JP4585483B2 - High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate - Google Patents

High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate Download PDF

Info

Publication number
JP4585483B2
JP4585483B2 JP2006132794A JP2006132794A JP4585483B2 JP 4585483 B2 JP4585483 B2 JP 4585483B2 JP 2006132794 A JP2006132794 A JP 2006132794A JP 2006132794 A JP2006132794 A JP 2006132794A JP 4585483 B2 JP4585483 B2 JP 4585483B2
Authority
JP
Japan
Prior art keywords
less
toughness
heating
strength
deformability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006132794A
Other languages
Japanese (ja)
Other versions
JP2007302947A (en
Inventor
好男 寺田
英司 津留
卓也 原
康浩 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006132794A priority Critical patent/JP4585483B2/en
Publication of JP2007302947A publication Critical patent/JP2007302947A/en
Application granted granted Critical
Publication of JP4585483B2 publication Critical patent/JP4585483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、米国石油協会(API)規格でX100(降伏強度で690MPa以上、840MPa以下、引張強度で760MPa以上、990MPa以下)の高強度と優れた溶接部靭性および変形能を有する鋼管と鋼板の製造法に関するものである。   The present invention is a steel pipe and steel plate having high strength of X100 (yield strength of 690 MPa or more and 840 MPa or less, tensile strength of 760 MPa or more and 990 MPa or less) according to the American Petroleum Institute (API) standard, and excellent weld toughness and deformability. It relates to the manufacturing method.

原油・天然ガスを長距離輸送するパイプラインに使用するラインパイプは、(1)高圧下による輸送効率の向上や、(2)薄肉化による現地での溶接効率向上のため、ますます高張力化する傾向にある。これまでにAPI規格でX80までのラインパイプが実用化されているが、さらに高強度のラインパイプに対するニーズがでてきた。   Line pipes used for pipelines that transport crude oil and natural gas over long distances are (1) increased in tension due to improved transport efficiency under high pressure and (2) improved local welding efficiency due to thinner walls. Tend to. Up to now, line pipes up to X80 in the API standard have been put into practical use, but there is a need for higher-strength line pipes.

現在、X100以上の高強度ラインパイプはX80級ラインパイプの製造法(例えば、非特許文献1、非特許文献2参照)を基本に検討されているが、これらのラインパイプは溶接部の低温靭性、特にHAZ靭性の点で問題を抱えており、これらを克服した画期的な高強度鋼管が望まれている。さらに、不連続凍土地帯あるいは地震の多発する地域に敷設するパイプラインにおいて、凍土の一部が融解と凍結を繰り返しや地震によりパイプライン自体に歪が加わり、延性亀裂の発生を防止できる変形能の大きい、安全性に優れた鋼管が望まれている。   Currently, high-strength line pipes of X100 or higher are studied based on the manufacturing method of X80 class line pipes (for example, see Non-Patent Document 1 and Non-Patent Document 2), but these line pipes are low-temperature toughness of welds. In particular, there is a problem in terms of HAZ toughness, and an innovative high-strength steel pipe that overcomes these problems is desired. Furthermore, in pipelines laid in discontinuous frozen land zones or earthquake-prone areas, the frozen soil partially melts and freezes, or the pipeline itself is distorted by the earthquake and has a deformability that can prevent the occurrence of ductile cracks. A large steel pipe excellent in safety is desired.

低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2)マルテンサイトとオーステナイトの混合体(M−A)、上部ベイナイト(Bu)などの硬化相の分散状態、(3)粒界脆化の有無、(4)元素のミクロ偏析など種々の冶金学的要因に支配される。なかでも、HAZの結晶粒のサイズは低温靭性に大きな影響を与えることが知られており、HAZ組織を微細化する数多くの技術が開発実用化されている。
例えば、TiNを微細に分散させ、490MPa級高張力鋼の大入熱溶接時のHAZ靭性を改善する手段が開示されている(例えば、非特許文献3参照)。しかし、これらの析出物は溶融線近傍においては1400℃以上の高温にさらされるため大部分が粗大化或いは溶解し、HAZ組織が粗大化してHAZ靭性が劣化するという欠点を有する。
The HAZ toughness of the low alloy steel is as follows: (1) grain size, (2) mixture of martensite and austenite (MA), dispersed state of hardened phase such as upper bainite (Bu), (3) grain boundary It is governed by various metallurgical factors such as the presence or absence of embrittlement and (4) microsegregation of elements. Among them, the size of the HAZ crystal grains is known to have a great influence on the low temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.
For example, means for finely dispersing TiN and improving HAZ toughness during high heat input welding of 490 MPa class high-tensile steel is disclosed (for example, see Non-Patent Document 3). However, since these precipitates are exposed to a high temperature of 1400 ° C. or higher in the vicinity of the melting line, most of them are coarsened or dissolved, and the HAZ structure is coarsened to deteriorate the HAZ toughness.

この問題に対して、鋼中にTi酸化物を微細分散させて、溶接時のHAZにおいて粒内アシキュラーフェライト(以下IGFと略称することがある)を生成させることにより溶融線近傍のHAZ組織を微細化し、HAZ靱性を改善する技術が提案されている(例えば、特許文献1、特許文献2参照)。
しかしながら、高強度になるとM−Aの生成が顕著になり、Ti酸化物からIGFの生成だけでは組織を十分に微細化することができず、HAZ靭性が劣化するため、X100ラインパイプのHAZ靭性の改善が強く望まれている。
In order to solve this problem, the Ti oxide is finely dispersed in the steel to generate intragranular acicular ferrite (hereinafter sometimes abbreviated as IGF) in the HAZ at the time of welding. Techniques for reducing the size and improving the HAZ toughness have been proposed (see, for example, Patent Document 1 and Patent Document 2).
However, when the strength is increased, the formation of MA becomes prominent, and the formation of IGF from Ti oxide alone cannot sufficiently refine the structure, and the HAZ toughness deteriorates. Therefore, the HAZ toughness of the X100 line pipe Improvement is strongly desired.

一方、変形能に関して、例えば、特許文献3には、面積分率で10〜50%の下部ベイナイトを含有する対座屈特性に優れた鋼管が開示され、例えば、特許文献4には平均アスペクト比が2〜15である島状マルテンサイトを面積分率で2〜15%含有する耐座屈特性に優れた鋼管が開示されている。しかしながらいずれも、X100の高強度鋼管を対象にしたものではなく、また溶接部の低温靭性は満足できるものではない。また、平均アスペクト比が2以上の場合、DWTT試験片の破面にセパレーションが生成し、DWTT試験における吸収エネルギーが低下するという問題があった。   On the other hand, regarding deformability, for example, Patent Document 3 discloses a steel pipe excellent in anti-buckling characteristics containing 10 to 50% of lower bainite in area fraction. For example, Patent Document 4 has an average aspect ratio. A steel pipe excellent in buckling resistance is disclosed, containing 2 to 15% of island-like martensite in an area fraction of 2 to 15. However, none of these are intended for X100 high-strength steel pipes, and the low-temperature toughness of welds is not satisfactory. Further, when the average aspect ratio is 2 or more, there is a problem that separation is generated on the fracture surface of the DWTT test piece and the absorbed energy in the DWTT test is reduced.

また、例えば、特許文献5や特許文献6には、X60〜X100級の変形能に優れたラインパイプが開示されている。しかしながら、特許文献5や特許文献6に記載の技術は、塗装加熱後の変形能を考慮したものでなく、またHAZ靭性を考慮したものではない。
特開昭63−210235号公報 特開平1−15321号公報 特開平11−279700号公報 特開平11−343542号公報 特開2003−293089号公報 特開2005−15823号公報 「NKK技法(No.138)」日本鋼管株式会社、1992年、pp.24〜31 「ザ・セブンス・オフショア・メカニクス・アークティック・エンジニアリング(The 7th offshore Mechanics Arctic Engineering)」、ザ・アメリカン・ソサエティ・オブ・メカニカル・エンジニアズ(THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS)、1988年、volume V、pp.179〜185 「鉄と鋼」社団法人日本鉄鋼協会、昭和54年6月、第65巻第8号1232頁
Further, for example, Patent Document 5 and Patent Document 6 disclose line pipes excellent in X60 to X100 grade deformability. However, the techniques described in Patent Document 5 and Patent Document 6 do not consider the deformability after coating heating, and do not consider HAZ toughness.
Japanese Patent Laid-Open No. 63-210235 Japanese Patent Laid-Open No. 1-15321 JP 11-279700 A JP-A-11-343542 JP 2003-293089 A JP 2005-15823 A “NKK technique (No. 138)” Nippon Steel Pipe Co., Ltd., 1992, pp. 24-31 “The 7th offshore Mechanics Arc Engineering”, The American Society of Mechanical Engineers, 198 pp. 179-185 "Iron and Steel" Japan Steel Association, June 1979, Vol. 65, No. 8, p. 1232

本発明は良好なHAZ靭性および優れた変形能を有するX100の高強度鋼管およびその母材となる鋼板の製造法を提供するものである。   The present invention provides an X100 high-strength steel pipe having good HAZ toughness and excellent deformability and a method for producing a steel sheet as a base material thereof.

本発明の要旨は、以下の通りである。
(1)
質量%で、C:0.03%〜0.08%、Si:0.6%以下、Mn:0.8〜2.5%、P:0.015%以下、S:0.001〜0.005%、Cr:0.5〜1.5%、Mo:0.02%未満、Nb:0.01以上0.025%未満、Ti:0.005〜0.030%、Al:0.005%以下、N:0.001〜0.006%、O:0.001〜0.006%を含有し、さらにNi:0.1〜1.0%、Cu:0.1〜1.2%、V:0.01〜0.1%、B:0.0003〜0.002%、Mg:0.0001〜0.0050%、Ca:0.0005〜0.0050%の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vで定義されるPb値が2.5〜4.0の範囲にある母材部と、
質量%で、C:0.035〜0.08%、Si:0.6%以下、Mn:1.5〜2.5%、P:0.015%以下、S:0.005%以下、Ni:0.2〜2.5%、Cr:0.2〜1.5%、Mo:0.2〜1.5%、Nb:0.01〜0.05%、Ti:0.005〜0.03%、B:0.0003〜0.002%、Al:0.05%以下、N:0.001〜0.01%、O:0.015〜0.045%を含有し、残部が鉄及び不可避的不純物からなり、Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nbで定義されるPw値が0.2〜0.35の範囲にある溶接金属部とを有し、
250℃以下の温度に加熱された場合、加熱前後の母材部の管軸方向の引張試験における降伏強度の差が70MPa以下であることを特徴とする溶接部靭性と変形能に優れた高強度鋼管。
The gist of the present invention is as follows.
(1)
In mass%, C: 0.03% to 0.08%, Si: 0.6% or less, Mn: 0.8 to 2.5%, P: 0.015% or less, S: 0.001 to 0 0.005%, Cr: 0.5 to 1.5%, Mo: less than 0.02%, Nb: 0.01 or more and less than 0.025%, Ti: 0.005 to 0.030%, Al: 0.0. 005% or less, N: 0.001 to 0.006%, O: 0.001 to 0.006%, Ni: 0.1 to 1.0%, Cu: 0.1 to 1.2 %, V: 0.01 to 0.1%, B: 0.0003 to 0.002%, Mg: 0.0001 to 0.0050%, Ca: 0.0005 to 0.0050% It contains more than seeds, the balance consists of iron and inevitable impurities, Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V And the base material portion Pb value is in the range of 2.5 to 4.0 as defined,
In mass%, C: 0.035 to 0.08%, Si: 0.6% or less, Mn: 1.5 to 2.5%, P: 0.015% or less, S: 0.005% or less, Ni: 0.2-2.5%, Cr: 0.2-1.5%, Mo: 0.2-1.5%, Nb: 0.01-0.05%, Ti: 0.005- 0.03%, B: 0.0003 to 0.002%, Al: 0.05% or less, N: 0.001 to 0.01%, O: 0.015 to 0.045%, the balance Consisting of iron and inevitable impurities, Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1. The weld metal part having a Pw value defined by 0.27 to 0.35 Nb in the range of 0.2 to 0.35,
When heated to a temperature of 250 ° C. or less, the difference in yield strength in the tensile test in the tube axis direction of the base metal part before and after heating is 70 MPa or less. High strength excellent in weld toughness and deformability Steel pipe.

(2)
前記溶接金属部が、さらに質量%で、Cu:0.1〜1.0%、V:0.01〜0.1%、Mg:0.0001〜0.005%、Ca:0.0005〜0.005%のうち1種または2種以上を含有していることを特徴とする請求項1に記載の溶接部靭性と変形能に優れた高強度鋼管。
(2)
The weld metal part is further mass%, Cu: 0.1 to 1.0%, V: 0.01 to 0.1%, Mg: 0.0001 to 0.005%, Ca: 0.0005. The high-strength steel pipe having excellent weld toughness and deformability according to claim 1, comprising one or more of 0.005%.

(3)
前記母材部の金属組織が粒径10μm以下のフェライトを5〜50%含有することを特徴とする請求項1または請求項2に記載の溶接部靭性と変形能に優れた高強度鋼管。
(3)
The high-strength steel pipe excellent in weld toughness and deformability according to claim 1 or 2, wherein the metal structure of the base metal part contains 5 to 50% of ferrite having a particle size of 10 µm or less.

(4)
前記母材部の金属組織が平均アスペクト比2未満のマルテンサイトとオーステナイトの混合体(M−A constituent)を2〜7%含有することを特徴とする請求項1または請求項2に記載の溶接部靭性と変形能に優れた高強度鋼管。
(4)
3. The welding according to claim 1, wherein the metal structure of the base material portion contains 2 to 7% of a mixture of martensite and austenite (M-A constituent) having an average aspect ratio of less than 2. 4. High strength steel pipe with excellent toughness and deformability.

(5)
質量%で、C:0.03%〜0.08%、Si:0.6%以下、Mn:0.8〜2.5%、P:0.015%以下、S:0.001〜0.005%、Cr:0.5〜1.5%、Mo:0.02%未満、Nb:0.01以上0.025%未満、Ti:0.005〜0.030%、Al:0.005%以下、N:0.001〜0.006%、O:0.001〜0.006%を含有し、さらにNi:0.1〜1.0%、Cu:0.1〜1.2%、V:0.01〜0.1%、B:0.0003〜0.002%、Mg:0.0001〜0.0050%、Ca:0.0005〜0.0050%の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vで定義されるPb値が2.5〜4.0の範囲にある鋳片を、
950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で250℃〜400℃の温度まで冷却し、その後空冷することを特徴とする溶接部靭性と変形能に優れた高強度鋼管用の高強度鋼板の製造方法。
(5)
In mass%, C: 0.03% to 0.08%, Si: 0.6% or less, Mn: 0.8 to 2.5%, P: 0.015% or less, S: 0.001 to 0 0.005%, Cr: 0.5 to 1.5%, Mo: less than 0.02%, Nb: 0.01 or more and less than 0.025%, Ti: 0.005 to 0.030%, Al: 0.0. 005% or less, N: 0.001 to 0.006%, O: 0.001 to 0.006%, Ni: 0.1 to 1.0%, Cu: 0.1 to 1.2 %, V: 0.01 to 0.1%, B: 0.0003 to 0.002%, Mg: 0.0001 to 0.0050%, Ca: 0.0005 to 0.0050% It contains more than seeds, the balance consists of iron and inevitable impurities, Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V The cast slab Pb value defined in the range of 2.5 to 4.0,
After heating to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and after rolling in the temperature range of 700 to 850 ° C., the temperature range from 650 to 800 ° C. is 5 ° C./second or more, 15 A method for producing a high-strength steel sheet for high-strength steel pipes excellent in weld toughness and deformability, characterized by cooling to a temperature of 250 ° C. to 400 ° C. at a cooling rate of less than ° C./second and then air cooling.

(6)
質量%で、C:0.03%〜0.08%、Si:0.6%以下、Mn:0.8〜2.5%、P:0.015%以下、S:0.001〜0.005%、Cr:0.5〜1.5%、Mo:0.02%未満、Nb:0.01以上0.025%未満、Ti:0.005〜0.030%、Al:0.005%以下、N:0.001〜0.006%、O:0.001〜0.006%を含有し、さらにNi:0.1〜1.0%、Cu:0.1〜1.2%、V:0.01〜0.1%、B:0.0003〜0.002%、Mg:0.0001〜0.0050%、Ca:0.0005〜0.0050%の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vで定義されるPb値が2.5〜4.0の範囲にある鋳片を、
950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で400℃以下の温度まで冷却し、その後、300℃〜450℃に加熱した後、空冷することを特徴とする溶接部靭性と変形能に優れた高強度鋼管用の高強度鋼板の製造方法。
(6)
In mass%, C: 0.03% to 0.08%, Si: 0.6% or less, Mn: 0.8 to 2.5%, P: 0.015% or less, S: 0.001 to 0 0.005%, Cr: 0.5 to 1.5%, Mo: less than 0.02%, Nb: 0.01 or more and less than 0.025%, Ti: 0.005 to 0.030%, Al: 0.0. 005% or less, N: 0.001 to 0.006%, O: 0.001 to 0.006%, Ni: 0.1 to 1.0%, Cu: 0.1 to 1.2 %, V: 0.01 to 0.1%, B: 0.0003 to 0.002%, Mg: 0.0001 to 0.0050%, Ca: 0.0005 to 0.0050% It contains more than seeds, the balance consists of iron and inevitable impurities, Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V The cast slab Pb value defined in the range of 2.5 to 4.0,
After heating to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and after rolling in the temperature range of 700 to 850 ° C., the temperature range from 650 to 800 ° C. is 5 ° C./second or more, 15 For high-strength steel pipes with excellent weld toughness and deformability, which are cooled to a temperature of 400 ° C. or less at a cooling rate of less than ° C./second, then heated to 300 ° C. to 450 ° C. and then air-cooled. Manufacturing method of high strength steel sheet.

(7)
質量%で、C:0.03%〜0.08%、Si:0.6%以下、Mn:0.8〜2.5%、P:0.015%以下、S:0.001〜0.005%、Cr:0.5〜1.5%、Mo:0.02%未満、Nb:0.01以上0.025%未満、Ti:0.005〜0.030%、Al:0.005%以下、N:0.001〜0.006%、O:0.001〜0.006%を含有し、さらにNi:0.1〜1.0%、Cu:0.1〜1.2%、V:0.01〜0.1%、B:0.0003〜0.002%、Mg:0.0001〜0.0050%、Ca:0.0005〜0.0050%の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vで定義されるPb値が2.5〜4.0の範囲にある鋳片を、
950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上の冷却速度で400℃以下の任意の温度まで冷却し、その後、加熱速度10℃/秒以上で300℃〜450℃に加熱することを特徴とする溶接部靭性と変形能に優れた高強度鋼管用の高強度鋼板の製造方法。
(7)
In mass%, C: 0.03% to 0.08%, Si: 0.6% or less, Mn: 0.8 to 2.5%, P: 0.015% or less, S: 0.001 to 0 0.005%, Cr: 0.5 to 1.5%, Mo: less than 0.02%, Nb: 0.01 or more and less than 0.025%, Ti: 0.005 to 0.030%, Al: 0.0. 005% or less, N: 0.001 to 0.006%, O: 0.001 to 0.006%, Ni: 0.1 to 1.0%, Cu: 0.1 to 1.2 %, V: 0.01 to 0.1%, B: 0.0003 to 0.002%, Mg: 0.0001 to 0.0050%, Ca: 0.0005 to 0.0050% It contains more than seeds, the balance consists of iron and inevitable impurities, Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V The cast slab Pb value defined in the range of 2.5 to 4.0,
After heating to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, rolling is finished in a temperature range of 700 to 850 ° C., and then cooled to 5 ° C./second or more from a temperature range of 650 to 800 ° C. It is cooled to an arbitrary temperature of 400 ° C. or less at a rate, and then heated to 300 ° C. to 450 ° C. at a heating rate of 10 ° C./second or more. Manufacturing method of high strength steel sheet.

本発明によるHAZ靭性に優れ、高い変形能を有する高強度鋼管(API規格 X100以上)をパイプラインに採用することにより、パイプラインの安全性が著しく向上すると共に、輸送効率が飛躍的に改善された。     By adopting a high-strength steel pipe (API standard X100 or higher) having excellent HAZ toughness and high deformability according to the present invention in the pipeline, the safety of the pipeline is remarkably improved and the transportation efficiency is drastically improved. It was.

以下に、本発明の高強度鋼管および高強度鋼管用の高強度鋼板の製造方法について詳細に説明する。
本発明の高強度鋼管は、低C―Moフリー−高Cr−低Nb−Ti−低Al系を基本とする母材部と、低C-Mn-Ni-Cr-Mo-B系の溶接金属部とから構成され、良好なHAZ靭性を有し、母材部の一様伸びが大きく、さらに塗装加熱時の加熱前後における降伏強度の差の小さいX100級の高強度鋼管である。
Below, the manufacturing method of the high-strength steel pipe of this invention and the high-strength steel plate for high-strength steel pipes is demonstrated in detail.
The high-strength steel pipe of the present invention comprises a base metal part based on a low C-Mo free-high Cr-low Nb-Ti-low Al system, and a low C-Mn-Ni-Cr-Mo-B based weld metal. Is an X100 grade high strength steel pipe having good HAZ toughness, large uniform elongation of the base material, and small difference in yield strength before and after heating during coating heating.

低合金鋼の低温靱性は、(1)結晶粒のサイズ、(2)M−Aや上部ベイナイト(Bu)などの硬化相の分散状態など種々の冶金学的要因に支配される。なかでもHAZの結晶粒のサイズおよびM−Aは低温靱性に大きな影響を与えることが知られている。
また、塗装加熱時の時効挙動には、固溶C、固溶N量やひずみ(転位)量が大きな影響を与えることが知られている。
Low temperature toughness of low alloy steel is governed by various metallurgical factors such as (1) crystal grain size, (2) dispersion state of hardened phase such as MA and upper bainite (Bu). Among these, HAZ crystal grain size and M-A are known to have a large effect on low-temperature toughness.
It is also known that the aging behavior during coating heating is greatly affected by the amount of solute C, the amount of solute N and the amount of strain (dislocation).

高強度鋼管のHAZにおいては、強度を満足させるために合金元素の添加量が多くなり、低温靭性に有害なM−Aが多量に生成するのでHAZ靱性が劣化する。そこで、本発明者は、目標とするX100の強度を満足させてかつ低温靭性に有害なM−Aの生成量を低減するための成分系について鋭意検討した。
そして、母材部がMoを実質的に添加しないこと、Nb添加量を0.025%未満とすること、かつ0.5%以上のCrを添加することによって、目的とする強度が得られつつ、M−Aの生成量が大幅に低減することを見出した。とくにCr添加量が多い場合、C量とNb量を低減することがM−A生成量の低減に極めて有効である。さらにHAZにおいてγ粒内から粒内フェライト(IGF)を生成させることにより、HAZの結晶粒の微細化とともに生成するM−Aの大きさが小さくなることから、HAZ靭性が著しく改善できる。さらに、本発明者は、C量、Nb量を低下させて、Moを実質添加しないことによって、塗装時に250℃程度に加熱される場合でも時効による降伏強度の上昇を抑制することができることを見出し、本発明に至った。
In HAZ of high-strength steel pipe, the amount of alloy element added is increased in order to satisfy the strength, and a large amount of MA that is harmful to low-temperature toughness is generated, so that HAZ toughness deteriorates. Therefore, the present inventor has intensively studied a component system for satisfying the target strength of X100 and reducing the amount of MA produced that is harmful to low temperature toughness.
And while the base material part does not substantially add Mo, the amount of Nb added is less than 0.025%, and by adding 0.5% or more of Cr, the intended strength is obtained. It was found that the amount of M-A produced was greatly reduced. In particular, when the amount of Cr added is large, reducing the amounts of C and Nb is extremely effective in reducing the amount of M-A produced. Furthermore, by generating intragranular ferrite (IGF) from γ grains in HAZ, the size of the MA produced with the refinement of HAZ crystal grains is reduced, so that HAZ toughness can be remarkably improved. Furthermore, the present inventors have found that the increase in yield strength due to aging can be suppressed even when heated to about 250 ° C. during coating by reducing the amount of C and Nb and substantially not adding Mo. The present invention has been reached.

すなわち、母材部を低C−Moフリー−高Cr−低Nbの成分系とすることによって、目標とする十分な強度を達成するとともにHAZにおけるM−Aの生成量が低減し、さらにTi、Mn、Sを含む酸化物・析出物からIGFが生成することによって結晶粒およびM−Aが微細化するためにHAZ靱性を著しく向上させることが可能となり、さらに塗装時に加熱される場合でも時効による降伏強度の上昇を抑制することが可能である。   That is, by making the base material part a component system of low C—Mo free—high Cr—low Nb, sufficient target strength is achieved, and the amount of MA produced in HAZ is reduced, and Ti, By generating IGF from oxides and precipitates containing Mn and S, crystal grains and MA can be refined, so that HAZ toughness can be remarkably improved, and even when heated during coating, It is possible to suppress an increase in yield strength.

まず、HAZ靭性の改善について述べる。
Moは焼入れ性を向上させて強度を増加させる元素として知られている。しかしながら、高強度鋼のHAZにおいてM−Aの生成量が多くなるのでMo添加量は極力低減する必要があり、できるだけ添加しないことが好ましい。不可避的に混入する量を考慮すると母材部のMo添加量は0.02%未満にする必要がある。
First, improvement of HAZ toughness will be described.
Mo is known as an element that improves hardenability and increases strength. However, since the amount of MA produced in HAZ of high-strength steel increases, the amount of Mo added needs to be reduced as much as possible, and it is preferable not to add as much as possible. Considering the amount inevitably mixed, the amount of Mo added to the base material portion needs to be less than 0.02%.

Moを添加せずに強度を確保するためにCrの添加が有効である。Crの添加はMoに比較してM−Aの生成量は低減する。さらにC量を0.08%以下とすること、Nb量を0.025%未満とすることによって、Cr添加量が多い場合でもM−A生成量は低減する。目標とする強度を達成するために母材部のCr添加量は0.5%以上必要である。しかし、添加量が多すぎると現地溶接性やHAZ靭性を著しく劣化させる。このためCr量の上限は1.5%とした。また、母材部のC量の下限0.03%は目標とする強度を達成するために必要な量である。Nbは制御圧延時にνの再結晶を抑制して結晶粒を微細化するだけでなく、析出硬化や焼入性の増大にも寄与し、鋼を強靭化する作用を有する。この効果を得るためには最低0.01%以上のNb添加が必要である。   Addition of Cr is effective to ensure strength without adding Mo. The addition of Cr reduces the amount of M-A produced compared to Mo. Furthermore, by making the C amount 0.08% or less and making the Nb amount less than 0.025%, even when the Cr addition amount is large, the MA production amount is reduced. In order to achieve the target strength, the amount of Cr added to the base material portion needs to be 0.5% or more. However, when there is too much addition amount, field weldability and HAZ toughness will deteriorate remarkably. For this reason, the upper limit of the Cr content is set to 1.5%. Further, the lower limit of 0.03% of the C amount of the base material part is an amount necessary to achieve the target strength. Nb not only suppresses recrystallization of ν during controlled rolling and refines the crystal grains, but also contributes to precipitation hardening and hardenability, and has the effect of strengthening the steel. In order to obtain this effect, it is necessary to add at least 0.01% of Nb.

酸化物とMnSとの複合体をIGFの生成核として用いることにより結晶粒およびM−Aが微細化される。母材部は0.001〜0.005%のSを含有させるとともに、Ti、Al、Mg、Caを主体とする酸化物とMnSとの複合体を含有させることにより、IGFが生成し、M−Aおよび結晶粒が微細化され、低温靱性が著しく向上する。この時、S含有量が0.001%未満の場合には、IGFの生成に有効なMnSの生成量が少なく、結晶粒は微細化されない。S含有量が0.005%を超えると多量のMnSが生成し、靱性が劣化する。またAl量が0.005%以下の時、IGFの生成が顕著になるので、Al量の上限を0.005%とした。   By using a complex of oxide and MnS as IGF production nuclei, crystal grains and MA are refined. The base material part contains 0.001 to 0.005% of S, and an oxide mainly composed of Ti, Al, Mg, and Ca and a complex of MnS generates IGF, and M -A and crystal grains are refined, and low temperature toughness is remarkably improved. At this time, when the S content is less than 0.001%, the production amount of MnS effective for the production of IGF is small, and the crystal grains are not refined. If the S content exceeds 0.005%, a large amount of MnS is generated, and the toughness deteriorates. Further, when the Al amount is 0.005% or less, the production of IGF becomes remarkable, so the upper limit of the Al amount is set to 0.005%.

鋼を高強度化させるためには、必然的に合金元素の添加量を増加させる必要があるが、HAZ靭性は劣化する。そこで、HAZ靭性を大きく損なうことなく、目標とする強度を得るために、母材部を構成する合金元素の適正な添加量について検討した結果、Pb値で定義される値を所定の範囲に限定することにより、強度を確保することができることを見出した。また、溶接金属部中の合金元素の添加量については、Pw値で定義される値を所定の範囲に限定することにより、溶接金属の靭性を大きく損なうことなく、目標とする強度を満足するための合金元素の添加量を見出した。   In order to increase the strength of steel, it is inevitably necessary to increase the amount of alloy element added, but the HAZ toughness deteriorates. Therefore, in order to obtain the target strength without greatly degrading the HAZ toughness, as a result of studying the appropriate amount of alloying elements constituting the base metal part, the value defined by the Pb value is limited to a predetermined range. It was found that the strength can be ensured by doing so. Moreover, about the addition amount of the alloy element in a weld metal part, in order to satisfy the target intensity | strength, without impairing the toughness of a weld metal largely by limiting the value defined by Pw value to a predetermined range. The amount of alloying element added was found.

つぎに変形能の改善について述べる。不連続凍土地帯に敷設されるパイプラインにおいては、凍土の融解、凍結により3%程度の歪がパイプラインに負荷されるといわれている。このようなひずみが付与される場合、鋼管母材の一様伸びを大きくし低降伏比とすること、さらに円周方向溶接部の降伏強度を鋼管母材の降伏強度よりも高くすることによって、変形能すなわち、延性きれつが発生する限界ひずみが大きくなる。このためには塗装加熱後の降伏強度の上昇代を70MPa以下にすることが必要である。   Next, improvement of deformability is described. In the pipeline laid in the discontinuous frozen land zone, it is said that about 3% strain is applied to the pipeline due to the melting and freezing of frozen soil. When such a strain is applied, by increasing the uniform elongation of the steel pipe base material and making it a low yield ratio, and further by making the yield strength of the circumferential weld zone higher than the yield strength of the steel pipe base material, Deformability, that is, the limit strain at which ductile cracking occurs increases. For this purpose, it is necessary to reduce the yield strength increase after coating heating to 70 MPa or less.

また、鋼管をパイプラインに使用する場合、防食の観点から塗装されるが、塗装する時、250℃程度に加熱される。一般的に250℃に加熱された鋼管は、時効により加熱後の降伏強度が上昇し、円周溶接部の降伏強度よりも大きくなり、変形能は小さくなる。また、時効によって引張試験のS−Sカーブが降伏点を示すようになると、耐座屈限界ひずみは小さくなり、変形能は低下する。したがって約250℃に加熱された後でも時効に小さい鋼管が必要である。塗装加熱後の降伏強度の上昇代が70MPa以下にすることによって変形能を保持できる。   Moreover, when using a steel pipe for a pipeline, although it paints from a viewpoint of corrosion prevention, when coating, it heats to about 250 degreeC. In general, a steel pipe heated to 250 ° C. has an increased yield strength after heating due to aging, and becomes larger than the yield strength of a circumferential weld, and its deformability is reduced. Further, when the SS curve of the tensile test shows a yield point due to aging, the buckling resistance limit strain becomes small, and the deformability decreases. Therefore, there is a need for a steel pipe that is small in aging even after being heated to about 250 ° C. Deformability can be maintained by setting the yield strength increase after coating heating to 70 MPa or less.

塗装加熱後においても降伏強度の上昇を70MPa以下に抑制して大きな変形能を有するためには、10μm以下のフェライトを5〜50%含有すること、あるいは母材部の金属組織が平均アスペクト比2未満のM−Aを2〜7%含有することが望ましい。   In order to suppress the increase in yield strength to 70 MPa or less even after the coating is heated and to have a large deformability, it contains 5 to 50% of ferrite of 10 μm or less, or the metal structure of the base material part has an average aspect ratio of 2 It is desirable to contain 2-7% of less MA.

また、本発明者は、高強度鋼管用の高強度鋼板の製造方法として、以下に示す3つの方法を見出し、本発明に至った。
(1)鋳片を950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で250℃〜400℃の温度まで冷却し、その後空冷する方法。
Moreover, this inventor discovered the following three methods as a manufacturing method of the high strength steel plate for high strength steel pipes, and came to this invention.
(1) After heating the slab to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and rolling is finished in the temperature range of 700 to 850 ° C., and then from the temperature range of 650 to 800 ° C. A method of cooling to a temperature of 250 ° C. to 400 ° C. at a cooling rate of not less than 15 ° C./second and then cooling with air.

(2)鋳片を950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で400℃以下の温度まで冷却し、その後、300℃〜450℃に加熱した後、空冷する方法。
(3)鋳片を950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上の冷却速度で400℃以下の任意の温度まで冷却し、その後、加熱速度10℃/秒以上で300℃〜450℃に加熱する方法。
(2) After heating the slab to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, rolling is finished in a temperature range of 700 to 850 ° C., and then from the temperature range of 650 to 800 ° C. A method of cooling to 400 ° C. or lower at a cooling rate of at least 15 ° C./second and then heating to 300 ° C. to 450 ° C., followed by air cooling.
(3) After heating the slab to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and rolling is finished in the temperature range of 700 to 850 ° C., and then from the temperature range of 650 to 800 ° C. A method of cooling to an arbitrary temperature of 400 ° C. or lower at a cooling rate of at least C ° C./second and then heating to 300 ° C. to 450 ° C. at a heating rate of 10 ° C./second or higher.

すなわち、本発明の特徴は、低C―Moフリー−高Cr−低Nb−Ti−低Al系の母材部の成分によって、良好なHAZ靭性を確保し、さらに塗装加熱後の変形能を確保することにある。また、母材部の基本成分系を適用するに際し、目標とする強度を確保するために、合金元素添加量をPb値で定義される適正な範囲に限定すること、および溶接金属部として、靭性の劣化を損なうことなく目標とする強度を満足させるために合金元素添加量をPwで定義される適正な範囲に限定することにある。さらに優れた変形能を確保するために母材部の金属組織が粒径10μm以下のフェライトを5〜50%含有すること、母材部の金属組織が平均アスペクト比2未満のマルテンサイトとオーステナイトの混合体(M−A constituent)を2〜7%含有することにある。   In other words, the feature of the present invention is that it ensures good HAZ toughness by the component of the base material part of low C-Mo free-high Cr-low Nb-Ti-low Al system, and further ensures the deformability after heating the paint. There is to do. In addition, when applying the basic component system of the base material part, in order to ensure the target strength, the alloy element addition amount is limited to an appropriate range defined by the Pb value, and as a weld metal part, toughness In order to satisfy the target strength without impairing the deterioration of the alloy, the alloy element addition amount is limited to an appropriate range defined by Pw. Further, in order to ensure excellent deformability, the metal structure of the base material part contains 5 to 50% of ferrite having a particle size of 10 μm or less, and the metal structure of the base material part is composed of martensite and austenite having an average aspect ratio of less than 2. The purpose is to contain 2 to 7% of the mixture (MA constituent).

以下に、高強度鋼管の母材部のその他の成分限定理由について説明する。
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると現地溶接性、HAZ靭性を劣化させるので、上限を0.6%とした。鋼の脱酸はTiのみでも十分であり、Siは必ずしも添加する必要はない。
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnが多すぎると鋼の焼入性が増加して現地溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、低温靭性も劣化させるので上限を2.5%とした。
Below, the other component limitation reason of the base material part of a high-strength steel pipe is demonstrated.
Si is an element added for deoxidation and strength improvement, but if added in large amounts, the field weldability and the HAZ toughness deteriorate, so the upper limit was made 0.6%. For the deoxidation of steel, Ti alone is sufficient, and Si does not necessarily have to be added.
Mn is an indispensable element for securing strength and low temperature toughness, and its lower limit is 0.8%. However, if Mn is too much, not only the hardenability of the steel is increased and the on-site weldability and HAZ toughness are deteriorated, but also the center segregation of continuously cast steel pieces is promoted and the low temperature toughness is also deteriorated. 5%.

本発明において、不可避的不純物であるP量を0.015%以下とする。この主たる理由は母材及びHAZの低温靭性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を低減させて、粒界破壊を防止し低温靭性を向上させる。
Tiは微細なTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して、ミクロ組織を微細化して、母材及びHAZの低温靭性を改善する。またTiを含む酸化物を形成し、MnSの析出との複合効果によってIGF生成核として機能する。この機能を発揮させるためには、0.005%以上の添加が必要である。また、多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性を劣化させるので、その上限の値を0.030%に限定した。
In the present invention, the amount of P which is an inevitable impurity is set to 0.015% or less. The main reason is to further improve the low temperature toughness of the base material and the HAZ. The reduction of the P content reduces the center segregation of the continuously cast slab, prevents the grain boundary fracture and improves the low temperature toughness.
Ti forms fine TiN, suppresses coarsening of ν grains of HAZ during reheating of the slab, refines the microstructure, and improves the low temperature toughness of the base material and HAZ. In addition, an oxide containing Ti is formed, and functions as an IGF production nucleus due to a combined effect with precipitation of MnS. In order to exhibit this function, addition of 0.005% or more is necessary. On the other hand, if it is too much, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness is deteriorated, so the upper limit value is limited to 0.030%.

NはTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して母材、HAZの低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、N量が多すぎるとスラブ表面疵や固溶NによるHAZ靭性の劣化の原因となるので、その上限の値は0.006%に抑える必要がある。
Oは、Ti、Mg、Caなどを含有する酸化物を形成してHAZにおいてIGF変態核として機能する。これらの機能を発揮させるためには、0.001%以上のOが必要である。しかし、Oが0.006%を超えると10μmを超える粗大な酸化物が生成し、母材やHAZにおいて脆性破壊の発生点となるため、0.006%を上限の値とした。
N forms TiN and suppresses coarsening of ν grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, HAZ toughness is deteriorated due to slab surface flaws or solute N, so the upper limit value must be limited to 0.006%.
O forms an oxide containing Ti, Mg, Ca, etc., and functions as an IGF transformation nucleus in HAZ. In order to exhibit these functions, 0.001% or more of O is necessary. However, if O exceeds 0.006%, a coarse oxide exceeding 10 μm is generated, which becomes a point of occurrence of brittle fracture in the base material or HAZ, so 0.006% was made the upper limit value.

つぎにNi、Cu、V、B、Mg、Caを添加する理由について説明する。基本成分がさらにこれらの元素を添加する主たる目的は、本発明鋼の特徴を損なうことなく、強度・低温靭性などの特性の向上をはかるためである。したがってその添加量は自ら制限されるべき性質のものである。   Next, the reason for adding Ni, Cu, V, B, Mg, and Ca will be described. The main purpose of adding these elements to the basic component is to improve the properties such as strength and low temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be restricted by itself.

Niは溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強度、低温靭性を向上させるが、0.1%以下では効果が小さい。また1.0%以上の添加は溶接性に好ましくないためにその上限の値を1.0%とした。
CuはNiとほぼ同様の効果を有すると共に耐食性、耐水素誘起割れ性などにも効果があり、0.1%以上の添加が必要である。しかし、過剰に添加すると析出硬化により母材、HAZ靭性劣化や熱間圧延時にCu−クラックが発生するために、その上限の値を1.2%とした。
Ni improves the strength and low temperature toughness of the base material without adversely affecting weldability and HAZ toughness, but the effect is small at 0.1% or less. Moreover, since addition of 1.0% or more is not preferable for weldability, the upper limit value is set to 1.0%.
Cu has substantially the same effect as Ni, and is also effective in corrosion resistance, resistance to hydrogen-induced cracking, and the like, and it is necessary to add 0.1% or more. However, when added excessively, Cu-cracks are generated during precipitation hardening due to precipitation hardening and HAZ toughness, and the upper limit value was set to 1.2%.

Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して格段に弱い。その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は現地溶接性、HAZ靭性の点から0.1%まで許容できる。
Bは極微量で鋼の焼入性を飛躍的に高め、良好な強度と靭性が得られる。この効果を発揮させるためには0.0003%以上の添加が必要である。また、多すぎるとHAZ靭性を劣化させるので、その上限の値を0.002%に限定した。
V has substantially the same effect as Nb, but the effect is much weaker than Nb. In order to exhibit the effect, addition of 0.01% or more is necessary. Further, the upper limit is allowable up to 0.1% from the viewpoint of on-site weldability and HAZ toughness.
B is a very small amount, which dramatically enhances the hardenability of the steel and provides good strength and toughness. In order to exert this effect, 0.0003% or more must be added. Moreover, since HAZ toughness will deteriorate when there is too much, the upper limit was limited to 0.002%.

Mgは微細なMg酸化物を形成させて、この酸化物を核としてTiNが複合析出するため、1400℃以上の高温においても優れたγ粒のピンニング効果を維持できる。このTiNを生成させるためには0.0001%以上のMgを添加する必要がある。Mg添加量が多すぎるとMg系酸化物が増加し、低温靱性を劣化させるのでその上限を0.0050%に限定した。
Caは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させるほか、耐サワー性の向上にも著しい効果を発揮する。0.0005%未満ではその効果が薄く、また0.0050%を超えて添加するとCaO−CaSが大量に生成してクラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響を及ぼす。このためCa添加量を0.0005〜0.0050%に制限した。
Mg forms fine Mg oxide, and TiN is complex-precipitated using this oxide as a nucleus, so that an excellent pinning effect of γ grains can be maintained even at a high temperature of 1400 ° C. or higher. In order to generate this TiN, 0.0001% or more of Mg needs to be added. If the amount of Mg added is too large, Mg-based oxides increase and low temperature toughness deteriorates, so the upper limit was limited to 0.0050%.
Ca controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test), and also exhibits a remarkable effect in improving sour resistance. If less than 0.0005%, the effect is weak, and if added over 0.0050%, a large amount of CaO-CaS is formed to form clusters and large inclusions, not only detracting from the cleanliness of the steel, but also on-site weldability. It also has an adverse effect. For this reason, the amount of Ca added is limited to 0.0005 to 0.0050%.

さらに目標とするX100以上の強度を満足させるためには、母材部を構成する合金元素の添加量の適正化が必要である。すなわち、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vの式で定義されるPb値を2.5〜4.0の範囲にしなければならない。Pb値が2.5未満では目標とするX100の強度が確保できない。また、Pb値が4.0を超えるとM−Aの生成が顕著となり、HAZ靭性が劣化する。このためPb値の範囲を2.5〜4.0に限定した。   Furthermore, in order to satisfy the target strength of X100 or more, it is necessary to optimize the addition amount of the alloy element constituting the base material part. That is, the Pb value defined by the equation Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V must be in the range of 2.5 to 4.0. If the Pb value is less than 2.5, the target strength of X100 cannot be secured. On the other hand, when the Pb value exceeds 4.0, the formation of MA becomes remarkable and the HAZ toughness deteriorates. For this reason, the range of Pb value was limited to 2.5-4.0.

つぎに溶接金属部の成分限定理由について説明する。
溶接金属の高温割れを防止するために、C量は0.035%以上必要である。0.035%未満では溶接後、凝固する過程でδ凝固が起こり、高温割れが発生するためである。しかしながら、C量が0.08%を超えると、溶接金属の低温靭性が劣化するために、その上限の値を0.08%とした。
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると低温靭性や現地溶接性を劣化させるので、上限を0.6%とした。
Next, the reasons for limiting the components of the weld metal part will be described.
In order to prevent hot cracking of the weld metal, the C content needs to be 0.035% or more. If it is less than 0.035%, δ solidification occurs in the process of solidification after welding, and hot cracking occurs. However, if the C content exceeds 0.08%, the low temperature toughness of the weld metal deteriorates, so the upper limit value was made 0.08%.
Si is an element added for deoxidation and strength improvement, but if added in a large amount, the low temperature toughness and on-site weldability deteriorate, so the upper limit was made 0.6%.

Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は1.5%である。しかし、Mnが多すぎると鋼の焼入性が増加して低温靭性や現地溶接性を劣化させるので、上限を2.5%とした。
Niを添加する目的は、低温靭性や現地溶接性を劣化させることなく、強度を上昇させるためである。しかし、添加量が多すぎると経済性だけでなく、低温靭性などを劣化させるので、その上限を2.5%、下限を0.2%とした。
Mn is an essential element for securing strength and low temperature toughness, and its lower limit is 1.5%. However, too much Mn increases the hardenability of the steel and degrades low temperature toughness and on-site weldability, so the upper limit was made 2.5%.
The purpose of adding Ni is to increase the strength without deteriorating the low temperature toughness and on-site weldability. However, if the addition amount is too large, not only the economy but also the low temperature toughness is deteriorated, so the upper limit was made 2.5% and the lower limit was made 0.2%.

Crは強度を増加させるが、多すぎると低温靭性や現地溶接性を著しく劣化させる。このため、Cr量の上限を1.5%、下限を0.2%とした。
Moを添加する理由は、鋼の焼入性を向上させるためである。この効果を得るためには、Moは最低0.2%必要である。しかし、過剰なMo添加は低温靭性、現地溶接性を劣化させるので、その上限を1.5%とした。
Nbは鋼を強靭化する作用を有し、0.01%以上必要である。しかし、Nbを0.05%を超えて添加すると現地溶接性や低温靭性に悪影響をもたらすので、その上限を0.05%とした。
Cr increases the strength, but if it is too much, the low temperature toughness and on-site weldability deteriorate significantly. For this reason, the upper limit of the Cr content is set to 1.5% and the lower limit is set to 0.2%.
The reason for adding Mo is to improve the hardenability of the steel. In order to obtain this effect, Mo needs to be at least 0.2%. However, excessive addition of Mo deteriorates low temperature toughness and on-site weldability, so the upper limit was made 1.5%.
Nb has an effect of strengthening steel and needs to be 0.01% or more. However, adding Nb in excess of 0.05% adversely affects on-site weldability and low temperature toughness, so the upper limit was made 0.05%.

Ti添加は微細なTiNを形成し、低温靭性を改善する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性が劣化するので、その上限は0.03%に限定しなければならない。
Bは極微量で鋼の焼入性を飛躍的に高める元素である。このような効果を得るためには、Bは最低でも0.0003%必要である。一方、過剰に添加すると、低温靭性を劣化させるだけでなく、かえってBの焼入性向上効果を消失せしめることもあるので、その上限を0.002%とした。
Ti addition forms fine TiN and improves low temperature toughness. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.
B is an element that greatly increases the hardenability of steel in a very small amount. In order to obtain such an effect, B must be at least 0.0003%. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.002%.

Alは、通常脱酸元素として効果を有する。しかし、Al量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。
NはTiNを形成して低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、多すぎると低温靭性を劣化させるので、その上限は0.01%に抑える必要がある。
Oは溶接金属中において酸化物を形成し、粒内変態フェライトの核として作用し、組織の微細化に効果がある。しかし、多すぎると溶接金属の低温靭性が劣化すると共に、スラグ巻きこみなどの溶接欠陥を起こす。このため、O量の下限を0.015%、上限を0.045%とした。
Al usually has an effect as a deoxidizing element. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.
N forms TiN and improves low temperature toughness. The minimum amount required for this is 0.001%. However, if the amount is too large, the low temperature toughness is deteriorated, so the upper limit must be suppressed to 0.01%.
O forms an oxide in the weld metal, acts as a nucleus of intragranular transformed ferrite, and is effective in refining the structure. However, if the amount is too large, the low temperature toughness of the weld metal deteriorates and welding defects such as slag entrainment occur. For this reason, the lower limit of the amount of O is set to 0.015%, and the upper limit is set to 0.045%.

さらに本発明では、不純物元素であるP、S量をそれぞれ0.015%以下、0.005%以下とする。この主たる理由は低温靭性をより一層向上させるためである。P量の低減は粒界破壊を防止し、低温靭性を向上させる。また、S量の低減はMnSを低減して、延靭性を向上させる効果がある。   Further, in the present invention, the amounts of impurity elements P and S are set to 0.015% or less and 0.005% or less, respectively. The main reason is to further improve the low temperature toughness. Reduction of the P content prevents grain boundary fracture and improves low temperature toughness. Moreover, reduction of the amount of S has the effect of reducing MnS and improving ductility.

つぎに溶接金属部にCu、V、Mg、Caを添加する理由について説明する。
溶接金属部の基本となる成分にさらに、必要に応じてこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、溶接金属部の強度・低温靭性などの特性の向上をはかるためである。したがって、その添加量は自ら制限されるべき性質のものである。
CuはNiと同様に低温靭性や現地溶接性を劣化させることなく、強度を上昇させる。しかし、過剰に添加すると低温靭性が劣化するので、その上限を1.0%とした。Cuの下限0.1%は添加による材質上の効果が顕著になる最小値である。
Next, the reason why Cu, V, Mg, and Ca are added to the weld metal portion will be described.
The main purpose of adding these elements as necessary to the basic components of the weld metal part is to improve the properties of the weld metal part, such as strength and low temperature toughness, without impairing the excellent characteristics of the steel of the present invention. It is for measuring. Therefore, the amount of addition is a property that should be restricted by itself.
Cu, like Ni, increases strength without deteriorating low-temperature toughness and on-site weldability. However, if added in excess, the low temperature toughness deteriorates, so the upper limit was made 1.0%. The lower limit of 0.1% of Cu is the minimum value at which the effect on the material due to addition becomes remarkable.

Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して弱い。Vは歪誘起析出し、強度を上昇させる。下限は0.01%、その上限は現地溶接性、低温靭性の観点から0.1%まで許容できる。
Mgは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Mg量が0.0001%以下では実用上効果がなく、また0.005%を超えて添加すると粗大なMg酸化物発生して、溶接欠陥を発生させる。このためMg添加量を0.0001〜0.005%に限定した。
V has almost the same effect as Nb, but the effect is weaker than that of Nb. V causes strain-induced precipitation and increases the strength. The lower limit is 0.01%, and the upper limit is acceptable up to 0.1% from the viewpoint of on-site weldability and low temperature toughness.
Mg controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test). However, if the amount of Mg is 0.0001% or less, there is no practical effect, and if added over 0.005%, coarse Mg oxide is generated and weld defects are generated. Therefore, the Mg addition amount is limited to 0.0001 to 0.005%.

CaはMgと同じように硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Ca量が0.0005%以下では実用上効果がなく、また0.005%を超えて添加するとCaO−CaSが大量に発生して、溶接欠陥を発生させる。このためCa添加量を0.0005〜0.005%に限定した。   Ca, like Mg, controls the form of sulfide (MnS) and improves low-temperature toughness (increased absorbed energy in the Charpy test, etc.). However, when the Ca content is 0.0005% or less, there is no practical effect, and when it is added over 0.005%, a large amount of CaO—CaS is generated and weld defects are generated. For this reason, Ca addition amount was limited to 0.0005 to 0.005%.

さらに、溶接金属部においてもX100以上の強度を満足させるためには、合金元素添加量の適正化が必要である。すなわちPw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nbで定義されるPw値を0.2〜0.35の範囲に制限しなければならない。Pw値が0.2未満ではX100以上の溶接部強度が確保できない。また、Pw値が0.35を超えるとM−Aの生成が顕著となり、靭性が劣化すると共に、低温割れが発生する。このためPw値の範囲を0.2〜0.35に限定した。   Furthermore, in order to satisfy the strength of X100 or more also in the weld metal part, it is necessary to optimize the addition amount of the alloy element. That is, the Pw value defined by Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb must be limited to a range of 0.2 to 0.35. When the Pw value is less than 0.2, the weld strength of X100 or more cannot be ensured. On the other hand, if the Pw value exceeds 0.35, the formation of MA becomes remarkable, the toughness is deteriorated, and low temperature cracking occurs. For this reason, the range of Pw value was limited to 0.2-0.35.

つぎに高い変形能を得るための限定理由について以下に述べる。
不連続凍土地帯に敷設されるパイプラインにおいては、凍土の融解、凍結により3%程度の歪がパイプラインに負荷され、延性きれつ発生防止のためには、母材部の管軸方向の引張試験における一様伸びを大きくし低降伏比とすること、さらに円周方向溶接部の降伏強度を鋼管母材の降伏強度よりも高くすることによって、変形能すなわち、延性きれつが発生する限界ひずみを大きくすることが可能となる。
また、鋼管をパイプラインに使用する場合、防食の観点から塗装が施されるが、塗装する時、鋼管は250℃程度に加熱される。250℃に加熱されても時効による降伏強度の上昇を抑制し、円周溶接部の降伏強度とのマッチング(円周方向溶接部の溶接金属部の降伏強度が母材部の降伏強度よりも高いこと)を保つ必要がある。塗装加熱後の降伏強度の上昇代を70MPa以下に抑制することによって、円周方向溶接金属の降伏強度より母材部の降伏強度を低く保持できるため大きな変形能が維持できる。さらに、引張試験におけるS−Sカーブをラウンド型(降伏点が出現しない形)に保つことによって耐座屈限界ひずみを大きく保つ必要がある。
Next, the reason for limitation for obtaining high deformability will be described below.
In a pipeline laid in a discontinuous frozen land zone, a strain of about 3% is applied to the pipeline due to the melting and freezing of frozen soil, and in order to prevent the occurrence of ductile cracks, the base metal part is pulled in the axial direction. By increasing the uniform elongation in the test to a low yield ratio, and by making the yield strength of the circumferential weld zone higher than the yield strength of the steel pipe base metal, the deformability, that is, the limit strain at which ductile cracking occurs is reduced. It becomes possible to enlarge.
Moreover, when using a steel pipe for a pipeline, although it paints from a viewpoint of corrosion prevention, a steel pipe is heated to about 250 degreeC at the time of coating. Even if heated to 250 ° C, it suppresses the increase in yield strength due to aging and matches with the yield strength of the circumferential weld (the yield strength of the weld metal in the circumferential weld is higher than the yield strength of the base metal) Need to keep). By suppressing the increase in yield strength after coating heating to 70 MPa or less, the yield strength of the base metal part can be kept lower than the yield strength of the circumferential weld metal, so that large deformability can be maintained. Furthermore, it is necessary to keep the buckling resistance limit strain large by maintaining the SS curve in the tensile test in a round shape (a shape in which no yield point appears).

塗装加熱後においても大きな変形能を有するためには、10μm以下のフェライトを5〜50%含有することが望ましい。10μmを超えると母材の靭性が低下するためである。フェライト分率が5%未満の場合、一様伸びの向上効果が得られないためである。また、50%を超えると十分な強度が得られないため、フェライト分率の含有量を5〜50%に限定した。   In order to have a large deformability even after coating and heating, it is desirable to contain 5 to 50% of ferrite of 10 μm or less. This is because if it exceeds 10 μm, the toughness of the base material decreases. This is because when the ferrite fraction is less than 5%, the effect of improving uniform elongation cannot be obtained. Moreover, since sufficient intensity | strength is not obtained when it exceeds 50%, content of the ferrite fraction was limited to 5 to 50%.

塗装加熱後においても引張試験におけるS−Sをラウンド型にして大きな変形能を保持するためには、母材部の金属組織が平均アスペクト比2未満のM−Aを2〜7%含有することが望ましい。M−Aを含有することによって、金属組織の中に可動転位を導入させて降伏比を低下させ、一様伸びを大きくする効果が得られるからである。この効果を得るためには2%以上のM−Aを含有させる必要がある。M−Aの生成分率が7%を超える場合、低温靭性が低下するためにその上限の値を7%とした。アスペクト比が2以上の場合、低温靭性が低下するために、M−Aの平均アスペクト比は2未満とした。   In order to maintain a large deformability by making SS in the tensile test round after coating and heating, the metal structure of the base material should contain 2 to 7% of MA with an average aspect ratio of less than 2. Is desirable. This is because the inclusion of M-A provides the effect of introducing movable dislocations into the metal structure to lower the yield ratio and increase the uniform elongation. In order to obtain this effect, it is necessary to contain 2% or more of MA. When the production rate of M-A exceeds 7%, the low temperature toughness decreases, so the upper limit value is set to 7%. When the aspect ratio is 2 or more, the low-temperature toughness decreases, so the average aspect ratio of MA is less than 2.

また、高強度鋼管用の高強度鋼板の製造方法として、例えば、以下に示す3つの方法を挙げることができる。
(1)鋳片を950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で250℃〜400℃の温度まで冷却し、その後空冷する方法。
Moreover, as a manufacturing method of the high strength steel plate for high strength steel pipes, the following three methods can be mentioned, for example.
(1) After heating the slab to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and rolling is finished in the temperature range of 700 to 850 ° C., and then from the temperature range of 650 to 800 ° C. A method of cooling to a temperature of 250 ° C. to 400 ° C. at a cooling rate of not less than 15 ° C./second and then cooling with air.

(2)鋳片を950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で400℃以下の温度まで冷却し、その後、300℃〜450℃に加熱した後、空冷する方法。
(3)鋳片を950〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、650〜800℃の温度範囲から5℃/秒以上の冷却速度で400℃以下の任意の温度まで冷却し、その後、加熱速度10℃/秒以上で300℃〜450℃に加熱する方法。
(2) After heating the slab to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, rolling is finished in a temperature range of 700 to 850 ° C., and then from the temperature range of 650 to 800 ° C. A method of cooling to 400 ° C. or lower at a cooling rate of at least 15 ° C./second and then heating to 300 ° C. to 450 ° C., followed by air cooling.
(3) After heating the slab to 950 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and rolling is finished in the temperature range of 700 to 850 ° C., and then from the temperature range of 650 to 800 ° C. A method of cooling to an arbitrary temperature of 400 ° C. or lower at a cooling rate of at least C ° C./second and then heating to 300 ° C. to 450 ° C. at a heating rate of 10 ° C./second or higher.

まず、再加熱温度を950〜1200℃の範囲に限定する。再加熱温度はNb析出物を固溶させ、圧延中の組織を微細化し、優れた低温靭性を得るために950℃以上としなければならない。しかし、再加熱温度が1200℃を超えると、ν粒が著しく粗大化し、圧延によっても完全に微細化できないため、優れた低温靭性が得られない。このため再加熱温度の上限を1200℃とした。   First, the reheating temperature is limited to a range of 950 to 1200 ° C. The reheating temperature must be 950 ° C. or higher in order to dissolve Nb precipitates, refine the structure during rolling, and obtain excellent low temperature toughness. However, when the reheating temperature exceeds 1200 ° C., the ν grains become extremely coarse and cannot be completely miniaturized even by rolling, so that excellent low temperature toughness cannot be obtained. For this reason, the upper limit of the reheating temperature was set to 1200 ° C.

さらに950℃以下の累積圧下率を50%以上、圧延終了温度を700〜850℃としなければならない。これは、再結晶域圧延で微細化したν粒を低温圧延によって延伸化し、結晶粒の徹底的な微細化をはかって低温靭性を改善するためである。累積圧下率が50%未満ではν組織の延伸化が不十分で、微細な結晶粒が得られない。また、圧延終了温度が850℃を越えると、例えば累積圧下率が50%以上でも微細な結晶粒は達成できない。また、圧延温度が低すぎると過度のν/α2相域圧延となり、低温靭性が劣化するので、圧延終了温度の下限を700℃とした。   Furthermore, the cumulative rolling reduction at 950 ° C. or less must be 50% or more, and the rolling end temperature must be 700 to 850 ° C. This is because the ν grains refined by recrystallization zone rolling are stretched by low-temperature rolling, and the crystal grains are thoroughly refined to improve low-temperature toughness. If the cumulative rolling reduction is less than 50%, the extension of the ν structure is insufficient and fine crystal grains cannot be obtained. If the rolling end temperature exceeds 850 ° C., fine crystal grains cannot be achieved even if the cumulative rolling reduction is 50% or more, for example. Further, if the rolling temperature is too low, excessive ν / α2 phase rolling occurs and the low temperature toughness deteriorates, so the lower limit of the rolling end temperature was set to 700 ° C.

圧延後、鋼板を加速冷却することが必須である。加速冷却は、低温靭性を損なわずに強度の増加およびミクロ組織の制御に基づく一様伸びの向上や低降伏比を可能にする。とくに塗装加熱後の時効を抑制するために以下の3通りの冷却条件に限定する必要がある。
第一の加速冷却の条件としては、圧延後650〜800℃の温度範囲から冷却速度5℃/秒以上、15℃/秒未満の冷却速度で250℃以上、400℃以下の温度まで冷却し、その後空冷しなければならない。
After rolling, it is essential to cool the steel plate at an accelerated rate. Accelerated cooling allows for increased strength and improved uniform elongation and low yield ratio based on microstructure control without compromising low temperature toughness. In particular, it is necessary to limit to the following three cooling conditions in order to suppress aging after heating the paint.
As conditions for the first accelerated cooling, after the rolling, it is cooled to a temperature of 250 ° C. or more and 400 ° C. or less at a cooling rate of 5 ° C./second or more and less than 15 ° C./second from a temperature range of 650 to 800 ° C. Then it must be air cooled.

冷却を開始する温度が800℃を超えると、一様伸びが低下する。また、冷却を開始する温度が650℃未満である場合、十分な強度が得られない。したがって、冷却を開始する温度範囲を650〜800℃に限定した。15℃/秒未満の冷却速度で冷却することによって冷却中にフェライトが生成し、大きな一様伸びや低降伏比が得られる。しかし5℃/秒未満の冷却速度の場合、十分な強度が得られない。したがって、冷却速度は、5℃/秒以上、15℃/秒未満に限定した。冷却停止温度が250℃未満の場合、固溶C量が多くなり、塗装加熱後に時効によって降伏強度の上昇が大きくなるとともに、引張試験におけるS−Sカーブに降伏点が出現し、変形能が低下する。400℃を超える温度で冷却を停止した場合、十分な強度が得られない。したがって、冷却停止温度は250℃以上、400℃以下に限定した。   When the temperature at which cooling starts exceeds 800 ° C., the uniform elongation decreases. Moreover, when the temperature which starts cooling is less than 650 degreeC, sufficient intensity | strength cannot be obtained. Therefore, the temperature range at which cooling is started is limited to 650 to 800 ° C. By cooling at a cooling rate of less than 15 ° C./second, ferrite is generated during cooling, and a large uniform elongation and a low yield ratio are obtained. However, when the cooling rate is less than 5 ° C./second, sufficient strength cannot be obtained. Therefore, the cooling rate was limited to 5 ° C./second or more and less than 15 ° C./second. When the cooling stop temperature is less than 250 ° C., the amount of dissolved C increases, the yield strength increases due to aging after coating heating, the yield point appears in the SS curve in the tensile test, and the deformability decreases. To do. When cooling is stopped at a temperature exceeding 400 ° C., sufficient strength cannot be obtained. Therefore, the cooling stop temperature is limited to 250 ° C. or more and 400 ° C. or less.

第ニの加速冷却の条件としては、650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で400℃以下の温度まで冷却し、その後、300℃以上、450℃以下に加熱した後、空冷しなければならない。   As the second accelerated cooling condition, cooling is performed from a temperature range of 650 to 800 ° C. to a temperature of 400 ° C. or less at a cooling rate of 5 ° C./second or more and less than 15 ° C./second, and then 300 ° C. or more and 450 ° C. After heating to the following, it must be air cooled.

冷却を開始する温度が800℃を超えると、一様伸びが低下する。また、冷却を開始する温度が650℃未満である場合、十分な強度が得られない。したがって、冷却を開始する温度範囲を650〜800℃に限定した。15℃/秒未満の冷却速度で冷却することによって冷却中にフェライトが生成し、一様伸びの増加や低降伏比が得られる。しかし5℃/秒未満の冷却速度の場合、十分な強度が得られない。したがって、冷却速度は、5℃/秒以上、15℃/秒未満に限定した。冷却停止温度が400℃を超える温度で冷却を停止した場合、十分な強度が得られない。400℃以下の任意の温度まで冷却した場合、固溶C量が多くなるので、その後、300℃以上、450℃以下に加熱しなければならない。300℃以上に加熱することによって固溶C量を低減することができて、時効による変形能の低下を防止できる。450℃を超えて加熱した場合、強度の低下と低温靭性の低下が発生する。   When the temperature at which cooling starts exceeds 800 ° C., the uniform elongation decreases. Moreover, when the temperature which starts cooling is less than 650 degreeC, sufficient intensity | strength cannot be obtained. Therefore, the temperature range which starts cooling was limited to 650-800 degreeC. By cooling at a cooling rate of less than 15 ° C./second, ferrite is generated during cooling, and an increase in uniform elongation and a low yield ratio are obtained. However, when the cooling rate is less than 5 ° C./second, sufficient strength cannot be obtained. Therefore, the cooling rate was limited to 5 ° C./second or more and less than 15 ° C./second. When cooling is stopped at a temperature at which the cooling stop temperature exceeds 400 ° C., sufficient strength cannot be obtained. When it is cooled to an arbitrary temperature of 400 ° C. or lower, the amount of dissolved C increases, and thereafter, it must be heated to 300 ° C. or higher and 450 ° C. or lower. By heating to 300 ° C. or higher, the amount of dissolved C can be reduced, and deterioration of deformability due to aging can be prevented. When heated above 450 ° C., a decrease in strength and a decrease in low temperature toughness occur.

第三の加速冷却の条件としては、650〜800℃の温度範囲から5℃/秒以上の冷却速度で400℃以下の任意の温度まで冷却し、その後、加熱速度10℃/秒以上で300℃以上、450℃以下に加熱しなければならない。   As conditions for the third accelerated cooling, cooling is performed from a temperature range of 650 to 800 ° C. to an arbitrary temperature of 400 ° C. or less at a cooling rate of 5 ° C./second or more, and then 300 ° C. at a heating rate of 10 ° C./second or more. As described above, it must be heated to 450 ° C. or lower.

冷却を開始する温度が800℃を超えると、一様伸びが低下する。また、冷却を開始する温度が650℃未満である場合、十分な強度が得られない。したがって、冷却を開始する温度範囲を650〜800℃に限定した。650〜800℃の温度範囲でフェライトが生成した後、5℃/秒以上の冷却速度で冷却する。冷却速度が5℃/未満の場合、十分な強度が得られないためである。冷却停止温度が400℃を超える温度で冷却を停止した場合、十分な強度が得られない。400℃以下の任意の温度まで冷却した場合、固溶C量が多くなるので、その後、加熱速度10℃/秒以上で300℃以上、450℃以下に加熱することによって固溶C量を減少させる。冷却後に、450℃を超えて加熱した場合、強度の低下とDWTT特性の低下が発生する。加熱速度が10℃/秒未満の場合、セメンタイトが粗大化してDWTT特性が低下する。   When the temperature at which cooling starts exceeds 800 ° C., the uniform elongation decreases. Moreover, when the temperature which starts cooling is less than 650 degreeC, sufficient intensity | strength cannot be obtained. Therefore, the temperature range at which cooling is started is limited to 650 to 800 ° C. After ferrite is formed in a temperature range of 650 to 800 ° C., the ferrite is cooled at a cooling rate of 5 ° C./second or more. This is because sufficient strength cannot be obtained when the cooling rate is less than 5 ° C. When cooling is stopped at a temperature at which the cooling stop temperature exceeds 400 ° C., sufficient strength cannot be obtained. When cooled to an arbitrary temperature of 400 ° C. or lower, the amount of solid solution C increases, and thereafter the amount of solid solution C is reduced by heating to 300 ° C. or higher and 450 ° C. or lower at a heating rate of 10 ° C./second or higher. . When heated at a temperature exceeding 450 ° C. after cooling, a decrease in strength and a decrease in DWTT characteristics occur. When the heating rate is less than 10 ° C./second, cementite is coarsened and the DWTT characteristics are deteriorated.

本発明は厚板ミルに適用することが最も好ましいが、ホットコイルにも適用できる(この場合、圧延冷却後の鋼板は巻き取られ、冷却される)。また、この方法で製造した鋼板は低温靭性に優れているので、寒冷地におけるパイプラインのほか圧力容器などにも適用できる。   The present invention is most preferably applied to a thick plate mill, but can also be applied to a hot coil (in this case, the steel sheet after rolling and cooling is wound and cooled). Moreover, since the steel plate manufactured by this method is excellent in low temperature toughness, it can be applied to a pressure vessel as well as a pipeline in a cold region.

「実施例」
次に、本発明の実施例について述べる。
転炉−連続鋳造法で種々の鋼成分の鋼片から製造された鋼板を用いて、実験例1〜実験例48の鋼管を製造し、諸性質を調査した。表1〜表5に、高強度鋼管の母材部と溶接金属部の化学成分を示し、表6〜表7に鋼板製造条件および母材部のミクロ組織を示し、そして、表8〜表9に高強度鋼管の母材部の機械的性質を示し、表10〜表11に鋼管溶接部の機械的性質および変形能を示した。
"Example"
Next, examples of the present invention will be described.
The steel pipes of Experimental Examples 1 to 48 were manufactured using steel sheets manufactured from billets of various steel components by the converter-continuous casting method, and various properties were investigated. Tables 1 to 5 show the chemical components of the base metal part and the weld metal part of the high-strength steel pipe, Tables 6 to 7 show the steel sheet manufacturing conditions and the microstructure of the base metal part, and Tables 8 to 9 Table 10 shows the mechanical properties of the base material of the high-strength steel pipe, and Tables 10 to 11 show the mechanical properties and deformability of the steel pipe weld.

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

Figure 0004585483
Figure 0004585483

なお、鋼管溶接部の特性は内外面の1層のSAW(サブマージドアーク溶接)を実施した後、鋼管1/2t部より採取したシャルピー試験片を用いて評価した。ノッチ位置は溶接金属中央及びHAZ(内面溶接と外面溶接の溶接金属が交わる点から1mm)とした。 また、表10および表11において、1)は溶接金属中央にノッチを入れた試験を示し、2)はHAZにノッチを入れた試験を示す。   The properties of the welded portion of the steel pipe were evaluated using Charpy test pieces taken from the 1/2 t portion of the steel pipe after performing one layer SAW (submerged arc welding) on the inner and outer surfaces. The notch positions were the center of the weld metal and HAZ (1 mm from the point where the weld metal of the inner surface welding and the outer surface welding intersected). In Tables 10 and 11, 1) shows a test with a notch in the center of the weld metal, and 2) shows a test with a notch in HAZ.

また、鋼管円周方向の引張試験(「YS:降伏強度」「TS:引張強度」)は直径12.7mm、ゲージレングス50.8mmの丸棒引張試験片を使用した。鋼管管軸方向の引張試験(「YS:降伏強度」「TS:引張強度」)は弧状全厚引張試験片を使用した。
塗装加熱後の引張特性の調査は、鋼管を300mm×300mmの小片に切り出し、インダクションヒータによって250℃に加熱し、5分保持した後、空冷した小片から引張試験片を採取して調査した。鋼管の変形能は円周方向溶接した試験体の引張破壊ひずみおよび鋼管の曲げ座屈試験の限界座屈ひずみで評価した。
In addition, a tensile test in the circumferential direction of the steel pipe (“YS: yield strength” “TS: tensile strength”) was a round bar tensile test piece having a diameter of 12.7 mm and a gauge length of 50.8 mm. For the tensile test (“YS: yield strength” “TS: tensile strength”) in the axial direction of the steel pipe, an arc-shaped full thickness tensile test piece was used.
In order to investigate the tensile characteristics after the coating was heated, the steel pipe was cut into small pieces of 300 mm × 300 mm, heated to 250 ° C. with an induction heater and held for 5 minutes, and then a tensile test piece was collected from the air-cooled piece. The deformability of the steel pipe was evaluated by the tensile fracture strain of the specimen welded in the circumferential direction and the critical buckling strain of the bending buckling test of the steel pipe.

実験例1から実験例12および実験例15から実験例43の鋼管において鋼板を製造する際、上述した第一の加速冷却の条件の製造プロセスを前提とした。実験例13および実験例44、実験例45の鋼管において鋼板を製造する際、上述した第二の加速冷却の条件の製造プロセスを前提とした。実験例14および実験例46から実験例48の鋼管において鋼板を製造する際、上述した第三の加速冷却の条件の製造プロセスを前提とした。   When manufacturing steel sheets in the steel pipes of Experimental Examples 1 to 12 and Experimental Examples 15 to 43, the manufacturing process under the first accelerated cooling condition described above was assumed. When manufacturing steel sheets in the steel pipes of Experimental Example 13, Experimental Example 44, and Experimental Example 45, the manufacturing process under the second accelerated cooling condition described above was assumed. When manufacturing steel sheets in the steel pipes of Experimental Example 14 and Experimental Example 46 to Experimental Example 48, the manufacturing process under the third accelerated cooling condition described above was assumed.

表6〜表11から明らかなように、本発明の鋼管である実験例1〜実験例14では、優れた強度(YS、TS)、一様伸び(uEl)、低温靭性、溶接部靭性、鋼管引張破壊ひずみ、限界座屈ひずみを有する。これに対して実験例15〜実験例48の鋼管は、化学成分や具備すべき鋼板製造条件が適切でなく、いずれかの特性が劣る。   As is apparent from Tables 6 to 11, in Experimental Examples 1 to 14, which are steel pipes of the present invention, excellent strength (YS, TS), uniform elongation (uEl), low temperature toughness, weld toughness, steel pipe Has tensile fracture strain and critical buckling strain. On the other hand, in the steel pipes of Experimental Examples 15 to 48, the chemical components and the steel sheet manufacturing conditions to be provided are not appropriate, and any of the characteristics is inferior.

実験例15は母材のC量が少ないために母材の強度がX100を満足しない。
実験例16は母材のS量が少ないためにHAZ靭性が劣る。
実験例17は母材のNb量が多すぎるためにHAZ靭性が劣るとともに、加熱前の降伏強度に対して250℃加熱後の降伏強度の増加量が70MPaを超え、S−Sカーブで降伏点が出現するために引張破壊ひずみおよび座屈限界ひずみが小さい。
実験例18は母材のAl量が多いためにHAZ靭性が劣る。
In Experimental Example 15, since the amount of C in the base material is small, the strength of the base material does not satisfy X100.
Since Experimental Example 16 has a small amount of S in the base material, the HAZ toughness is inferior.
In Experimental Example 17, HAZ toughness is inferior because the amount of Nb in the base material is too large, and the increase in yield strength after heating at 250 ° C. exceeds 70 MPa with respect to the yield strength before heating, and the yield point in the SS curve Therefore, tensile fracture strain and buckling limit strain are small.
Since Experimental Example 18 has a large amount of Al in the base material, the HAZ toughness is inferior.

実験例19は母材のCr量が少ないために母材の強度がX100を満足しない。
実験例20は母材のMo量が多いためにHAZ靭性が劣るとともに、加熱前の降伏強度に対して250℃加熱後の降伏強度の増加量が70MPaを超え、S−Sカーブで降伏点が出現するために引張破壊ひずみおよび座屈限界ひずみが小さい。
実験例21は母材のPb値が低すぎるために母材の強度がX100を満足しない。
実験例22は母材のNi量が多く、母材のPb値が高すぎるために母材の強度が高くなり過ぎてHAZ靭性も劣る。
実験例23は溶接金属のC量が少ないために溶接金属の高温割れが発生する。
実験例24は溶接金属のC量が多すぎるために溶接金属の低温靭性が劣る。
In Experimental Example 19, the strength of the base material does not satisfy X100 because the amount of Cr in the base material is small.
In Experimental Example 20, since the amount of Mo in the base material is large, the HAZ toughness is inferior, the increase in yield strength after heating at 250 ° C. exceeds 70 MPa with respect to the yield strength before heating, and the yield point is the SS curve. In order to appear, the tensile fracture strain and the buckling limit strain are small.
In Experimental Example 21, since the Pb value of the base material is too low, the strength of the base material does not satisfy X100.
In Experimental Example 22, since the amount of Ni in the base material is large and the Pb value of the base material is too high, the strength of the base material becomes too high and the HAZ toughness is also inferior.
In Experimental Example 23, since the C amount of the weld metal is small, hot cracking of the weld metal occurs.
Since Experimental Example 24 has too much C amount of a weld metal, the low temperature toughness of a weld metal is inferior.

実験例25は溶接金属のPw値が低すぎるために溶接部の強度が低い。
実験例26は溶接金属のCu量が多く、Pw値が高すぎるために溶接金属の靭性が劣る。
In Experimental Example 25, since the Pw value of the weld metal is too low, the strength of the welded portion is low.
In Experimental Example 26, the amount of Cu in the weld metal is large, and the Pw value is too high, so the toughness of the weld metal is inferior.

実験例27は一様伸びは向上するが、10μm以下のフェライト分率が5%未満であるために、座屈限界ひずみがやや小さい。
実験例28は10μm以下のフェライト分率が50%を超えるために母材の強度がX100ぎりぎりである。
実験例29は平均アスペクト比2未満のM−A分率が2%未満であるために、座屈限界ひずみがやや小さい。
実験例30は平均アスペクト比2未満のM−A分率が7%を超えるために低温靭性がやや低い。
実験例31は平均アスペクト比2以上であるために低温靭性がやや低い。
In Experimental Example 27, the uniform elongation is improved, but since the ferrite fraction of 10 μm or less is less than 5%, the buckling limit strain is slightly small.
In Experimental Example 28, since the ferrite fraction of 10 μm or less exceeds 50%, the strength of the base material is just below X100.
In Experimental Example 29, since the MA fraction with an average aspect ratio of less than 2 is less than 2%, the buckling limit strain is slightly small.
In Experimental Example 30, the MA fraction with an average aspect ratio of less than 2 exceeds 7%, so the low temperature toughness is slightly low.
Since Experimental Example 31 has an average aspect ratio of 2 or more, low temperature toughness is slightly low.

実験例32は加熱前の降伏強度に対して250℃加熱後の降伏強度の増加量が70MPaを超えたために限界破壊ひずみが小さく変形能が劣る。   In Experimental Example 32, since the increase in yield strength after heating at 250 ° C. exceeded 70 MPa with respect to the yield strength before heating, the critical fracture strain was small and the deformability was poor.

実験例33はスラブ再加熱温度が950℃以下であるために強度はぎりぎりで、低温靭性がやや低い。実験例34はスラブ再加熱温度が1200℃を超えるために低温靭性がやや低い。
実験例35は950℃以下の圧下量が50%未満であるために低温靭性がやや低い。
実験例36は圧延終了温度が850℃を超えるために低温靭性がやや低い。実験例37は圧延終了温度が700℃未満であるために低温靭性がやや低い。
実験例38は一様伸びは向上するが、冷却開始温度が800℃を超えるため、座屈限界ひずみがやや小さい。実験例39は冷却開始温度が650℃未満であるために強度はぎりぎりである。
In Experimental Example 33, since the slab reheating temperature is 950 ° C. or lower, the strength is barely low and the low-temperature toughness is slightly low. In Experimental Example 34, since the slab reheating temperature exceeds 1200 ° C., the low temperature toughness is slightly low.
In Experimental Example 35, since the amount of reduction at 950 ° C. or less is less than 50%, the low temperature toughness is slightly low.
In Experimental Example 36, since the rolling end temperature exceeds 850 ° C., the low temperature toughness is slightly low. In Experimental Example 37, since the rolling end temperature is less than 700 ° C., the low temperature toughness is slightly low.
In Experimental Example 38, the uniform elongation is improved, but since the cooling start temperature exceeds 800 ° C., the buckling limit strain is slightly small. In Experimental Example 39, since the cooling start temperature is less than 650 ° C., the strength is almost limitless.

実験例40は一様伸びはやや高いが冷却速度が15℃/秒以上であるために、座屈限界ひずみがやや小さい。実験例41は冷却速度が5℃/秒未満であるために強度はぎりぎりである。
実験例42は冷却停止温度が400℃を超えるために強度がぎりぎりである。実験例43は冷却停止温度が250℃未満であるために加熱前の降伏強度に対して250℃加熱後の降伏強度の増加量が70MPaを超え、S−Sカーブで降伏点が出現するために引張破壊ひずみおよび座屈限界ひずみが小さい。
In Experimental Example 40, the uniform elongation is slightly high, but the cooling rate is 15 ° C./second or more, so the buckling limit strain is slightly small. In Experimental Example 41, the cooling rate is less than 5 ° C./second, so that the strength is almost limitless.
In Experimental Example 42, since the cooling stop temperature exceeds 400 ° C., the strength is barely enough. In Experimental Example 43, since the cooling stop temperature is less than 250 ° C., the increase in yield strength after heating at 250 ° C. exceeds 70 MPa with respect to the yield strength before heating, and the yield point appears in the SS curve. Small tensile fracture strain and buckling limit strain.

実験例44は冷却後の加熱温度が450℃を超えるために強度がぎりぎりであり、低温靭性もやや低い。実験例45は冷却後の加熱温度が300℃未満であるために加熱前の降伏強度に対して250℃加熱後の降伏強度の増加量が70MPaを超え、S−Sカーブで降伏点が出現するために引張破壊ひずみおよび座屈限界ひずみが小さい。   In Experimental Example 44, since the heating temperature after cooling exceeds 450 ° C., the strength is barely low, and the low-temperature toughness is slightly low. In Experimental Example 45, since the heating temperature after cooling is less than 300 ° C., the increase in yield strength after heating at 250 ° C. exceeds 70 MPa with respect to the yield strength before heating, and a yield point appears in the SS curve. Therefore, the tensile fracture strain and the buckling limit strain are small.

実験例46は冷却後の加熱速度が10℃/秒未満であるために低温靭性がやや低い。実験例47は冷却後の加熱温度が450℃を超えるために強度がぎりぎりである。実験例48は冷却後の加熱温度が300℃未満であるために加熱前の降伏強度に対して250℃加熱後の降伏強度の増加量が70MPaを超え、S−Sカーブで降伏点が出現するために引張破壊ひずみおよび座屈限界ひずみが小さい。

In Experimental Example 46, since the heating rate after cooling is less than 10 ° C./second, the low temperature toughness is slightly low. In Experimental Example 47, since the heating temperature after cooling exceeds 450 ° C., the strength is extremely low. In Experimental Example 48, since the heating temperature after cooling is less than 300 ° C., the increase in yield strength after heating at 250 ° C. exceeds 70 MPa with respect to the yield strength before heating, and a yield point appears on the SS curve. Therefore, the tensile fracture strain and the buckling limit strain are small.

Claims (7)

質量%で、
C:0.03%〜0.08%、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.001〜0.005%、
Cr:0.5〜1.5%、
Mo:0.02%未満、
Nb:0.01以上0.025%未満、
Ti:0.005〜0.030%、
Al:0.005%以下、
N :0.001〜0.006%、
O :0.001〜0.006%、
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
V:0.01〜0.1%、
B:0.0003〜0.002%、
Mg:0.0001〜0.0050%、
Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある母材部と、
質量%で、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.5%、
P:0.015%以下、
S:0.005%以下、
Ni:0.2〜2.5%、
Cr:0.2〜1.5%、
Mo:0.2〜1.5%、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄及び不可避的不純物からなり、
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nbで定義されるPw値が0.2〜0.35の範囲にある溶接金属部とを有し、
250℃以下の温度に加熱された場合、加熱前後の母材部の管軸方向の引張試験における降伏強度の差が70MPa以下であることを特徴とする溶接部靭性と変形能に優れた高強度鋼管。
% By mass
C: 0.03% to 0.08%,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.001 to 0.005%,
Cr: 0.5 to 1.5%
Mo: less than 0.02%,
Nb: 0.01 or more and less than 0.025%,
Ti: 0.005 to 0.030%,
Al: 0.005% or less,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%,
In addition, Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.2%,
V: 0.01 to 0.1%
B: 0.0003 to 0.002%,
Mg: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.0050%
One or more of the following, with the balance consisting of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A base material part having a Pb value defined in the range of 2.5 to 4.0,
% By mass
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Ni: 0.2 to 2.5%,
Cr: 0.2 to 1.5%
Mo: 0.2 to 1.5%
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities,
A weld metal part having a Pw value defined by Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb in a range of 0.2 to 0.35;
When heated to a temperature of 250 ° C. or less, the difference in yield strength in the tensile test in the tube axis direction of the base metal part before and after heating is 70 MPa or less. High strength excellent in weld toughness and deformability Steel pipe.
前記溶接金属部が、さらに質量%で、
Cu:0.1〜1.0%、
V:0.01〜0.1%、
Mg:0.0001〜0.005%、
Ca:0.0005〜0.005%
のうち1種または2種以上を含有していることを特徴とする請求項1に記載の溶接部靭性と変形能に優れた高強度鋼管。
The weld metal part is further in mass%,
Cu: 0.1 to 1.0%
V: 0.01 to 0.1%
Mg: 0.0001 to 0.005%,
Ca: 0.0005 to 0.005%
The high-strength steel pipe excellent in weld toughness and deformability according to claim 1, wherein one or more of them are contained.
前記母材部の金属組織が粒径10μm以下のフェライトを5〜50%含有することを特徴とする請求項1または請求項2に記載の溶接部靭性と変形能に優れた高強度鋼管。   The high-strength steel pipe excellent in weld toughness and deformability according to claim 1 or 2, wherein the metal structure of the base metal part contains 5 to 50% of ferrite having a particle size of 10 µm or less. 前記母材部の金属組織が平均アスペクト比2未満のマルテンサイトとオーステナイトの混合体(M−A constituent)を2〜7%含有することを特徴とする請求項1または請求項2に記載の溶接部靭性と変形能に優れた高強度鋼管。   3. The welding according to claim 1, wherein the metal structure of the base material portion contains 2 to 7% of a mixture of martensite and austenite (M-A constituent) having an average aspect ratio of less than 2. 4. High strength steel pipe with excellent toughness and deformability. 質量%で、
C:0.03%〜0.08%、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.001〜0.005%、
Cr:0.5〜1.5%、
Mo:0.02%未満、
Nb:0.01以上0.025%未満、
Ti:0.005〜0.030%、
Al:0.005%以下、
N :0.001〜0.006%、
O :0.001〜0.006%、
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
V:0.01〜0.1%、
B:0.0003〜0.002%、
Mg:0.0001〜0.0050%、
Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある鋳片を、
950〜1200℃に加熱した後、
950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、
650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で250℃〜400℃の温度まで冷却し、
その後空冷することを特徴とする溶接部靭性と変形能に優れた高強度鋼管用の高強度鋼板の製造方法。
% By mass
C: 0.03% to 0.08%,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.001 to 0.005%,
Cr: 0.5 to 1.5%
Mo: less than 0.02%,
Nb: 0.01 or more and less than 0.025%,
Ti: 0.005 to 0.030%,
Al: 0.005% or less,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%,
In addition, Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.2%,
V: 0.01 to 0.1%
B: 0.0003 to 0.002%,
Mg: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.0050%
One or more of the following, with the balance consisting of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A slab having a Pb value defined in the range of 2.5 to 4.0,
After heating to 950-1200 ° C,
The rolling reduction at 950 ° C. or less is set to 50% or more, and after the rolling is finished at a temperature range of 700 to 850 ° C.,
Cool from a temperature range of 650 to 800 ° C. to a temperature of 250 ° C. to 400 ° C. at a cooling rate of 5 ° C./second or more and less than 15 ° C./second,
A method for producing a high-strength steel sheet for high-strength steel pipes with excellent weld toughness and deformability, which is then air-cooled.
質量%で、
C:0.03%〜0.08%、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.001〜0.005%、
Cr:0.5〜1.5%、
Mo:0.02%未満、
Nb:0.01以上0.025%未満、
Ti:0.005〜0.030%、
Al:0.005%以下、
N :0.001〜0.006%、
O :0.001〜0.006%、
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
V:0.01〜0.1%、
B:0.0003〜0.002%、
Mg:0.0001〜0.0050%、
Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある鋳片を、
950〜1200℃に加熱した後、
950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、
650〜800℃の温度範囲から5℃/秒以上、15℃/秒未満の冷却速度で400℃以下の温度まで冷却し、
その後、300℃〜450℃に加熱した後、空冷することを特徴とする溶接部靭性と変形能に優れた高強度鋼管用の高強度鋼板の製造方法。
% By mass
C: 0.03% to 0.08%,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.001 to 0.005%,
Cr: 0.5 to 1.5%
Mo: less than 0.02%,
Nb: 0.01 or more and less than 0.025%,
Ti: 0.005 to 0.030%,
Al: 0.005% or less,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%,
In addition, Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.2%,
V: 0.01 to 0.1%
B: 0.0003 to 0.002%,
Mg: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.0050%
One or more of the following, with the balance consisting of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A slab having a Pb value defined in the range of 2.5 to 4.0,
After heating to 950-1200 ° C,
The rolling reduction at 950 ° C. or less is set to 50% or more, and after the rolling is finished at a temperature range of 700 to 850 ° C.,
Cool from a temperature range of 650 to 800 ° C. to a temperature of 400 ° C. or less at a cooling rate of 5 ° C./second or more and less than 15 ° C./second,
Then, after heating to 300 to 450 degreeC, it is air-cooled, The manufacturing method of the high strength steel plate for high strength steel pipes excellent in the weld part toughness and deformability characterized by the above-mentioned.
質量%で、
C:0.03%〜0.08%、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.001〜0.005%、
Cr:0.5〜1.5%、
Mo:0.02%未満、
Nb:0.01以上0.025%未満、
Ti:0.005〜0.030%、
Al:0.005%以下、
N :0.001〜0.006%、
O :0.001〜0.006%、
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
V:0.01〜0.1%、
B:0.0003〜0.002%、
Mg:0.0001〜0.0050%、
Ca:0.0005〜0.0050%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある鋳片を、
950〜1200℃に加熱した後、
950℃以下の圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、
650〜800℃の温度範囲から5℃/秒以上の冷却速度で400℃以下の任意の温度まで冷却し、
その後、加熱速度10℃/秒以上で300℃〜450℃に加熱することを特徴とする溶接部靭性と変形能に優れた高強度鋼管用の高強度鋼板の製造方法。

% By mass
C: 0.03% to 0.08%,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.001 to 0.005%,
Cr: 0.5 to 1.5%
Mo: less than 0.02%,
Nb: 0.01 or more and less than 0.025%,
Ti: 0.005 to 0.030%,
Al: 0.005% or less,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%,
In addition, Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.2%,
V: 0.01 to 0.1%
B: 0.0003 to 0.002%,
Mg: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.0050%
One or more of the following, with the balance consisting of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A slab having a Pb value defined in the range of 2.5 to 4.0,
After heating to 950-1200 ° C,
The rolling reduction at 950 ° C. or less is set to 50% or more, and after the rolling is finished at a temperature range of 700 to 850 ° C.,
Cool from a temperature range of 650 to 800 ° C. to an arbitrary temperature of 400 ° C. or less at a cooling rate of 5 ° C./second or more,
Then, the manufacturing method of the high strength steel plate for high strength steel pipes excellent in the weld part toughness and the deformability characterized by heating to 300 to 450 degreeC with a heating rate of 10 degree-C / sec or more.

JP2006132794A 2006-05-11 2006-05-11 High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate Expired - Fee Related JP4585483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132794A JP4585483B2 (en) 2006-05-11 2006-05-11 High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132794A JP4585483B2 (en) 2006-05-11 2006-05-11 High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate

Publications (2)

Publication Number Publication Date
JP2007302947A JP2007302947A (en) 2007-11-22
JP4585483B2 true JP4585483B2 (en) 2010-11-24

Family

ID=38837123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132794A Expired - Fee Related JP4585483B2 (en) 2006-05-11 2006-05-11 High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate

Country Status (1)

Country Link
JP (1) JP4585483B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834534B2 (en) * 2010-06-29 2015-12-24 Jfeスチール株式会社 High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe
JP5768603B2 (en) * 2011-08-31 2015-08-26 Jfeスチール株式会社 High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
JP5842473B2 (en) * 2011-08-31 2016-01-13 Jfeスチール株式会社 High strength welded steel pipe with high uniform elongation characteristics and excellent weld toughness, and method for producing the same
JP5480215B2 (en) 2011-09-08 2014-04-23 株式会社神戸製鋼所 Steel plate for low yield ratio thick circular steel pipe having a tensile strength of 780 MPa or more, manufacturing method thereof, and low yield ratio thick circular steel pipe having a tensile strength of 780 MPa or more
JP2014183255A (en) * 2013-03-21 2014-09-29 Jfe Steel Corp Ferrite-based stainless foil for solar battery substrate use
JP2014183254A (en) * 2013-03-21 2014-09-29 Jfe Steel Corp Ferrite-based stainless foil for solar battery substrate use
KR20210111805A (en) * 2019-01-09 2021-09-13 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet and welded seam, and method of manufacturing them
CN115255692B (en) * 2022-08-03 2024-03-22 新疆八一钢铁股份有限公司 Low-carbon high-Cr alloy billet connection and rolling method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306749A (en) * 2002-04-19 2003-10-31 Nippon Steel Corp Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP2006144037A (en) * 2004-11-16 2006-06-08 Nippon Steel Corp High strength steel pipe for pipe line having excellent deformation property after aging and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306749A (en) * 2002-04-19 2003-10-31 Nippon Steel Corp Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP2006144037A (en) * 2004-11-16 2006-06-08 Nippon Steel Corp High strength steel pipe for pipe line having excellent deformation property after aging and its production method

Also Published As

Publication number Publication date
JP2007302947A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
WO2015030210A1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
WO2010090349A1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
WO2011040624A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4585483B2 (en) High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP2010189722A (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
JP4700740B2 (en) Manufacturing method of steel plate for sour line pipe
JP4772486B2 (en) High strength steel pipe for low temperature
JP2009174024A (en) High-strength steel sheet having excellent pwht resistance, and method for producing the same
JP4116857B2 (en) High strength steel pipe with excellent weld toughness and deformability
JP2005015823A (en) High strength steel pipe used for pipeline and having excellent deformability, and its production method
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP7163777B2 (en) Steel plate for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R151 Written notification of patent or utility model registration

Ref document number: 4585483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees