%以下とする。 Sは鋼中の不可避な不純物であり、多量に含むとMnS
を形成しこれが割れの起点となる。従って、Sの含有量
は0.005%以下とする。
S: 0.005% or less. S is an unavoidable impurity in steel, and if contained in a large amount, MnS
Is formed, and this becomes the starting point of cracking. Therefore, the S content is set to 0.005% or less.

【0022】 NbおよびV:共に0.01%〜0.05%とする。 NbおよびVは圧延中の再結晶粒を細かくする効果を有
するため、より微細な結晶粒を所望する場合添加する元
素であり、この効果は0.01%未満では十分でなく、
0.05%を超えてもその効果が飽和するばかりか、靱
性の低下を招くことから、両元素の含有量を共に0.0
1%〜0.05%とする。
Nb and V: Both are 0.01% to 0.05%. Since Nb and V have an effect of making recrystallized grains fine during rolling, they are elements to be added when finer crystal grains are desired, and this effect is not sufficient if less than 0.01%.
If the content exceeds 0.05%, not only the effect will be saturated, but also the toughness will be reduced.
It is set to 1% to 0.05%.

【0023】Ti:0.01〜0.03%とする。 TiはAlと同様にNをTiNとして固定し、Bの焼入
れ性向上を図り、ビレット中では微細に分散析出するた
め、ビレット加熱時の結晶粒の粗大化を抑制する効果が
ある。しかし、その含有量が0.01%未満では前記所
望の効果を得ることができず、他方0.03%を越えて
含有させると、TiNの凝集粗大化によって結晶粒成長
の抑制に効果がないばかりか靭性の劣化を招くことにな
るのでTi含有量を0.01〜0.03%とする。
Ti: 0.01 to 0.03%. Ti fixes N as TiN similarly to Al to improve the hardenability of B and finely disperses and precipitates in the billet, so that it has an effect of suppressing coarsening of crystal grains during billet heating. However, if the content is less than 0.01%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.03%, there is no effect in suppressing the crystal grain growth due to coarsening of TiN by aggregation. Not only that, it causes deterioration of toughness, so the Ti content is made 0.01 to 0.03%.

【0024】Ca:0.0005〜0.01%とする。 CaはSを球状化した硫化物として析出させ耐SSCC
性を更に一層改善する効果を有するため添加する元素で
あり、この効果は0.0005%未満では十分でなく、
0.0100%を越えてもその効果が飽和するばかり
か、靭性の低下を招くことから、Ca含有量を0.00
05〜0.01%とした(請求項2)。
Ca: 0.0005 to 0.01%. Ca precipitates S as spheroidized sulfide and is resistant to SSCC
It is an element added because it has the effect of further improving the property, and this effect is not sufficient if less than 0.0005%,
Even if it exceeds 0.0100%, not only the effect is saturated, but also the toughness is reduced, so the Ca content is 0.00
It was set to 05 to 0.01% (claim 2).

【0025】鋼管の製造工程について 以上のような成分組成を有するビレットを連続鋳造法も
しくは造塊分塊法によって製造し、温度1250〜13
50℃に加熱する。この加熱において、1250℃未満
の低い温度ではビレット中に存在する炭化物の固溶化が
十分でなく、焼戻しの際の析出硬化で所望の強度が得ら
れないばかりか、未固溶炭化物が靭性を低下させる原因
となる。一方、1350℃を越える温度では炭化物は固
溶するものの、結晶粒の粗大化が著しく、マンドレル圧
延で適正な制御圧延が行われたとしてもASTM N
o.10以上の細粒組織とはならず、所望の耐SSCC
性は得られない。
Regarding the manufacturing process of steel pipe, a billet having the above-described composition is manufactured by a continuous casting method or an ingot-agglomeration method at a temperature of 1250-13.
Heat to 50 ° C. In this heating, at a low temperature of less than 1250 ° C., the solid solution of the carbide present in the billet is not sufficient, the desired strength cannot be obtained by precipitation hardening during tempering, and the undissolved carbide reduces the toughness. Cause On the other hand, at temperatures above 1350 ° C., although carbides form a solid solution, the crystal grains are remarkably coarsened, and even if proper controlled rolling is performed by mandrel rolling, ASTM N
o. A fine grain structure of 10 or more does not occur, and the desired SSCC resistance
I can't get sex.

【0026】つぎに、マンネスマン式シームレス圧延に
より熱間穿孔して得られた穿孔ビレットを再結晶温度+
50℃以上再結晶温度+100℃以下の温度域に加速冷
却する。この工程は、熱間穿孔後マンドレル圧延を開始
する間に生じる粒成長を抑制することを目的としてい
る。このとき、従前から行われている空冷では、冷却過
程で生じる結晶粒成長のためにマンドレル圧延で適正な
制御圧延が行われたとしても10番以上の細粒組織とは
ならず、所望の耐SSCC性は得られない。この工程
は、例えば水冷あるいはミスト冷却により行われ、この
ときの加速冷却の際の冷却速度は、通常、1〜20℃/
secに設定することが望ましい。
Next, the perforated billet obtained by hot perforation by Mannesmann seamless rolling is recrystallized at +
Accelerated cooling to a temperature range of 50 ° C or higher and recrystallization temperature + 100 ° C or lower. This step is intended to suppress grain growth that occurs during the start of mandrel rolling after hot drilling. At this time, in the air cooling that has been performed conventionally, even if proper control rolling is performed by mandrel rolling due to the crystal grain growth that occurs in the cooling process, the fine grain structure of No. 10 or more does not occur, and the desired resistance is not obtained. SSCC property cannot be obtained. This step is performed by, for example, water cooling or mist cooling, and the cooling rate at the time of accelerated cooling is usually 1 to 20 ° C. /
It is desirable to set to sec.

【0027】つづいて、上記の冷却終了温度域でマンド
レル圧延を開始する。この温度域で圧延を開始するの
は、圧延過程における再結晶でオーステナイトの微細化
を図ることと、再結晶温度を下回らない温度で圧延を終
了させるためである。次に、マンドレル圧延での圧下率
を30%以上に限定した理由は、30%未満の圧下では
再結晶による細粒化の効果が十分でなく、ASTM N
o.10以上の細粒組織が得られないからである。この
マンドレル圧延工程において特に重要な点は、圧延終了
温度を再結晶温度以上再結晶温度+30℃以下で、か
つ、Ar3変態点以上とすることである。
Then, mandrel rolling is started in the above cooling end temperature range. The reason why rolling is started in this temperature range is to refine the austenite by recrystallization in the rolling process and to finish rolling at a temperature not lower than the recrystallization temperature. Next, the reason why the rolling reduction in mandrel rolling is limited to 30% or more is that the reduction of grain size by recrystallization is not sufficient when the rolling reduction is less than 30%.
o. This is because a fine grain structure of 10 or more cannot be obtained. A particularly important point in this mandrel rolling process is to set the rolling end temperature to a recrystallization temperature or higher and a recrystallization temperature + 30 ° C. or lower and an Ar 3 transformation point or higher.

【0028】すなわち、マンドレル圧延に続く直接焼入
れによって、圧延終了時の組織がもちきたされることか
ら、再結晶温度未満で圧延を終了した場合、伸長したオ
ーステナイトが形成され、耐SSCC性は劣化する。ま
た、再結晶温度+30℃を越える温度で圧延を終了した
場合、圧延後の回復により粒成長が生じてASTMN
o.10以上の細粒組織とはならず、所望の耐SSCC
性は得られない。さらに、Ar3変態点以下で圧延を終了
した場合、オーステナイト、フェライトの2相組織とな
り、焼入れ性が低下し、所望の強度および耐SSCC性
が得られない。
That is, since the structure at the end of rolling is brought by the direct quenching following the mandrel rolling, when rolling is completed below the recrystallization temperature, extended austenite is formed and the SSCC resistance deteriorates. . Also, if the rolling is finished at a temperature higher than the recrystallization temperature + 30 ° C., grain growth occurs due to recovery after rolling, resulting in ASTMN
o. A fine grain structure of 10 or more does not occur, and the desired SSCC resistance
I can't get sex. Further, when rolling is completed at the Ar 3 transformation point or lower, a two-phase structure of austenite and ferrite is formed, hardenability deteriorates, and desired strength and SSCC resistance cannot be obtained.

【0029】ここで、再結晶温度は対象鋼の成分組成、
圧延開始前の結晶粒度および圧下率の組み合せで変化す
る物性値であるため、これを決定するためには、例え
ば、高温高速圧縮試験を行うことにより実機の圧延を再
現して、再結晶温度を求めることが必要である。マンド
レル圧延終了後のシームレス鋼管を圧延終了温度から直
ちに水焼入れし、つづいて、AC1変態点以下の温度で焼
き戻す。焼戻し温度は、オーステアイトを析出させない
ため上限としてAC1変態点温度であるが、焼戻し温度の
加減は目的とする鋼管の強度により変化させればよい。
すなわち、強度を低くする場合はこの温度を高くし、強
度を高くする場合は低い温度で焼き戻す。
Here, the recrystallization temperature is the composition of the target steel,
Since this is a physical property value that changes depending on the combination of the grain size and the rolling reduction before the start of rolling, in order to determine this, for example, by performing a high-temperature high-speed compression test, the rolling of an actual machine is reproduced, and the recrystallization temperature is It is necessary to ask. The seamless steel pipe after completion of the mandrel rolling is immediately water-quenched from the end temperature of rolling, and then tempered at a temperature not higher than the AC1 transformation point. The tempering temperature is an A C1 transformation point temperature as an upper limit so as not to precipitate austeite, but the tempering temperature may be adjusted depending on the strength of the target steel pipe.
That is, when lowering the strength, this temperature is increased, and when increasing the strength, tempering is performed at a lower temperature.

【0030】[0030]

【実施例】本発明の実施例について説明する。表1に示
す成分組成の鋼A〜Iを用いて製造されたシームレス鋼
管の特性を、製造方法と合わせて表2に示す。本発明鋼
は、連続鋳造法もしくは造塊分塊法によって製造された
ビレットを素材としてシームレスパイプの製造を行い、
シームレス鋼管の圧延方法はマンネスマン穿孔法とマン
ドレル圧延法とを組み合せた。ビレットの直径は約170
〜300 mmである。また、シームレス鋼管の外径は約114
〜244 mmであり、また肉厚は約10〜15mmである。
EXAMPLES Examples of the present invention will be described. The properties of the seamless steel pipes produced using the steels A to I having the composition shown in Table 1 are shown in Table 2 together with the production method. The present invention steel, a seamless pipe is produced by using a billet produced by a continuous casting method or an ingot making method as a raw material,
The rolling method of the seamless steel pipe was a combination of the Mannesmann piercing method and the mandrel rolling method. Billet diameter is about 170
~ 300 mm. The outer diameter of the seamless steel pipe is approximately 114
It is ~ 244 mm and the wall thickness is about 10-15 mm.

【0031】表2中に示した各鋼の再結晶温度は、本発
明に係る製造法で実施する制御圧延の圧延温度、圧下率
を決定する上で最も重要な因子であり、前述したよう
に、高温高速圧縮試験を行うことにより、実機における
圧延を再現して夫々再結晶温度を求めたものである。本
発明によれば、マンネスマン式穿孔後マンドレル圧延前
の過程で例えば水冷による加速冷却をおこなうことか
ら、従前のこの工程を空冷で行う場合に生じる粒成長が
抑制され、直接焼入れ、焼戻し後の結晶粒度は何れもA
STM No.10以上の細粒化組織となった。
The recrystallization temperature of each steel shown in Table 2 is the most important factor in determining the rolling temperature and the rolling reduction of the controlled rolling carried out by the manufacturing method according to the present invention, and as described above. The high temperature and high speed compression test was performed to reproduce the rolling in the actual machine and the recrystallization temperature was obtained for each. According to the present invention, since accelerated cooling such as water cooling is performed in the process before Mandrel rolling after Mannesmann-type perforation, grain growth that occurs when air cooling is performed in this conventional process is suppressed, and direct quenching and crystal after tempering are performed. The particle size is A
STM No. A fine grain structure of 10 or more was obtained.

【0032】特に、Nbを添加したB鋼、C鋼およびF
鋼ではASTM No.12以上の微細結晶粒が得られ
た。また発明鋼は表2に示した温度で焼戻しを行うこと
によって、75kgf/mm2 以上の降伏強度を示し、
かつ割れ限界比(σth/YS)は0.85以上の優れ
た耐SSCC性を示した。一方、G鋼においてはMo添
加量が、H鋼においてはCrおよびMo添加量が、また
I鋼においてはTi添加量がそれぞれ適正ではないた
め、結晶粒度はASTM No.10以上を達成する
が、σth/YSは0.85以上を満足することができ
なかった。
In particular, B steel, C steel and F containing Nb
For steel, ASTM No. 12 or more fine crystal grains were obtained. Further, the invention steel shows a yield strength of 75 kgf / mm 2 or more when tempered at the temperature shown in Table 2,
In addition, the cracking limit ratio (σth / YS) was 0.85 or more, indicating excellent SSCC resistance. On the other hand, since the amounts of Mo added in the G steel, the amounts of Cr and Mo added in the H steel, and the amounts of Ti added in the I steel are not appropriate, the grain size is ASTM No. Although 10 or more was achieved, σth / YS could not satisfy 0.85 or more.

【0033】A鋼をマンネスマン穿孔後に従前の方法で
ある空冷を行った場合、結晶粒はASTM No.9に
粗大化し、σth/YSは0.65にとどまった。ま
た、A鋼のビレット加熱温度を1380℃とした場合、
加熱時に結晶粒の粗大化が生じ、パイプ製造後の粒度は
ASTM No.7.5となり、σth/YSは0.5
5にとどまった。B鋼においてマンドレル圧延の圧下率
を20%とした場合、圧延時の再結晶が十分でなく結晶
粒度はASTM No.9となり、σth/YSは0.
65にとどまった。さらに、F鋼においてマンドレル圧
延の終了温度を再結晶温度を下回る900℃とした場
合、パイプ製造後の結晶粒はオーステナイトが伸長した
展伸粒となり、σth/YSは0.55にとどまった。
When the steel A was subjected to Mannesmann perforation and then air-cooled as a conventional method, the crystal grains were ASTM No. It coarsened to 9, and σth / YS remained at 0.65. When the billet heating temperature of A steel is 1380 ° C,
Coarsening of crystal grains occurs during heating, and the grain size after pipe manufacturing is ASTM No. 7.5, and σth / YS is 0.5
Stayed at 5. When the reduction rate of mandrel rolling in steel B is 20%, recrystallization during rolling is not sufficient and the grain size is ASTM No. 9, and σth / YS is 0.
Stayed at 65. Further, when the end temperature of the mandrel rolling in the F steel was set to 900 ° C., which is lower than the recrystallization temperature, the crystal grains after pipe production were expanded grains in which austenite was elongated, and σth / YS remained at 0.55.

【表1】 [Table 1]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】このように本発明によるシームレス鋼管
の製造法によれば、高強度と耐硫化物応力腐食割れ性を
同時に高い水準で備えたシームレス鋼管が、一度の焼入
れ、焼戻し熱処理によって得られ、しかも付加的な設備
を必要としないため、省コスト、省エネルギーが達成さ
れる。かかる製造法は、直接焼入れによる省エネルギー
の効果を最大限に発揮し、かつ制御圧延に先立つ冷却工
程で、スケール離脱のためすでに具備されている水噴霧
装置を利用することができるため、生産コストを格段に
要しない点で従来の製造法に利点を有するものである。
As described above, according to the method for producing a seamless steel pipe of the present invention, a seamless steel pipe having a high level of high strength and sulfide stress corrosion cracking resistance at the same time can be obtained by a single quenching and tempering heat treatment. Moreover, since no additional equipment is required, cost saving and energy saving are achieved. Such a manufacturing method maximizes the effect of energy saving by direct quenching, and in the cooling step prior to controlled rolling, the water spraying device already provided for scale removal can be used, resulting in a production cost. It has an advantage over the conventional manufacturing method in that it is not significantly required.

【0035】[0035]

【図面の簡単な説明】[Brief description of drawings]

【図1】σth/YSが0.85以上となる結晶粒度と
降伏強度との関係を示した図でる。
FIG. 1 is a diagram showing the relationship between the grain size and the yield strength at which σth / YS is 0.85 or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 親泊 則明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriaki Otomari No. 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の工程を備えた耐硫化物応力腐食割
れ性に優れた高強度鋼管の製造方法(成分組成はwt%
である)。 (a)主成分として、 C:0.15〜0.4 % 、 Si:0.1〜1 % Mn:0.3〜1 % 、 Cr:0.1〜1.5 % 、 Mo:0.1〜1 % 、 B:0.0005〜0.003 %、 Al:0.01 〜0.1 % 、 N:0.003 〜0.01 % P:0.015 %以下、 S:0.005 %以下を含有し、 さらに、 V:0.01〜0.05%、 Nb:0.01 〜0.05%、 Ti:0.01 〜 0.03 %のうち1種または2種以上を含有
し、残部が実質的にFeからなるビレットを用意する工
程と、(b) 前記ビレットを1250〜1350℃の間に加熱し
た後、マンネスマン式シームレス圧延によって熱間穿孔
する工程と、(c) 前記熱間穿孔されたビレットを、再
結晶温度+50℃以上再結晶温度+100℃以下の温度
域まで加速冷却する工程と、(d)前記温度域に加速冷
却されたビレットをマンドレル圧延により、30%以上
の圧下を行い、再結晶温度以上再結晶温度+30℃以下
で、かつAr3変態点以上の温度で圧延を終了してシーム
レス鋼管とする工程と、(e)前記シームレス鋼管を直
ちに水焼入れする工程と、(f)水焼入れした前記シー
ムレス鋼管をAC1変態点以下の温度で焼き戻す工程。
1. A method for producing a high-strength steel pipe excellent in sulfide stress corrosion cracking resistance, which comprises the following steps (the composition of components is wt%:
Is). (A) As a main component, C: 0.15 to 0.4%, Si: 0.1 to 1% Mn: 0.3 to 1%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1%, B: 0.0005 to 0.003%, Al: 0.01 to 0.1%, N: 0.003 to 0.01% P: 0.015% or less, S: 0.005% or less, V: 0.01 to 0.05%, Nb: 0.01 to 0.05%, Ti: 0.01 to 0.03% A step of preparing a billet containing one kind or two or more kinds, and the balance being substantially Fe, and (b) heating the billet between 1250 and 1350 ° C., and then hot-punching by Mannesmann seamless rolling And (c) accelerating and cooling the hot-drilled billet to a temperature range of recrystallization temperature + 50 ° C. or higher and recrystallization temperature + 100 ° C. or lower, and (d) billet accelerated and cooled to the temperature range. Is subjected to mandrel rolling to reduce the temperature by 30% or more, and at a temperature not lower than the recrystallization temperature and not higher than the recrystallization temperature + 30 ° C. and not lower than the Ar 3 transformation point. A step of finishing rolling to obtain a seamless steel tube at a certain temperature, (e) a step of immediately water quenching the seamless steel tube, and (f) a step of tempering the water-quenched seamless steel tube at a temperature not higher than the A C1 transformation point.
【請求項2】 下記の工程を備えた耐硫化物応力腐食割
れ性に優れた高強度鋼管の製造方法(成分組成はwt%
である)。 (a)C:0.15〜0.4 % 、 Si:0.1〜1 % Mn:0.3〜1 % 、 Cr:0.1〜1.5 % 、 Mo:0.1〜1 % 、 B:0.0005〜0.003 %、 Al:0.01 〜0.1 % 、 N:0.003 〜0.01 % P:0.015 %以下、 S:0.005 %以下を含有し、 さらに、 V:0.01〜0.05%、 Nb:0.01 〜 0.05 %、 Ti:0.01 〜 0.03 %のうち1種または2種以上を含有
し、 さらに、 Ca:0.0005 〜0.01%を含有し、 残部が実質的にFeからなるビレットを用意する工程
と、(b) 前記ビレットを1250〜1350℃の間に加熱した
後、マンネスマン式シームレス圧延によって熱間穿孔す
る工程と、(c) 前記熱間穿孔されたビレットを、再結
晶温度+50℃以上再結晶温度+100℃以下の温度域
まで加速冷却する工程と、(d)前記温度域に加速冷却
されたビレットをマンドレル圧延により、まず30%以
上の圧下を行い、再結晶温度以上再結晶温度+30℃以
下で、かつAr3変態点以上の温度で圧延を終了してシー
ムレス鋼管とする工程と、(e)前記シームレス鋼を直
ちに水焼入れする工程と、(f)水焼入れした前記シー
ムレス鋼管をAC1変態点以下の温度で焼き戻す工程。 【0001】
2. A method for producing a high-strength steel pipe excellent in sulfide stress corrosion cracking resistance, which comprises the following steps (component composition is wt%:
Is). (A) C: 0.15 to 0.4%, Si: 0.1 to 1% Mn: 0.3 to 1%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1%, B: 0.0005 to 0.003%, Al: 0.01 to 0.1% , N: 0.003 to 0.01% P: 0.015% or less, S: 0.005% or less, and one or two of V: 0.01 to 0.05%, Nb: 0.01 to 0.05%, Ti: 0.01 to 0.03%. A billet containing at least one species and further containing Ca: 0.0005 to 0.01% and the balance substantially consisting of Fe; and (b) heating the billet between 1250 and 1350 ° C., Hot-drilling by Mannesmann seamless rolling; (c) accelerating and cooling the hot-drilled billet to a temperature range of recrystallization temperature + 50 ° C. or higher and recrystallization temperature + 100 ° C. or lower; The billet that has been accelerated and cooled to the temperature range is subjected to mandrel rolling to reduce it by 30% or more at a recrystallization temperature or higher and a recrystallization temperature + 30 ° C or lower. And a step of the seamless steel pipe to exit the rolling at A r3 transformation point or higher temperatures, (e) a step of water immediately quenching the seamless steel, (f) water quenching the said seamless steel pipe A C1 transformation point Step of tempering at the following temperature. [0001]
JP1206494A 1994-01-10 1994-01-10 Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance Pending JPH07197125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206494A JPH07197125A (en) 1994-01-10 1994-01-10 Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206494A JPH07197125A (en) 1994-01-10 1994-01-10 Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance

Publications (1)

Publication Number Publication Date
JPH07197125A true JPH07197125A (en) 1995-08-01

Family

ID=11795181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206494A Pending JPH07197125A (en) 1994-01-10 1994-01-10 Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance

Country Status (1)

Country Link
JP (1) JPH07197125A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
JP2005320575A (en) * 2004-05-07 2005-11-17 Sumitomo Metal Ind Ltd Seamless steel pipe and its production method
WO2007013429A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Industries, Ltd. Process for producing seamless steel pipe
EP2133442A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
WO2010150915A1 (en) * 2009-06-24 2010-12-29 Jfeスチール株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
JP2014129594A (en) * 2012-11-27 2014-07-10 Jfe Steel Corp Low alloy high strength seamless steel pipe for oil wall excellent in sulfide stress corrosion crack resistance and its manufacturing method
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
EP2749664A4 (en) * 2011-08-22 2015-10-07 Nippon Steel & Sumitomo Metal Corp Steel oil well pipe having excellent sulfide stress cracking resistance
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US20160305192A1 (en) * 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
EP3406749A4 (en) * 2016-09-15 2019-06-26 Nippon Steel & Sumitomo Metal Corporation Wear resistant steel
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
WO2021131461A1 (en) * 2019-12-26 2021-07-01 Jfeスチール株式会社 High-strength seamless steel pipe and method for manufacturing same
WO2021131460A1 (en) * 2019-12-26 2021-07-01 Jfeスチール株式会社 High-strength seamless steel pipe and method for manufacturing same
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN114959492A (en) * 2022-06-22 2022-08-30 河南中原特钢装备制造有限公司 8418 core rod product and heat treatment process thereof
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
AU2005209562B2 (en) * 2004-01-30 2008-09-25 Nippon Steel Corporation Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
US9017494B2 (en) 2004-01-30 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless steel pipe for oil wells excellent in sulfide stress cracking resistance
EP1712651A1 (en) * 2004-01-30 2006-10-18 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
EA010037B1 (en) * 2004-01-30 2008-06-30 Сумитомо Метал Индастриз, Лтд. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
EP1712651A4 (en) * 2004-01-30 2007-12-26 Sumitomo Metal Ind Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
JP4706183B2 (en) * 2004-05-07 2011-06-22 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
JP2005320575A (en) * 2004-05-07 2005-11-17 Sumitomo Metal Ind Ltd Seamless steel pipe and its production method
US8361256B2 (en) 2005-07-25 2013-01-29 Sumitomo Metal Industries, Ltd. Method for producing seamless steel pipe
WO2007013429A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Industries, Ltd. Process for producing seamless steel pipe
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
EP2133442A4 (en) * 2007-03-30 2010-04-28 Sumitomo Metal Ind Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
EP2133442A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
RU2493268C1 (en) * 2009-06-24 2013-09-20 ДжФЕ СТИЛ КОРПОРЕЙШН High-strength seamless steel pipe with high resistance to sulphide stress cracking for oil wells and its manufacturing method
US9234254B2 (en) 2009-06-24 2016-01-12 Jfe Steel Corporation High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
WO2010150915A1 (en) * 2009-06-24 2010-12-29 Jfeスチール株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
CN102459677A (en) * 2009-06-24 2012-05-16 杰富意钢铁株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
JP2015038247A (en) * 2009-06-24 2015-02-26 Jfeスチール株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well and method for producing the same
EP2447386A1 (en) 2009-06-24 2012-05-02 JFE Steel Corporation High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
EP2447386A4 (en) * 2009-06-24 2016-06-15 Jfe Steel Corp High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9777352B2 (en) 2011-08-22 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Oil-well steel pipe having excellent sulfide stress cracking resistance
EP2749664A4 (en) * 2011-08-22 2015-10-07 Nippon Steel & Sumitomo Metal Corp Steel oil well pipe having excellent sulfide stress cracking resistance
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
JP2014129594A (en) * 2012-11-27 2014-07-10 Jfe Steel Corp Low alloy high strength seamless steel pipe for oil wall excellent in sulfide stress corrosion crack resistance and its manufacturing method
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US20160305192A1 (en) * 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US10662512B2 (en) 2016-09-15 2020-05-26 Nippon Steel Corporation Abrasion-resistant steel
EP3406749A4 (en) * 2016-09-15 2019-06-26 Nippon Steel & Sumitomo Metal Corporation Wear resistant steel
WO2021131460A1 (en) * 2019-12-26 2021-07-01 Jfeスチール株式会社 High-strength seamless steel pipe and method for manufacturing same
JPWO2021131460A1 (en) * 2019-12-26 2021-12-23 Jfeスチール株式会社 High-strength seamless steel pipe and its manufacturing method
JPWO2021131461A1 (en) * 2019-12-26 2021-12-23 Jfeスチール株式会社 High-strength seamless steel pipe and its manufacturing method
WO2021131461A1 (en) * 2019-12-26 2021-07-01 Jfeスチール株式会社 High-strength seamless steel pipe and method for manufacturing same
EP4060069A4 (en) * 2019-12-26 2023-05-24 JFE Steel Corporation High-strength seamless steel pipe and method for manufacturing same
CN114959492A (en) * 2022-06-22 2022-08-30 河南中原特钢装备制造有限公司 8418 core rod product and heat treatment process thereof

Similar Documents

Publication Publication Date Title
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JPH06172859A (en) Production of high strength steel tube excellent in sulfide stress corrosion cracking resistance
JPH06220536A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
EP1862561A1 (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH07331381A (en) Seamless steel tube having high strength and high toughness and its production
JPH05271772A (en) Manufacture of steel pipe for oil well excellent in sulfide stress cracking resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH06172858A (en) Production of seamless steel tube excellent in scc resistance and having high strength and high toughness
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPS6156235A (en) Manufacture of high toughness nontemper steel
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP3589066B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe
JPH11302785A (en) Steel for seamless steel pipe
JP2002060909A (en) High strength martensitic stainless steel pipe for oil well excellent in balance of strength-toughness and its production method
JP2556643B2 (en) Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPH11310823A (en) Manufacture of martensitic stainless steel tube excellent in toughness at low temperature
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance