JP2009174024A - High-strength steel sheet having excellent pwht resistance, and method for producing the same - Google Patents

High-strength steel sheet having excellent pwht resistance, and method for producing the same Download PDF

Info

Publication number
JP2009174024A
JP2009174024A JP2008015505A JP2008015505A JP2009174024A JP 2009174024 A JP2009174024 A JP 2009174024A JP 2008015505 A JP2008015505 A JP 2008015505A JP 2008015505 A JP2008015505 A JP 2008015505A JP 2009174024 A JP2009174024 A JP 2009174024A
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
value
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008015505A
Other languages
Japanese (ja)
Other versions
JP5181697B2 (en
Inventor
Junji Shimamura
純二 嶋村
Nobuyuki Ishikawa
信行 石川
Mitsuhiro Okatsu
光浩 岡津
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008015505A priority Critical patent/JP5181697B2/en
Publication of JP2009174024A publication Critical patent/JP2009174024A/en
Application granted granted Critical
Publication of JP5181697B2 publication Critical patent/JP5181697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet exhibiting excellent PWHT (post-weld heat treatment) resistance. <P>SOLUTION: Disclosed is a high-strength steel sheet having a componential composition comprising 0.03 to 0.07% C, 0.01 to 0.5% Si, 1.5 to 2.5% Mn, 0.1 to 0.5% Mo, ≤0.08% Al, 0.005 to 0.035% Ti and 0.005 to 0.07% Nb, and in which Ceq value (mass%)=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5 and P value (atomic%)=[Mo]+[Ti]+[Nb]+[V] satisfy 9×Ceq value+4×P value≥4.8, and also, 0.6 (atomic%)≤[C]/([Mo]+[Ti]+[Nb]+[V])≤1.7 (atomic%) is satisfied, and essentially composed of a bainitic structure in which the fraction of insular martensite is ≤2%, wherein, (Ti and/or Nb) compound carbides essentially composed of Mo with an equivalent circle diameter of ≤10 nm are dispersed by ≥30 pieces per 1 μm<SP>2</SP>, and the total precipitation amount of the compound carbides is ≥0.03 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼管や圧力容器等に好適なAPI X100グレード以上の強度を有する高強度鋼板、特に溶接後熱処理(PWHT)を行った後においても優れた強度と靭性を有する耐PWHT特性に優れた高強度鋼板に関する。   The present invention is a high-strength steel sheet having API X100 grade or more suitable for steel pipes, pressure vessels, etc., particularly PWHT resistance having excellent strength and toughness even after performing post-weld heat treatment (PWHT). It relates to a high-strength steel sheet.

石油やガスの掘削等に用いられるライザー鋼管は、円周溶接によって合金元素量が非常に多い鍛造品(例えばコネクタ等)を溶接接合する場合が多い。また、発電プラント等の配管用鋼管やその他強度部材として用いられる鋼材または鋼板は、Cr−Mo鋼等と溶接接合される場合が多い。このような場合には、通常、溶接による残留応力除去を目的としてPWHT処理(溶接後熱処理)が施されるが、熱処理によって強度低下や靭性低下を招くことが懸念されるため、PWHT処理が施される鋼管や鋼材に対してはPWHT処理後も強度、靭性が確保されることが要求される。また近年、圧力上昇による操業効率向上や素材コスト削減の観点から、API
X100グレード以上の高強度鋼管または鋼材に対する要求も高まっている。
Riser steel pipes used for oil and gas drilling and the like are often welded and joined by forged products (for example, connectors) having a very large amount of alloy elements by circumferential welding. In addition, steel pipes or steel plates used as piping members for power plants and other strength members are often welded to Cr-Mo steel or the like. In such a case, the PWHT treatment (post-weld heat treatment) is usually performed for the purpose of removing residual stress by welding. However, since there is a concern that the heat treatment may cause a decrease in strength or toughness, the PWHT treatment is performed. Steel pipes and steel materials to be used are required to have strength and toughness even after PWHT treatment. In recent years, API has been developed from the viewpoint of improving operational efficiency and reducing material costs due to increased pressure.
The demand for high-strength steel pipes or steel materials of X100 grade or higher is also increasing.

このような耐PWHT特性に優れた高強度鋼管に関する従来技術としては、特許文献1,2に開示されたようなものがある。
特開平11−50188号公報 特開2001−158939号公報
As conventional techniques related to such a high-strength steel pipe excellent in PWHT resistance, there are those disclosed in Patent Documents 1 and 2.
Japanese Patent Laid-Open No. 11-50188 JP 2001-158939 A

しかし、特許文献1に記載の技術では、PWHT処理による強度低下をPWHT時のCr炭化物の析出によって補っているため、多量のCrの添加が必要となり、素材コストが高いだけでなく、溶接性や靭性の低下が問題となる。一方、特許文献2に記載の技術は、鋼管を製造する際のシーム溶接金属の特性改善を主眼においており、母材に対しては特段の配慮がなされておらず、PWHT処理による母材強度の低下が避けられないため、制御圧延や加速冷却によってPWHT前の強度を高めておく必要がある。   However, in the technique described in Patent Document 1, since the strength reduction due to the PWHT treatment is compensated by precipitation of Cr carbide during PWHT, a large amount of Cr is required, which not only increases the material cost but also improves weldability and Decrease in toughness becomes a problem. On the other hand, the technology described in Patent Document 2 focuses on improving the characteristics of the seam weld metal when manufacturing a steel pipe, and no special consideration is given to the base material, and the strength of the base material by the PWHT treatment is not considered. Since the reduction is unavoidable, it is necessary to increase the strength before PWHT by controlled rolling or accelerated cooling.

したがって本発明の目的は、このような従来技術の課題を解決し、API X100グレード以上の高強度を有するとともに、多量の合金元素の添加なしに、優れた耐PWHT特性を示す高強度鋼板および高強度鋼管を提供することにある。また、本発明の他の目的は、そのような優れた特性を有する高強度鋼板を安定的に製造することができる製造方法を提供することにある。   Therefore, an object of the present invention is to solve such problems of the prior art, have a high strength higher than API X100 grade, and exhibit high PWHT resistance without adding a large amount of alloy elements, and a high strength steel plate It is to provide a strength steel pipe. Moreover, the other object of this invention is to provide the manufacturing method which can manufacture stably the high strength steel plate which has such the outstanding characteristic.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]質量%で、C:0.03〜0.07%、Si:0.01〜0.5%、Mn:1.5〜2.5%、Mo:0.1〜0.5%、Al:0.08%以下、Ti:0.005〜0.035%、Nb:0.005〜0.07%を含有し、下記(1)式で表わされるCeq値と下記(2)式で表わされるP値が下記(i)式を満足し、
9×Ceq値+4×P値≧4.8 …(i)
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5
…(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
P値=[Mo]+[Ti]+[Nb]+[V] …(2)
但し、(2)式の元素記号は各含有元素の原子%を示す。
且つ下記(ii)式を満足する成分組成を有し、
0.6≦[C]/([Mo]+[Ti]+[Nb]+[V])≦1.7
…(ii)
但し、(ii)式の元素記号は各含有元素の原子%を示す。
鋼板ミクロ組織中の島状マルテンサイト(M-A constituent)分率が2%以下であるベイナイト組織を主体とし、円相当径が10nm以下であって、Moを主体とし、Tiおよび/またはNbを含む複合炭化物が1μmあたり30個以上分散し、当該複合炭化物の総析出量が0.03質量%以上であることを特徴とする、耐PWHT特性に優れた高強度鋼板。
The gist of the present invention for solving the above problems is as follows.
[1] By mass%, C: 0.03 to 0.07%, Si: 0.01 to 0.5%, Mn: 1.5 to 2.5%, Mo: 0.1 to 0.5% , Al: 0.08% or less, Ti: 0.005 to 0.035%, Nb: 0.005 to 0.07%, Ceq value represented by the following formula (1) and the following formula (2) P value represented by the following equation (i):
9 × Ceq value + 4 × P value ≧ 4.8 (i)
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5
… (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
P value = [Mo] + [Ti] + [Nb] + [V] (2)
However, the element symbol of the formula (2) indicates atomic% of each contained element.
And having a component composition satisfying the following formula (ii):
0.6 ≦ [C] / ([Mo] + [Ti] + [Nb] + [V]) ≦ 1.7
... (ii)
However, the element symbol in the formula (ii) indicates atomic% of each contained element.
A composite mainly composed of a bainite structure having an island-like martensite (MA constituent) fraction of 2% or less in a steel sheet microstructure, an equivalent circle diameter of 10 nm or less, mainly composed of Mo, and containing Ti and / or Nb. A high-strength steel sheet having excellent PWHT resistance, wherein 30 or more carbides are dispersed per 1 μm 2 and the total precipitation amount of the composite carbide is 0.03% by mass or more.

[2]上記[1]の高強度鋼板において、さらに、質量%で、V:0.005〜0.1%を含有し、Moを主体とし、Tiおよび/またはNbを含む複合炭化物が、さらにVを含むことを特徴とする、耐PWHT特性に優れた高強度鋼板。
[3]上記[1]または[2]の高強度鋼板において、さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.0035%、REM:0.0005〜0.01%、B:0.002%以下の中から選ばれる1種または2種以上を含有することを特徴とする、耐PWHT特性に優れた高強度鋼板。
[4]上記[1]〜[3]のいずれかの成分組成を有する鋼を、加熱温度:1100〜1300℃、800℃以下での累積圧下率:70%以上で熱間圧延し、その後、冷却開始温度:700℃以上、冷却速度:20℃/s以上で300℃未満の温度まで加速冷却し、その後直ちに、0.5℃/s以上10℃/s未満の昇温速度で550〜700℃の温度まで再加熱することを特徴とする、耐PWHT特性に優れた高強度鋼板の製造方法。
[5]上記[1]〜[3]のいずれかの鋼板を素材とする鋼管であって、鋼板を長手方向で筒状に成形し、その突合せ部を管内外面から1層ずつ長手方向に溶接して得られることを特徴とする高強度鋼管。
[2] In the high-strength steel sheet of the above [1], the composite carbide further includes, in mass%, V: 0.005 to 0.1%, mainly Mo, and Ti and / or Nb. A high-strength steel sheet excellent in PWHT resistance, characterized by containing V.
[3] In the high-strength steel sheet according to [1] or [2], further, by mass, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0 .PWHT resistance characteristics characterized by containing one or more selected from 0005 to 0.0035%, REM: 0.0005 to 0.01%, B: 0.002% or less Excellent high strength steel plate.
[4] A steel having any one of the above-mentioned component compositions [1] to [3] is hot-rolled at a heating temperature of 1100 to 1300 ° C. and a cumulative reduction ratio of 800 ° C. or less: 70% or more, Cooling start temperature: 700 ° C. or more, cooling rate: 20 ° C./s or more and accelerated cooling to a temperature of less than 300 ° C., and then immediately 550 to 700 at a temperature increase rate of 0.5 ° C./s or more and less than 10 ° C./s. A method for producing a high-strength steel sheet having excellent PWHT resistance characteristics, characterized by reheating to a temperature of ° C.
[5] A steel pipe made of the steel sheet of any one of [1] to [3], wherein the steel sheet is formed into a cylindrical shape in the longitudinal direction, and the butt portion is welded in the longitudinal direction one layer at a time from the inner and outer surfaces of the pipe A high-strength steel pipe obtained by

本発明の高強度鋼板は、API X100グレード以上の高強度を有し、且つPWHT処理後も優れた強度、靭性を維持することができる。このため、特にPWHT処理が行われる鋼管や圧力容器等の材料として有用な鋼板である。
また、本発明の製造方法は、そのような優れた特性を有する高強度鋼板を安定的に製造することができる。
The high-strength steel sheet of the present invention has high strength equal to or higher than API X100 grade, and can maintain excellent strength and toughness even after PWHT treatment. For this reason, it is a steel plate useful as a material for a steel pipe, a pressure vessel or the like that is subjected to PWHT treatment.
Moreover, the manufacturing method of this invention can manufacture stably the high strength steel plate which has such the outstanding characteristic.

本発明者らは、耐PWHT特性の向上と高強度を両立させるために、PWHT処理による鋼材のミクロ組織変化について詳細な検討を行った。一般に溶接鋼管用の鋼板や溶接構造用の鋼板は、溶接性の観点から化学成分が厳しく制限されるため、X65グレード以上の高強度鋼板は熱間圧延後に加速冷却されて製造されている。そのため、ミクロ組織はベイナイト主体か、またはベイナイト中に島状マルテンサイト(M-A constituent)を含んだ組織となるが、このような組織の鋼にPWHT処理を施すと、ベイナイト中の島状マルテンサイト組織が焼戻しにより分解するため強度低下は避けられない。また、焼戻しによる強度低下を補うために、PWHT処理時にCr炭化物等を析出させる方法があるが、炭化物が容易に粗大化するために靭性低下を生じてしまう。このように変態強化によってPWHT処理後でも強度、靭性を確保することには、限界があることが明白である。そこで、本発明者らは、優れた耐PWHT特性が得られるミクロ組織形態に関して鋭意研究を行った結果、以下の(a)〜(c)の知見を得るに至った。   In order to achieve both improvement in the PWHT resistance and high strength, the present inventors have conducted detailed studies on changes in the microstructure of the steel material due to the PWHT treatment. In general, steel plates for welded steel pipes and steel plates for welded structures are severely limited in chemical composition from the viewpoint of weldability. Therefore, high-strength steel sheets of X65 grade or higher are manufactured by accelerated cooling after hot rolling. Therefore, the microstructure is mainly bainite or a structure containing island-like martensite (MA constituent) in the bainite. When PWHT treatment is performed on steel having such a structure, the island-like martensite structure in the bainite is obtained. However, strength degradation is inevitable due to decomposition by tempering. Further, in order to compensate for the strength reduction due to tempering, there is a method of precipitating Cr carbide or the like during the PWHT treatment, but the carbide is easily coarsened, resulting in a reduction in toughness. Thus, it is clear that there is a limit to securing strength and toughness even after PWHT treatment by transformation strengthening. Therefore, as a result of intensive studies on the microstructure structure capable of obtaining excellent PWHT resistance, the present inventors have obtained the following findings (a) to (c).

(a)鋼のミクロ組織を、PWHT処理の前後において形態変化を生じないミクロ組織とすればよい。そのためには、PWHT処理によって分解する島状マルテンサイトを2%以下に抑制し、鋼中の炭素を熱的に安定な微細炭化物として分散析出させることによって強化すればよい。
(b)鋼中で析出する種々の析出物について検討した結果、Ti、NbとMoとからなる複合炭化物、或いはさらにVを含む複合炭化物は、適正な成分バランスの下ではサイズが10nm以下の極めて微細な析出物となり、且つ熱的にも安定であることが判った。特に、そのような微細な複合炭化物が鋼中に1μmあたり30個以上分散し、且つその総析出量が0.03質量%以上であれば、PWHT処理後の強度低下が抑制できる。
(c)上記(b)の微細炭化物を析出させるためには、特定の合金成分を有する鋼を用いて、熱間圧延後に加速冷却によって冷却する過程で、ベイナイト変態終了温度よりも低い温度で冷却を停止し、直ちに急速再加熱を行えばよい。
(A) The microstructure of the steel may be a microstructure that does not change in shape before and after the PWHT treatment. For that purpose, the island-like martensite decomposed by the PWHT treatment may be suppressed to 2% or less, and the carbon in the steel may be dispersed and precipitated as thermally stable fine carbides.
(B) As a result of examining various precipitates precipitated in steel, composite carbides composed of Ti, Nb and Mo, or further composite carbides containing V are extremely small in size under 10 nm under an appropriate component balance. It turned out that it became a fine deposit and was thermally stable. In particular, if 30 or more such fine composite carbides are dispersed per 1 μm 2 in steel and the total precipitation amount is 0.03% by mass or more, a decrease in strength after PWHT treatment can be suppressed.
(C) In order to precipitate the fine carbide of (b) above, the steel having a specific alloy component is used and cooled at a temperature lower than the bainite transformation end temperature in the process of cooling by accelerated cooling after hot rolling. And rapid reheating may be performed immediately.

上記(c)のような熱履歴を受けた鋼の金属組織は、冷却停止直後、島状マルテンサイトが少なく、転位密度の高いベイナイト組織となるが、Moによってセメンタイトの生成が抑制され、炭素が過飽和な状態で存在するため、その後の再加熱によってTi、NbとMoとからなる複合炭化物、或いはさらにVを含む複合炭化物として転位上に優先的に析出する。
上記のようなTi、NbとMoとからなる複合炭化物、或いはさらにVを含む複合炭化物が分散析出した鋼は、析出強化によって高強度が得られるだけでなく、700℃程度以下の加熱によっても微細炭化物が分解または粗大化することがないため、PWHT処理を行った後もその高い強度が維持されるものである。
The metal structure of the steel subjected to the thermal history as in (c) is a bainite structure with a low dislocation martensite and a high dislocation density immediately after cooling is stopped, but the generation of cementite is suppressed by Mo, and the carbon Since it exists in a supersaturated state, it is preferentially deposited on dislocations as a composite carbide composed of Ti, Nb and Mo, or further a composite carbide containing V by subsequent reheating.
A steel in which a composite carbide composed of Ti, Nb and Mo as described above, or a composite carbide further containing V is dispersed and precipitated, not only provides high strength by precipitation strengthening, but also finely by heating at about 700 ° C. or less. Since the carbide is not decomposed or coarsened, the high strength is maintained even after the PWHT treatment.

以下、本発明の高強度鋼板およびその製造方法の詳細を説明する。
[化学成分]
まず、本発明の高強度鋼板の化学成分について説明する。以下に示す各元素の含有量の説明において、%で示す単位は全て質量%である。
・C:0.03〜0.07%
Cは、鋼の強度を増加する元素であり、所望の組織を得て、所望の強度、靭性とするためには、0.03%以上の含有を必要とする。一方、0.07%を超えて含有すると溶接性が劣化し、溶接割れが生じやすくなるとともに、母材靭性および溶接熱影響部靭性(以下「HAZ靭性」という)が低下する。このため、C含有量は0.03〜0.07%、好ましくは0.04〜0.06%とする。
Hereinafter, the details of the high-strength steel sheet and the manufacturing method thereof according to the present invention will be described.
[Chemical composition]
First, chemical components of the high-strength steel plate of the present invention will be described. In the following description of the content of each element, all units shown in% are mass%.
・ C: 0.03-0.07%
C is an element that increases the strength of steel, and in order to obtain a desired structure and obtain desired strength and toughness, the content of 0.03% or more is required. On the other hand, if the content exceeds 0.07%, the weldability deteriorates, and cracks are likely to occur, and the base metal toughness and weld heat affected zone toughness (hereinafter referred to as “HAZ toughness”) are reduced. Therefore, the C content is 0.03 to 0.07%, preferably 0.04 to 0.06%.

・Si:0.01〜0.5%
Siは、脱酸剤として作用し、さらに固溶強化により鋼材の強度を増加させる元素であるが、0.01%未満ではその効果がなく、一方、0.5%を超えるとHAZ靭性を著しく劣化させる。このため、Si含有量は0.01〜0.5%、好ましくは0.05〜0.2%とする。
・Mn:1.5〜2.5%
Mnは、鋼の焼入れ性を高めるとともに、強度および靭性を向上させる作用を有する元素であり、1.5%以上の含有を必要とするが、2.5%を超える含有は、溶接性を劣化させる恐れがある。このため、Mn含有量は1.5〜2.5%、好ましくは1.8〜2.0%とする。
・ Si: 0.01-0.5%
Si is an element that acts as a deoxidizer and increases the strength of the steel material by solid solution strengthening. However, if it is less than 0.01%, there is no effect, while if it exceeds 0.5%, HAZ toughness is remarkably increased. Deteriorate. For this reason, Si content is 0.01 to 0.5%, preferably 0.05 to 0.2%.
・ Mn: 1.5-2.5%
Mn is an element that has the effect of enhancing the hardenability of steel and improving the strength and toughness, and needs to be contained in an amount of 1.5% or more, but the inclusion exceeding 2.5% deteriorates the weldability. There is a fear. For this reason, Mn content is 1.5 to 2.5%, preferably 1.8 to 2.0%.

・Al:0.08%以下
Alは、製鋼時の脱酸剤として作用し、0.08%を超える含有は、靭性の低下を招く。このため、Al含有量は0.08%以下、好ましくは0.01〜0.05%とする。
・Mo:0.1〜0.5%
Moは、本発明において重要な元素であり、0.1%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Ti、Nb、Vとの微細な複合炭化物を形成し、強度上昇に大きく寄与する。しかし、0.5%を超えるとHAZ靭性の劣化を招く。このため、Mo含有量は0.1〜0.5%とする。
-Al: 0.08% or less Al acts as a deoxidizer during steelmaking, and inclusion exceeding 0.08% causes a decrease in toughness. For this reason, the Al content is 0.08% or less, preferably 0.01 to 0.05%.
Mo: 0.1-0.5%
Mo is an important element in the present invention. By containing 0.1% or more, Mo forms a fine composite carbide with Ti, Nb, and V while suppressing pearlite transformation during cooling after hot rolling. , Greatly contribute to strength increase. However, if it exceeds 0.5%, the HAZ toughness is deteriorated. For this reason, Mo content is made into 0.1 to 0.5%.

・Ti:0.005〜0.035%
Tiは、0.005%以上添加することで、Moと複合炭化物を形成し、強度上昇に大きく寄与する。しかし、0.035%を超える添加はHAZ靭性および母材靭性の劣化を招く。このため、Ti含有量は0.005〜0.035%とする。
・Nb:0.005〜0.07%
Nbは、組織の微細粒化により靭性を向上させるが、Moと複合炭化物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、一方、0.07%を超えるとHAZ靭性が劣化する。このため、Nb含有量は0.005〜0.07%とする。
Ti: 0.005-0.035%
When Ti is added in an amount of 0.005% or more, it forms a composite carbide with Mo and greatly contributes to an increase in strength. However, addition exceeding 0.035% causes deterioration of HAZ toughness and base metal toughness. For this reason, Ti content shall be 0.005-0.035%.
・ Nb: 0.005 to 0.07%
Nb improves toughness by refining the structure, but forms a composite carbide with Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, while if it exceeds 0.07%, the HAZ toughness deteriorates. For this reason, Nb content shall be 0.005-0.07%.

本発明では、鋼板の化学成分が、さらに下記(i)式および(ii)式の条件を満足する必要がある。
・9×Ceq値+4×P値≧4.8 …(i)
この(i)式中、Ceq値は下記(1)式で表され、P値は下記(2)式で表される。特に、Ceq値はPWHT処理前の強度と相関があり、強度の指標としてよく用いられる。また、P値は析出強化の指標となる。実験から求めた回帰式より、9×Ceq値+4×P値<4.8では、PWHT処理後にAPI
X100グレードの高強度が得られない。このため9×Ceq値+4×P値≧4.8とする。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5
…(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
P値=[Mo]+[Ti]+[Nb]+[V] …(2)
但し、(2)式の元素記号は各含有元素の原子%を示す。
In the present invention, the chemical components of the steel sheet must further satisfy the conditions of the following formulas (i) and (ii).
・ 9 × Ceq value + 4 × P value ≧ 4.8 (i)
In this formula (i), the Ceq value is represented by the following formula (1), and the P value is represented by the following formula (2). In particular, the Ceq value has a correlation with the intensity before the PWHT process, and is often used as an index of intensity. The P value is an index for precipitation strengthening. From the regression equation obtained from the experiment, when 9 × Ceq value + 4 × P value <4.8, the API after PWHT processing
High strength of X100 grade cannot be obtained. Therefore, 9 × Ceq value + 4 × P value ≧ 4.8.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5
… (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
P value = [Mo] + [Ti] + [Nb] + [V] (2)
However, the element symbol of the formula (2) indicates atomic% of each contained element.

なお、(2)式における上記元素の原子%での合計量は、鋼に含まれるMo、Ti、Nb、Vの原子数の和と、Fe、Mo、Ti、Nb、Vおよび他の合金元素の全原子数との比で求められるが、Mo、Ti、Nb、Vの質量%での含有量を用いた下記(3)式により求めることもできる。
(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)/(100/55.85)×100 …(3)
但し、(3)式の元素記号は各含有元素の質量%を示す。
In addition, the total amount in atomic% of the above element in the formula (2) is the sum of the number of atoms of Mo, Ti, Nb, V contained in steel, Fe, Mo, Ti, Nb, V, and other alloy elements. Although it can obtain | require by ratio with the total number of atoms of, it can also obtain | require by following (3) Formula using content in the mass% of Mo, Ti, Nb, and V.
(Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) / (100 / 55.85) × 100 (3)
However, the element symbol of the formula (3) indicates mass% of each contained element.

・0.6≦[C]/([Mo]+[Ti]+[Nb]+[V])≦1.7
…(ii) 但し、(ii)式の元素記号は各含有元素の原子%を示す。
本発明の鋼板の高強度化は、Ti、NbとMoからなる複合炭化物、或いはさらにVを含む複合炭化物によるものである。この複合炭化物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti、Nb、V量の関係が重要であり、これらの元素を適正なバランスのもとで添加することによって、熱的に安定で且つ非常に微細な複合炭化物を得ることができる。このときCの原子%での含有量と、Mo、Ti、Nb、Vの原子%での含有量の合計量の比である[C]/([Mo]+[Ti]+[Nb]+[V])の値は0.6〜1.7とする。[C]/([Mo]+[Ti]+[Nb]+[V])の値が0.6未満または1.7を超える場合はいずれかの元素量が過剰であり、本発明が狙いとする複合炭化物以外の硬化組織が過度に形成されて、耐PWHT特性の劣化や、靭性の劣化を招く。
なお、質量%の含有量を用いる場合は、以下の(iii)式を用いて計算して、その値を0.6〜1.7としてもよい。
(C/12.01)/(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9) …(iii)
但し、(iii)式の元素記号は各含有元素の質量%を示す。
0.6 ≦ [C] / ([Mo] + [Ti] + [Nb] + [V]) ≦ 1.7
... (ii) However, the element symbol of the formula (ii) indicates the atomic% of each contained element.
The strengthening of the steel sheet of the present invention is due to a composite carbide composed of Ti, Nb and Mo, or a composite carbide further containing V. In order to effectively use the precipitation strengthening by this composite carbide, the relationship between the amount of C and the amount of carbide forming elements Mo, Ti, Nb, and V is important, and these elements are added in an appropriate balance. By doing so, a thermally stable and very fine composite carbide can be obtained. At this time, [C] / ([Mo] + [Ti] + [Nb] +, which is the ratio of the content of C in atomic% and the total content of Mo, Ti, Nb, and V in atomic%) The value of [V]) is 0.6 to 1.7. When the value of [C] / ([Mo] + [Ti] + [Nb] + [V]) is less than 0.6 or exceeds 1.7, the amount of any element is excessive, and the present invention is aimed at. Hardened structures other than the composite carbide are formed excessively, leading to deterioration of PWHT resistance and toughness.
In addition, when using content of the mass%, it is good also considering the following formula (iii) and calculating the value from 0.6 to 1.7.
(C / 12.01) / (Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) (iii)
However, the element symbol of the formula (iii) indicates mass% of each contained element.

本発明の鋼板は、さらに強度上昇を図るために、Vを含有してもよい。また、強度や靭性をさらに改善する目的で、Cu、Ni、Cr、Ca、REM、Bの中から選ばれる1種または2種以上を含有してもよい。
・V:0.005〜0.1%
Vは、Nbと同様にMoと複合炭化物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、一方、0.1%を超えるとHAZ靭性が劣化する。このため、Vを添加する場合には、その含有量を0.005〜0.1%とする。
・Cu:0.5%以下
Cuは、靭性の改善と強度の上昇に有効な元素であるが、過剰に添加すると溶接性が劣化するため、Cuを添加する場合には、その含有量を0.5%以下とする。
The steel plate of the present invention may contain V in order to further increase the strength. Moreover, in order to further improve the strength and toughness, one or more selected from Cu, Ni, Cr, Ca, REM, and B may be contained.
・ V: 0.005-0.1%
V, like Nb, forms a composite carbide with Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, while if it exceeds 0.1%, the HAZ toughness deteriorates. For this reason, when adding V, the content shall be 0.005-0.1%.
Cu: 0.5% or less Cu is an element effective for improving toughness and increasing strength, but if added excessively, weldability deteriorates. Therefore, when Cu is added, its content is reduced to 0. .5% or less.

・Ni:0.5%以下
Niは、靭性の改善と強度の上昇に有効な元素であるが、過剰に添加すると耐PWHT特性が低下するため、Niを添加する場合には、その含有量を0.5%以下とする。
・Cr:0.5%以下
Crは、Mnと同様に低Cでも十分な強度を得るために有効な元素であるが、過剰に添加すると溶接性を劣化するため、Crを添加する場合には、その含有量を0.5%以下とする。
・Ca:0.0005〜0.0035%
Caは、硫化物系介在物の形態制御による靭性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、一方、0.0035%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させる。このため、Caを添加する場合には、その含有量を0.0005〜0.0035%とする。
-Ni: 0.5% or less Ni is an element effective for improving toughness and increasing strength. However, when added excessively, the PWHT resistance is lowered. 0.5% or less.
-Cr: 0.5% or less Cr is an element effective for obtaining sufficient strength even at low C, as with Mn. However, if excessively added, weldability deteriorates. The content is 0.5% or less.
・ Ca: 0.0005 to 0.0035%
Ca is an element effective for improving toughness by controlling the form of sulfide inclusions. However, if it is less than 0.0005%, the effect is not sufficient, and if added over 0.0035%, it is effective. Saturates, but rather degrades the toughness due to a reduction in the cleanliness of the steel. For this reason, when adding Ca, the content shall be 0.0005 to 0.0035%.

・REM:0.0005〜0.01%
REMもまた鋼中の硫化物系介在物の形態制御による靭性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、一方、0.01%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させる。このため、REMを添加する場合には、その含有量を0.0005〜0.01%とする。
・B:0.002%以下
Bは、オーステナイト粒界に偏析し、フェライト変態を抑制することで、特に溶接熱影響部の強度低下の防止に寄与するが、0.002%を超えて添加してもその効果は飽和する。このため、Bを添加する場合には、その含有量を0.002%以下とする。
・ REM: 0.0005 to 0.01%
REM is also an element effective for improving toughness by controlling the form of sulfide inclusions in steel, but if it is less than 0.0005%, its effect is not sufficient, while it is added in excess of 0.01%. However, the effect is saturated, and rather, the toughness is deteriorated due to a decrease in the cleanliness of the steel. For this reason, when adding REM, the content shall be 0.0005 to 0.01%.
-B: 0.002% or less B segregates at the austenite grain boundaries and suppresses ferrite transformation, thereby contributing to the prevention of strength reduction particularly in the heat affected zone of the weld. However, B is added in excess of 0.002%. But the effect is saturated. For this reason, when adding B, the content shall be 0.002% or less.

上記以外の残部は実質的にFeからなる。したがって、本発明の作用効果を無くさない限り、不可避不純物をはじめとする他の微量元素を含有することを妨げない。
なお、本発明において、V、Cu、Ni、Crは選択的な添加元素であるので、これらの元素を添加しない場合には、上記(i)式および(ii)式中の当該元素量の値は“零”となる。
The balance other than the above consists essentially of Fe. Therefore, as long as the effects of the present invention are not lost, the inclusion of other trace elements including inevitable impurities is not prevented.
In the present invention, V, Cu, Ni, and Cr are selective additive elements. Therefore, when these elements are not added, the value of the element amount in the above formulas (i) and (ii) Becomes “zero”.

[ミクロ組織・複合炭化物の析出形態]
本発明の鋼板は、島状マルテンサイト(M-A constituent)分率が2%以下であるベイナイト組織を主体とするミクロ組織を有し、さらに、円相当径が10nm以下であって、Moを主体とし、Tiおよび/またはNbを含む複合炭化物が1μmあたり30個以上分散し、且つ当該複合炭化物(円相当径が10nm以下の複合炭化物)の総析出量が0.03質量%以上であることが必要である。また、本発明の鋼板がVを含む場合には、上記の条件を満足する複合炭化物は、さらにVを含むことになる。
ここで、複合炭化物の円相当径とは、画像処理により求めた複合炭化物の面積を円の面積に換算した際の当該円の直径である。
[Precipitation form of microstructure and composite carbide]
The steel sheet of the present invention has a microstructure mainly composed of a bainite structure having an island-like martensite (MA) fraction of 2% or less, and further has an equivalent circle diameter of 10 nm or less, 30 or more composite carbides containing Ti and / or Nb as a main component are dispersed per 1 μm 2 , and the total precipitation amount of the composite carbide (composite carbide having an equivalent circle diameter of 10 nm or less) is 0.03% by mass or more. It is necessary. Moreover, when the steel plate of this invention contains V, the composite carbide which satisfies said conditions will contain V further.
Here, the equivalent circle diameter of the composite carbide is the diameter of the circle when the area of the composite carbide obtained by image processing is converted into the area of the circle.

PWHT処理前のミクロ組織形態を上記のように制御すれば、700℃程度以下のPWHT処理後においても強度が低下することなく、760MPa以上の引張強度を維持することが可能である。
なお、以上のような鋼板のミクロ組織および複合炭化物の析出形態は、鋼板の板厚方向位置にかかわりなく満足する必要があるが、例えば、島状マルテンサイト分率については、板厚断面中心位置で走査型電子顕微鏡(倍率2000倍)でランダムに10視野以上観察して面積率を測定し、同定すればよい。また、Mo主体の複合炭化物の析出形態については、板厚断面中心位置で透過型電子顕微鏡(倍率30000倍)でランダムに10視野以上観察し、その析出形態(個々の複合炭化物の面積および複合炭化物の分散密度)を同定すればよい。
If the microstructure form before the PWHT treatment is controlled as described above, it is possible to maintain a tensile strength of 760 MPa or more without decreasing the strength even after the PWHT treatment of about 700 ° C. or less.
Note that the microstructure of the steel sheet and the precipitation form of the composite carbide as described above need to be satisfied regardless of the position in the thickness direction of the steel sheet. For example, for the island-like martensite fraction, Then, the area ratio may be measured and identified by observing at least 10 fields of view randomly with a scanning electron microscope (magnification 2000 times). In addition, the precipitation form of Mo-based composite carbide was observed at random in the center of the plate thickness section with a transmission electron microscope (magnification 30000 times) at least 10 fields of view, and the precipitation form (area of each composite carbide and composite carbide) (Dispersion density) may be identified.

[製造条件]
以下、本発明の高強度鋼板の製造条件について説明する。
本発明は、加速冷却時のベイナイト変態による変態強化と、加速冷却後の再加熱時に析出する微細炭化物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能で、さらにPWHT処理を行なう場合にも、微細炭化物は熱的に安定であるのでPWHT処理時にそのままで維持され、PWHT処理後でもその強度が維持される技術である。
本発明では、例えば、未再結晶オーステナイト域で一定以上の累積圧下を加えた後、オーステナイト単相域から加速冷却を開始し、ベイナイト変態終了温度以下で冷却を停止し、直ちに急速再加熱することにより、変態強化と析出強化を最も有効に複合して活用することが可能となる。なお、未再結晶オーステナイト域(800℃以下)での累積圧下率が少ない場合、加工オーステナイトから変態するベイナイトへの蓄積転位の移行が十分でなく、転位上に優先析出する複合炭化物の微細分散化が不十分となり、析出強化量が低下するため、未再結晶オーステナイト域での累積圧下率を70%以上とする必要がある。また、Ar点以下の2相域から冷却開始すると、ポリゴナルフェライトが混在し、PWHT処理前の強度低下が大きいため、冷却開始温度はAr点以上となる700℃以上とする必要がある。
[Production conditions]
Hereinafter, the manufacturing conditions of the high-strength steel sheet of the present invention will be described.
The present invention uses a combination of transformation strengthening due to bainite transformation during accelerated cooling and precipitation strengthening due to fine carbides precipitated during reheating after accelerated cooling, thereby increasing strength without adding a large amount of alloying elements. In addition, even when the PWHT treatment is performed, since the fine carbide is thermally stable, it is maintained as it is during the PWHT treatment, and the strength is maintained even after the PWHT treatment.
In the present invention, for example, after applying a cumulative pressure of a certain level or more in the non-recrystallized austenite region, accelerated cooling is started from the austenite single phase region, cooling is stopped at the bainite transformation end temperature or less, and immediate rapid reheating is performed. This makes it possible to combine and use transformation strengthening and precipitation strengthening most effectively. When the cumulative reduction ratio in the non-recrystallized austenite region (800 ° C. or less) is small, the transition of accumulated dislocations from processed austenite to transformed bainite is not sufficient, and fine dispersion of composite carbide preferentially precipitates on the dislocations. Becomes insufficient and the precipitation strengthening amount decreases, so the cumulative rolling reduction in the non-recrystallized austenite region needs to be 70% or more. In addition, when cooling is started from a two-phase region of Ar 3 points or less, polygonal ferrite is mixed, and the strength decrease before PWHT treatment is large. Therefore, the cooling start temperature needs to be 700 ° C. or more, which is Ar 3 points or more. .

具体的に、本発明の高強度鋼板は、次のような製造条件で製造することができる。すなわち、上記の成分組成を有する鋼を用い、加熱温度:1100〜1300℃、800℃以下での累積圧下率:70%以上で熱間圧延を行い、その後、Ar点を上回る700℃以上から20℃/s以上の冷却速度で冷却を開始して300℃未満の温度まで加速冷却を行い、その後直ちに0.5℃/s以上10℃/s未満の昇温速度で550〜700℃の温度まで再加熱を行うことで、鋼板ミクロ組織中の島状マルテンサイト(M-A constituent)分率が2%以下のベイナイト組織を主体とし、円相当径が10nm以下であって、Moを主体とし、Tiおよび/またはNbを含む、或いはさらにVを含む微細な複合炭化物が1μmあたり30個以上分散し、且つ当該複合炭化物の総析出量が0.03質量%以上である本発明の高強度鋼板が得られる。ここで、上述した製造条件の各温度は鋼板の平均温度(板厚方向の平均温度)である。 Specifically, the high-strength steel sheet of the present invention can be manufactured under the following manufacturing conditions. That is, using steel having the above-described composition, hot rolling is performed at a heating temperature of 1100 to 1300 ° C. and a cumulative rolling reduction at 800 ° C. or less: 70% or more, and thereafter from 700 ° C. or more exceeding Ar 3 point. Cooling is started at a cooling rate of 20 ° C./s or more, accelerated cooling is performed to a temperature of less than 300 ° C., and immediately thereafter a temperature of 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more and less than 10 ° C./s. Is reheated until the main component is a bainite structure having an island-like martensite (MA) fraction in the microstructure of the steel sheet of 2% or less, the equivalent circle diameter is 10 nm or less, Mo is the main component, and Ti and / or containing Nb, or further dispersed fine composite carbide is 1 [mu] m 2 per 30 or more, including a V, and the total deposition amount of the composite carbides is high-strength steel sheet of the present invention which is 0.03 wt% or more It is. Here, each temperature of the manufacturing conditions mentioned above is the average temperature of a steel plate (average temperature of a plate | board thickness direction).

熱間圧延において、加熱温度が1100℃未満では、出鋼スラブ中の粗大な炭化物の溶解が不十分となり、析出強化が不十分となる。一方、1300℃を超えると、初期γ粒が粗大化するため、靱性が劣化する。また、800℃以下での累積圧下率が70%未満では、上述したとおり、複合炭化物の微細分散化が不十分となり、析出強化量が低下する。
熱間圧延後の加速冷却において、冷却開始温度が700℃未満では、上述したとおり、ポリゴナルフェライトが混在し、PWHT処理前の強度低下が大きい。また、冷却速度が20℃/s未満では、ベイナイト組織が粗大化し、PWHT処理前の強度確保が困難となる。また、冷却停止温度が300℃以上では、ミクロ組織中のベイナイト母相が軟質化し、PWHT処理前の強度が低下するとともに、島状マルテンサイト分率が2%超えとなり、PWHT処理後の強度低下を招きやすい。
In hot rolling, when the heating temperature is less than 1100 ° C., the dissolution of coarse carbides in the steel slab becomes insufficient, and precipitation strengthening becomes insufficient. On the other hand, if the temperature exceeds 1300 ° C., the initial γ grains become coarse and the toughness deteriorates. On the other hand, when the cumulative rolling reduction at 800 ° C. or lower is less than 70%, as described above, the fine dispersion of the composite carbide becomes insufficient, and the precipitation strengthening amount decreases.
In accelerated cooling after hot rolling, when the cooling start temperature is less than 700 ° C., as described above, polygonal ferrite is mixed and the strength reduction before PWHT treatment is large. On the other hand, when the cooling rate is less than 20 ° C./s, the bainite structure becomes coarse and it is difficult to ensure the strength before the PWHT treatment. In addition, when the cooling stop temperature is 300 ° C. or higher, the bainite matrix in the microstructure becomes soft, the strength before PWHT treatment decreases, and the island-like martensite fraction exceeds 2%, and the strength decreases after PWHT treatment. It is easy to invite.

加速冷却後の再加熱において、昇温速度が0.5℃/s未満では、複合炭化物の微細分散が困難となる。一方、昇温速度が10℃/s以上では、複合炭化物析出までの時間が短く、PWHT処理前の複合炭化物の析出量が30個未満と少なくなり、PWHT処理前の強度が低下する。また、再加熱温度が550℃未満では、複合炭化物の析出が不十分となる。一方、700℃を超えると、強度が大きく低下する。
また、本発明の高強度鋼管は、上述した高強度鋼板を素材とする鋼管であって、通常の造管方法にしたがい、鋼板を長手方向で筒状に成形し、その突合せ部を管内外面から1層ずつ長手方向に溶接して得られる。
In reheating after accelerated cooling, if the rate of temperature increase is less than 0.5 ° C./s, fine dispersion of the composite carbide becomes difficult. On the other hand, when the rate of temperature rise is 10 ° C./s or more, the time until precipitation of composite carbide is short, the amount of precipitation of composite carbide before PWHT treatment is less than 30, and the strength before PWHT treatment is reduced. In addition, when the reheating temperature is less than 550 ° C., the precipitation of the composite carbide becomes insufficient. On the other hand, when it exceeds 700 ° C., the strength is greatly reduced.
The high-strength steel pipe of the present invention is a steel pipe made of the above-described high-strength steel plate, and is formed into a cylindrical shape in the longitudinal direction according to a normal pipe making method, and the butt portion is formed from the inside and outside of the pipe It is obtained by welding one layer at a time in the longitudinal direction.

表1に示す化学成分の鋼(鋼種A〜M)を連続鋳造法によりスラブとし、これを用いて表2および表3に示すNo.1〜20の厚鋼板(板厚20mm)を製造した。
この厚鋼板の製造では、加熱したスラブを熱間圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、加速冷却設備と同一ライン上に設置したインライン型の誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。
各鋼板の製造条件を表2に示す。
製造された鋼板の引張特性については、圧延方向と同一方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。本発明で目標とする強度は、降伏強度690MPa以上、引張強度760MPa以上である。HAZ靭性については、再現熱サイクル装置によって入熱20〜50kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。−10℃でのシャルピー吸収エネルギーが100J以上のものを良好(○)、100J未満のものを不良(×)とした。
Steels of the chemical composition shown in Table 1 (steel types A to M) were made into slabs by a continuous casting method, and No. 2 shown in Tables 2 and 3 were used. 1 to 20 thick steel plates (thickness 20 mm) were produced.
In the production of this steel plate, after the hot slab is hot-rolled, it is immediately cooled using water-cooled accelerated cooling equipment, and an inline induction furnace or gas combustion installed on the same line as the accelerated cooling equipment. Reheating was performed using a furnace.
Table 2 shows the manufacturing conditions of each steel plate.
About the tensile characteristic of the manufactured steel plate, the tensile test was done by making the full thickness test piece of the same direction as a rolling direction into a tensile test piece, and measured the tensile strength. The strengths targeted in the present invention are a yield strength of 690 MPa or more and a tensile strength of 760 MPa or more. About HAZ toughness, the Charpy test was done using the test piece which added the heat history equivalent to heat input 20-50 kJ / cm with the reproduction | regeneration thermal cycle apparatus. A sample having Charpy absorbed energy at −10 ° C. of 100 J or higher was evaluated as good (◯), and a sample having a Charpy absorbed energy of less than 100 J was determined as poor (×).

また、耐PWHT特性を調査するため、ガス雰囲気炉を用いて各鋼板にPWHT処理を行なった。このときの熱処理条件は650℃および700℃で2時間とし、その後、炉から取り出し空冷によって室温まで冷却した。そして、PWHT処理前の鋼板のミクロ組織形態および析出物形態を調査するとともに、PWHT処理前後の鋼板の引張特性およびHAZ靭性を測定した。測定結果を表3に示す。
表3において、本発明例であるNo.1〜7は、いずれも700℃でのPWHT処理後でも強度低下が50MPa以下であり、降伏強度690MPa以上、引張強度760MPa以上の高強度が維持され、さらに母材靭性およびHAZ靭性も良好であった。
Further, in order to investigate the PWHT resistance characteristics, PWHT treatment was performed on each steel plate using a gas atmosphere furnace. The heat treatment conditions at this time were 650 ° C. and 700 ° C. for 2 hours, and then removed from the furnace and cooled to room temperature by air cooling. And while investigating the microstructure form and precipitate form of the steel plate before PWHT processing, the tensile property and HAZ toughness of the steel plate before and after PWHT processing were measured. Table 3 shows the measurement results.
In Table 3, No. which is an example of the present invention. Nos. 1 to 7 have a strength drop of 50 MPa or less even after PWHT treatment at 700 ° C., maintain a high strength of a yield strength of 690 MPa or more and a tensile strength of 760 MPa or more, and have good base metal toughness and HAZ toughness. It was.

これに対して比較例であるNo.8,9,13,14は、化学成分は本発明の範囲内であるが、10nm以下の微細複合炭化物の分散量が1μmあたり30個未満であり、PWHT処理前またはPWHT処理後の母材強度、母材靭性が劣化した。比較例であるNo.10は、化学成分は本発明の範囲内であるが、PWHT処理前の鋼板ミクロ組織中にフェライト組織が混在するとともに、島状マルテンサイト(M・A constituent)分率が2%を超えており、PWHT処理前後の母材強度が劣化した。比較例であるNo.11,12は、化学成分は本発明の範囲内であるが、PWHT処理前の鋼板ミクロ組織中の島状マルテンサイト(M-A constituent)分率が2%を超えており、PWHT処理後の母材強度あるいはPWHT処理前の母材靭性が劣化した。比較例であるNo.15〜18は化学成分が本発明の範囲外であるので、十分な母材強度・靭性が得られないか、あるいはHAZ靭性が劣っていた。比較例であるNo.19は、パラメータXの値が本発明の範囲外であり、特に700℃のPWHT処理後の母材強度が劣化した。また、比較例であるNo.20は、パラメータYの値が本発明の範囲外であり、PWHT処理後の母材強度が劣化した。 On the other hand, the comparative example No. Nos. 8, 9, 13, and 14 have chemical components within the scope of the present invention, but the dispersion amount of the fine composite carbide of 10 nm or less is less than 30 per 1 μm 2 , and is a base material before or after PWHT treatment. Strength and base metal toughness deteriorated. No. which is a comparative example. No. 10, the chemical composition is within the scope of the present invention, but the ferrite structure is mixed in the steel plate microstructure before the PWHT treatment, and the island-like martensite (M · A constituent) fraction exceeds 2%. The base material strength before and after the PWHT treatment deteriorated. No. which is a comparative example. 11 and 12, although the chemical composition is within the scope of the present invention, the fraction of island martensite (MA constituent) in the steel sheet microstructure before PWHT treatment exceeds 2%, and the base material after PWHT treatment Strength or base metal toughness before PWHT treatment deteriorated. No. which is a comparative example. Since chemical components 15 to 18 are outside the scope of the present invention, sufficient base material strength / toughness was not obtained, or HAZ toughness was inferior. No. which is a comparative example. In No. 19, the value of the parameter X was outside the range of the present invention, and in particular, the base metal strength after the PWHT treatment at 700 ° C. was deteriorated. Moreover, No. which is a comparative example. No. 20, the value of the parameter Y was outside the range of the present invention, and the base material strength after the PWHT treatment was deteriorated.

Figure 2009174024
Figure 2009174024

Figure 2009174024
Figure 2009174024

Figure 2009174024
Figure 2009174024

Claims (5)

質量%で、C:0.03〜0.07%、Si:0.01〜0.5%、Mn:1.5〜2.5%、Mo:0.1〜0.5%、Al:0.08%以下、Ti:0.005〜0.035%、Nb:0.005〜0.07%を含有し、下記(1)式で表わされるCeq値と下記(2)式で表わされるP値が下記(i)式を満足し、
9×Ceq値+4×P値≧4.8 …(i)
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5
…(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
P値=[Mo]+[Ti]+[Nb]+[V] …(2)
但し、(2)式の元素記号は各含有元素の原子%を示す。
且つ下記(ii)式を満足する成分組成を有し、
0.6≦[C]/([Mo]+[Ti]+[Nb]+[V])≦1.7
…(ii)
但し、(ii)式の元素記号は各含有元素の原子%を示す。
鋼板ミクロ組織中の島状マルテンサイト(M-A constituent)分率が2%以下であるベイナイト組織を主体とし、円相当径が10nm以下であって、Moを主体とし、Tiおよび/またはNbを含む複合炭化物が1μmあたり30個以上分散し、当該複合炭化物の総析出量が0.03質量%以上であることを特徴とする、耐PWHT特性に優れた高強度鋼板。
In mass%, C: 0.03-0.07%, Si: 0.01-0.5%, Mn: 1.5-2.5%, Mo: 0.1-0.5%, Al: 0.08% or less, Ti: 0.005 to 0.035%, Nb: 0.005 to 0.07%, Ceq value represented by the following formula (1) and represented by the following formula (2) P value satisfies the following formula (i),
9 × Ceq value + 4 × P value ≧ 4.8 (i)
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5
… (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
P value = [Mo] + [Ti] + [Nb] + [V] (2)
However, the element symbol of the formula (2) indicates atomic% of each contained element.
And having a component composition satisfying the following formula (ii):
0.6 ≦ [C] / ([Mo] + [Ti] + [Nb] + [V]) ≦ 1.7
... (ii)
However, the element symbol in the formula (ii) indicates atomic% of each contained element.
A composite mainly composed of a bainite structure having an island-like martensite (MA constituent) fraction of 2% or less in a steel sheet microstructure, an equivalent circle diameter of 10 nm or less, mainly composed of Mo, and containing Ti and / or Nb. A high-strength steel sheet having excellent PWHT resistance, wherein 30 or more carbides are dispersed per 1 μm 2 and the total precipitation amount of the composite carbide is 0.03% by mass or more.
さらに、質量%で、V:0.005〜0.1%を含有し、Moを主体とし、Tiおよび/またはNbを含む複合炭化物が、さらにVを含むことを特徴とする、請求項1に記載の耐PWHT特性に優れた高強度鋼板。   Further, the composite carbide containing, in mass%, V: 0.005 to 0.1%, mainly composed of Mo, and containing Ti and / or Nb, further contains V. A high-strength steel sheet having excellent PWHT resistance described. さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.0035%、REM:0.0005〜0.01%、B:0.002%以下の中から選ばれる1種または2種以上を含有することを特徴とする、請求項1または2に記載の耐PWHT特性に優れた高強度鋼板。   Furthermore, in mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.0035%, REM: 0.0005 to 0.01 %, B: One type or two or more types selected from 0.002% or less are contained, The high-strength steel sheet having excellent PWHT resistance according to claim 1 or 2. 請求項1〜3のいずれかに記載の成分組成を有する鋼を、加熱温度:1100〜1300℃、800℃以下での累積圧下率:70%以上で熱間圧延し、その後、冷却開始温度:700℃以上、冷却速度:20℃/s以上で300℃未満の温度まで加速冷却し、その後直ちに、0.5℃/s以上10℃/s未満の昇温速度で550〜700℃の温度まで再加熱することを特徴とする、耐PWHT特性に優れた高強度鋼板の製造方法。   The steel having the component composition according to any one of claims 1 to 3 is hot-rolled at a heating temperature of 1100 to 1300 ° C and a cumulative reduction ratio of 800 ° C or less: 70% or more, and then a cooling start temperature: 700 ° C. or higher, cooling rate: accelerated cooling to a temperature of 20 ° C./s or higher and lower than 300 ° C., and immediately thereafter, a temperature rising rate of 0.5 ° C./s or higher and lower than 10 ° C./s to a temperature of 550 to 700 ° C. A method for producing a high-strength steel sheet having excellent PWHT resistance, characterized by reheating. 請求項1〜3のいずれかに記載の鋼板を素材とする鋼管であって、鋼板を長手方向で筒状に成形し、その突合せ部を管内外面から1層ずつ長手方向に溶接して得られることを特徴とする高強度鋼管。   It is a steel pipe which uses the steel plate according to any one of claims 1 to 3 as a raw material, and is obtained by forming the steel plate into a cylindrical shape in the longitudinal direction and welding the butt portion one layer at a time from the inside and outside of the tube. High strength steel pipe characterized by that.
JP2008015505A 2008-01-25 2008-01-25 High strength steel plate with excellent PWHT resistance and method for producing the same Active JP5181697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015505A JP5181697B2 (en) 2008-01-25 2008-01-25 High strength steel plate with excellent PWHT resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015505A JP5181697B2 (en) 2008-01-25 2008-01-25 High strength steel plate with excellent PWHT resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009174024A true JP2009174024A (en) 2009-08-06
JP5181697B2 JP5181697B2 (en) 2013-04-10

Family

ID=41029413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015505A Active JP5181697B2 (en) 2008-01-25 2008-01-25 High strength steel plate with excellent PWHT resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5181697B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235986A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp High-strength steel sheet excellent in pwht-resistant characteristics and uniformly stretching characteristics, and manufacturing method therefor
JP2013159793A (en) * 2012-02-02 2013-08-19 Nippon Steel & Sumitomo Metal Corp Uoe steel pipe for line pipe
WO2016152173A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
WO2016152171A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP2019007056A (en) * 2017-06-27 2019-01-17 Jfeスチール株式会社 Clad steel sheet excellent in base material low temperature toughness and haz toughness and manufacturing method therefor
JP2019007055A (en) * 2017-06-27 2019-01-17 Jfeスチール株式会社 Clad steel sheet having high strength base material excellent in low temperature toughness, and manufacturing method therefor
JP2022510216A (en) * 2018-11-29 2022-01-26 ポスコ Steel material with excellent toughness of weld heat affected zone and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350688A (en) * 2004-06-08 2005-12-22 Sumitomo Metal Ind Ltd Ultrahigh steel sheet for line pipe, its production method and welded steel pipe
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP2008274405A (en) * 2007-03-30 2008-11-13 Jfe Steel Kk High-strength steel sheet excellent in sr resistant property and deformation performance, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350688A (en) * 2004-06-08 2005-12-22 Sumitomo Metal Ind Ltd Ultrahigh steel sheet for line pipe, its production method and welded steel pipe
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP2008274405A (en) * 2007-03-30 2008-11-13 Jfe Steel Kk High-strength steel sheet excellent in sr resistant property and deformation performance, and method for manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235986A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp High-strength steel sheet excellent in pwht-resistant characteristics and uniformly stretching characteristics, and manufacturing method therefor
JP2013159793A (en) * 2012-02-02 2013-08-19 Nippon Steel & Sumitomo Metal Corp Uoe steel pipe for line pipe
EP3276027A4 (en) * 2015-03-26 2018-01-31 JFE Steel Corporation Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
EP3276025A4 (en) * 2015-03-26 2018-01-31 JFE Steel Corporation Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JPWO2016152171A1 (en) * 2015-03-26 2017-06-15 Jfeスチール株式会社 Steel sheet for structural pipe, method for manufacturing steel sheet for structural pipe, and structural pipe
JPWO2016152173A1 (en) * 2015-03-26 2017-06-22 Jfeスチール株式会社 Steel sheet for structural pipe, method for manufacturing steel sheet for structural pipe, and structural pipe
KR20170128575A (en) * 2015-03-26 2017-11-22 제이에프이 스틸 가부시키가이샤 Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
KR20170130484A (en) * 2015-03-26 2017-11-28 제이에프이 스틸 가부시키가이샤 Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
CN107429346A (en) * 2015-03-26 2017-12-01 杰富意钢铁株式会社 The manufacture method and structural tube of structural tube steel plate, structural tube steel plate
CN107429351A (en) * 2015-03-26 2017-12-01 杰富意钢铁株式会社 The manufacture method and structural tube of structural tube steel plate, structural tube steel plate
WO2016152173A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
WO2016152171A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
US20180057905A1 (en) * 2015-03-26 2018-03-01 Jfe Steel Corporation Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
US11001905B2 (en) 2015-03-26 2021-05-11 Jfe Steel Corporation Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
KR102002241B1 (en) 2015-03-26 2019-07-19 제이에프이 스틸 가부시키가이샤 Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
RU2679499C1 (en) * 2015-03-26 2019-02-11 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet steel for construction pipes or tubes, method of manufacture of sheet steel for construction pipes or tubes and construction pipes and tubes
KR101993201B1 (en) 2015-03-26 2019-06-26 제이에프이 스틸 가부시키가이샤 Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP2019007055A (en) * 2017-06-27 2019-01-17 Jfeスチール株式会社 Clad steel sheet having high strength base material excellent in low temperature toughness, and manufacturing method therefor
JP2019007056A (en) * 2017-06-27 2019-01-17 Jfeスチール株式会社 Clad steel sheet excellent in base material low temperature toughness and haz toughness and manufacturing method therefor
JP2022510216A (en) * 2018-11-29 2022-01-26 ポスコ Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP7236540B2 (en) 2018-11-29 2023-03-09 ポスコ カンパニー リミテッド Steel material excellent in toughness of welded heat affected zone and method for producing the same

Also Published As

Publication number Publication date
JP5181697B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
CA2980247C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
WO2010093053A1 (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP4700741B2 (en) Manufacturing method of steel plate for thick-walled sour line pipe with excellent toughness
WO2015012317A1 (en) Steel plate for line pipe, and line pipe
JP5369639B2 (en) High strength steel material excellent in welding heat-affected zone toughness and HIC resistance and manufacturing method thereof
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP2008248328A (en) Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
WO2010095730A1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP2009209443A (en) Steel sheet for line pipe, method for producing the same, and line pipe
WO2016152173A1 (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP6624145B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP7163777B2 (en) Steel plate for line pipe
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5181697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250