JP5088631B2 - Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method - Google Patents
Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method Download PDFInfo
- Publication number
- JP5088631B2 JP5088631B2 JP2008237602A JP2008237602A JP5088631B2 JP 5088631 B2 JP5088631 B2 JP 5088631B2 JP 2008237602 A JP2008237602 A JP 2008237602A JP 2008237602 A JP2008237602 A JP 2008237602A JP 5088631 B2 JP5088631 B2 JP 5088631B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- diameter
- martensite
- steel pipe
- bending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、例えば自動車構造鋼管、自動車足回り部品鋼管等として用いるに適した、疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法に関するものである。 The present invention relates to a machine structural steel pipe excellent in fatigue characteristics and bending formability suitable for use as, for example, an automobile structural steel pipe, an automobile undercarriage part steel pipe, and the like, and a method for manufacturing the same.
機械構造鋼管は、一般機械、産業機械、建設機械、輸送機械(自動車、輸送車両など)等で使用される部材や部品用の素材として産業界で広く使用されてきている。前記鋼材のひとつに、筒状中空体の機械構造鋼管がある。前記の鋼管については、使用時の繰り返し荷重による疲労特性と部材や部品加工のために曲げ成形性が要求される。機械構造鋼管の中でも自動車構造鋼管は、自動車の保安部材にも適用されるので、曲げ成形性ばかりでなく、特に優れた疲労特性が要求される。この自動車構造鋼管の一例に自動車足回り部品鋼管がある。自動車足回り部品としては、自動車の左右の車輪間に配置されるアクスルビームや、その周辺のサスペンション部材などがある。これらは、いずれも走行中に繰り返して衝撃荷重やねじり荷重等を受けるため、高い強度とともに高い疲労特性が必要である。また、自動車構造部材、特に自動車足回り部品は、複雑な部品形状に加工する場合が多く高い成形性が必要である。特に、曲げ半径Rの小さな曲げ成形を施す部材や部品においては、極めて高い曲げ成形性が必要である。 Machine structural steel pipes have been widely used in the industry as materials for members and parts used in general machines, industrial machines, construction machines, transport machines (automobiles, transport vehicles, etc.) and the like. One of the steel materials is a cylindrical hollow body mechanical structure steel pipe. The steel pipe is required to have bend formability for fatigue characteristics due to repeated loading during use and for processing of members and parts. Among machine structural steel pipes, automobile structural steel pipes are also applied to safety members of automobiles, so that not only bend formability but particularly excellent fatigue characteristics are required. One example of this automobile structural steel pipe is an automobile undercarriage part steel pipe. Examples of the automobile underbody parts include an axle beam disposed between the left and right wheels of the automobile and a suspension member around the axle beam. Since these are repeatedly subjected to an impact load, a torsional load, and the like during traveling, high strength and high fatigue characteristics are required. In addition, automobile structural members, particularly automobile undercarriage parts, are often processed into complex part shapes and require high formability. In particular, extremely high bend formability is required for members and parts subjected to bend forming with a small bending radius R.
特許文献1には、部分的に焼入れを施した疲労特性に優れた均一微細なマルテンサイト鋼及びその製造方法について記載されている。しかし一部が疲労特性に優れるだけでは、自動車部品として十分とは言えない。また、高Cのマルテンサイトでは、硬すぎて十分な成形性を確保する事ができない。
特許文献2には、加工性に優れた高強度鋼管及びその製造方法について記載されている。特許文献2ではベイナイト、マルテンサイトを主体とする組織とし、冷延焼鈍によりr値をコントロールして成形性を上げているが、均一かつ微細な組織ではない為、十分な疲労特性を有するとは言えない。
上記したように、現在までに十分な曲げ成形性と疲労特性を有する鋼管は存在しない。従って本発明の目的は、曲げ成形性と疲労特性を両立させた疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法を提供することである。 As described above, there is no steel pipe having sufficient bending formability and fatigue characteristics to date. Accordingly, an object of the present invention is to provide a machine-structured steel pipe excellent in fatigue characteristics and bend formability that achieves both bend formability and fatigue characteristics, and a method for producing the same.
本発明者は上記の課題を解決するために検討を重ねた結果、低C(0.03〜0.15%)系の鋼材を用い、熱延で組織を下部ベイナイト又はマルテンサイトとしてCを均一に分散し、造管で4rollSZ(4ロールサイジング)での均一縮径を合計縮径量0.2%〜0.6%歪と十分に行う事により、高周波焼き入れでの逆変態時の核生成サイトが均一かつ十分にでき、全面を均一微細なフルマルテンサイト組織とすることにより、曲げ成形性と疲労特性を両立させた疲労特性と曲げ成形性に優れた機械構造鋼管が得られることを見出した。 As a result of repeated studies to solve the above-mentioned problems, the present inventor uses a low C (0.03-0.15%) steel material, uniformly disperses C as a lower bainite or martensite structure by hot rolling, Uniform and sufficient diameter reduction with 4rollSZ (4 roll sizing) in pipe making with a total diameter reduction of 0.2% to 0.6% strain enables uniform and sufficient nucleation sites during reverse transformation in induction hardening. The present inventors have found that by making the entire surface a uniform and fine full martensite structure, it is possible to obtain a mechanically-structured steel pipe excellent in fatigue characteristics and bend formability that achieves both bend formability and fatigue characteristics.
上記の知見に基づいてなされた本発明の疲労特性と曲げ成形性に優れた機械構造鋼管は、 質量%で、C:0.03〜0.15、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、を満たし、残部Fe及び不可避不純物からなる鋼からなり、ミクロ組織の面分率の80%以上がマルテンサイトであり、マルテンサイト組織の平均ブロック径が3μm以下であり、かつ最大ブロック径が平均ブロック径の1倍以上3倍以下であり、10gビッカースでの最大硬さが平均硬さの1倍以上1.2倍以下であることを特徴とするものである。 The mechanical structural steel pipe excellent in the fatigue characteristics and bending formability of the present invention made based on the above knowledge is C% 0.03-0.15, Si: 0.05-1.0, Mn: 0.3-2.5, P: 0.03 in mass%. Below, S: 0.025 or less, Ti: 0.005-0.1, Sol.Al: 0.005-0.1, N: 0.0005-0.01, B: 0.0001-0.01, which consists of steel consisting of the remainder Fe and inevitable impurities , 80% or more of the area fraction is martensite, the average block diameter of the martensite structure is 3 μm or less, the maximum block diameter is 1 to 3 times the average block diameter, and the maximum hardness at 10 g Vickers Is not less than 1 and not more than 1.2 times the average hardness.
また請求項2のように、本発明の機械構造鋼管は更に、マルテンサイト生成促進元素群として、Cu:0.005〜1.0、Ni:0.005〜1.0、Mo:0.02〜1.0、Cr:0.03〜1.0、ブロック径微細化元素群として、Nb:0.003〜0.2、V:0.001〜0.2、W:0.001〜0.1、介在物形態制御元素群として、Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02の中の、1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有することが好ましい。
Further, as in
また請求項3に係る本発明の疲労特性と曲げ成形性に優れた機械構造鋼管の製造方法は、質量%で、C:0.03〜0.15、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後冷却速度8℃/sec以上で300℃以下まで冷却して熱延コイルとし、その後造管した後に整形工程にて4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となるように縮径し、その後高周波で昇温速度35℃/sec以上で850℃以上1050℃以下まで加熱し、冷却速度100℃/sec以上で冷却することを特徴とするものである。
Moreover, the manufacturing method of the mechanical structure steel pipe excellent in the fatigue characteristics and the bending formability of the present invention according to
さらに請求項4に係る本発明の疲労特性と曲げ成形性に優れた機械構造鋼管の製造方法は、質量%で、C:0.03〜0.15、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01を含有し、更にマルテンサイト生成促進元素群として、Cu:0.005〜1.0、Ni:0.005〜1.0、Mo:0.02〜1.0、Cr:0.03〜1.0、ブロック径微細化元素群として、Nb:0.003〜0.2、V:0.001〜0.2、W:0.001〜0.1、介在物形態制御元素群として、Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02の中の、1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有し、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後8℃/sec以上で300℃以下まで冷却して熱延コイルとし、その後造管した後に整形工程にて4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となるように縮径し、その後高周波で昇温速度35℃/sec以上で850℃以上1050℃以下まで加熱し、冷却速度100℃/sec以上で冷却することを特徴とするものである。
Furthermore, the manufacturing method of the mechanical structure steel pipe excellent in the fatigue characteristics and bend formability of the present invention according to
本発明の疲労特性と曲げ成形性に優れた機械構造鋼管は、全面が均一微細なマルテンサイト組織であり、かつ低Cであるので強度が硬すぎずまた柔らか過ぎない為、以下に述べるように曲げ成形性及び疲労特性共に優れる。 The mechanical structural steel pipe excellent in fatigue characteristics and bend formability of the present invention has a uniform and fine martensite structure on the entire surface and is low C, so the strength is not too hard and not too soft. Excellent bend formability and fatigue characteristics.
本発明の鋼管は曲げ成形性に優れる。すなわち、本発明の鋼管の組織は80%以上が均一(10gビッカースでの平均硬さと最大硬さの比が1以上1.2以下)なマルテンサイト組織であるので、特に軟質な部分が存在せず、曲げ成形時の歪が局在化しない。これは、低Cマルテンサイト鋼の曲げ性を種々観察した所、硬い所では歪が小さくなり、柔らかい所では歪が大きくなり、硬度差が大きいと歪の差が大きくなって割れに至っている様子が観察された事から見出された。 The steel pipe of the present invention is excellent in bending formability. That is, the structure of the steel pipe of the present invention is a martensite structure in which 80% or more is uniform (ratio of average hardness and maximum hardness at 10 g Vickers is 1 or more and 1.2 or less), so there is no particularly soft part, Strain during bending is not localized. This is because various bendability of low C martensite steel was observed. Strain is reduced in hard places, strain is increased in soft places, and if the difference in hardness is large, the difference in strain is increased, leading to cracks. Was found from the observation.
また本発明の鋼管は疲労特性に優れる。すなわち、本発明の鋼管の組織は80%以上が均一(10gビッカースでの平均硬さと最大硬さの比が1以上1.2以下)なマルテンサイト組織であるので、特に軟質な部分が存在せず、疲労損傷が局在化しない。また、平均ブロック径が3μm以下であり、かつ最大ブロック径が平均ブロック径の3倍以下と均一微細である事から、いたる所でブロック境界の面積が大きく、疲労き裂の進展抵抗が高い。これは、低Cマルテンサイト鋼の疲労損傷を種々観察した所、同じ方位のラスの集合体であるブロックを基本単位として疲労損傷しており、ブロック境界に沿ってき裂進展していた事から見出された。 The steel pipe of the present invention is excellent in fatigue characteristics. That is, the structure of the steel pipe of the present invention is a martensite structure in which 80% or more is uniform (ratio of average hardness and maximum hardness at 10 g Vickers is 1 or more and 1.2 or less), so there is no particularly soft part, Fatigue damage is not localized. Further, since the average block diameter is 3 μm or less and the maximum block diameter is uniform and fine, 3 times or less of the average block diameter, the area of the block boundary is large everywhere and the fatigue crack propagation resistance is high. This was observed from various observations of fatigue damage in low-C martensitic steel, which was found to be caused by cracks propagating along the block boundary. It was done.
また本発明の鋼管は高周波焼き入れ時にマルテンサイトとするので、熱延時にマルテンサイトとする場合に比べてさらに特性が優れる。すなわち、熱延時にマルテンサイト組織とした場合(熱延→造管→ユーザーで曲げ成形)は、熱延後に造管した際に加工歪が入り、その分部品等に成形する際の曲げ成形性が劣る。また、電縫溶接時に熱影響部は鈍され、その部分は疲労特性が低下する。一方本発明のように高周波焼入れにてマルテンサイトとした場合(熱延→造管→高周波焼き入れ→ユーザーで曲げ成形)は、造管で入った歪が高周波焼き入れ時に解放される為に、加工歪による曲げ成形性の低下はなく、また電縫溶接時の熱影響部も、高周波焼入れ時に均一微細なマルテンサイト組織となるので、母材部と同等の曲げ成形性及び疲労特性を有する。 In addition, since the steel pipe of the present invention is martensite during induction hardening, the characteristics are further improved as compared with the case of martensite during hot rolling. In other words, when a martensite structure is used during hot rolling (hot rolling → pipe making → bending by user), processing distortion occurs when the pipe is formed after hot rolling, and the bending formability when forming into parts, etc. accordingly. Is inferior. In addition, the heat-affected zone is blunted during electro-sewing welding, and the fatigue characteristics of that portion are reduced. On the other hand, when it is made martensite by induction hardening as in the present invention (hot rolling → pipe making → induction hardening → bending by the user), the strain entered in the pipe making is released during induction hardening, There is no decrease in bending formability due to processing strain, and the heat-affected zone during ERW welding has a uniform and fine martensite structure during induction hardening, and therefore has bending formability and fatigue characteristics equivalent to the base material.
従って本発明により得られた鋼管は、相反する特性である疲労特性と曲げ成形性が共に優れるので、この両特性が要求される機械構造部材、自動車構造部材、自動車の足回り部品用の鋼管として適する。 Therefore, the steel pipe obtained by the present invention is excellent in both fatigue characteristics and bend formability, which are contradictory characteristics. Therefore, as a steel pipe for machine structural members, automobile structural members, and undercarriage parts of automobiles, both of which are required Suitable.
また請求項4,5に記載された本発明の機械構造鋼管の製造方法によれば、上記した疲労特性と曲げ成形性を両立させた機械構造鋼管を製造することができる。
Moreover, according to the manufacturing method of the mechanical structure steel pipe of this invention described in
以下に本発明の好ましい実施形態を詳細に説明する。先ず本発明において、組織、ブロック径、10gビッカース硬さの限定理由について以下に述べる。 Hereinafter, preferred embodiments of the present invention will be described in detail. First, the reasons for limiting the structure, block diameter, and 10 g Vickers hardness in the present invention will be described below.
鋼管のミクロ組織の面分率と疲労特性の指標である疲労限と曲げ成形性の指標である限界曲げ率との関係を、図1、図2に示す。但し、強度により疲労特性と曲げ成形性は異なるので、図は縦軸を降伏強度YSで整理した値で示す。これらの図より、マルテンサイト面分率80%以上の場合に疲労特性と曲げ成形性に優れる事が分かる。マルテンサイトの面分率が80%未満で特性が十分でない理由は、軟質な相が増えるとその部分が優先的に疲労損傷し、また曲げ成形時には軟質な部分と硬質なマルテンサイトの部分とで歪の差が大きくなり、その部分に応力集中して割れに至るためと考えられる。 FIG. 1 and FIG. 2 show the relationship between the area fraction of the microstructure of a steel pipe and the fatigue limit, which is an index of fatigue characteristics, and the limit bending rate, which is an index of bending formability. However, since the fatigue characteristics and the bending formability differ depending on the strength, the figure shows the vertical axis as a value arranged by the yield strength YS. From these figures, it can be seen that when the martensite surface fraction is 80% or more, the fatigue characteristics and the bending formability are excellent. The reason why the area ratio of martensite is less than 80% and the characteristics are not sufficient is that when the soft phase increases, the portion is preferentially damaged by fatigue, and when bending, the soft portion and the hard martensite portion This is considered to be because the difference in strain increases and stress concentrates on that part, leading to cracking.
次に、マルテンサイト組織のブロック径と疲労特性との関係を図3、図4に示す。これらの図より、平均ブロック径が3μm以下で十分な疲労特性を示し、また最大ブロック径が平均ブロック径の1倍以上3倍以下で十分な疲労特性を示す事が分かる。本条件外で疲労特性が十分でない理由は、前記したように、ブロック径が大きくなるとブロック境界の面積が少なくなり、疲労でのき裂進展抵抗が下がるためと考えられる。 Next, FIG. 3 and FIG. 4 show the relationship between the block diameter of the martensite structure and the fatigue characteristics. From these figures, it can be seen that sufficient fatigue characteristics are exhibited when the average block diameter is 3 μm or less, and sufficient fatigue characteristics are exhibited when the maximum block diameter is 1 to 3 times the average block diameter. The reason why the fatigue properties are not sufficient outside of these conditions is considered to be that, as described above, when the block diameter increases, the area of the block boundary decreases, and the crack propagation resistance due to fatigue decreases.
次に、マルテンサイト組織の10gビッカース硬さと疲労特性及び曲げ成形性との関係を図5、図6に示す。これらの図より、10gビッカースでの最大硬さが平均硬さの1倍以上1.2倍以下で十分な疲労特性及び曲げ成形性を示す事が分かる。本条件外で疲労特性が十分でない理由は、前記したように、硬さにバラツキがあると軟質部が優先的に疲労損傷する為と考えられる。また、本条件外で曲げ成形性が十分でない理由は、前記したように、硬さにバラツキがあると曲げ成形時には軟質な部分と硬質なマルテンサイトの部分とで歪の差が大きくなり、その部分に応力集中して割れに至る為と考えられる。 Next, FIG. 5 and FIG. 6 show the relationship between the 10 g Vickers hardness of the martensite structure, fatigue characteristics, and bend formability. From these figures, it can be seen that when the maximum hardness at 10 g Vickers is 1 to 1.2 times the average hardness, sufficient fatigue properties and bending formability are exhibited. The reason why the fatigue characteristics are not sufficient outside of these conditions is considered to be because the soft part preferentially undergoes fatigue damage when there is variation in hardness as described above. In addition, as described above, the reason why the bend formability is not sufficient outside of these conditions is that, as described above, if there is a variation in hardness, the difference in strain between the soft part and the hard martensite part becomes large at the time of bend forming. This is thought to be due to stress concentration in the part and cracking.
以下にマルテンサイトの面分率、ブロック径、10gビッカース硬さの求め方を示す。
マルテンサイトの組織面分率は、板厚断面を埋め込み研磨後、3%ナイタール溶液にて腐食し、光学顕微鏡にて400倍で鋼のミクロ組織を観察し、マルテンサイト部分の面積率を定量化して求めた。
The method for obtaining the martensite area fraction, block diameter, and 10 g Vickers hardness is shown below.
The martensite surface area ratio is determined by burying and polishing the plate thickness section, corroding with 3% nital solution, observing the microstructure of the steel at 400 times with an optical microscope, and quantifying the area ratio of the martensite portion. Asked.
ブロック径は、EBSP(Electron Back Scattering Pattern)法により結晶方位分布像を観察し、結晶方位の差による色相差からブロック境界を特定して、その画像から観察されたブロックの中で最も長い対角線長さ(図7)とした。また、ブロック径はランダムに少なくとも50個測定し、その結果から平均ブロック径と最大ブロック径とを求めた。 For the block diameter, the crystal orientation distribution image is observed by the EBSP (Electron Back Scattering Pattern) method, the block boundary is identified from the hue difference due to the difference in crystal orientation, and the longest diagonal length among the blocks observed from the image (Fig. 7). Further, at least 50 block diameters were randomly measured, and an average block diameter and a maximum block diameter were obtained from the results.
10gビッカース硬さは、板厚断面を埋め込み研磨後、マイクロビッカース硬さ測定機にて荷重は10gfで、マルテンサイト組織部分のみをランダムに少なくとも50点測定し、その結果から平均硬さと最大硬さとを求めた。 10g Vickers hardness is measured by embedding and polishing the plate thickness cross section, then measuring the load at 10gf with a micro Vickers hardness measuring machine and randomly measuring only the martensite structure part at least 50 points. Asked.
前記の鋼管用熱延鋼板の疲労特性と曲げ成形性は、平面曲げ疲労試験と、曲げ成形試験を行い評価すれば良い。平面曲げ疲労試験は、鋼管から弧状の鋼板を切り出し、平板となるように矯正した後に、周波数30Hzの両振りで、応力条件を変えて試験を行い、疲労限を求めた。また曲げ成形試験は、鋼管から同様の方法で平板を採取し、先端に種々の曲率半径RのついたV字のポンチで押し込み、割れ発生する限界のRの大きさを調査し、その値から最外表面の曲げ歪の大きさ(限界曲げ歪)を算出して評価した。良好とする判断基準は、疲労特性は、疲労限/YSが0.7以上、曲げ成形性は限界曲げ歪×YSが250MPa以上とした。 The fatigue characteristics and bend formability of the hot-rolled steel sheet for steel pipes may be evaluated by performing a plane bending fatigue test and a bend forming test. In the plane bending fatigue test, an arc-shaped steel plate was cut out from a steel pipe and straightened so that it became a flat plate, and then the test was performed by changing the stress conditions with both swings at a frequency of 30 Hz to obtain the fatigue limit. In the bending test, a flat plate is sampled from a steel pipe by the same method, and it is pushed with a V-shaped punch with various curvature radii R at the tip, and the size of the limit R where cracking occurs is investigated. The magnitude of bending strain (limit bending strain) on the outermost surface was calculated and evaluated. Judgment criteria for good fatigue properties were fatigue limit / YS of 0.7 or more, and bending formability of limit bending strain × YS of 250 MPa or more.
次に前記のマルテンサイト面分率、ブロック径、10gビッカース硬さを同時に満足するのに好適な鋼組成について述べる。
Cは必要とされる強度レベル(例えば590MPa級、690MPa級、780MPa級、980MPa級、1200MPa級)を得るために0.03%以上が好ましい。一方、0.15%を超えると強度が高くなって曲げ成形性が損なわれる場合があり、また靭性が低下して疲労特性に影響する。Cの好ましい範囲は、0.03〜0.15%である。
Siは曲げ成形性や疲労特性を阻害する粗大な酸化物を抑制するための脱酸元素として0.05%以上を含有させることが有効である。一方、1.0%超添加すると造管での電縫溶接時に溶接部にSiO2起因の欠陥を発生する可能性がある。そこでSiの好ましい範囲は0.05〜1.0%とする。
Mnは焼入れ性を確保し、マルテンサイト組織を得るために有効であり、そのためには0.3%以上が望ましい。2.5%を超えるとMnO2による欠陥発生及びMnSによる中心偏析が顕著になる。Mnの好ましい範囲は0.3〜2.5%である。
Pは結晶粒界に濃化し易く、0.03%超では粒界の疲労強度を低下させる場合がある。このために、Pは0.03%以下が望ましい。また、Sは、0.025%超では粗大なMnSを形成して曲げ成形性や疲労特性を損なう場合がある。このため、Sは0.025%以下が望ましい。
Next, a steel composition suitable for simultaneously satisfying the martensite surface fraction, block diameter and 10 g Vickers hardness will be described.
C is preferably 0.03% or more in order to obtain the required strength level (for example, 590 MPa class, 690 MPa class, 780 MPa class, 980 MPa class, 1200 MPa class). On the other hand, if it exceeds 0.15%, the strength is increased and the bending formability may be impaired, and the toughness is lowered to affect the fatigue characteristics. A preferable range of C is 0.03 to 0.15%.
It is effective to contain 0.05% or more of Si as a deoxidizing element for suppressing coarse oxides that hinder bending formability and fatigue characteristics. On the other hand, if over 1.0% is added, there is a possibility that a defect caused by SiO 2 may be generated in the welded part during ERW welding in pipe making. Therefore, the preferable range of Si is 0.05 to 1.0%.
Mn is effective for securing hardenability and obtaining a martensite structure, and for that purpose, 0.3% or more is desirable. If it exceeds 2.5%, defects due to MnO 2 and center segregation due to MnS become prominent. A preferable range of Mn is 0.3 to 2.5%.
P tends to concentrate at the grain boundaries, and if it exceeds 0.03%, the fatigue strength of the grain boundaries may be reduced. For this reason, P is preferably 0.03% or less. On the other hand, if S exceeds 0.025%, coarse MnS may be formed to impair bending formability and fatigue characteristics. For this reason, S is preferably 0.025% or less.
Tiはオーステナイト粒径の粗大化を抑制し、ブロック径の微細化を達成するのに有効である。この効果を得るには0.005%以上含有することが望ましい。一方、0.1%超では、微細化効果がほぼ飽和し、また粗大なTiNを生成して疲労特性及び曲げ成形性を低下させる可能性がある。このため、Tiは0.005〜0.1%が好ましい。 Ti is effective in suppressing coarsening of the austenite grain size and achieving finer block diameter. In order to acquire this effect, it is desirable to contain 0.005% or more. On the other hand, if it exceeds 0.1%, the effect of miniaturization is almost saturated, and coarse TiN may be generated to reduce fatigue characteristics and bending formability. For this reason, Ti is preferably 0.005 to 0.1%.
Sol.AlとNは、製造過程でAlNを生成してオーステナイト粒の粗大化を抑制してブロック径の微細化を促進するために有効である。Alが0.005%未満ではその効果が必ずしも十分ではなく、Alが0.1%、Nが0.01%を越えると鋼の清浄度が下がるとともに粗大なAlNが生成して曲げ成形性及び/又は疲労特性が低下する場合がある。NはAlNの前記オーステナイト粒の粗大化抑制効果を利用するには0.0005%以上あれば十分である。Sol.Alは0.005〜0.1%が望ましく、Nは0.0005〜0.01%が望ましい。 Sol.Al and N are effective for generating AlN in the manufacturing process and suppressing the coarsening of the austenite grains and promoting the refinement of the block diameter. If Al is less than 0.005%, the effect is not always sufficient. If Al exceeds 0.1% and N exceeds 0.01%, the cleanliness of the steel decreases and coarse AlN is generated, resulting in a decrease in bending formability and / or fatigue properties. There is a case. N is sufficient to be 0.0005% or more in order to utilize the effect of suppressing the coarsening of the austenite grains of AlN. Sol.Al is preferably 0.005 to 0.1%, and N is preferably 0.0005 to 0.01%.
Bは鋼の焼入性を向上し、微細なマルテンサイト組織を得るために極めて有効な元素であり、Bが0.0001%未満ではその効果は必ずしも十分でなく、0.01%を超えると粗大な硼化物(硼化炭化物、硼化炭化物、硼化炭窒化物など)を生成し易くなり焼入性を損ない、また曲げ成形の際や疲労荷重が負荷された際に割れ起点や微小ボイドの起点にもなり易い。Bは、0.0001〜0.01%が好ましい。 B is an extremely effective element for improving the hardenability of the steel and obtaining a fine martensite structure. If B is less than 0.0001%, the effect is not necessarily sufficient, and if it exceeds 0.01%, coarse boride (Boride carbide, boride carbide, boride carbonitride, etc.) are easily generated and hardenability is deteriorated. Also, when bending or when fatigue load is applied, cracks and microvoids are also generated. Easy to be. B is preferably 0.0001 to 0.01%.
前記の基本的な鋼組成以外に、更に次の元素群(1)、(2)、(3)の中から一つまたは二つ以上の元素群を選択し、更に選択された元素群中の1種または2種以上の元素を含有することが可能である。
(1)べイナイト生成促進元素群として、Cu:0.005〜1.0%、Ni:0.005〜1.0%、Mo:0.02〜1.0%、Cr:0.03〜1.0%。
(2)ブロック径微細化元素群として、Nb:0.003〜0.5%、V:0.001〜0.5%。
(3)介在物形態制御元素群として、Ca:0.0001〜0.02%、Mg:0.0001〜0.02%、Zr:0.0001〜0.02%、REM:0.0001〜0.02%。
In addition to the basic steel composition, one or more element groups are selected from the following element groups (1), (2), (3), and It is possible to contain one or more elements.
(1) As a bainite formation promoting element group, Cu: 0.005-1.0%, Ni: 0.005-1.0%, Mo: 0.02-1.0% , Cr: 0.03-1.0%.
(2) As a block diameter refinement element group, Nb: 0.003-0.5%, V: 0.001-0.5%.
(3) As an inclusion form control element group, Ca: 0.0001 to 0.02%, Mg: 0.0001 to 0.02%, Zr: 0.0001 to 0.02%, REM: 0.0001 to 0.02%.
前記の元素群(1)のマルテンサイト生成促進元素群のCu、Ni、Mo、Crは、いずれも焼入性を向上しマルテンサイト組織の生成に有効である。(Cu、Ni、Mo、Crが、それぞれ、0.005%未満、0.005%未満、0.02%未満、0.03%未満の場合には、各元素のマルテンサイト生成促進作用が十分には得られにくい。一方、Cu、Ni、Mo、Crが、それぞれ、1.0%超、1.0%超、1.0%超、1.0%超の場合にはマルテンサイト生成促進作用が飽和し、添加量に見合う効果が期待できない。Cuは0.005〜1.0%、Niは0.005〜1.0%、Moは0.02〜1.0%、Crは0.03〜1.0%の範囲で鋼中に含有することが出来る。 Cu, Ni, Mo, and Cr of the martensite generation promoting element group of the element group (1) are all effective in improving the hardenability and generating a martensite structure. (When Cu, Ni, Mo, and Cr are less than 0.005%, less than 0.005%, less than 0.02%, and less than 0.03%, respectively, the martensite formation promoting action of each element is not sufficiently obtained. When Cu, Ni, Mo, and Cr are over 1.0%, over 1.0%, over 1.0%, and over 1.0%, the martensite formation promoting action is saturated, and an effect commensurate with the added amount cannot be expected. 0.005 to 1.0%, Ni can be contained in the steel in the range of 0.005 to 1.0%, Mo can be contained in the range of 0.02 to 1.0%, and Cr can be contained in the range of 0.03 to 1.0%.
前記の元素群(2)ブロック径微細化元素群のNb、VとWは、いずれもオーステナイト粒の粗大化を抑制してブロック径の微細化を促進するために有効である。このためには、Nbは0.003%以上、Vは0.001%以上、Wは0.001%以上の含有が望ましい。また、Nbが0.2%超、Vが0.2%超、Wが0.1%超では、鋼中に粗大炭化物が形成し易く、曲げ成形時に割れ起点になったり、粗大炭化物付近に成形時の加工歪が局在化して素材、部材や部品の表面品位を低下し、部材や部品に加工後利用中に疲労損傷の局在化を誘発し、疲労特性を低下する懸念がある。よって、Vは0.003〜0.2%、Nbは0.001〜0.2%、Wは0.001〜0.1%の範囲で鋼中に含有せしめることが出来る。 The element group (2) Nb, V, and W in the block diameter refinement element group are all effective for suppressing the austenite grains from coarsening and promoting the refinement of the block diameter. For this purpose, it is desirable that Nb is 0.003% or more, V is 0.001% or more, and W is 0.001% or more. When Nb exceeds 0.2%, V exceeds 0.2%, and W exceeds 0.1%, coarse carbides are likely to form in the steel, which becomes the starting point of cracking during bending, and there is processing strain during molding near the coarse carbides. There is a concern that the surface quality of the material, member, or part is lowered by localization, the fatigue damage is induced during use after processing the member or part, and the fatigue characteristics are lowered. Therefore, V can be contained in the steel in the range of 0.003 to 0.2%, Nb in the range of 0.001 to 0.2%, and W in the range of 0.001 to 0.1%.
前記の元素群(3)の介在物形態制御元素群として、Caは0.0001〜0.02%、Mgは0.0001〜0.02%、Zrは0.0001〜0.02%、REMは0.0001〜0.02%で含有することが可能である。Ca、Mg、Zr、とREMはいずれも硫化物を形態制御して成形性を高める作用がある。この作用を利用するには、Caは0.0001%以上、Mgは0.0001%以上、Zrは0.0001%以上、REMは0.0001%以上含有することが望ましい。これら元素を過剰に含有する場合にはこれら元素の粗大硫化物やクラスター化した酸化物との複合化合物を形成して逆に曲げ成形性と疲労特性を低下せしめる場合がある。このため、Caは0.0001〜0.02%、Mgは0.0001〜0.02%、Zrは0.0001〜0.02%、REMは0.0001〜0.02%で含有することが望ましい。 As the inclusion form control element group of the element group (3), Ca can be contained in 0.0001 to 0.02%, Mg in 0.0001 to 0.02%, Zr in 0.0001 to 0.02%, and REM in 0.0001 to 0.02%. is there. Ca, Mg, Zr, and REM all have the effect of improving the formability by controlling the form of sulfide. In order to utilize this action, it is desirable to contain 0.0001% or more of Ca, 0.0001% or more of Mg, 0.0001% or more of Zr, and 0.0001% or more of REM. When these elements are excessively contained, a composite compound with coarse sulfides or clustered oxides of these elements may be formed, and conversely, the bending formability and fatigue characteristics may be lowered. Therefore, it is desirable that Ca is contained at 0.0001 to 0.02%, Mg is 0.0001 to 0.02%, Zr is 0.0001 to 0.02%, and REM is contained at 0.0001 to 0.02%.
次に、本発明の鋼管の好適な製造方法について述べる。
本発明においては、質量%で、C:0.03〜0.15、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、からなる鋼スラブを用いる。鋼組成の限定理由は、前記した通りである。
Next, the suitable manufacturing method of the steel pipe of this invention is described.
In the present invention, by mass%, C: 0.03-0.15, Si: 0.05-1.0, Mn: 0.3-2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005-0.1, Sol.Al: 0.005-0.1 , N: 0.0005 to 0.01, B: 0.0001 to 0.01, and a steel slab. The reason for limiting the steel composition is as described above.
前記の組成の鋼スラブを、1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施すことが本発明の鋼管とする為の前組織を得るのに有効である。鋼スラブを1070℃以上に加熱すると、溶鋼凝固過程で析出した炭化物、窒化合物、炭窒化合物を鋼中で固溶させることにより、鋼中の成分の不均一さが極めて少なくなる。鋼スラブを1300℃超に加熱するとAlNが熱間圧延工程で、又は圧延後の冷却工程で粗大に析出したり、Bの焼入性向上効果を阻害する硼化物(炭化硼素、窒化硼素、炭窒化硼素)を形成することがあるので望ましくない。鋼スラブの熱間圧延での加熱温度は1070℃以上1300℃以下が好ましい。 A steel slab having the above composition is heated to 1070 ° C. or higher and 1300 ° C. or lower, and then subjected to hot rolling with a finish rolling temperature of 850 ° C. or higher and 1070 ° C. or lower to obtain a pre-structure for making the steel pipe of the present invention. It is effective. When the steel slab is heated to 1070 ° C. or higher, carbides, nitrogen compounds, and carbonitride compounds precipitated in the molten steel solidification process are dissolved in the steel, so that the non-uniformity of the components in the steel is extremely reduced. When the steel slab is heated to over 1300 ° C, AlN precipitates coarsely in the hot rolling process or in the cooling process after rolling, and borides that inhibit the effect of improving the hardenability of B (boron carbide, boron nitride, carbon Boron nitride) may be formed, which is not desirable. The heating temperature in hot rolling of the steel slab is preferably from 1070 ° C to 1300 ° C.
高周波焼き入れ後にブロック径の微細なマルテンサイトを得る為には、高周波焼入れの前組織である熱延後でも極力微細な組織とした方が有利である。その為には、ほぼオーステナイト単相でかつ再結晶域である850℃以上の温度域で行うことが望ましい。一方、1070℃超では、オーステナイト粒径が著しく粗大化してしまう。よって、熱間圧延の仕上圧延温度は、850℃以上1070℃以下が好ましい。 In order to obtain martensite with a fine block diameter after induction hardening, it is advantageous to make the structure as fine as possible even after hot rolling, which is a structure before induction hardening. For that purpose, it is desirable to carry out in a temperature range of 850 ° C. or higher, which is almost an austenite single phase and a recrystallization range. On the other hand, if it exceeds 1070 ° C., the austenite grain size becomes extremely coarse. Therefore, the finish rolling temperature of hot rolling is preferably 850 ° C. or higher and 1070 ° C. or lower.
前記の組成の鋼スラブを、仕上げ圧延後冷却速度8℃/sec以上で300℃以下まで冷却する事が本発明の鋼管とする為の前組織を得るのに有効である。
高周波焼き入れ後にブロック径及び硬さの均一なマルテンサイトを得る為には、高周波焼入れの前組織である熱延後でも極力均一な組織とした方が有利である。特に高周波焼き入れ時の逆変態は、Cの存在する場所から起こるため、熱延後にCを極力均一に分散しておいた方が望ましい。その為には熱延後にマルテンサイト組織又は下部ベイナイト組織としておくと有利であり、その為には仕上げ圧延後冷却速度8℃/sec以上で300℃以下まで冷却する事が有効である。圧延後冷却速度が8℃/sec未満ではフェライトが析出して不均一な組織となってしまう可能性がある。また、冷却停止温度が300℃超では、上部ベイナイト組織となってCが粒界に偏析、又はフェライトパーライト組織となって、不均一な組織となってしまう可能性がある。
Cooling the steel slab having the above composition to a temperature of 300 ° C. or less at a cooling rate of 8 ° C./sec or more after finish rolling is effective for obtaining a pre-structure for making the steel pipe of the present invention.
In order to obtain martensite with a uniform block diameter and hardness after induction hardening, it is advantageous to make the structure as uniform as possible even after hot rolling, which is a structure before induction hardening. In particular, reverse transformation during induction hardening occurs from the place where C exists, and therefore it is desirable to disperse C as uniformly as possible after hot rolling. For this purpose, it is advantageous to form a martensite structure or a lower bainite structure after hot rolling. For this purpose, it is effective to cool to 300 ° C. or less at a cooling rate of 8 ° C./sec or more after finish rolling. If the cooling rate after rolling is less than 8 ° C./sec, ferrite may precipitate and form a non-uniform structure. On the other hand, when the cooling stop temperature exceeds 300 ° C., the upper bainite structure may be formed, and C may segregate at the grain boundaries or may become a ferrite pearlite structure, resulting in a non-uniform structure.
熱延後は造管を行う。前記熱延条件の熱延コイルから通常の造管を行った後に、成形工程にて4rollSZ(4ロールサイジング:4個のサイジングロールを用いた造管)での縮径歪の合計が0.2%以上0.6%以下となるように縮径を行う事が、本発明の鋼管を得る為に有効である。高周波焼き入れ時の逆変態は、Cが存在する場所の中でも転位の存在する場所から起こり易い為、転位を鋼管全体に均一に分散した方が均一微細なブロック径かつ均一な硬さを有するマルテンサイト鋼を得るのに有利である。 After hot rolling, pipe making is performed. After normal pipe making from hot-rolled coil under the hot-rolling conditions, the total shrinkage strain in 4rollSZ (4 roll sizing: pipe making using 4 sizing rolls) is 0.2% or more in the molding process It is effective to reduce the diameter to 0.6% or less in order to obtain the steel pipe of the present invention. The reverse transformation during induction hardening is likely to occur from the location where dislocations exist among the locations where C exists, so it is better to disperse the dislocations evenly throughout the steel pipe, which has a uniform fine block diameter and uniform hardness. It is advantageous to obtain site steel.
一般的にサイジング工程では、ロール分割数が2である2rollSZとロール分割数が4である4rollSZが使われるが、2rollSZでは鋼管の0°位置及び180°位置に転位が集中してしまい、逆に90°位置及び270°位置には転位がほとんど入らない。一方4rollSZでは、鋼管の全面に転位を入れる事が可能である。
縮径歪の合計が0.2%未満では十分な転位を入れる事ができなく、また縮径歪の合計が0.6%超では、十分な転位は導入されるもののかなりの強加工となる為、加工割れや偏肉がおこる可能性があり、いずれも好ましくない。よって縮径歪の合計は0.2%以上0.6%以下とする事が望ましい。
Generally, in the sizing process, 2rollSZ with a roll division number of 2 and 4rollSZ with a roll division number of 4 are used, but in 2rollSZ, dislocations are concentrated at the 0 ° and 180 ° positions of the steel pipe. There are almost no dislocations at the 90 ° and 270 ° positions. On the other hand, with 4rollSZ, it is possible to introduce dislocations over the entire surface of the steel pipe.
If the total reduced diameter strain is less than 0.2%, sufficient dislocations cannot be entered, and if the total reduced diameter strain exceeds 0.6%, sufficient dislocation is introduced, but it becomes a considerably strong work, so that processing cracks occur. Or uneven thickness may occur, both of which are not preferred. Therefore, it is desirable that the total diameter reduction strain is 0.2% or more and 0.6% or less.
造管後に高周波焼入れを行って、本発明の鋼管とする。整形工程を終えた鋼管を昇温速度35℃/sec以上で850℃以上1050℃以下まで加熱し、冷却速度100℃/sec以上で高周波焼入れを行う。
昇温速度が35℃/sec未満であると、先に逆変態したオーステナイト粒の粒成長が進み、後から逆変態したオーステナイト粒とのブロック径に大きな差が生じる。加熱温度が850℃未満であると、温度が低い為に逆変態できない部位が生じ、不均一な組織となる可能性がある。また加熱温度が1050℃以上であると、オーステナイト粒が粒成長し、焼き入れ後のブロック径も粗大なものとなってしまう。また冷却速度が100℃/sec未満であると、冷却速度が足りずに80%以上をマルテンサイト組織とできない可能性がある。以上の事から、高周波焼入れの条件は、昇温速度35℃/sec以上で850℃以上1050℃以下まで加熱し、冷却速度100℃/sec以上とする事が望ましい。
Induction hardening is performed after pipe making to obtain the steel pipe of the present invention. The steel pipe after the shaping process is heated from 850 ° C. to 1050 ° C. at a heating rate of 35 ° C./sec or higher, and induction-quenched at a cooling rate of 100 ° C./sec or higher.
If the rate of temperature rise is less than 35 ° C./sec, the growth of the austenite grains reversely transformed first proceeds, and a large difference occurs in the block diameter with the austenite grains reversely transformed later. When the heating temperature is less than 850 ° C., there is a possibility that a site that cannot be reversely transformed due to the low temperature is generated, resulting in an uneven structure. When the heating temperature is 1050 ° C. or higher, austenite grains grow and the block diameter after quenching becomes coarse. If the cooling rate is less than 100 ° C./sec, there is a possibility that 80% or more cannot be made into a martensite structure due to insufficient cooling rate. From the above, it is desirable that the induction hardening is performed by heating from 850 ° C. to 1050 ° C. at a temperature increase rate of 35 ° C./sec or more and a cooling rate of 100 ° C./sec or more.
本発明の鋼管は、機械構造用鋼管、例えば自動車構造用鋼管、自動車の足回り部品に用いられる鋼管に適用すると効果的であるが、他にも疲労特性及び曲げ成形性が共に要求される例えば輸送機械である航空機や鉄道等の輸送車両の鋼管製部品に適用しても効果的である事は言うまでもない。また、本発明の疲労特性と曲げ成形性に優れた機械構造鋼管用鋼板は、本発明の範囲内で成分及び熱延条件を調節して、強度を高めとすることにより、特に疲労特性が重視される機械構造部材・部品に最適となり、強度を低めとすることにより、特に曲げ成形性が重視される機械構造部材・部品に最適となる。 The steel pipe of the present invention is effective when applied to steel pipes for machine structures such as automobile structural steel pipes and steel pipes used for automobile undercarriage parts, but also requires both fatigue characteristics and bend formability. Needless to say, the present invention is also effective when applied to steel pipe parts of transport vehicles such as aircraft and railways that are transport machines. In addition, the steel sheet for machine structural steel pipes with excellent fatigue characteristics and bendability of the present invention is particularly focused on fatigue characteristics by adjusting the components and hot rolling conditions within the scope of the present invention to increase the strength. It is optimal for machine structural members / parts to be manufactured, and by reducing the strength, it is optimal for machine structural members / parts in which bend formability is particularly important.
表1に示す成分(wt%)の鋼を溶解、鋳造した。その鋼塊を加熱後、表2に示す条件の熱延、造管、高周波焼入れを行って、φ114.3×t2.0mmの鋼管とした後に、一部を弧状に切り出して平板となるように矯正した後に、曲げ成形用試験片と平面曲げ疲労用試験片とに加工した。平面曲げ疲労試験は、周波数30Hzの両振りで、応力条件を変えて行い、疲労限を求めた。また曲げ成形試験は、先端に種々の曲率半径RのついたV字のポンチで押し込み、割れ発生する限界のRの大きさを調査し、その時の最外表面の曲げ歪の大きさ(限界曲げ歪)を算出して評価した。良好とする判断基準は、疲労特性は、疲労限/YSが0.7以上、曲げ成形性は限界曲げ歪×YSが250MPa以上とした。熱延条件、造管条件、高周波焼き入れ条件、マルテンサイト面分率、平均ブロック径、最大ブロック径/平均ブロック径、最大硬さ/平均硬さ、及び平面曲げ疲労試験と曲げ成形試験の結果は表2に示す通りである。なお表1及び表2で、本発明の範囲を逸脱した箇所には下線を引いてある。 Steels having the components (wt%) shown in Table 1 were melted and cast. After heating the steel ingot, perform hot rolling, pipe making and induction hardening under the conditions shown in Table 2 to make a steel pipe of φ114.3 × t2.0mm, and then cut out a part in an arc shape to become a flat plate After correction, it was processed into a test piece for bending and a test piece for plane bending fatigue. The plane bending fatigue test was performed by changing the stress conditions with both swings at a frequency of 30 Hz to determine the fatigue limit. In the bending test, the tip was pushed with a V-shaped punch having various radii of curvature R, the limit R where cracking occurred was investigated, and the bending strain on the outermost surface at that time (limit bending) (Strain) was calculated and evaluated. Judgment criteria for good fatigue properties were fatigue limit / YS of 0.7 or more, and bending formability of limit bending strain × YS of 250 MPa or more. Hot rolling conditions, pipe making conditions, induction hardening conditions, martensite surface fraction, average block diameter, maximum block diameter / average block diameter, maximum hardness / average hardness, and results of plane bending fatigue test and bending forming test Is as shown in Table 2. In Tables 1 and 2, parts that deviate from the scope of the present invention are underlined.
本発明鋼は、前記したように、全面がほぼマルテンサイト組織からなり組織のバラツキが小さく、また組織が十分に均一かつ微細であるので、疲労限/YSが0.7以上の疲労特性と限界曲げ歪×YSが250以上の曲げ成形性を両立できる。 As described above, the steel of the present invention has a martensite structure on the entire surface, a small variation in structure, and a sufficiently uniform and fine structure. Therefore, the fatigue limit / YS is not less than 0.7 and the critical bending strain. × Bendability with YS of 250 or more can be achieved.
これに対し、マルテンサイト面分率、平均ブロック径、最大ブロック径/平均ブロック径、最大硬さ/平均硬さの一部が本発明の範囲から逸脱した比較例では、疲労特性と曲げ成形性を両立することができない。
比較例1は、Tiが条件から外れているために、Bを有効活用する事ができずに、マルテンサイト面分率、平均ブロック径、最大ブロック径/平均ブロック径、最大硬さ/平均硬さが本発明範囲を逸脱し、疲労特性と曲げ成形性共に不十分であった。
比較例2は、Bが条件から外れているために、十分な焼入れ性を確保する事ができずに、マルテンサイト面分率、平均ブロック径、最大ブロック径/平均ブロック径、最大硬さ/平均硬さが本発明範囲を逸脱し、疲労特性と曲げ成形性共に不十分であった。
比較例3は、熱延での冷却速度が遅いために、熱延後の組織がフェライトとパーライトとベイナイトの入り混じった不均一な組織となってしまった。そのため、最大ブロック径/平均ブロック径、最大硬さ/平均硬さが本発明範囲を逸脱し、疲労特性と曲げ成形性共に不十分であった。
比較例4は、熱延での冷却停止温度が高いために、熱延後の組織がフェライトパーライト組織となってしまった。そのため、最大ブロック径/平均ブロック径、最大硬さ/平均硬さが本発明範囲を逸脱し、疲労特性と曲げ成形性共に不十分であった。
比較例5は、造管での4roll縮径量が十分でないため、均一なマルテンサイトとする為の十分な量の歪を鋼中に分散できなかった。そのため、最大ブロック径/平均ブロック径、最大硬さ/平均硬さが本発明範囲を逸脱し、疲労特性と曲げ成形性共に不十分であった。
比較例6は、高周波焼き入れ時の加熱温度が高いために、オーステナイトが粗大化して、平均ブロック径も粗大なものとなってしまったために、疲労特性が不十分であった。
比較例7は、高周波焼入れ時の冷却速度が遅いために、マルテンサイト面分率が低くなってしまい、疲労特性と曲げ成形性共に不十分であった。
On the other hand, in the comparative example in which part of the martensite surface fraction, average block diameter, maximum block diameter / average block diameter, maximum hardness / average hardness deviated from the scope of the present invention, fatigue characteristics and bend formability Can not be compatible.
In Comparative Example 1, since Ti is not included in the conditions, B cannot be effectively used, and the martensite surface fraction, average block diameter, maximum block diameter / average block diameter, maximum hardness / average hardness However, both the fatigue characteristics and the bending formability were insufficient.
In Comparative Example 2, since B is out of the condition, sufficient hardenability cannot be secured, martensite surface fraction, average block diameter, maximum block diameter / average block diameter, maximum hardness / The average hardness deviated from the scope of the present invention, and both fatigue characteristics and bend formability were insufficient.
In Comparative Example 3, since the cooling rate in hot rolling was slow, the structure after hot rolling was an uneven structure in which ferrite, pearlite, and bainite were mixed. Therefore, the maximum block diameter / average block diameter and the maximum hardness / average hardness deviated from the scope of the present invention, and both fatigue characteristics and bend formability were insufficient.
In Comparative Example 4, since the cooling stop temperature in hot rolling was high, the structure after hot rolling became a ferrite pearlite structure. Therefore, the maximum block diameter / average block diameter and the maximum hardness / average hardness deviated from the scope of the present invention, and both fatigue characteristics and bend formability were insufficient.
In Comparative Example 5, the amount of 4roll reduction in pipe making was not sufficient, so that a sufficient amount of strain to make uniform martensite could not be dispersed in the steel. Therefore, the maximum block diameter / average block diameter and the maximum hardness / average hardness deviated from the scope of the present invention, and both fatigue characteristics and bend formability were insufficient.
In Comparative Example 6, since the heating temperature at the time of induction hardening was high, austenite was coarsened and the average block diameter was also coarse, so that the fatigue characteristics were insufficient.
In Comparative Example 7, since the cooling rate during induction hardening was slow, the martensite surface fraction was low, and both fatigue characteristics and bending formability were insufficient.
Claims (4)
C:0.03〜0.15、
Si:0.05〜1.0、
Mn:0.3〜2.5、
P:0.03以下、
S:0.025以下、
Ti:0.005〜0.1、
Sol.Al:0.005〜0.1、
N:0.0005〜0.01、
B:0.0001〜0.01、
を満たし、残部Fe及び不可避不純物からなる鋼からなり、ミクロ組織の面分率の80%以上がマルテンサイトであり、マルテンサイト組織の平均ブロック径が3μm以下であり、かつ最大ブロック径が平均ブロック径の1倍以上3倍以下であり、10gビッカースでの最大硬さが平均硬さの1倍以上1.2倍以下であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管。 % By mass
C: 0.03-0.15,
Si: 0.05 to 1.0
Mn: 0.3 to 2.5,
P: 0.03 or less,
S: 0.025 or less,
Ti: 0.005-0.1,
Sol.Al: 0.005-0.1,
N: 0.0005 to 0.01
B: 0.0001-0.01,
80% or more of the area fraction of the microstructure is martensite, the average block diameter of the martensite structure is 3 μm or less, and the maximum block diameter is the average block A machine-structured steel pipe with excellent fatigue characteristics and bending formability, characterized by having a diameter of 1 to 3 times the diameter and a maximum hardness at 10 g Vickers of 1 to 1.2 times the average hardness.
Cu:0.005〜1.0、
Ni:0.005〜1.0、
Mo:0.02〜1.0、
Cr:0.03〜1.0、
ブロック径微細化元素群として、
Nb:0.003〜0.2、
V:0.001〜0.2、
W:0.001〜0.1、
介在物形態制御元素群として、
Ca:0.0001〜0.02、
Mg:0.0001〜0.02、
Zr:0.0001〜0.02、
REM:0.0001〜0.02
の中の、1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有することを特徴とする請求項1に記載の疲労特性と曲げ成形性に優れた機械構造鋼管。 Steel is further mass% as martensite formation promoting element group,
Cu: 0.005-1.0,
Ni: 0.005-1.0,
Mo: 0.02-1.0,
Cr: 0.03-1.0,
As block diameter refinement element group,
Nb: 0.003-0.2,
V: 0.001-0.2,
W: 0.001-0.1,
As an inclusion form control element group,
Ca: 0.0001 to 0.02,
Mg: 0.0001 to 0.02,
Zr: 0.0001 to 0.02,
REM: 0.0001 to 0.02
2. The fatigue property and bending according to claim 1 , wherein the fatigue characteristics and bending are selected from one or two or more element groups and containing one or more elements in each selected element group. Mechanical structural steel pipe with excellent formability.
C:0.03〜0.15、
Si:0.05〜1.0、
Mn:0.3〜2.5、
P:0.03以下、
S:0.025以下、
Ti:0.005〜0.1、
Sol.Al:0.005〜0.1、
N:0.0005〜0.01、
B:0.0001〜0.01、
残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後冷却速度8℃/sec以上で300℃以下まで冷却して熱延コイルとし、その後造管した後に整形工程にて4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となるように縮径し、その後高周波で昇温速度35℃/sec以上で850℃以上1050℃以下まで加熱し、冷却速度100℃/sec以上で冷却することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管の製造方法。 % By mass
C: 0.03-0.15,
Si: 0.05 to 1.0
Mn: 0.3 to 2.5,
P: 0.03 or less,
S: 0.025 or less,
Ti: 0.005-0.1,
Sol.Al: 0.005-0.1,
N: 0.0005 to 0.01
B: 0.0001-0.01,
After heating the steel slab composed of the remaining Fe and inevitable impurities to 1070 ℃ or more and 1300 ℃ or less, it is hot-rolled to finish rolling temperature of 850 ℃ or more and 1070 ℃ or less. After cooling to 300 ° C or lower to form a hot-rolled coil, after pipe forming, the diameter is reduced so that the total diameter-reducing strain in the 4-roll sizing is 0.2% or more and 0.6% or less in the shaping process. A method of manufacturing a mechanically-structured steel pipe excellent in fatigue characteristics and bending formability, characterized by heating at a temperature rate of 35 ° C / sec or higher to 850 ° C or higher and 1050 ° C or lower and cooling at a cooling rate of 100 ° C / sec or higher.
C:0.03〜0.15、
Si:0.05〜1.0、
Mn:0.3〜2.5、
P:0.03以下、
S:0.025以下、
Ti:0.005〜0.1、
Sol.Al:0.005〜0.1、
N:0.0005〜0.01、
B:0.0001〜0.01
を含有し、更にマルテンサイト生成促進元素群として、
Cu:0.005〜1.0、
Ni:0.005〜1.0、
Mo:0.02〜1.0、
Cr:0.03〜1.0、
ブロック径微細化元素群として、
Nb:0.003〜0.2、
V:0.001〜0.2、
W:0.001〜0.1、
介在物形態制御元素群として、
Ca:0.0001〜0.02、
Mg:0.0001〜0.02、
Zr:0.0001〜0.02、
REM:0.0001〜0.02
の中の、1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有し、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後8℃/sec以上で300℃以下まで冷却して熱延コイルとし、その後造管した後に整形工程にて4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となるように縮径し、その後高周波で昇温速度35℃/sec以上で850℃以上1050℃以下まで加熱し、冷却速度100℃/sec以上で冷却することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管の製造方法。 % By mass
C: 0.03-0.15,
Si: 0.05 to 1.0
Mn: 0.3 to 2.5,
P: 0.03 or less,
S: 0.025 or less,
Ti: 0.005-0.1,
Sol.Al: 0.005-0.1,
N: 0.0005 to 0.01
B: 0.0001 to 0.01
In addition, as a martensite generation promoting element group,
Cu: 0.005-1.0,
Ni: 0.005-1.0,
Mo: 0.02-1.0,
Cr: 0.03-1.0,
As block diameter refinement element group,
Nb: 0.003-0.2,
V: 0.001-0.2,
W: 0.001-0.1,
As an inclusion form control element group,
Ca: 0.0001 to 0.02,
Mg: 0.0001 to 0.02,
Zr: 0.0001 to 0.02,
REM: 0.0001 to 0.02
A steel slab selected from one or two or more element groups, containing one or more elements in each selected element group, and the remainder consisting of Fe and inevitable impurities is 1070 ° C or higher and 1300 ° C. After heating to ℃ ℃ or less, hot rolling to finish rolling temperature of 850 ℃ or more and 1070 ℃ or less was performed, and after finishing rolling, it was cooled to 300 ℃ or less at 8 ℃ / sec or more to make a hot rolled coil, and then piped Later in the shaping process, the diameter is reduced so that the total diameter reduction strain in the 4-roll sizing is 0.2% or more and 0.6% or less, and then heated to 850 ° C or more and 1050 ° C or less at a high temperature rise rate of 35 ° C / sec or more. And a method of manufacturing a machine-structured steel pipe excellent in fatigue characteristics and bending formability, characterized by cooling at a cooling rate of 100 ° C./sec or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008237602A JP5088631B2 (en) | 2008-09-17 | 2008-09-17 | Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008237602A JP5088631B2 (en) | 2008-09-17 | 2008-09-17 | Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010070789A JP2010070789A (en) | 2010-04-02 |
JP5088631B2 true JP5088631B2 (en) | 2012-12-05 |
Family
ID=42202854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008237602A Active JP5088631B2 (en) | 2008-09-17 | 2008-09-17 | Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5088631B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7335808B2 (en) | 2016-12-30 | 2023-08-30 | トゥイストパーフェクト,ソシエダッド リミターダ | Methods for spinning and/or twisting, machines for spinning and/or twisting and methods for modifying machines for spinning and/or twisting. |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5381900B2 (en) * | 2010-05-27 | 2014-01-08 | 新日鐵住金株式会社 | ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof |
JP5381901B2 (en) * | 2010-05-27 | 2014-01-08 | 新日鐵住金株式会社 | ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof |
JP5703934B2 (en) * | 2011-04-25 | 2015-04-22 | 新日鐵住金株式会社 | Cold forging induction hardening steel, cold forging induction hardening steel bar, automobile undercarriage parts and automobile hub |
ES2759051T3 (en) | 2013-05-21 | 2020-05-07 | Nippon Steel Corp | Hot rolled steel sheet and manufacturing method thereof |
EP3153598B1 (en) | 2014-07-14 | 2020-09-09 | Nippon Steel Corporation | Hot-rolled steel sheet |
CN106661689B (en) | 2014-07-14 | 2018-09-04 | 新日铁住金株式会社 | Hot rolled steel plate |
RU2580773C2 (en) * | 2014-08-12 | 2016-04-10 | Публичное акционерное общество "Синарский трубный завод" (ПАО "СинТЗ") | Tube rolling method with thermomechanical treatment |
RU2635205C2 (en) * | 2016-01-11 | 2017-11-09 | Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") | Method for thermal processing of oil pipe sortament made of corrosion-resistant steel |
KR102195685B1 (en) | 2016-08-18 | 2020-12-28 | 닛폰세이테츠 가부시키가이샤 | Hot rolled steel sheet |
WO2018186102A1 (en) * | 2017-04-05 | 2018-10-11 | 新日鐵住金株式会社 | Device and method for manufacturing vehicle underbody component material, quenching steel material for manufacturing vehicle underbody component material, and vehicle underbody component material |
US10862401B2 (en) * | 2018-10-26 | 2020-12-08 | Lear Corporation | Tandem DC/DC converter for a vehicle battery charger |
CN112375969A (en) * | 2020-10-20 | 2021-02-19 | 包头钢铁(集团)有限责任公司 | Production method of-30 ℃ low-temperature toughness pipeline steel |
RU2760140C1 (en) * | 2020-12-10 | 2021-11-22 | Сергей Константинович Лаптев | Method for producing low-carbon martensitic steel |
WO2023210046A1 (en) * | 2022-04-27 | 2023-11-02 | Jfeスチール株式会社 | Electric resistance welded steel pipe and method for manufacturing same |
JP7276641B1 (en) * | 2022-04-27 | 2023-05-18 | Jfeスチール株式会社 | Electric resistance welded steel pipe and its manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2579094B2 (en) * | 1991-12-06 | 1997-02-05 | 新日本製鐵株式会社 | Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance |
JP4608739B2 (en) * | 2000-06-14 | 2011-01-12 | Jfeスチール株式会社 | Manufacturing method of steel pipe for automobile door reinforcement |
JP3846246B2 (en) * | 2001-09-21 | 2006-11-15 | 住友金属工業株式会社 | Steel pipe manufacturing method |
JP4321434B2 (en) * | 2004-10-25 | 2009-08-26 | 住友金属工業株式会社 | Low alloy steel and manufacturing method thereof |
JP2007056283A (en) * | 2005-08-22 | 2007-03-08 | Nippon Steel Corp | High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method |
JP2007262469A (en) * | 2006-03-28 | 2007-10-11 | Jfe Steel Kk | Steel pipe and its production method |
-
2008
- 2008-09-17 JP JP2008237602A patent/JP5088631B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7335808B2 (en) | 2016-12-30 | 2023-08-30 | トゥイストパーフェクト,ソシエダッド リミターダ | Methods for spinning and/or twisting, machines for spinning and/or twisting and methods for modifying machines for spinning and/or twisting. |
Also Published As
Publication number | Publication date |
---|---|
JP2010070789A (en) | 2010-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5088631B2 (en) | Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method | |
JP4436419B2 (en) | Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method | |
JP6210175B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
JP5812048B2 (en) | High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same | |
JP5040475B2 (en) | Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same | |
KR20130055019A (en) | High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same | |
EP2617850A1 (en) | High-strength hot rolled steel sheet having excellent toughness and method for producing same | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
JP7411072B2 (en) | High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same | |
CN110100027B (en) | Low yield ratio steel plate having excellent low temperature toughness and method for manufacturing same | |
CN110088331B (en) | Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same | |
KR101467049B1 (en) | Steel sheet for line pipe and method of manufacturing the same | |
JP6796472B2 (en) | Hollow member and its manufacturing method | |
JP5986434B2 (en) | Seamless steel pipe for hollow spring | |
JP6018394B2 (en) | Hollow seamless pipe for high strength springs | |
JP2009203492A (en) | High-tensile welded steel pipe for automobile structural member, and method for producing the same | |
JP6384635B1 (en) | Hot rolled steel sheet for coiled tubing | |
JP3539545B2 (en) | High-tensile steel sheet excellent in burring property and method for producing the same | |
JP4192109B2 (en) | Method for producing high carbon steel rail with excellent ductility | |
JP7244715B2 (en) | Hot-rolled steel sheet with excellent durability and its manufacturing method | |
KR100431848B1 (en) | Method for manufacturing high carbon wire rod containing high silicon without low temperature structure | |
JPWO2018168618A1 (en) | High strength cold rolled steel sheet and method of manufacturing the same | |
JP7472826B2 (en) | Electric resistance welded steel pipe and its manufacturing method | |
JP3843507B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120817 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120830 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5088631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |