JP4436419B2 - Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method - Google Patents

Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method Download PDF

Info

Publication number
JP4436419B2
JP4436419B2 JP2008120139A JP2008120139A JP4436419B2 JP 4436419 B2 JP4436419 B2 JP 4436419B2 JP 2008120139 A JP2008120139 A JP 2008120139A JP 2008120139 A JP2008120139 A JP 2008120139A JP 4436419 B2 JP4436419 B2 JP 4436419B2
Authority
JP
Japan
Prior art keywords
steel
hot
bainite
less
fatigue characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008120139A
Other languages
Japanese (ja)
Other versions
JP2009270142A (en
Inventor
孝聡 福士
英幸 中村
功 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008120139A priority Critical patent/JP4436419B2/en
Priority to PCT/JP2009/058732 priority patent/WO2009133965A1/en
Publication of JP2009270142A publication Critical patent/JP2009270142A/en
Application granted granted Critical
Publication of JP4436419B2 publication Critical patent/JP4436419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板とその製造方法に関するものである。本発明の機械構造鋼管としては、例えば、自動車構造鋼管、自動車足回り部品鋼管等がある。   The present invention relates to a hot-rolled steel sheet for machine structural steel pipes excellent in fatigue characteristics and bend formability, and a method for producing the same. Examples of the mechanical structural steel pipe of the present invention include an automobile structural steel pipe and an automobile undercarriage part steel pipe.

機械構造用鋼材は、一般機械、産業機械、建設機械、輸送機械(自動車、輸送車両など)等で使用される部材や部品用の素材として産業界で広く使用されてきている。前記鋼材のひとつに、筒状中空体の機械構造鋼管と、その機械構造鋼管用の素鋼板(例えば熱延鋼板(熱延鋼帯含む))がある。前記の鋼管および鋼管用素鋼板(例えば熱延鋼板(熱延鋼帯含む))については、使用時の繰り返し荷重による疲労特性と部材や部品加工のために曲げ成形性が要求される。機械構造鋼管の中でも自動車構造鋼管は、自動車の保安部材にも適用されるので、曲げ成形性ばかりでなく、特に優れた疲労特性が要求される。この自動車構造鋼管の一例に自動車足回り部品鋼管がある。自動車足回り部品としては、自動車の左右の車輪間に配置されるアクスルビームや、その周辺のサスペンション部材などがある。これらは、いずれも走行中に繰り返して衝撃荷重やねじり荷重等を受けるため、高い強度とともに高い疲労特性が必要である。また、自動車構造部材、特に自動車足回り部品は、複雑な部品形状に加工する場合が多く高い成形性が必要である。特に、曲げ半径Rの小さな曲げ成形を施す部材や部品においては、極めて高い曲げ成形性が必要である。   Steel for machine structure has been widely used in the industry as a material for members and parts used in general machinery, industrial machinery, construction machinery, transportation machinery (automobiles, transportation vehicles, etc.) and the like. One of the steel materials includes a cylindrical hollow body structural steel pipe and a base steel plate for the mechanical structural steel pipe (for example, a hot rolled steel sheet (including a hot rolled steel strip)). The steel pipes and the steel sheets for steel pipes (for example, hot-rolled steel sheets (including hot-rolled steel strips)) are required to have bend formability for fatigue characteristics due to repeated loads during use and for member and part processing. Among machine structural steel pipes, automobile structural steel pipes are also applied to safety members of automobiles, so that not only bend formability but particularly excellent fatigue characteristics are required. One example of this automobile structural steel pipe is an automobile undercarriage part steel pipe. Examples of the automobile underbody parts include an axle beam disposed between the left and right wheels of the automobile and a suspension member around the axle beam. Since these are repeatedly subjected to an impact load, a torsional load, and the like during traveling, high strength and high fatigue characteristics are required. In addition, automobile structural members, particularly automobile undercarriage parts, are often processed into complex part shapes and require high formability. In particular, extremely high bend formability is required for members and parts subjected to bend forming with a small bending radius R.

例えば、自動車足回り部品である自動車アクスルビームについては、特許文献1に示されるように筒状の被加工体(例えば鋼管)の内面に液体圧力を付与しつつプレス加工する方法とその方法で得られる異型断面筒状体のアクスルビームが提案されている。このアクスルビーム素材として、高い疲労特性と高い曲げ成形性を有する鋼材(例えば、機械構造鋼管、自動車構造鋼管、自動車足回り部品鋼管やそれら鋼管の素鋼板)が望まれているが、現状、必ずしも疲労特性と曲げ成形性とを十分に満足する鋼管及び鋼管用素鋼板(鋼帯含む)は得られていない。そのため、鋼管をプレス加工した後に焼入れや焼鈍などの硬化熱処理を行って部材や部品の疲労特性や強度を所望レベルまで向上しているのが現状である。こうした硬化熱処理を行うと部材や部品のコストが高くなることは勿論であるが、熱処理を施すことから部材や部品の形状が変化して追加矯正が必要になる場合があったり、部材や部品が軟化する場合には追加の強化手段(例えば表面硬質化処理など)が必要になることがあるという問題があった。このために、疲労特性と曲げ成形性に優れた機械構造鋼管(例えば自動車構造鋼管、自動車足回り部品鋼管など)およびその鋼管用素材となる鋼板(鋼帯含む)が産業界で待望されている。   For example, an automobile axle beam, which is an automobile underbody component, is obtained by a method of pressing while applying liquid pressure to the inner surface of a cylindrical workpiece (for example, a steel pipe) as disclosed in Patent Document 1 and the method. An axle beam having a modified cross-section cylindrical body has been proposed. As this axle beam material, steel materials having high fatigue characteristics and high bending formability (for example, machine structural steel pipes, automobile structural steel pipes, automobile undercarriage parts steel pipes, and steel plates of these steel pipes) are desired, Steel pipes and steel plate for steel pipes (including steel strips) that sufficiently satisfy fatigue characteristics and bending formability have not been obtained. Therefore, the present situation is that the fatigue characteristics and strength of members and parts are improved to a desired level by performing hardening heat treatment such as quenching and annealing after pressing the steel pipe. When such heat treatment is carried out, the cost of members and parts increases, but of course, the shape of the members and parts may change due to the heat treatment, and additional correction may be required, In the case of softening, there has been a problem that additional reinforcing means (for example, surface hardening treatment) may be required. For this reason, machine structural steel pipes (for example, automobile structural steel pipes, automobile undercarriage parts steel pipes, etc.) excellent in fatigue characteristics and bendability and steel plates (including steel strips) used as the steel pipe materials are highly anticipated in the industry. .

また、疲労特性と各種成形等に必要な加工性(曲げ、液圧、拡管、縮管などの加工性)を両立する鋼材(溶接鋼管、溶接鋼管素材用鋼帯)として、特許文献2に示す発明が提案されている。この特許文献2の発明鋼材は、超微細で特定元素比の(Ti,Mo)複合炭化物が分散析出したフェライト組織を多量に生成したものである。また、柔らかい相であるフェライト組織の面分率が60〜100%と高く、析出物の粒径が極めて小さいために成形性には優れてる。一方、特許文献2の発明鋼材は、柔らかいフェライト組織が多量に生成しているので、残部組織のパーライトやベイナイトは硬質になり、硬い組織がフェライトと入り混じった組織となる。このような組織では、厳しい曲げ成形の際には硬い組織は加工に十分には耐える事ができず割れが発生する可能性がある。更に、鋼管から機械構造部材や自動車構造部材や自動車足回り部品を製造する際には、曲げ成形で割れが生じなくても割れに至らない微小ボイドが鋼中に存在する可能性がある。鋼管が機械構造、自動車構造等で部材や部品として使用され疲労荷重が加わると、部材や部品製造時の曲げ成形で生じた微小ボイドから疲労亀裂が発生し進展する可能性がある。
特開2001−321846 特開2003−321748
Moreover, it shows in patent document 2 as steel materials (welding steel pipe, steel strip for welded steel pipe raw materials) which balance fatigue characteristics and workability required for various shaping | molding (workability, such as a bending, a hydraulic pressure, a pipe expansion, and a contraction pipe). An invention has been proposed. The invention steel material of Patent Document 2 is a material that produces a large amount of ferrite structure in which ultra-fine (Ti, Mo) composite carbide having a specific element ratio is dispersed and precipitated. Moreover, since the area fraction of the ferrite structure which is a soft phase is as high as 60 to 100% and the particle size of the precipitate is extremely small, the formability is excellent. On the other hand, since the invention steel material of Patent Document 2 has a large amount of soft ferrite structure, the pearlite and bainite of the remaining structure become hard, and the hard structure becomes a structure mixed with ferrite. In such a structure, a hard structure cannot sufficiently withstand processing during severe bending and cracking may occur. Furthermore, when manufacturing a mechanical structural member, an automobile structural member, or an automobile undercarriage part from a steel pipe, there is a possibility that micro voids that do not cause cracking exist in the steel even if cracking does not occur in bending. When a steel pipe is used as a member or part in a mechanical structure, an automobile structure, or the like and a fatigue load is applied, fatigue cracks may be generated and propagated from microvoids generated by bending during the manufacture of the member or part.
JP 2001-321846 A JP2003-321748

上記した様に、機械構造(例えば自動車構造、自動車足回り部品など)鋼管や鋼管用素鋼板(特に熱延鋼板)として、今まで十分に疲労特性と曲げ成形性を両立できるものは得られていない。一般的に、鋼材の疲労特性は、鋼材自体か鋼材を加工した部材または部品の強度が高い方が優れる傾向にあり、鋼材の曲げ成形性は、強度が低い方が優れる傾向にある。このために、相反する特性を両立するのは非常に困難である。本発明の目的は、疲労特性に優れかつ曲げ成形性に優れた機械構造鋼管用熱延鋼板、自動車構造鋼管用熱延鋼板、又は自動車足回り部品鋼管用熱延鋼板とそれら鋼板の製造方法を提供する事である。   As mentioned above, mechanical structures (for example, automobile structures, automobile undercarriage parts, etc.) steel pipes and steel sheets for steel pipes (especially hot-rolled steel sheets) that have been able to sufficiently satisfy both fatigue characteristics and bend formability have been obtained so far. Absent. In general, the fatigue properties of steel materials tend to be superior when the strength of the steel material itself or a member or part processed from the steel material is high, and the bending formability of the steel material tends to be superior when the strength is low. For this reason, it is very difficult to achieve compatible characteristics. An object of the present invention is to provide a hot-rolled steel sheet for machine structural steel pipes, a hot-rolled steel sheet for automobile structural steel pipes, or a hot-rolled steel sheet for automobile undercarriage parts steel pipes, and a method for producing these steel sheets, which has excellent fatigue characteristics and bend formability. It is to provide.

本発明者らは、疲労特性に優れかつ曲げ成形性に優れた機械構造鋼管用熱延鋼板、(例えば、自動車構造鋼管用熱延鋼板、自動車足回り部品鋼管用熱延鋼板、及びそれら鋼板からなる鋼管)を得るために、熱延鋼板の板厚各部位での微小ボイドの生成や疲労亀裂の発生・進展過程を曲げ成形の加工前後から疲労荷重負荷に至るまで継続して検討した。その結果、本発明者らは、鋼管製の機械構造部材、例えば、鋼管製の自動車構造部材、鋼管製の自動車足回り部品の疲労亀裂が、素鋼板の表層部(鋼表面から深さ0.05mm以内、表面被覆層がある場合には地鉄界面から深さ0.05mm以内)で発生することを新たに見出した。また、前記の鋼管製部材や鋼管製部品の製作時、鋼管を曲げ成形する際の加工割れは、加工歪が最も高い鋼表層部(鋼表面から深さ0.05mm以内、表面被覆層がある場合には地鉄界面から深さ0.05mm以内)で発生することを新たに見出した。更に、曲げ成形加工時に鋼表層部に生じた微小ボイドが、加工後に部材又は部品として使用する際に、疲労亀裂の発生や進展を促進することを新たに見出した。この知見に注目し、鋼表層部のミクロ組織、硬さ、組織の結晶形態、粒界析出物存在状態等に着目して種々検討した結果、本発明者らは、特定条件下において、疲労特性に優れかつ曲げ成形性にも優れた機械構造鋼管用熱延鋼板、自動車構造鋼管用熱延鋼板、または自動車足回り部品鋼管用熱延鋼板が得られる事を新たに見出したものである。つまり、鋼表層部の組織を均一微細でベイナイト組織主体に制御し中程度に硬くし、更に粒界析出炭化物を微細化する事で目的とする特性を有する鋼管用素鋼板が得られる。その上、前記の特定条件を工業的に有利に得る方法を検討して、本発明者らは、好適な成分系と製造プロセスを得るに至った。なお、この表層部の特定条件は、鋼板板厚0.7〜20mmの鋼管用素鋼板において十分に有効でり、更に本発明鋼板とは鋼帯も含むものである。   The inventors of the present invention have a hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and excellent bendability (for example, hot-rolled steel sheets for automobile structural steel pipes, hot-rolled steel sheets for automobile undercarriage parts steel pipes, and those steel sheets). In order to obtain a steel pipe, the formation of microvoids at each thickness portion of the hot-rolled steel sheet and the process of fatigue crack initiation and propagation were continuously investigated from before and after bending forming until fatigue load loading. As a result, the present inventors have found that fatigue cracks in steel pipe mechanical structural members, for example, steel pipe automobile structural members, steel pipe automobile undercarriage parts, surface layer portion of the steel sheet (0.05 mm depth from the steel surface). In the case where there is a surface coating layer, it was newly found that it occurs within a depth of 0.05 mm from the interface of the railway. Also, when manufacturing the above steel pipe members and steel pipe parts, the work cracks when bending the steel pipe are the steel surface layer part with the highest work strain (within 0.05mm depth from the steel surface, with a surface coating layer) Was newly found to occur within a depth of 0.05mm from the interface of the steel. Furthermore, it has been newly found that microvoids generated in the steel surface layer portion during bending forming promote the generation and progress of fatigue cracks when used as members or parts after processing. As a result of various investigations focusing on this knowledge and focusing on the microstructure, hardness, structure crystal morphology, grain boundary precipitate presence state, etc. of the steel surface layer portion, the present inventors have found that fatigue characteristics under specific conditions It has been newly found that a hot rolled steel sheet for machine structural steel pipes, a hot rolled steel sheet for automobile structural steel pipes, or a hot rolled steel sheet for automobile undercarriage parts steel pipes, which are excellent in bending property and bendability. In other words, a steel pipe steel sheet having the desired characteristics can be obtained by controlling the structure of the steel surface layer portion to be uniform and fine, controlling it to be moderately hard, and further reducing the grain boundary precipitated carbide. In addition, the inventors have studied a method for obtaining the above-mentioned specific conditions in an industrially advantageous manner, and the present inventors have obtained a suitable component system and manufacturing process. The specific condition of the surface layer portion is sufficiently effective for a steel pipe base steel plate having a steel plate thickness of 0.7 to 20 mm, and the steel plate of the present invention includes a steel strip.

本発明の要旨は、(1)質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、かつ(A)式を満たし、残部Fe及び不可避不純物からなる鋼の表層部において、ミクロ組織の面分率の80%以上がベイナイトであり、ビッカース硬さHvが210以上300以下であり、ベイナイトの長軸長さの平均値が5μm以下であり、更に平均粒界炭化物粒径が0.5μm以下であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)
但し、(A)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。
尚、本発明の鋼の表層部とは、鋼板(鋼帯含む)の鋼表面から厚み方向に0.05mm以内の部位である。但し、ビッカース硬さHvは、鋼板(鋼帯含む)の鋼表面から厚み方向に0.05mm深さ位置の値とする。
The gist of the present invention is (1) % by mass, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 -1.0, Sol. Al: 0.005 to 0.1, N: 0.0005 to 0.01, B: 0.0001 to 0.01, and satisfying the formula (A) , the surface layer portion of the steel composed of the remaining Fe and inevitable impurities , 80% or more of the area fraction of the microstructure is Fatigue characterized by being bainite, having a Vickers hardness Hv of 210 or more and 300 or less, an average value of the major axis length of bainite being 5 μm or less, and an average grain boundary carbide particle size of 0.5 μm or less. Hot-rolled steel sheet for machine structural steel pipes with excellent properties and bending formability.
3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formula (A) are mass%.
In addition, the surface layer part of the steel of this invention is a site | part within 0.05 mm in the thickness direction from the steel surface of a steel plate (a steel strip is included). However, the Vickers hardness Hv is a value at a depth position of 0.05 mm in the thickness direction from the steel surface of the steel plate (including the steel strip).

(2)上記(1)の鋼が、更に、質量%で、
ベイナイト生成促進元素群として、
Cu:0.005〜1.0、Ni:0.005〜1.0、Mo:0.02〜1.0、
結晶と粒界炭化物微細化元素群として、
Nb:0.003〜0.2、V:0.001〜0.2、
介在物形態制御元素群として、
Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02
の中の1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有し、かつ(A)式を満たす鋼であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)
但し、(A)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。
(2) The steel of (1 ) above is further mass%,
As a group of bainite generation promoting elements,
Cu: 0.005-1.0, Ni: 0.005-1.0, Mo: 0.02-1.0,
As crystal and grain boundary carbide refined element group,
Nb: 0.003-0.2, V: 0.001-0.2,
As an inclusion form control element group,
Ca: 0.0001 to 0.02, Mg: 0.0001 to 0.02, Zr: 0.0001 to 0.02, REM: 0.0001 to 0.02
It is a steel selected from one or two or more element groups, and containing one or more elements in each selected element group and satisfying the formula (A) Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability.
3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formula (A) are mass%.

(3)上記の(1)または(2)において、機械構造鋼管が自動車構造鋼管であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。 (3) A hot-rolled steel sheet for a machine-structured steel pipe excellent in fatigue characteristics and bending formability, wherein the machine-structured steel pipe is an automobile structure steel pipe in the above (1) or (2 ).

(4)上記の(3)において、自動車構造が自動車足回り部品であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。 (4) A hot-rolled steel sheet for machine structural steel pipes having excellent fatigue characteristics and bending formability, characterized in that the automobile structure is an automobile underbody part in (3 ) above.

(5)質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、かつ(A)式を満たし、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後(B)式に示す冷却速度Vc (℃/sec)で300℃以下まで冷却することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)
1.2/C≦Vc≦1.8/C・・・(B)
但し、(A)式、(B)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。
(5) By mass%, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 to 1.0, Sol. Al: 0.005-0.1, N: 0.0005-0.01, B: 0.0001-0.01, satisfying the formula (A), and heating the steel slab composed of the remaining Fe and inevitable impurities to 1070 ° C or higher and 1300 ° C or lower, and then finish rolling temperature Fatigue properties and bend formability, characterized in that the steel is hot-rolled at a temperature of 850 ° C to 1070 ° C and cooled to 300 ° C or less at the cooling rate Vc (° C / sec) shown in equation (B) after finish rolling The manufacturing method of the hot-rolled steel plate for machine-structure steel pipes excellent in.
3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
1.2 / C ≦ Vc ≦ 1.8 / C (B)
However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formulas (A) and (B) are mass%.

(6)質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、を含有し、更に
ベイナイト生成促進元素群として、
Cu:0.005〜1.0、Ni:0.005〜1.0、Mo:0.02〜1.0
結晶と粒界炭化物微細化元素群として、
Nb:0.003〜0.2、V:0.001〜0.2、
介在物形態制御元素群として、
Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02
の中の1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有し、かつ(A)式を満たし、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後(B)式に示す冷却速度Vc (℃/sec)で300℃以下まで冷却することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)
1.2/C≦Vc≦1.8/C・・・(B)
但し、(A)式、(B)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。
(6) By mass%, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 to 1.0, Sol. Al: 0.005-0.1, N: 0.0005-0.01, B: 0.0001-0.01, and further
As a group of bainite generation promoting elements,
Cu: 0.005-1.0, Ni: 0.005-1.0, Mo: 0.02-1.0
As crystal and grain boundary carbide refined element group,
Nb: 0.003-0.2, V: 0.001-0.2,
As an inclusion form control element group,
Ca: 0.0001 to 0.02, Mg: 0.0001 to 0.02, Zr: 0.0001 to 0.02, REM: 0.0001 to 0.02
Selected from one or two or more element groups, containing one or more elements in each selected element group, satisfying formula (A), and comprising the balance Fe and inevitable impurities After heating the steel slab to 1070 ° C or higher and 1300 ° C or lower, it is hot-rolled at a finish rolling temperature of 850 ° C or higher and 1070 ° C or lower. A method for producing a hot-rolled steel sheet for a machined steel pipe excellent in fatigue characteristics and bending formability, characterized by cooling to 300 ° C or lower.
3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
1.2 / C ≦ Vc ≦ 1.8 / C (B)
However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formulas (A) and (B) are mass%.

(7)前記の(5)または(6)記載の方法において、機械構造鋼管が自動車構造鋼管であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。 (7) In the method according to (5) or (6) above, the method of manufacturing a hot-rolled steel sheet for a mechanical structure steel pipe having excellent fatigue characteristics and bending formability, wherein the mechanical structure steel pipe is an automobile structural steel pipe .

(8)前記の(7)記載の方法において、自動車構造が自動車足回り部品であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。
但し、前記の(5)、6、(7)、(8)は、いずれも、鋼の表層部において、ミクロ組織の面分率の80%以上がベイナイトであり、ビッカース硬さHvが210以上300以下であり、ベイナイトの長軸長さの平均値が5μm以下であり、更に平均粒界炭化物粒径が0.5μm以下である機械構造鋼管用、自動車構造鋼管用、或は自動車足回り部品鋼管用の熱延鋼板(鋼帯含む)に好適な製造方法である。尚、ビッカース硬さHvは、鋼の表面から0.05mm深さ位置の値である。
(8) A method for producing a hot-rolled steel sheet for a machine-structured steel pipe excellent in fatigue characteristics and bending formability, characterized in that the automobile structure is an automobile undercarriage part in the method described in (7) above.
However, in the above (5), 6, (7), and (8) , in the steel surface layer portion, 80% or more of the area fraction of the microstructure is bainite, and the Vickers hardness Hv is 210 or more. For machine structural steel pipes, automobile structural steel pipes, or automobile undercarriage parts steel pipes with an average value of 300 or less, average length of bainite of 5 μm or less, and an average grain boundary carbide particle size of 0.5 μm or less It is a manufacturing method suitable for hot-rolled steel sheets (including steel strips). The Vickers hardness Hv is a value at a depth position of 0.05 mm from the steel surface.

本発明の機械構造鋼管用熱延鋼板、自動車構造鋼管用熱延鋼板、または自動車足回り部品鋼管用熱延鋼板は、鋼の表層部(鋼表面から0.05mm深さまでの部位、但し、地鉄表面上にスケール層、機能付与被覆層(メッキ処理層、溶射層、窒化処理層など)がある場合には、地鉄界面から0.05mm深さまでの部位、但しビッカース硬さHvは地鉄界面から0.05mm深さ位置)において、次の要件(a)、(b)、(c)、(d)を全て満足するため、疲労特性と曲げ成形性の両方がともに優れる。
(a)ミクロ組織面分率の80%以上(100%以下)がベイナイト組織。
(b)ビッカース硬さHvが210以上300以下。
(c)ベイナイトの長軸長さの平均値が5μm以下。
(d)平均粒界炭化物粒径が0.5μm以下。
但し、要件(b)の硬さは、鋼表面(または地鉄界面)近傍ではビッカース圧痕が適切に得られ難いので、鋼の表面から0.05mm深さ位置のHv値を鋼の表層部ビッカース硬さHvとすれば良い。
The hot-rolled steel sheet for machine structural steel pipes of the present invention, the hot-rolled steel sheet for automobile structural steel pipes, or the hot-rolled steel sheet for automobile undercarriage parts steel pipes is a surface layer portion of steel (part from the steel surface to a depth of 0.05 mm, but the ground When there is a scale layer or a function-imparting coating layer (plating layer, thermal spray layer, nitriding layer, etc.) on the iron surface, the part up to 0.05mm deep from the iron surface interface, but the Vickers hardness Hv is Since the following requirements (a), (b), (c), and (d) are all satisfied at a depth of 0.05 mm from the interface, both fatigue characteristics and bend formability are excellent.
(a) The bainite structure is 80% or more (100% or less) of the microstructural area fraction.
(b) Vickers hardness Hv is 210 or more and 300 or less.
(c) The average long axis length of bainite is 5 μm or less.
(d) The average grain boundary carbide particle size is 0.5 μm or less.
However, as for the hardness of requirement (b), it is difficult to obtain a Vickers indentation in the vicinity of the steel surface (or the interface), so the Hv value at a depth of 0.05 mm from the steel surface is set to the surface layer Vickers hardness of the steel. Hv should be used.

本発明の鋼管用熱延鋼板(鋼帯含む)は、疲労亀裂が発生し難く、疲労亀裂の進展速度も極めて遅く疲労特性に優れる。その理由は、要件(a)により、鋼表層部の組織がほぼ均一でベイナイト組織であるので疲労損傷が局所化せず、かつ要件(b)のようにHvが210以上であるから疲労亀裂の起点となる鋼表層部の硬さが硬く疲労亀裂が発生し難い。更に要件(c)のようにベイナイトの長軸長さの平均値が5μm以下であるから疲労亀裂の進展抵抗を高める結晶粒界の面積が大きく、その上要件(d)のように平均粒界炭化物粒径が0.5μm以下と微細であるから結晶粒界の強度が高く、疲労亀裂の進展抵抗が高い。鋼管を曲げ成形加工した後に、鋼表層部に微小ボイドが生成し難いので、この微小ボイド起因の疲労亀裂の発生・進展を抑制することが出来る。   The hot-rolled steel sheet for steel pipes (including steel strips) of the present invention is less prone to fatigue cracks, has a very slow fatigue crack growth rate, and is excellent in fatigue characteristics. The reason for this is that, according to requirement (a), the structure of the steel surface layer is almost uniform and bainite structure, so fatigue damage is not localized, and Hv is 210 or more as in requirement (b). The steel surface layer that is the starting point is hard and fatigue cracks are unlikely to occur. Furthermore, since the average value of the long axis length of bainite is 5 μm or less as in requirement (c), the area of the grain boundary that increases fatigue crack growth resistance is large, and in addition, the average grain boundary as in requirement (d). Since the carbide grain size is as fine as 0.5 μm or less, the grain boundary strength is high and the fatigue crack growth resistance is high. Since it is difficult for microvoids to form in the steel surface layer after bending the steel pipe, the generation and propagation of fatigue cracks caused by these microvoids can be suppressed.

また本発明の各鋼管用熱延鋼板は、曲げ成形性にも優れる。その理由は、要件(a)と要件(b)を満足するので、鋼表層部の組織がほぼ均一で鋼表層部の硬さがHv300以下であり硬さが過度に硬すぎない。更に要件(c)と要件(d)を満足するので曲げ成形の際に割れの起点となる鋼表層部の結晶が微細で靭性が高く、微細な粒界炭化物により結晶粒界の強度が高い。また、要件(a)、(b)、(c)、(d)を組合せた場合には、加工割れまで至らない鋼表層部の微小ボイトの生成も防ぐことが可能である。   Moreover, the hot-rolled steel sheet for each steel pipe of the present invention is excellent in bending formability. The reason is that the requirements (a) and (b) are satisfied, so the structure of the steel surface layer portion is almost uniform, the hardness of the steel surface layer portion is Hv300 or less, and the hardness is not excessively hard. Further, since the requirement (c) and the requirement (d) are satisfied, the crystal of the steel surface layer portion that becomes the starting point of cracking during bending is fine and tough, and the strength of the grain boundary is high due to the fine grain boundary carbide. In addition, when the requirements (a), (b), (c), and (d) are combined, it is possible to prevent generation of microvoids in the steel surface layer portion that does not lead to work cracking.

前記の要件(a)、(b)、(c)、(d)は、いずれも鋼表層部の限定要件であるが、鋼の表層部以外(例えば板厚の中心部、1/4部など)で満足していても良い。鋼管用素鋼板の板厚の中心部や1/4部で、上記(a)、(b)、(c)、(d)の限定要件の一つ又は二つ以上を満足しても本発明を逸脱するものではない。   The above requirements (a), (b), (c), (d) are all the requirements for the steel surface layer part, but other than the steel surface layer part (for example, the center part of the plate thickness, 1/4 part, etc.) ) May be satisfied. Even if one or more of the above-mentioned limiting requirements (a), (b), (c), (d) are satisfied at the central part or ¼ part of the thickness of the steel sheet for steel pipes, the present invention It does not deviate from.

従って本発明により得られた熱延鋼板(鋼帯含む)は、相反する特性である疲労特性と曲げ成形性が共に優れるので、この両特性が要求される機械構造部材、自動車構造部材、自動車の足回り部品の素材(例えば鋼管または鋼管用素鋼板)として適する。例えば特許文献1の[発明の属する技術分野]に示す異型断面筒状部品の素材としても、本発明の熱延鋼板(鋼帯含む)およびその鋼板(鋼帯含む)からなる鋼管は適用できる。本発明の鋼板(鋼帯含む)は、素材として十分な曲げ成形性を有するので前記の機械構造部材、例えば、自動車構造部材や自動車足回り部品に曲げ半径Rの小さな部位がある場合でも曲げ成形時に成形割れを防ぐことができる。また曲げ成形では割れに至らないが、部材又は部品の疲労特性を低下させる鋼表層部での局所的な微小ボイドの形成を抑制できる。部品又は部材としても十分な疲労特性を有する。このために、本発明の鋼板からなる鋼管、及びその鋼管からなる部材又は部品は、成形後の硬質化又は高強度化等の熱処理を省略できる。前記の熱処理の省略により、熱処理コストの削減が可能である。更に熱処理時の酸化スケールが付着するのを防止できて前記部材又は部品の外観品位を損なわないばかりか、前記の熱処理に起因する形状変化も防止できる等、多くの利点がある。   Therefore, the hot-rolled steel sheet (including steel strip) obtained by the present invention is excellent in both fatigue characteristics and bending formability, which are contradictory characteristics. Therefore, mechanical structural members, automotive structural members, Suitable as material for undercarriage parts (for example, steel pipe or steel sheet for steel pipe). For example, as the material of the irregular cross-section cylindrical part shown in [Technical field to which the invention belongs] in Patent Document 1, the hot-rolled steel sheet (including steel strip) of the present invention and a steel pipe made of the steel sheet (including steel strip) can be applied. Since the steel sheet (including steel strip) of the present invention has sufficient bending formability as a material, it is bent even when the mechanical structural member, for example, an automobile structural member or an automobile undercarriage part has a small bending radius R. Sometimes molding cracks can be prevented. Further, although bending does not lead to cracking, the formation of local microvoids in the steel surface layer that lowers the fatigue properties of the member or part can be suppressed. It has sufficient fatigue properties as a component or member. For this reason, the steel pipe which consists of the steel plate of this invention, and the member or component which consists of the steel pipe can abbreviate | omit heat processing, such as hardening after hardening and high intensity | strength. By omitting the heat treatment, the heat treatment cost can be reduced. Furthermore, there are many advantages such as not being able to prevent the oxide scale from adhering during heat treatment and not deteriorating the appearance quality of the member or component, and also preventing the shape change caused by the heat treatment.

本発明の鋼の表層部とは鋼の表面から0.05mm深さまでの部分であるが、要件(b)については、鋼表面から0.05mm深さ位置としても良い。鋼の板厚の中心部や1/4の組織、硬さ、結晶粒径、析出物が変化しても疲労特性や曲げ成形性はほとんど変わらない。
前記のように、本発明者らは、鋼中に微小ボイド(例えば、ボイド径が1μm以下)が存在する場合でも、素鋼管を曲げ成形した部材や部品では、鋼管の曲げ成形で鋼表層部に生成した微小ボイドのみが、疲労特性の低下に影響を与えることを新たに見出した。
本発明によれば、板厚0.7〜20mmの熱延鋼板、及びその板厚の熱延鋼板(鋼帯含む)からなる鋼管が可能であり、引張強度が590MPa級、685MPa級、780MPa級、865MPa級の鋼管用熱延鋼板に好適である。
The surface layer portion of the steel of the present invention is a portion from the steel surface to a depth of 0.05 mm, but the requirement (b) may be a 0.05 mm depth position from the steel surface. Even if the center part of steel plate thickness, 1/4 structure, hardness, crystal grain size, and precipitates change, fatigue characteristics and bending formability are hardly changed.
As described above, the present inventors have found that a steel surface layer portion is formed by bending a steel pipe in a member or part obtained by bending a raw steel pipe even when a minute void (for example, a void diameter of 1 μm or less) exists in the steel. It was newly found that only the fine voids formed on the steel affect the deterioration of fatigue characteristics.
According to the present invention, a steel pipe made of a hot rolled steel sheet having a thickness of 0.7 to 20 mm and a hot rolled steel sheet (including a steel strip) having the thickness is possible, and the tensile strength is 590 MPa class, 685 MPa class, 780 MPa class, 865 MPa. It is suitable for a hot-rolled steel sheet for a high-grade steel pipe.

本発明において、鋼の表層部の組織、硬さ、結晶粒径、粒界炭化物に係る前記要件(a)〜(d)の限定理由について以下に述べる。
鋼の表層部のベイナイトの組織面分率と疲労特性の指標である疲労限と曲げ成形性の指標である限界曲げ率との関係を図1、図2に示す。図1と図2は、前記の鋼の表層部の要件(b)、(c)、(d)を範囲境界付近で満足する場合の結果である。なお、ベイナイト組織面分率は鋼表層部(地鉄界面から深さ0.05mm以内)の値である。
図1に示すように疲労限は、ベイナイトの面分率が80%に至るまで急激に向上し、ベイナイトの面分率80%で400MPa以上と極めて高い値となりほぼ安定化する。また図2に示すように限界曲げ歪は、ベイナイトの面分率が80%まで急激に向上し、80%で35%以上と高くなる。ベイナイトの組織面分率は100%に近い方が好ましく100%でもかまわないが、ベイナイトの残部組織として、フェライト、パーライト、マルテンサイト、残留オーステナイトの一種または2種以上の合計が20%以下含有する場合でも、鋼の表層部が前記の(b)、(c)、(d)の要件を同時に満足する場合には、本発明の効果は十分に得られる。このために鋼の表層部の要件(a)のベイナイトの組織面分率は80%以上必要である。
ベイナイトより軟質な相が鋼表層部に過度に存在する場合には、その軟質な相中に、微小ボイドや疲労亀裂が発生し易い。又、ベイナイトより硬質な相が鋼表層部に過度に存在する場合には、硬質な相とベイナイト相との界面やその界面付近で、微小ボイドや疲労亀裂が発生し易い。ベイナイトより軟質な相としてはフェライト、パーライト、安定的な残留オーステナイトなどがあり、ベイナイトより硬質な相としてはマルテンサイト、加工誘起マルテンサイトを生成する不安定な残留オーステナイトなどがある。
In the present invention, the reasons for limiting the requirements (a) to (d) relating to the structure, hardness, crystal grain size, and grain boundary carbide of the surface layer portion of steel will be described below.
FIG. 1 and FIG. 2 show the relationship between the bainite microstructure fraction of the steel surface layer and the fatigue limit, which is an index of fatigue characteristics, and the limit bending rate, which is an index of bending formability. FIG. 1 and FIG. 2 show the results when the requirements (b), (c), and (d) of the surface layer portion of the steel are satisfied in the vicinity of the range boundary. In addition, the bainite structure surface fraction is the value of the steel surface layer part (within 0.05 mm depth from the iron-iron interface).
As shown in FIG. 1, the fatigue limit is rapidly improved until the area fraction of bainite reaches 80%, and becomes an extremely high value of 400 MPa or more when the area fraction of bainite is 80%. Further, as shown in FIG. 2, the critical bending strain is rapidly increased to an area fraction of bainite up to 80%, and increases to 35% or more at 80%. The structure area fraction of bainite is preferably close to 100%, and may be 100%, but the remaining structure of bainite contains 20% or less of one or more of ferrite, pearlite, martensite, and retained austenite. Even in this case, the effect of the present invention can be sufficiently obtained when the surface layer portion of the steel satisfies the requirements (b), (c) and (d). For this reason, the structural area fraction of bainite, which is the requirement (a) of the steel surface layer portion, needs to be 80% or more.
When a phase softer than bainite is excessively present in the steel surface layer, microvoids and fatigue cracks are likely to occur in the soft phase. Further, when a phase harder than bainite is excessively present in the steel surface layer portion, microvoids and fatigue cracks are likely to occur at the interface between the hard phase and the bainite phase or in the vicinity of the interface. Phases softer than bainite include ferrite, pearlite, and stable retained austenite, and phases harder than bainite include martensite and unstable retained austenite that generates work-induced martensite.

鋼の表層部ビッカース硬さHvが210以上300以下の中程度であるので、部材又は部品として疲労亀裂の起点となる鋼表層部の硬さが比較的に硬いにも関わらず、部材又は部品用素材(鋼管用熱延鋼板)の曲げ成形の際に微小ボイドが下記の要件(c)と要件(d)との組合せによって発生せず、更に、部材又は部品として使用時に疲労荷重を受けても微小ボイド起因の疲労亀裂の発生・進展が鋼表層部では起き難い。
ビッカース硬さHvが210未満では、表層部のベイナイトの組織面分率が80%以上であっても表層部が軟らかすぎて、疲労荷重を受けた場合には、表層部に疲労亀裂が生成し易いので疲労限がかなり低下する。またビッカース硬さHvが300超では、曲げ成形性が極端に低下してしまう。このために鋼の表層部の要件(b)である、ビッカース硬さHvは210以上300以下が必要である。
Steel surface layer Vickers hardness Hv is moderate between 210 and 300, so it is for members or parts even though the steel surface layer where the fatigue crack starts as a member or part is relatively hard. Microvoids do not occur due to the combination of requirements (c) and (d) below when bending materials (hot-rolled steel sheets for steel pipes), and even when subjected to fatigue loads during use as members or parts It is difficult for fatigue cracks due to microvoids to occur and propagate in the steel surface layer.
If the Vickers hardness Hv is less than 210, even if the surface area fraction of the bainite in the surface layer is 80% or more, the surface layer is too soft and fatigue cracks are generated in the surface layer when subjected to fatigue load. Because it is easy, the fatigue limit is considerably lowered. On the other hand, when the Vickers hardness Hv exceeds 300, the bending formability is extremely lowered. For this reason, the Vickers hardness Hv, which is the requirement (b) of the surface layer portion of steel, needs to be 210 or more and 300 or less.

ベイナイトの長軸長さの平均値が5μm以下では、疲労亀裂の進展抵抗を高める結晶粒界の面積が大きく、ベイナイト主体の組織でも曲げ成形性に優れている。
鋼の表層部のベイナイトの長軸長さの平均値と疲労特性の指標である疲労限と曲げ成形性の指標である限界曲げ率との関係を図3、図4に記載する。なお、ベイナイトの長軸長さは鋼表層部(地鉄界面から深さ0.05mm以内)の値である。
図3に示すように前記の楕円長軸長さの平均値が5μm超では、疲労亀裂の進展抵抗が著しく低下するので、前記の平均値の増加に伴って疲労限が400MPaから一気に低下する。また、前記の平均値は、小さい方が好ましいが、5μmあれば結晶微細化による効果は得られる。また図4に示すように前記のベイナイトの長軸長さの平均値が5μm超では、結晶粒界の面積が少ないため、曲げ成形性も著しく低下する。よって、鋼の表層部のベイナイトの長軸長さの平均値は5μm以下が必要である。尚、前記の長軸長さの平均値は、例えば0.01μmと極端に細かくても疲労特性に悪影響を及ぼすことはない。このベイナイトの長軸長さは、ベイナイト組織の結晶伸延方向(例えば鋼板の板厚断面での主たる圧延方向)の長軸長さをとればよい。
When the average value of the major axis length of bainite is 5 μm or less, the area of the crystal grain boundary that increases the fatigue crack propagation resistance is large, and even a bainite-based structure is excellent in bending formability.
FIG. 3 and FIG. 4 show the relationship between the average value of the long axis length of bainite in the surface layer portion of the steel, the fatigue limit that is an index of fatigue characteristics, and the limit bending rate that is an index of bending formability. The long axis length of bainite is the value of the steel surface layer portion (within 0.05 mm depth from the iron-iron interface).
As shown in FIG. 3, when the average value of the ellipse major axis length exceeds 5 μm, the fatigue crack growth resistance is remarkably reduced, so that the fatigue limit is rapidly reduced from 400 MPa as the average value is increased. The average value is preferably small, but if it is 5 μm, the effect of crystal refinement can be obtained. Further, as shown in FIG. 4, when the average value of the major axis length of the bainite exceeds 5 μm, the bend formability is remarkably deteriorated because the area of the crystal grain boundary is small. Therefore, the average value of the major axis length of bainite in the surface layer portion of steel needs to be 5 μm or less. Incidentally, even if the average value of the major axis length is extremely fine, for example, 0.01 μm, the fatigue characteristics are not adversely affected. The major axis length of the bainite may be the major axis length in the crystal elongation direction of the bainite structure (for example, the main rolling direction in the plate thickness section of the steel plate).

鋼の表層部の平均粒界炭化物粒径が0.5μm以下では結晶粒界の強度が高く疲労亀裂の進展抵抗が高いので疲労特性に優れる。
鋼の表層部の粒界炭化物の平均粒径と疲労特性の指標である疲労限と曲げ成形性の指標である限界曲げ率との関係を図5、図6に記載する。なお、平均粒界炭化物粒径は鋼表層部(地鉄界面から深さ0.05mm以内)の値である。
前記の平均粒径が0.5μm超では、曲げ成形試験時に、鋼の表層部のベイナイトの結晶粒界に沿ってボイドが発生し、疲労試験時にそのボイドに沿ってき裂が進展するため、曲げ成形性および疲労特性が急激に低下してしまう。前記の粒界炭化物の平均粒径は小さい方が好ましいが、例えば0.005μmと極端に細かくても、本発明の鋼板を用いた鋼管からなる前記部材及び部品においては、曲げ成形性を損なうことなく良好な疲労特性が得られる。曲げ加工時には結晶粒界の強度が高いので割れ難く、疲労試験時にも結晶粒界の強度が高いので、亀裂の進展抵抗が高い。
When the average grain boundary carbide grain size of the steel surface layer is 0.5 μm or less, the grain boundary strength is high and the fatigue crack growth resistance is high, so the fatigue characteristics are excellent.
FIG. 5 and FIG. 6 show the relationship between the average grain size of grain boundary carbides in the surface layer portion of steel, the fatigue limit that is an index of fatigue characteristics, and the limit bending rate that is an index of bending formability. The average grain boundary carbide particle size is the value of the steel surface layer portion (within 0.05 mm depth from the base iron interface).
When the average particle size exceeds 0.5 μm, voids are generated along the grain boundaries of bainite on the surface layer of the steel during the bending test, and cracks develop along the voids during the fatigue test. And fatigue properties are drastically reduced. The average grain size of the grain boundary carbide is preferably smaller, but even if it is extremely fine, for example, 0.005 μm, in the members and parts made of the steel pipe using the steel plate of the present invention, the bending formability is not impaired. Good fatigue properties can be obtained. Since the strength of the crystal grain boundary is high at the time of bending, it is difficult to break, and the strength of the crystal grain boundary is also high at the time of fatigue test, so the resistance to crack propagation is high.

以下に、表層のベイナイト面分率、硬さ、結晶粒サイズ、粒界炭化物粒径の求め方を参考に記す。
ベイナイトの組織面分率は、板厚断面を埋め込み研磨後、3%ナイタール溶液にて腐食し、光学顕微鏡にて400倍で鋼の表層部(鋼表面から0.05mm深さまでの部位、但し、地鉄表面上にスケール層や被覆層(メッキ処理層、溶射層、窒化処理層など)がある場合には、地鉄界面からから0.05mm深さまでの部位)のミクロ組織を観察し、ベイナイト部分の面積率を定量化して求めた。
ビッカース硬さは、表面では鋼以外の地鉄上のスケール層や被覆層の影響を受けやすく適切ではない。このために本発明鋼板の表層部の硬さは、正しい硬さが測定できる鋼の地鉄界面から0.05mm深さ位置での硬さを、マイクロビッカース測定機(JIS Z 2244に準拠)で50gfの荷重(試験力0.4903N)で測定した。
ベイナイトの長軸長さ平均値は、EBSP(Electron Back Scattering Pattern)法により結晶方位分布像を観察し、結晶方位の差による色相差から結晶の粒界を特定して、その結晶伸延方向(鋼板の板厚断面での主たる圧延方向)の長軸長さ方向の粒径を測定し、その平均値を算出した。
平均粒界炭化物粒径は、板厚断面を埋め込み研磨後、3%ナイタール溶液にて腐食し、走査型電子顕微鏡にて2000倍でミクロ組織を観察し、50μm×50μmの範囲で粒界に存在する炭化物の粒径を5視野で測定し、その平均値を求めた。
Below, the method of calculating | requiring the bainite surface fraction of a surface layer, hardness, a crystal grain size, and a grain-boundary carbide particle size is described with reference.
The structure area fraction of bainite is corroded with a 3% nital solution after embedding and polishing the plate thickness cross section, and the surface layer portion of the steel (part from the steel surface to a depth of 0.05 mm by the optical microscope at 400 times, however, If there is a scale layer or coating layer (plating layer, thermal spray layer, nitriding layer, etc.) on the surface of the ground iron, the microstructure of the portion from the ground surface to 0.05 mm deep) is observed, and bainite The area ratio of the part was obtained by quantification.
The Vickers hardness is not appropriate on the surface because it is easily affected by the scale layer and the coating layer on the base iron other than steel. For this reason, the hardness of the surface layer part of the steel sheet of the present invention is 50 gf with a micro Vickers measuring machine (based on JIS Z 2244) at a depth of 0.05 mm from the steel ground interface where the correct hardness can be measured. The load (test force 0.4903N) was measured.
The average long axis length of bainite is determined by observing the crystal orientation distribution image by EBSP (Electron Back Scattering Pattern) method, specifying the grain boundary of the crystal from the hue difference due to the difference in crystal orientation, The grain size in the major axis length direction) was measured and the average value was calculated.
The average grain boundary carbide grain size is corroded with a 3% nital solution after embedding the plate thickness cross section, observed with a scanning electron microscope at a magnification of 2000 times, and present at grain boundaries in the range of 50 μm × 50 μm The particle size of the carbide to be measured was measured in five fields of view, and the average value was obtained.

前記の鋼管用熱延鋼板の疲労特性と曲げ成形性は、曲げ疲労試験と、曲げ成形試験を行い評価すれば良い。曲げ疲労試験は、前記の表層部からなる鋼板から長手方向中央部に平行部のある試験片を採取し、周波数30Hzの両振りで、応力条件を変えて試験を行い、疲労限を求めた。また曲げ成形試験は、板厚t=1.2mmの鋼板を、先端に種々の曲率半径RのついたV字のポンチで押し込み、割れ発生する限界のRの大きさを調査し、その時の最外表面の曲げ歪の大きさ(限界曲げ歪)を算出して評価した。良好とする判断基準は、疲労限400MPa以上の疲労特性と限界曲げ歪35%以上の曲げ成形性を両立する事とした。   The fatigue characteristics and bend formability of the hot-rolled steel sheet for steel pipes may be evaluated by performing a bending fatigue test and a bend form test. In the bending fatigue test, a test piece having a parallel portion at the center in the longitudinal direction was sampled from the steel sheet comprising the surface layer portion, and the test was performed by changing the stress conditions with both swings at a frequency of 30 Hz to obtain the fatigue limit. In the bending test, a steel plate with a thickness of t = 1.2 mm was pushed with a V-shaped punch with various curvature radii R at the tip, and the limit R at which cracking occurred was investigated. The magnitude of the surface bending strain (limit bending strain) was calculated and evaluated. Judgment criteria to be good were to achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bend formability with a limit bending strain of 35% or more.

次に、前記の本発明の鋼表層の組織、硬さ、結晶粒サイズ、粒界炭化物粒径を同時に満足するのに好適な鋼組成について述べる。以下の鋼組成は、通常のように鋼板全体の組成で良いが、表層部のみがこの鋼組成であってもかまわない。
Cは鋼板で必要とされる強度レベル(例えば590MPa級、690MPa級、780MPa級、865MPa級)を得るために0.05%以上が好ましい。一方、0.19%を超えると前記ベイナイトの生成制御が難しく、硬質のマルテンサイトの生成が増え、表層硬さが過剰になり、曲げ成形性が損なわれる場合があり、また靭性が低下して疲労特性に影響する。Cの好ましい範囲は、0.05〜0.19%である。
Siは曲げ加工性や疲労特性を阻害する粗大な酸化物を抑制するための脱酸元素として0.05%以上を含有させることが有効である。一方、1.0%超添加すると鋼管製造時(例えば電縫溶接時)に溶接部にSiO起因の欠陥を発生する可能性がある。そこでSiの好ましい範囲は0.05〜1.0%とする。
Mnは焼入れ性を確保し、ベイナイト組織を得るために有効であり、そのためには0.3%以上が望ましい。2.5%を超えるとMnOによる欠陥発生及びMnSによる中心偏析が顕著になる。Mnの好ましい範囲は0.3〜2.5%である。
Pは、結晶粒界に濃化し易く、0.03%超では粒界の疲労強度を低下させる場合がある。このために、Pは0.03%以下が望ましい。また、Sは、0.025%超では粗大なMnSを形成して曲げ成形性や疲労特性を損なう場合がある。このため、Sは0.025%以下が望ましい。
Next, a steel composition suitable for simultaneously satisfying the structure, hardness, grain size, and grain boundary carbide grain size of the steel surface layer of the present invention will be described. Although the following steel composition may be the composition of the whole steel plate as usual, only a surface layer part may be this steel composition.
C is preferably 0.05% or more in order to obtain a strength level (for example, 590 MPa class, 690 MPa class, 780 MPa class, 865 MPa class) required for the steel sheet. On the other hand, if it exceeds 0.19%, the formation control of the bainite is difficult, the formation of hard martensite increases, the surface layer hardness becomes excessive, the bend formability may be impaired, and the toughness is reduced, resulting in fatigue characteristics. Affects. A preferable range of C is 0.05 to 0.19%.
It is effective to contain 0.05% or more of Si as a deoxidizing element for suppressing coarse oxides that hinder bending workability and fatigue characteristics. On the other hand, if over 1.0% is added, there is a possibility that defects due to SiO 2 may occur in the welded part during steel pipe production (for example, during ERW welding). Therefore, a preferable range of Si is 0.05 to 1.0%.
Mn is effective for securing hardenability and obtaining a bainite structure, and for that purpose, 0.3% or more is desirable. If it exceeds 2.5%, defects due to MnO 2 and center segregation due to MnS become prominent. A preferable range of Mn is 0.3 to 2.5%.
P tends to concentrate at the grain boundaries, and if it exceeds 0.03%, the fatigue strength of the grain boundaries may be reduced. For this reason, P is preferably 0.03% or less. On the other hand, if S exceeds 0.025%, coarse MnS may be formed to impair bending formability and fatigue characteristics. For this reason, S is preferably 0.025% or less.

Tiはオーステナイト粒径の粗大化を抑制し、鋼の表層部のベイナイト組織の結晶の微細化を達成するのに有効である。この効果を得るには0.005%以上含有することが望ましい。一方、0.1%超では、前記の結晶の微細化効果がほぼ飽和し、また粗大なTiNを生成して疲労特性及び曲げ成形性を低下させる可能性がある。このため、Tiは0.005〜0.1%が好ましい。   Ti is effective in suppressing the coarsening of the austenite grain size and achieving finer crystals of the bainite structure in the surface layer portion of the steel. In order to acquire this effect, it is desirable to contain 0.005% or more. On the other hand, if it exceeds 0.1%, the above-mentioned crystal refining effect is almost saturated, and coarse TiN may be generated to reduce fatigue characteristics and bending formability. For this reason, Ti is preferably 0.005 to 0.1%.

Crは、焼入性を向上し微細なベイナイト組織を得るために有効であり、かつ粒界炭化物を微細化するためにも有効である。これらの効果を得るにはCrの含有量は0.03%以上が好ましい。一方、Crの含有量が1.0%を超えると、鋼の表層部での硬質なマテンサイトの組織面分率が大幅に増加し所望のベイナイトの組織面分率を得ることが難しくなる場合がある。また、粗大化した炭化物が多くなり、粒界強度の上昇による曲げ成形性および疲労特性の改善効果が低下するか、逆に、曲げ成形性および疲労特性を阻害する可能性がある。Crは、0.03〜1.0%が好ましい。   Cr is effective for improving hardenability and obtaining a fine bainite structure, and is also effective for refining grain boundary carbides. In order to obtain these effects, the Cr content is preferably 0.03% or more. On the other hand, if the Cr content exceeds 1.0%, the hard martensite surface area fraction in the surface layer of the steel is greatly increased, making it difficult to obtain the desired bainite structure area fraction. There is. Further, the coarsened carbides increase, and the effect of improving the bending formability and fatigue characteristics due to the increase in grain boundary strength may be reduced, or conversely, the bending formability and fatigue characteristics may be hindered. Cr is preferably 0.03 to 1.0%.

Sol.AlとNは、前記の部材や部品の素材となる鋼材(例えば鋼管用熱延鋼板や鋼管)の製造過程でAlNを生成してオーステナイト粒の粗大化を抑制してベイナイト組織の結晶粒の微細化を促進するために有効である。Alが0.005%未満ではその効果が必ずしも十分ではなく、Alが0.1%、Nが0.01%を越えると鋼の清浄度が下がるとともに粗大なAlNが生成して曲げ成形性及び/又は疲労特性が低下する場合がある。NはAlNの前記オーステナイト粒の粗大化抑制効果を利用するには0.0005%以上あれば十分である。Sol.Alは0.005〜0.1%が望ましく、Nは0.0005〜0.01%が望ましい。   Sol. Al and N produce AlN in the manufacturing process of steel materials (for example, hot-rolled steel sheets for steel pipes and steel pipes) that are the materials of the above-mentioned members and parts, and suppress the coarsening of austenite grains, thereby reducing the grain size of the bainite structure. It is effective to promote the conversion. If the Al content is less than 0.005%, the effect is not always sufficient. If the Al content exceeds 0.1% and N exceeds 0.01%, the cleanliness of the steel decreases and coarse AlN is generated, resulting in bending formability and / or fatigue properties. May decrease. N is sufficient to be 0.0005% or more in order to utilize the effect of suppressing the coarsening of the austenite grains of AlN. Sol. Al is desirably 0.005 to 0.1%, and N is desirably 0.0005 to 0.01%.

Bは鋼の焼入性を向上し、微細なベイナイト組織を得るために極めて有効な元素であり、Bが0.0001%未満ではその効果は必ずしも十分でなく、0.01%を超えると粗大な硼化物(硼化炭化物、硼化炭化物、硼化炭窒化物など)を生成し易くなり焼入性を損ない、また曲げ成形の際や疲労荷重が負荷された際に割れ起点や微小ボイドの起点にもなり易い。Bは、0.0001〜0.01%が好ましい。   B is an extremely effective element for improving the hardenability of the steel and obtaining a fine bainite structure. If B is less than 0.0001%, the effect is not necessarily sufficient, and if it exceeds 0.01%, coarse boride ( Boron carbides, boride carbides, boride carbonitrides, etc.) are easily generated and hardenability is impaired. Also, when bending and fatigue loads are applied, cracks and microvoids are also generated. easy. B is preferably 0.0001 to 0.01%.

次に、本発明において重要である、ベイナイトと粒界炭化物の平均粒径とを微細に制御する際に有効な鋼組成の関係式(A)について説明する。本発明者らは、B(ホウ素)のベイナイトの生成作用に着目し、微細なベイナイト組織を得るのに好適なベイナイト生成パラメーター、BP=0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Moと(A)式を新たに見出した。この式はBのベイナイトの生成促進作用も利用するので、Bが鋼(少なくとも鋼の表層部)に0.0001〜0.01%含有する場合には有効である。
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)
但し、(A)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。
(A)式の0.27Mn、0.2Cr、0.05Cu、0.11Ni、0.25Moは、各々0.27×Mn、0.2×Cr、0.05×Cu、0.11×Ni、0.25×Moを意味する。
前記BPが3C未満の場合には、図7、図8に示すように、急激にベイナイト楕円長軸長さや平均粒界炭化物粒径が増大し、前記の本発明の表層部の限定要件上限のベイナイト楕円長軸長さ5μmと平均粒界炭化物粒径0.5μmを超える。また、(A)式のBPが3C+0.3を超過する場合には、表層部でマルテンサイトが過度に生成して、ベイナイトの組織面分率を80%未満になり易く、ビッカース硬さHvが300を超える場合がある。
Next, the relational expression (A) of the steel composition effective in finely controlling the average grain size of bainite and grain boundary carbide, which is important in the present invention, will be described. The present inventors paid attention to the bainite forming action of B (boron), and suitable bainite forming parameters for obtaining a fine bainite structure, BP = 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo and the formula (A) Newly found. Since this formula also utilizes the bainite formation promoting action of B, it is effective when B is contained in the steel (at least the surface layer part of the steel) by 0.0001 to 0.01%.
3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formula (A) are mass%.
In formula (A), 0.27Mn, 0.2Cr, 0.05Cu, 0.11Ni, and 0.25Mo mean 0.27 × Mn, 0.2 × Cr, 0.05 × Cu, 0.11 × Ni, and 0.25 × Mo, respectively.
When the BP is less than 3C, as shown in FIG. 7 and FIG. 8, the bainite elliptical long axis length and the average grain boundary carbide particle size increase abruptly, and the upper limit requirement limit of the surface layer portion of the present invention is reached. The bainite ellipse major axis length exceeds 5 μm and the average grain boundary carbide particle size exceeds 0.5 μm. In addition, when the BP of the formula (A) exceeds 3C + 0.3, martensite is excessively generated in the surface layer portion, and the bainite structural area fraction tends to be less than 80%, and the Vickers hardness Hv is May exceed 300.

前記の基本的な鋼組成以外に、更に次の元素群I 、II、IIIの中から一つまたは二つ以上の元素群を選択し、更に選択された元素群中の1種または2種以上の元素を含有することが可能である。
I .ベイナイト生成促進元素群として、Cu:0.005〜1.0%、Ni:0.005〜1.0%、Mo:0.02〜1.0%。
II.結晶微細化元素群として、Nb:0.003〜0.2%、V:0.001〜0.2%。III.介在物形態制御元素群として、Ca:0.0001〜0.02%、Mg:0.0001〜0.02%、Zr:0.0001〜0.02%、REM:0.0001〜0.02%。
In addition to the basic steel composition, one or more element groups are selected from the following element groups I, II, and III, and one or more of the selected element groups are selected. It is possible to contain these elements.
I. As a bainite production promotion element group, Cu: 0.005-1.0%, Ni: 0.005-1.0%, Mo: 0.02-1.0%.
II. As grain refiner element group, Nb: 0.003~ 0.2%, V : 0.001~ 0.2%. III. Inclusion form control element group, Ca: 0.0001-0.02%, Mg: 0.0001-0.02%, Zr: 0.0001-0.02%, REM: 0.0001-0.02 %.

前記の元素群I のベイナイト生成促進元素群のCu、Ni、とMoは、いずれも焼入性を向上しベイナイト組織の生成に有効である。I 群の各元素の寄与は、前記(A)式の通りである。Cu、Ni、Moが、それぞれ、0.005%未満、0.005%未満、0.02%未満の場合には、各元素のベイナイト生成促進作用が十分には得られにくい。一方、Cu、Ni、Moが、それぞれ、1.0%超、1.0%超、1.0%超の場合には鋼の表層部で硬質相が多量に生成し易いので、本発明の構成要件である、ベイナイトの組織分率を80%以上を満足することが困難である。Cuは0.005〜1.0%、Niは0.005〜1.0%、Moは0.02〜1.0%の範囲で鋼中に含有することが出来る。   Cu, Ni, and Mo of the bainite formation promoting element group of the element group I are all effective in improving the hardenability and generating a bainite structure. The contribution of each element of group I is as in the above formula (A). When Cu, Ni, and Mo are less than 0.005%, less than 0.005%, and less than 0.02%, respectively, the bainite formation promoting action of each element is not sufficiently obtained. On the other hand, when Cu, Ni, and Mo are more than 1.0%, more than 1.0%, and more than 1.0%, a hard phase tends to be generated in a large amount in the surface layer portion of the steel. It is difficult to satisfy 80% or more of the structural fraction of bainite, which is a constituent requirement. Cu can be contained in the steel in the range of 0.005 to 1.0%, Ni in the range of 0.005 to 1.0%, and Mo in the range of 0.02 to 1.0%.

前記の元素群IIの結晶と粒界炭化物微細化元素群のNb、Vは、いずれも本発明の構成要件である微細ベイナイトと微細粒界炭化物の生成に有効である。このためには、Nbは0.003%以上、Vは0.001%以上の含有が望ましい。また、Nbが0.2%超、Vが0.2%超では、鋼中に粗大炭化物が形成し易く、曲げ成形時に割れ起点になったり、粗大炭化物付近に成形時の加工歪が局在化して素材、部材や部品の表面品位を低下し、部材や部品に加工後利用中に疲労損傷の局在化を誘発し、疲労特性を低下する懸念がある。よって、Vは0.003〜0.2%、Nbは0.001〜0.2%の範囲で鋼中に含有せしめることが出来る。 Both the crystal of element group II and Nb and V of grain boundary carbide refined element group are effective for producing fine bainite and fine grain boundary carbide, which are constituent elements of the present invention. For this purpose, it is desirable that Nb is 0.003% or more and V is 0.001% or more . If Nb is more than 0.2% and V is more than 0.2% , coarse carbides are likely to be formed in the steel and become the starting point of cracking during bending molding, or the processing strain during molding is localized near the coarse carbides. There is a concern that the surface quality of the material, member, or part may be lowered, the fatigue damage may be localized during use of the member or part after being processed, and the fatigue characteristics may be lowered. Therefore, V can be contained in the steel in the range of 0.003 to 0.2 % and Nb in the range of 0.001 to 0.2% .

前記の元素群IIIの介在物形態制御元素群として、Caは0.0001〜0.02%、Mgは0.0001〜0.02%、Zrは0.0001〜0.02%、REMは0.0001〜0.02%で含有することが可能である。Ca、Mg、Zr、とREMはいずれも硫化物を形態制御して成形性を高める作用がある。この作用を利用するには、Caは0.0001%以上、Mgは0.0001%以上、Zrは0.0001%以上、REMは0.0001%以上含有することが望ましい。これら元素を過剰に含有する場合にはこれら元素の粗大硫化物やクラスター化した酸化物との複合化合物を形成して逆に曲げ成形性と疲労特性を低下せしめる場合がある。このため、Caは0.0001〜0.02%、Mgは0.0001〜0.02%、Zrは0.0001〜0.02%、REMは0.0001〜0.02%で含有することが望ましい。   As the inclusion form control element group of the element group III, Ca can be contained in 0.0001 to 0.02%, Mg in 0.0001 to 0.02%, Zr in 0.0001 to 0.02%, and REM in 0.0001 to 0.02%. Ca, Mg, Zr, and REM all have the effect of improving the formability by controlling the form of sulfide. In order to make use of this action, it is desirable to contain 0.0001% or more of Ca, 0.0001% or more of Mg, 0.0001% or more of Zr, and 0.0001% or more of REM. When these elements are excessively contained, a composite compound with coarse sulfides or clustered oxides of these elements may be formed, and conversely, the bending formability and fatigue characteristics may be lowered. For this reason, it is desirable to contain Ca at 0.0001 to 0.02%, Mg at 0.0001 to 0.02%, Zr at 0.0001 to 0.02%, and REM at 0.0001 to 0.02%.

次に、本発明の部材又は部品の素材となる熱延鋼板の好適な製造方法について述べる。
質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、かつ(A)式を満たし残部Fe及び不可避不純物からなる鋼スラブを用いる。鋼組成と(A)式の限定理由は、前記の本発明熱延鋼板で記載した通りである。
Next, the suitable manufacturing method of the hot-rolled steel plate used as the raw material of the member or component of this invention is described.
In mass%, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 to 1.0, Sol. A steel slab made of Al: 0.005 to 0.1, N: 0.0005 to 0.01, B: 0.0001 to 0.01 and satisfying the formula (A) and the balance Fe and inevitable impurities is used. The reasons for limiting the steel composition and the formula (A) are as described in the hot rolled steel sheet of the present invention.

前記の組成の鋼スラブを、1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施すことが微細なベイナイト組織と微細な平均粒界炭化物粒径を得るのに有効である。
鋼スラブを1070℃以上に加熱すると、溶鋼凝固過程で析出した炭化物、窒化合物、炭窒化合物を鋼中で固溶させることにより熱延鋼板中で微細な粒界炭化物を有利に得る事が出来る。鋼スラブを1300℃超に加熱するとAlNが熱間圧延工程で、又は圧延後の冷却工程で粗大に析出したり、Bの焼入性向上効果を阻害する硼化物(炭化硼素、窒化硼素、炭窒化硼素)を形成することがあるので望ましくない。鋼スラブの熱間圧延の際の加熱は1070℃以上1300℃以下が好ましい。
熱間圧延は、微細なベイナイトを多量に生成させるためには、ほぼオーステナイト単相でかつ再結晶域である850℃以上の温度域で行うことが望ましい。一方、1070℃超では、ベイナイトが粗大化し易く結晶を微細に制御し難いことがある。よって、熱間圧延の仕上圧延温度は、850℃以上1070℃以下が好ましい。
The steel slab having the above composition is heated to 1070 ° C. or higher and 1300 ° C. or lower, and then subjected to hot rolling at a finish rolling temperature of 850 ° C. or higher and 1070 ° C. or lower. Fine bainite structure and fine average grain boundary carbide grains It is effective to obtain the diameter.
When steel slabs are heated to 1070 ° C or higher, fine grain boundary carbides can be advantageously obtained in hot-rolled steel sheets by dissolving solid carbide, nitrogen compounds and carbonitride compounds precipitated in the molten steel solidification process. . When a steel slab is heated to over 1300 ° C, AlN precipitates coarsely in the hot rolling process or in the cooling process after rolling, or borides (boron carbide, boron nitride, charcoal, which inhibit the effect of improving the hardenability of B) Boron nitride) may be formed, which is not desirable. The heating during the hot rolling of the steel slab is preferably from 1070 ° C to 1300 ° C.
In order to produce a large amount of fine bainite, the hot rolling is desirably performed in a temperature range of 850 ° C. or higher, which is substantially an austenite single phase and a recrystallization region. On the other hand, if it exceeds 1070 ° C., bainite is likely to be coarse and the crystal may be difficult to control finely. Therefore, the finish rolling temperature of hot rolling is preferably 850 ° C. or higher and 1070 ° C. or lower.

更に、熱間圧延後に鋼板の冷却を(B)式の冷却速度Vc(℃/s)で300℃以下まで制御することが微細なベイナイトと微細な粒界炭化物を生成させるのに有効である。
冷却速度Vc(℃/s)が1.8/C(CはCの質量%を示す)を超える場合には、図10、図11に示すように、ベイナイトより硬質な相が多量に生成して表層部のベイナイトの組織面分率が80%未満になり易い。表層部のマルテンサイト面分率が著しく増加して所望のベイナイト面分率が得られず、表層硬さHvが300を超えて十分な曲げ成形性が得られない。Vcが1.2/C(CはCの質量%を示す)未満の場合には、図10、図11に示すように、ベイナイトより軟質な相が多量に生成して表層部のベイナイト面分率が80%未満になり易い。表層でフェライトやパーライトの生成が著しく増加して所望のベイナイトの組織面分率が得られず、表層硬さHvが210未満となり疲労荷重の負荷で表層部から亀裂が発生・成長し易く、十分な疲労特性が得られない。なお、ビッカース硬さHvは鋼表層部(地鉄界面から深さ0.05mmの位置)の値である。
前記のVcが発明範囲であっても、図9に示す冷却停止温度が300℃超の場合には粒界炭化物の微細化が不十分となるとともに微細なベイナイトが十分に得られない。よって前記の鋼組成からなる熱延鋼板には、300℃以下まで本発明の(B)式を満たすVcで制御冷却を行うことが望ましい。常温〜250℃以内の温度で本発明のVcでの制御冷却を止めて、熱延鋼板コイルが300℃以下の温度域で保持(例えば熱延コイルの段積みなど)しても本発明を逸脱するものではない。また表面の手入れや残留応力除去などで、鋼板表層が300℃以下の温度域で温度上昇する簡易熱処理が鋼板又は鋼板からなる鋼管に付加される場合でも本発明を逸脱するものではない。
Furthermore, it is effective to produce fine bainite and fine grain boundary carbide by controlling the cooling of the steel sheet after hot rolling to 300 ° C. or less with the cooling rate Vc (° C./s) of the formula (B).
When the cooling rate Vc (° C./s) exceeds 1.8 / C (C represents mass% of C), as shown in FIG. 10 and FIG. The bainite structural area fraction of the part tends to be less than 80%. The martensite surface fraction of the surface layer portion is remarkably increased and the desired bainite surface fraction cannot be obtained, and the surface layer hardness Hv exceeds 300, so that sufficient bending formability cannot be obtained. When Vc is less than 1.2 / C (C represents mass% of C), as shown in FIGS. 10 and 11, a large amount of a phase softer than bainite is generated, and the bainite area fraction of the surface layer portion is increased. It tends to be less than 80%. Formation of ferrite and pearlite in the surface layer is remarkably increased, and the desired surface area fraction of bainite cannot be obtained, and the surface layer hardness Hv is less than 210, which is easy to generate and grow cracks from the surface layer part under fatigue load. Fatigue characteristics cannot be obtained. The Vickers hardness Hv is a value of the steel surface layer portion (position at a depth of 0.05 mm from the base iron interface).
Even when Vc is within the invention range, when the cooling stop temperature shown in FIG. 9 exceeds 300 ° C., the grain boundary carbide is not sufficiently refined and fine bainite cannot be obtained sufficiently. Therefore, it is desirable that the hot-rolled steel sheet having the above steel composition is controlled to be cooled to Vc satisfying the formula (B) of the present invention up to 300 ° C. or less. Even if the controlled cooling at Vc according to the present invention is stopped at a temperature within the range from room temperature to 250 ° C, the hot rolled steel sheet coil is maintained at a temperature range of 300 ° C or lower (for example, stacking of hot rolled coils) deviates from the present invention. Not what you want. Further, even when a simple heat treatment in which the temperature of the steel sheet surface layer rises in a temperature range of 300 ° C. or less is added to the steel sheet or the steel pipe made of the steel sheet by surface care or removal of residual stress, it does not depart from the present invention.

本発明の熱延鋼板は、機械構造用鋼管、例えば自動車構造用鋼管、自動車足回り部品鋼管の素鋼板として有効である。   The hot-rolled steel sheet of the present invention is effective as a steel sheet for machine structural use, for example, a steel sheet for automobile structural use, a steel sheet for automobile undercarriage parts steel pipe.

本発明熱延鋼板は、機械構造用鋼管、例えば自動車構造用鋼管、自動車の足回り部品に用いられる鋼管に適用すると効果的であるが、他にも疲労特性及び曲げ成形性が共に要求される例えば輸送機械である航空機や鉄道等の輸送車両の鋼管製部品に適用しても効果的である事は言うまでもない。また、本発明の疲労特性と曲げ成形性に優れた機械構造鋼管用鋼板は、本発明の範囲内で成分及び熱延条件を調節して、表層部硬さを本発明範囲内の高めとすることにより、特に疲労特性が重視される機械構造部材・部品に適用可能な鋼管用熱延鋼板や鋼管とすることが可能であり、表層部表面硬さを本発明範囲内の低めとすることにより、特に曲げ成形性が重視される機械構造部材・部品に適用可能な鋼管用熱延鋼板や鋼管とすることが可能である。   The hot-rolled steel sheet of the present invention is effective when applied to steel pipes for machine structures, for example, steel pipes for automobile structures, steel pipes used for automobile undercarriage parts, but both fatigue characteristics and bend formability are also required. For example, it is needless to say that the present invention is effective even when applied to steel pipe parts of transport vehicles such as airplanes and railways that are transport machines. Moreover, the steel sheet for machine structural steel pipes excellent in fatigue characteristics and bend formability of the present invention is adjusted within the scope of the present invention by adjusting the components and hot rolling conditions to increase the surface layer hardness within the scope of the present invention. Therefore, it is possible to obtain a hot-rolled steel sheet or steel pipe for steel pipes that can be applied to machine structural members / parts where fatigue characteristics are particularly important, and by making the surface layer surface hardness low within the scope of the present invention. In particular, it is possible to provide a hot-rolled steel sheet for steel pipes and steel pipes that can be applied to machine structural members and parts where bending formability is particularly important.

表1に示す成分の鋼を真空溶解炉にて30kgの鋼塊とした。その鋼塊を加熱後、板厚4mmと1.2mmに熱間圧延し、その後冷却を行い熱延鋼板を得た。冷却の際には板厚4mm材と1.2mm材での冷却速度が同じになるように冷却水量をコントロールした。このため、4mm材と1.2mm材の表層部の組織、硬さHv、ベイナイトの結晶粒径及び粒界炭化物径はほぼ同じであった。その際に板厚4mm材で得られた鋼表層部の組織、ビッカース硬さHv,ベイナイトの結晶粒径及び粒界炭化物粒径を表2に示す。表1、表2で本発明の要件を逸脱するものは下線を付記した。尚、表1で選択元素の空欄は無添加を示す。   Steels having the components shown in Table 1 were made into 30 kg ingots in a vacuum melting furnace. The steel ingot was heated and then hot rolled to a thickness of 4 mm and 1.2 mm, and then cooled to obtain a hot rolled steel sheet. During cooling, the amount of cooling water was controlled so that the cooling rate was the same for the 4 mm thick material and the 1.2 mm thick material. For this reason, the structure of the surface layer portion of 4 mm material and 1.2 mm material, hardness Hv, crystal grain size of bainite, and grain boundary carbide diameter were almost the same. Table 2 shows the structure of the steel surface layer, the Vickers hardness Hv, the crystal grain size of bainite, and the grain boundary carbide grain size obtained with a 4 mm thick steel plate. In Tables 1 and 2, those that depart from the requirements of the present invention are underlined. In Table 1, the blank for the selected element indicates no addition.

Figure 0004436419
Figure 0004436419

ベイナイトの面分率は、板厚断面を埋め込み研磨後、3%ナイタール溶液にて腐食し、光学顕微鏡にて400倍でミクロ組織を観察し、ベイナイト部分の面積率を定量化して求めた。ビッカース硬さは、板表面から0.05mm位置の硬さを、マイクロビッカース測定機(JIS Z 2244に準拠)で50gfの荷重(試験力0.49N)で測定した。ベイナイトの長軸長さ平均値は、EBSP(Electron Back Scattering Pattern)法により結晶方位分布像を観察し、結晶方位の差による色相差から結晶の粒界を特定して、その結晶伸延方向(鋼板の板厚断面での主たる圧延方向)の長軸長さ方向の粒径を測定し、その平均値を算出した。平均粒界炭化物粒径は、鋼表面上のスケールを酸で除去した板厚断面を埋め込み研磨後、3%ナイタール溶液にて腐食し、鋼表面から深さ0.05mm以内を走査型電子顕微鏡にて2000倍で5視野のミクロ組織を観察し、50μm×50μmの範囲で粒界に存在する炭化物の円相当粒径を測定し、その平均値を求めた。   The area fraction of bainite was obtained by embedding and polishing the plate thickness section, corroding with a 3% nital solution, observing the microstructure with an optical microscope at 400 times, and quantifying the area ratio of the bainite portion. The Vickers hardness was measured by measuring the hardness at a position of 0.05 mm from the plate surface with a load of 50 gf (test force 0.49 N) with a micro Vickers measuring instrument (based on JIS Z 2244). The average long axis length of bainite is determined by observing the crystal orientation distribution image by EBSP (Electron Back Scattering Pattern) method, specifying the grain boundary of the crystal from the hue difference due to the difference in crystal orientation, The grain size in the major axis length direction) was measured and the average value was calculated. The average grain boundary carbide particle size is determined by embedding and polishing the plate thickness section from which the scale on the steel surface has been removed with acid, and then corroding with 3% nital solution. The microstructure of five fields of view was observed at a magnification of 2000, and the equivalent circle diameter of carbides present at the grain boundaries in the range of 50 μm × 50 μm was measured, and the average value was determined.

得られた板で疲労特性と曲げ成形性を評価するために、曲げ疲労試験と、曲げ成形試験を行った。曲げ疲労試験は、t=4mmの板を、板の長手方向中央部に平行部のある試験片で、周波数30Hz、両振りで、応力条件を変えて試験を行い、疲労限を求めた。また曲げ成形試験は、t=1.2mmの板を、先端に種々のRのついたV字のポンチで押し込み、割れ発生する限界のRの大きさを調査し、その時の最外表面の曲げ歪の大きさを算出して評価した。目標値は、疲労限400MPa以上の疲労特性と限界曲げ歪35%以上の曲げ成形性を両立する事とした。表2には、疲労限と限界曲げ歪について、試験結果の絶対値と評価を示す。疲労限の評価は、400MPa以上を○、400Mpa未満を×で示した。また、限界曲げ歪の評価は、35%以上を○、35%未満を×で示した。   In order to evaluate fatigue characteristics and bend formability of the obtained plate, a bending fatigue test and a bend form test were performed. In the bending fatigue test, a t = 4 mm plate was tested with a test piece having a parallel portion in the central portion in the longitudinal direction of the plate at a frequency of 30 Hz with both swings, changing the stress conditions, and determining the fatigue limit. In the bending test, a t = 1.2 mm plate was pushed with a V-shaped punch with various Rs at the tip, and the limit R at which cracking occurred was investigated, and the bending strain on the outermost surface at that time was investigated. The size of was calculated and evaluated. The target value is to achieve both fatigue characteristics with a fatigue limit of 400 MPa or more and bending formability with a limit bending strain of 35% or more. Table 2 shows the absolute value and evaluation of the test results for the fatigue limit and the critical bending strain. The fatigue limit was evaluated by ◯ for 400 MPa or more and x for less than 400 MPa. Further, the evaluation of the critical bending strain was indicated by ◯ for 35% or more and by × for less than 35%.

Figure 0004436419
Figure 0004436419

試験の結果を表2に示す。本発明鋼板は、ほぼベイナイト組織からなり組織のバラツキが小さく、また表面硬さが適切であり、ベイナイト楕円長軸長さ平均値、平均粒界炭化物粒径が微細で粒界強度が高い。その為表2に示すように、本発明品は疲労限400Mpa以上の疲労特性と限界曲げ歪35%以上の曲げ成形性を両立できる。
The test results are shown in Table 2. The steel sheet of the present invention is substantially composed of a bainite structure, has a small structure variation, has an appropriate surface hardness, has a fine bainite ellipse major axis length average value, an average grain boundary carbide grain size, and a high grain boundary strength. Therefore, as shown in Table 2, the product of the present invention can achieve both fatigue characteristics with a fatigue limit of 400 Mpa or more and bending formability with a limit bending strain of 35% or more.

これに対し、ベイナイトの組織面分率、ビッカ-ス硬さ、ベイナイト楕円長軸長さ平均値、平均粒界炭化物粒径、成分又は熱延−冷却条件の一部が本発明の範囲から逸脱した比較例では、疲労特性と曲げ成形性を両立することができない。比較例1は、C量が多すぎるために、表層部のビッカース硬さが300超で硬過ぎ、平均粒界炭化物粒径が大き過ぎ、成形性が不十分である。比較例2は、Bの添加量が少ない為に焼入性が不十分であり、ベイナイトの組織面分率が過少でフェライトの組織面分率が高くなり十分な表層部硬さが得られない。また、ベイナイトの長軸長さ平均値と平均粒界炭化物粒径も表層部で十分に微細でない為に、疲労特性が不十分である。比較例3は、Mnが少ないために(A)式を満たさないので、ベイナイトの組織面分率が過少でフェライトの組織面分率が高くなりかつ十分な表層部硬さを確保できない。また、ベイナイトの長軸長さ平均値と平均粒界炭化物粒径も十分に微細化していないので、疲労特性が不十分である。比較例4は、加熱温度が低い為に鋼中の鋳造時析出物の溶体化が十分にできておらず、添加元素のベイナイト結晶・粒界炭化物の微細化作用が十分でなく、ベイナイトの長軸長さ平均値と平均粒界炭化物粒径も十分に微細化できなかった。その結果疲労特性が不十分であった。比較例5は、仕上げ圧延温度が低い為に、鋼表層部がフェライト主体の組織であり、十分な硬さを確保できず、疲労特性が不十分であった。比較例6は、冷却速度が1.2C未満と遅い為に、ベイナイトの組織面分率が過少でフェライトの組織面分率が増え、またベイナイトの長軸長さ平均値と平均粒界炭化物粒径が十分に微細化できずに、疲労特性が不十分であった。比較例7は、冷却停止温度が高い為に、高温でベイナイト変態が起きるので、平均粒界炭化物粒径が粗大となってしまった為に、疲労特性が不十分であった。   On the other hand, the structure area fraction of bainite, Vickers hardness, average value of bainite elliptical long axis length, average grain boundary carbide particle size, component or part of hot rolling-cooling conditions deviate from the scope of the present invention. In the comparative example, the fatigue characteristics and the bending formability cannot be compatible. In Comparative Example 1, since the amount of C is too large, the surface layer portion has a Vickers hardness of more than 300 and is too hard, the average grain boundary carbide particle size is too large, and the moldability is insufficient. In Comparative Example 2, the hardenability is insufficient due to the small amount of addition of B, the structure area fraction of bainite is too low and the structure area fraction of ferrite is high, and sufficient surface layer hardness cannot be obtained. . In addition, since the average long axis length of bainite and the average grain boundary carbide particle size are not sufficiently fine at the surface layer portion, fatigue characteristics are insufficient. Since Comparative Example 3 does not satisfy the formula (A) because Mn is small, the structure area fraction of bainite is too small, the structure area ratio of ferrite is high, and sufficient surface layer portion hardness cannot be ensured. Moreover, since the average long axis length of bainite and the average grain boundary carbide particle size are not sufficiently refined, the fatigue characteristics are insufficient. In Comparative Example 4, since the heating temperature is low, the precipitation of the precipitate in the steel is not sufficiently formed, the bainite crystal of the additive element and the grain boundary carbide is not sufficiently refined, the length of the bainite The average axis length and the average grain boundary carbide particle size could not be sufficiently refined. As a result, the fatigue characteristics were insufficient. In Comparative Example 5, since the finish rolling temperature was low, the steel surface layer portion was a structure mainly composed of ferrite, and sufficient hardness could not be secured, resulting in insufficient fatigue characteristics. In Comparative Example 6, since the cooling rate is slow at less than 1.2C, the structure area fraction of bainite is too small and the structure area fraction of ferrite increases, and the average long axis length of bainite and the average grain boundary carbide particle size However, the fatigue characteristics were not sufficient. In Comparative Example 7, since the bainite transformation occurred at a high temperature because the cooling stop temperature was high, the average grain boundary carbide particle size became coarse, so that the fatigue characteristics were insufficient.

ベイナイトの組織面分率と疲労特性との関係を示した図である。It is the figure which showed the relationship between the structure area fraction of bainite, and a fatigue characteristic. ベイナイトの組織面分率と曲げ成形性との関係を示した図である。It is the figure which showed the relationship between the structure area fraction of bainite, and bending formability. ベイナイトの長軸長さ平均値と疲労特性との関係を示した図である。It is the figure which showed the relationship between the long axis length average value of a bainite, and a fatigue characteristic. ベイナイトの長軸長さ平均値と曲げ成形性との関係を示した図である。It is the figure which showed the relationship between the long axis length average value of bainite, and bending formability. 平均粒界炭化物粒径と疲労特性との関係を示した図である。It is the figure which showed the relationship between an average grain boundary carbide particle size and fatigue characteristics. 平均粒界炭化物粒径と曲げ成形性との関係を示した図である。It is the figure which showed the relationship between an average grain boundary carbide particle size and bending formability. (A)式BPとベイナイトの長軸長さとの関係を示した図である。(A) It is the figure which showed the relationship between Formula BP and the long-axis length of bainite. (A)式BPと平均粒界炭化物粒径との関係を示した図である。(A) It is the figure which showed the relationship between Formula BP and an average grain boundary carbide particle size. 熱間圧延−冷却の熱履歴を示す模式図である。It is a schematic diagram which shows the heat history of hot rolling and cooling. Vcとベイナイトの組織面分率との関係を示した図である。It is the figure which showed the relationship between Vc and the structure area fraction of a bainite. Vcと硬さとの関係を示した図である。It is the figure which showed the relationship between Vc and hardness.

Claims (8)

質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、かつ(A)を満たし、残部Fe及び不可避不純物からなる鋼の表層部において、ミクロ組織の面分率の80%以上がベイナイトであり、ビッカース硬さHvが210以上300以下であり、ベイナイトの長軸長さの平均値が5μm以下であり、更に平均粒界炭化物粒径が0.5μm以下であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)
但し、(A)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。
In mass%, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 to 1.0, Sol. Al: 0.005-0.1, N: 0.0005-0.01, B: 0.0001-0.01, satisfying (A), and in the surface layer portion of steel composed of the remaining Fe and inevitable impurities , 80% or more of the area fraction of the microstructure is bainite Fatigue characteristics, characterized in that Vickers hardness Hv is 210 or more and 300 or less, the average value of the long axis length of bainite is 5 μm or less, and the average grain boundary carbide particle size is 0.5 μm or less. Hot-rolled steel sheet for machine structural steel pipes with excellent bend formability.
3 C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formula (A) are mass%.
請求項1に記載の鋼が、更に、質量%で、The steel according to claim 1 is further in mass%,
ベイナイト生成促進元素群として、As a group of bainite generation promoting elements,
Cu:0.005〜1.0、Ni:0.005〜1.0、Mo:0.02〜1.0、Cu: 0.005-1.0, Ni: 0.005-1.0, Mo: 0.02-1.0,
結晶と粒界炭化物微細化元素群として、As crystal and grain boundary carbide refined element group,
Nb:0.003〜0.2、V:0.001〜0.2、Nb: 0.003-0.2, V: 0.001-0.2,
介在物形態制御元素群として、As an inclusion form control element group,
Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02Ca: 0.0001 to 0.02, Mg: 0.0001 to 0.02, Zr: 0.0001 to 0.02, REM: 0.0001 to 0.02
の中の、1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有し、かつ(A)式を満たす鋼であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。Characterized in that the steel is selected from one or two or more element groups, contains one or more elements in each selected element group, and satisfies the formula (A) Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue properties and bending formability.
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)  3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
但し、(A)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formula (A) are mass%.
請求項1または請求項2において、機械構造鋼管が自動車構造鋼管であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。The hot-rolled steel sheet for machine structure steel pipes according to claim 1 or 2, wherein the machine structure steel pipe is an automobile structure steel pipe and has excellent fatigue characteristics and bending formability. 請求項3において自動車構造が自動車足回り部品であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板。  The hot-rolled steel sheet for a machine-structure steel pipe excellent in fatigue characteristics and bending formability, wherein the automobile structure is an automobile underbody part according to claim 3. 質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01、かつ(A)式を満たし、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後(B)式に示す冷却速度Vc(℃/sec)で300℃以下まで冷却することを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。In mass%, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 to 1.0, Sol. Al: 0.005-0.1, N: 0.0005-0.01, B: 0.0001-0.01, satisfying the formula (A), and heating the steel slab composed of the remaining Fe and inevitable impurities to 1070 ° C or higher and 1300 ° C or lower, and then finish rolling temperature Fatigue properties and bend formability, characterized by performing hot rolling at a temperature of 850 ° C to 1070 ° C and cooling to 300 ° C or less at the cooling rate Vc (° C / sec) shown in equation (B) after finish rolling The manufacturing method of the hot-rolled steel plate for machine-structure steel pipes excellent in.
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)  3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
1.2/C≦Vc≦1.8/C・・・(B)  1.2 / C ≦ Vc ≦ 1.8 / C (B)
但し、(A)式、(B)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formulas (A) and (B) are mass%.
質量%で、C:0.05〜0.19、Si:0.05〜1.0、Mn:0.3〜2.5、P:0.03以下、S:0.025以下、Ti:0.005〜0.1、Cr:0.03〜1.0、Sol.Al:0.005〜0.1、N:0.0005〜0.01、B:0.0001〜0.01を含有し、更にIn mass%, C: 0.05 to 0.19, Si: 0.05 to 1.0, Mn: 0.3 to 2.5, P: 0.03 or less, S: 0.025 or less, Ti: 0.005 to 0.1, Cr: 0.03 to 1.0, Sol. Al: 0.005-0.1, N: 0.0005-0.01, B: 0.0001-0.01, and further
ベイナイト生成促進元素群として、As a group of bainite generation promoting elements,
Cu:0.005〜1.0、Ni:0.005〜1.0、Mo:0.02〜1.0、Cu: 0.005-1.0, Ni: 0.005-1.0, Mo: 0.02-1.0,
結晶と粒界炭化物微細化元素群として、As crystal and grain boundary carbide refined element group,
Nb:0.003〜0.2、V:0.001〜0.2、Nb: 0.003-0.2, V: 0.001-0.2,
介在物形態制御元素群として、As an inclusion form control element group,
Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02Ca: 0.0001 to 0.02, Mg: 0.0001 to 0.02, Zr: 0.0001 to 0.02, REM: 0.0001 to 0.02
の中の、1つまたは2つ以上の元素群から選択され、各選択された元素群内の元素1種または2種以上を含有し、かつ(A)式を満たし、残部Fe及び不可避不純物からなる鋼スラブを1070℃以上1300℃以下に加熱した後、仕上げ圧延温度を850℃以上1070℃以下とする熱間圧延を施し、仕上げ圧延後(B)式に示す冷却速度Vc(℃/sec)で300℃以下まで冷却することを特徴とする疲労特性と曲げ成形性に優れた機械構造部鋼管用熱延鋼板の製造方法。Selected from one or more element groups, containing one or more elements in each selected element group, and satisfying formula (A), from the remaining Fe and inevitable impurities The steel slab is heated to 1070 ° C or higher and 1300 ° C or lower, and then subjected to hot rolling at a finish rolling temperature of 850 ° C or higher and 1070 ° C or lower. After finish rolling, the cooling rate Vc (° C / sec) shown in the formula (B) A method for producing a hot-rolled steel sheet for a steel pipe for a mechanical structure having excellent fatigue characteristics and bending formability, characterized by cooling to 300 ° C. or lower at a low temperature.
3C≦0.27Mn+0.2Cr+0.05Cu+0.11Ni+0.25Mo≦3C+0.3・・・(A)  3C ≦ 0.27Mn + 0.2Cr + 0.05Cu + 0.11Ni + 0.25Mo ≦ 3C + 0.3 (A)
1.2/C≦Vc≦1.8/C・・・(B)  1.2 / C ≦ Vc ≦ 1.8 / C (B)
但し、(A)式、(B)式のC、Mn、Cr、Cu、Ni、Moの値は質量%。However, the values of C, Mn, Cr, Cu, Ni, and Mo in the formulas (A) and (B) are mass%.
請求項5または請求項6において、機械構造鋼管が自動車構造鋼管であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。7. The method for producing a hot-rolled steel sheet for machine structural steel pipes according to claim 5 or 6, wherein the mechanical structural steel pipe is an automobile structural steel pipe and has excellent fatigue characteristics and bending formability. 請求項7において、自動車構造が自動車足回り部品であることを特徴とする疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板の製造方法。8. The method of manufacturing a hot-rolled steel sheet for machine structural steel pipes according to claim 7, wherein the automobile structure is an automobile undercarriage part and has excellent fatigue characteristics and bend formability.
JP2008120139A 2008-05-02 2008-05-02 Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method Active JP4436419B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008120139A JP4436419B2 (en) 2008-05-02 2008-05-02 Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method
PCT/JP2009/058732 WO2009133965A1 (en) 2008-05-02 2009-04-28 Hot-rolled steel plate for steel tubes for machine structural purposes which is excellent in fatigue characteristics and bending formability and process for production of the plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120139A JP4436419B2 (en) 2008-05-02 2008-05-02 Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009270142A JP2009270142A (en) 2009-11-19
JP4436419B2 true JP4436419B2 (en) 2010-03-24

Family

ID=41255173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120139A Active JP4436419B2 (en) 2008-05-02 2008-05-02 Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method

Country Status (2)

Country Link
JP (1) JP4436419B2 (en)
WO (1) WO2009133965A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006781A (en) * 2009-05-25 2011-01-13 Nippon Steel Corp Automobile undercarriage component having excellent low cycle fatigue property and method for producing the same
JP5126326B2 (en) * 2010-09-17 2013-01-23 Jfeスチール株式会社 High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same
JP5724267B2 (en) * 2010-09-17 2015-05-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
CN102560284B (en) * 2012-02-21 2014-03-19 宝山钢铁股份有限公司 High-strength high-toughness X100 pipeline steel hot-rolled steel strip and manufacturing method thereof
US10400316B2 (en) 2013-03-19 2019-09-03 Jfe Steel Corporation High strength hot rolled steel sheet having tensile strength of 780 MPa or more
WO2014147829A1 (en) * 2013-03-22 2014-09-25 中国電力株式会社 Prediction method for residual creep life in products degraded by heat and pressure and method for creating standard curve used in prediction method
WO2014171057A1 (en) 2013-04-15 2014-10-23 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing same
JP6136547B2 (en) * 2013-05-07 2017-05-31 新日鐵住金株式会社 High yield ratio high strength hot-rolled steel sheet and method for producing the same
JP6228491B2 (en) * 2013-08-26 2017-11-08 株式会社神戸製鋼所 Thick steel plate with excellent fatigue characteristics and method for producing the same
US11214847B2 (en) 2016-01-27 2022-01-04 Jfe Steel Corporation High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
CN109642284B (en) 2016-10-03 2021-04-20 新日铁住金株式会社 Electric welding steel pipe for torsion beam
CN107541659B (en) * 2017-08-30 2019-05-24 宁波亿润汽车零部件有限公司 A kind of air admission fork pipe holder
US11739866B2 (en) 2018-10-12 2023-08-29 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam
WO2022085152A1 (en) * 2020-10-22 2022-04-28 日本製鉄株式会社 Electric resistance welded steel pipe for mechanical structure component and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358938B2 (en) * 1996-06-10 2002-12-24 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent chemical conversion and workability
JP3333414B2 (en) * 1996-12-27 2002-10-15 株式会社神戸製鋼所 High-strength hot-rolled steel sheet for heat curing with excellent stretch flangeability and method for producing the same
JP3541726B2 (en) * 1999-05-27 2004-07-14 Jfeスチール株式会社 High ductility hot rolled steel sheet and method for producing the same
JP4273906B2 (en) * 2003-09-30 2009-06-03 Jfeスチール株式会社 Thick hot rolled steel sheet excellent in workability and ductility and method for producing the same
JP4161935B2 (en) * 2004-04-16 2008-10-08 住友金属工業株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP4853082B2 (en) * 2006-03-30 2012-01-11 住友金属工業株式会社 Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof

Also Published As

Publication number Publication date
WO2009133965A1 (en) 2009-11-05
JP2009270142A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4436419B2 (en) Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method
JP5088631B2 (en) Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method
JP4824145B1 (en) Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof
KR20130055019A (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
JP2011225980A (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
JP4853075B2 (en) Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
JP2012077336A (en) High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
CN110088346B (en) Steel material for welded steel pipe having excellent longitudinal uniform elongation, method for producing same, and steel pipe using same
JP5196934B2 (en) High fatigue life quenched and tempered steel pipe and method for manufacturing the same
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
CN108220547B (en) High-strength low-yield-ratio type micro spheroidized steel plate and manufacturing method thereof
CN113692456A (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
CN116368253A (en) High-strength steel sheet excellent in heat stability and method for producing same
JP7244715B2 (en) Hot-rolled steel sheet with excellent durability and its manufacturing method
KR101560948B1 (en) High strength multi-matrix hot rolled steel sheet having excellent impact resistance and formability of edge part and method for manufacturing the same
KR101368547B1 (en) High strength hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR102468035B1 (en) High strength steel sheet having excellent thermal stability and high yield ratio and method for manufacturing thereof
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
JP5126790B2 (en) Steel material excellent in fatigue crack growth resistance and method for producing the same
KR101505278B1 (en) Steel for cargo oil tank and method of manufacturing the same
KR101377890B1 (en) High strength hot-rolled steel sheet and method of manufacturing the same
KR101412372B1 (en) Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR20240098317A (en) Hot-rolled steel sheet and steel pipe with excellent strength and weldability and method of manufacturing thereof
KR101160016B1 (en) High strength hot-rolled steel for hydroforming with excellent workability and method of manufacturing the hot-rolled steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R151 Written notification of patent or utility model registration

Ref document number: 4436419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350