JP2004099930A - High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same - Google Patents

High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same Download PDF

Info

Publication number
JP2004099930A
JP2004099930A JP2002260244A JP2002260244A JP2004099930A JP 2004099930 A JP2004099930 A JP 2004099930A JP 2002260244 A JP2002260244 A JP 2002260244A JP 2002260244 A JP2002260244 A JP 2002260244A JP 2004099930 A JP2004099930 A JP 2004099930A
Authority
JP
Japan
Prior art keywords
less
steel pipe
weld
haz
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002260244A
Other languages
Japanese (ja)
Other versions
JP4171267B2 (en
Inventor
Takuya Hara
原 卓也
Hitoshi Asahi
朝日 均
Eiji Tsuru
津留 英司
Yutaka Morimoto
森本 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002260244A priority Critical patent/JP4171267B2/en
Publication of JP2004099930A publication Critical patent/JP2004099930A/en
Application granted granted Critical
Publication of JP4171267B2 publication Critical patent/JP4171267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength welded steel pipe which has low-temperature toughness, facilitates on-site welding, and has tensile strength above ≥800 MPa (over X100 stipulated in API (Americal Petroleum Institute)) and a method for manufacturing the same. <P>SOLUTION: The high-strength welded steel pipe having the excellent toughness of a weld zone is ≥800 MPa in the tensile strength of a base metal and weld metal, ≥230 Hv in the Vickers hardness in the coarse grain region of a weld heat affected zone, and is 0.5 to 1 in the ratio to Hv calculated by equation (1): Hv=270+1300C (1) from the amount of C [mass%] of the base metal. The manufacturing method for the steel pipe comprises forming a steel sheet to a tubular form, subjecting the butt zone thereof to submerged arc welding from the inside and outside surfaces and expanding the pipe, in which the weld zone is cooled at ≥1°C/s from 600°C up to 400°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原油・天然ガスラインパイプ等に好適な、800MPa以上の引張強さを有する、溶接金属および溶接熱影響部(以下、HAZ)の低温靱性(以下、溶接部靭性)並びに現地溶接性に優れた高強度鋼管およびその製造方法に関する。
【0002】
【従来の技術】
近年、原油・天然ガスを長距離輸送するパイプラインには、1)高圧化による輸送効率の向上や、2)ラインパイプの外径および重量の低減による現地施工能率の向上のために、より高強度のラインパイプ用鋼管が採用されている。これまでに米国石油技術協会(API)規格でX80(降伏強さ551MPa以上、引張強さ620MPa以上827MPa以下)までのラインパイプが実用化されているが、さらなる高強度化が要求されている。
【0003】
X100(引張強さ800MPa)以上の高強度ラインパイプは、X65の約2倍の圧力に耐えるため、高圧化並びに外径および肉厚の低減が可能である。従って、X100以上の高強度ラインパイプの採用により、X65よりも材料費、輸送費、現地溶接施工費を抑えることができるため、パイプライン敷設費の大幅な削減が可能になる。
【0004】
これまでに、X100以上の高強度鋼管の開発が行われており、その製造方法が特許文献1に開示されている。これは、鋼管を成形後溶接し、さらにその後鋼管全体を時効処理して、Cuの析出強化によって高強度化するものであり、製造コストが高くなるという問題があった。また、特許文献2には、溶接金属の成分を最適化してHAZの軟化を抑制した高強度鋼管が開示されている。
【0005】
しかし、X100超の高強度鋼管においては、HAZの低温靱性を確保することは非常に難しく、特に2パス以上の多層溶接を施したHAZの靱性は著しく低下し、例えば、−30℃でのシャルピー吸収エネルギーは50J未満であるものが存在する。これは、2パス以上の溶接によって高温に再加熱されたHAZの粒径の粗大化が原因である。
【0006】
このように、ラインパイプ用鋼管の高強度化に伴う問題として、溶接部靭性および現地溶接性が特に重要であり、これらを克服した画期的な高強度鋼管(X100超)の早期開発が要望されている。
【特許文献1】
特開平8−311549号公報
【特許文献2】
特開平10−306347号公報
【0007】
【発明が解決しようとする課題】
本発明は、強度と低温靱性バランスが優れ、かつ溶接部靭性が良好であり、現地溶接性が容易な引張強さ800MPa以上(API規格X100超)の高強度溶接鋼管とその製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、引張強さが800MPa以上で、かつ溶接部靱性および現地溶接性に優れた高強度溶接鋼管を開発するために、溶接部およびHAZの低温靱性が低下する原因を明らかにするために鋭意研究を行った。まず、溶接部およびHAZにおいて低温靭性が低下する部位は、図1に示したHAZ粗粒域であることがわかった。図1は、2パスの溶接を行った溶接部を模式的に示したものであり、HAZ粗粒域は、1パス目の溶接によるHAZが2パス目の溶接によって高温に再加熱された部位であり、粒径が粗大化している。
【0009】
さらに、これらHAZ粗粒域において、旧オーステナイト粒界には図2に示したように、旧オーステナイトの粒内には図3に示すように、塊状のマルテンサイトとオーステナイトの混成物(以下、MA)が生成しており、脆性破壊の起点になっていることがわかった。なお、図2および図3は、1つの旧オーステナイト粒内および粒界を模式的に示したものである。図中央部の結晶粒近傍の旧オーステナイト粒内および粒界は、同様な微細組織からなるが、特徴を明確に図示するために図中央部の結晶粒内および粒界以外は省略している。
【0010】
本発明者らは、さらに詳細な検討を行い、少なくとも最終溶接後、600℃から400℃まで1℃/sで冷却することにより、溶接熱影響部粗粒域において、MAの生成を抑制し、靱性を向上させることに成功し、溶接部靱性および現地溶接性に優れた新しい高強度溶接鋼管を発明するに至った。すなわち、本発明の要旨は次のとおりである。
(1) 母材および溶接金属の引張強さが800MPa以上で、溶接熱影響部粗粒域のビッカース硬さが230Hv以上であり、かつ母材のC量[質量%]から式(1)によって計算したHvとの比が0.5〜1であることを特徴とする溶接部靱性に優れた高強度溶接鋼管。
Hv=270+1300C  ・・・ (1)
(2) 母材が、質量%で、C:0.02〜0.10%、Si:0.6%以下、Mn:1.5〜2.5%、P:0.015%以下、S:0.003%以下、Ni:0.1〜2.0%、Mo:0.1〜0.6%、Nb:0.001〜0.10%、Ti:0.030%以下、Al:0.07%以下を含み、さらに、B:0.0020%以下、N:0.006%以下、V:0.10%以下、Cu:1.0%未満、Cr:1.0%以下、Ca:0.01%以下、REM:0.02%以下、Mg:0.006%以下の1種または2種以上を含有して残部が鉄および不可避的不純物からなり、かつ溶接金属が、質量%で、C:0.02〜0.14%、Si:0.05〜0.4%、Mn:1.2〜2.2%、P :0.010%以下、S:0.010%以下、Ni:1.3〜3.2%以下、B:0.005%以下を含み、さらに、Cr、Mo、Vの1種または2種以上をCr+Mo+V:1.0〜2.5%の範囲で含有し、残部が鉄および不可避的不純物からなることを特徴とする(1)に記載の溶接部靱性に優れた高強度溶接鋼管。
(3) 溶接金属のNi量が母材に比べて1質量%以上高く、溶接金属および溶接熱影響部のビッカース硬さと、溶接金属および母材のC量[質量%]から前記式(1)によって計算したHvの比が0.5〜1であることを特徴とする(1)または(2)に記載の溶接部靱性に優れた高強度溶接鋼管。
(4) 鋼板を管状に成形し、その突き合わせ部を内外面から、サブマージアーク溶接し、拡管する鋼管の製造方法において、少なくとも最終溶接後、溶接部を600℃から400℃まで1℃/s以上で冷却することを特徴とする(1)〜(3)のいずれか1項に記載の溶接部靱性に優れた高強度溶接鋼管の製造方法。
(5) 質量%で、C:0.01〜0.12%、Si:0.05〜0.3%、Mn:1.2〜2.4%、Ni:4.0〜8.5%を含み、さらに、Cr、Mo、Vの1種または2種以上をCr+Mo+V:3.0〜5.0%の範囲で含有し、残部が鉄および不可避的不純物からなる溶接ワイヤーおよび焼成型または溶融型フラックスを使用して溶接することを特徴とする(4)に記載の溶接部靱性に優れた高強度溶接鋼管の製造方法。
【0011】
【発明の実施の形態】
以下、本発明の内容について詳細に説明する。
【0012】
本発明者らは、溶接鋼管の母材および溶接金属の引張試験をASTM E8に準拠して実施し、引張強さが800MPa以上であった鋼管の溶接部靭性について詳細な検討を行った。まず、図1に示したHAZ粗粒域よりJIS Z 2202のVノッチ試験片を採取し、JIS Z 2242に従って−30℃でシャルピー衝撃試験を行った。
【0013】
シャルピー吸収エネルギーが50J未満であった試験片は、部分的に脆性破壊していたため、起点の調査を行った。その結果、脆性破壊の起点は、鋼管の強度によって以下の2つに分類できることが明らかとなった。
(1)1パス目の溶接によって融点直下に加熱されたHAZが、さらに2パス目の溶接によってAc 近傍に再加熱された、HAZ粗粒域に存在する図2に示したMAである。なお、融点直下の温度は、1100℃以上融点未満の温度であり、Ac近傍の温度は、650〜750℃の範囲である。このHAZ粗粒域では、溶接の入熱によって異なるが、100〜300μm程度の上部ベイナイトからなる粗大な旧オーステナイト粒界に沿って、長さ数十μm程度の塊状のMAが存在している。これは、X100以下の高強度鋼管において、HAZの脆性破壊の起点として、多く見られるものである。
(2)1パス目の溶接によって融点直下に加熱されたHAZが、さらに2パス目の溶接によってAc近傍に再加熱されたHAZ粗粒域に存在する図3に示したMAである。なお、Ac近傍の温度は、850〜1000℃の範囲である。このHAZ粗粒域では、溶接の入熱によって異なるが100〜300μm程度の粗大な旧オーステナイト粒の粒界に10μm程度の旧オーステナイト粒が混在しており、しかも粗大な旧オーステナイト粒内には、長さ数十μm程度の塊状のMAが存在している。また、旧オーステナイト粒内はグラニュラーベイナイトである。これは、X120以上の高強度鋼管において、HAZの脆性破壊の起点として、多く見られるものである。
【0014】
100〜300μm程度の粗大な旧オーステナイト粒の粒界に10μm程度の旧オーステナイト粒が混在する理由について述べる。1パス目の溶接後の冷却時には、粒内に残留オーステナイトが生じており、これらが2パス目の溶接による加熱時に成長、合体する。さらに粒界に新たに生じたオーステナイト粒は微細なNb炭化物によって成長を抑制される。これによって100〜300μm程度の粗大な旧オーステナイト粒の粒界に10μm程度のオーステナイト粒が生じた組織となり、これが冷却されて旧オーステナイト粒になる。また、Ac近傍よりも高温のAc近傍に加熱されるため、焼入れ性を向上させるB等が析出物を形成して、固溶量が減少する。そのため、焼入れ性が低下して、冷却時にグラニュラーベイナイトに変態し、粒内にMAが生成する。
【0015】
なお、上部ベイナイト、下部ベイナイトおよびグラニュラーベイナイトを区別しない場合には、ベイナイトと称する。ベイナイトは、残留オーステナイトおよびマルテンサイトを含んでいるが、光学顕微鏡組織では、ベイナイトとマルテンサイトの区別および残留オーステナイトの観察は困難である。
【0016】
上部ベイナイトおよびグラニュラーベイナイトの粒界および粒内に生成したMAは粗大で、上部ベイナイトおよびグラニュラーベイナイトよりも硬質であるため脆性破壊の起点になっている。従って、溶接後の冷却速度を速くしてMAの生成を抑制し、下部ベイナイトおよびマルテンサイトを主体として残部が残留オーステナイトからなるミクロ組織にすれば、靭性が向上すると考えた。そこで、母材および溶接金属の引張強さが800MPa以上である0.07%C−1.9%Mn系の溶接鋼管の溶接部靱性に及ぼす溶接後の冷却速度の影響について詳細に調査した。冷却速度の制御は、冷却時にベイナイト変態が開始する600℃から、ベイナイト変態が50%程度終了する400℃までの範囲で行った。
【0017】
図4に溶接後の600℃から400℃までの冷却速度と−30℃におけるシャルピー吸収エネルギーの関係を示す。その結果、−30℃におけるシャルピー吸収エネルギーを50J以上にするには、600℃から400℃まで1℃/s以上で冷却することが必要であることがわかった。さらに、シャルピー吸収エネルギーを100J以上、150J以上および200J以上にするには、それぞれ、冷却速度を5℃/s以上、10℃/s以上、30℃/s以上にすれば良いことがわかった。
【0018】
次に、以下に成分元素の限定理由を述べる。
【0019】
C量は0.02〜0.10%に限定する。Cは鋼の強度向上に極めて有効であり、目標とする強度を得るためには、0.02%以上のC量が必要であり、0.04%以上を含有することが好ましい。しかし、C量が0.10%よりも多すぎると母材、HAZの低温靱性や現地溶接性の著しい劣化を招くので、その上限を0.10%以下とした。さらにCの好ましい上限は0.08%以下である。
【0020】
Siは脱酸や強度向上のために添加する元素であるが、0.6%よりも多く添加するとHAZ靱性、現地溶接性を著しく劣化させるので上限を0.6%以下とした。鋼の脱酸はAl、Tiでも可能であり、Siは必ずしも添加する必要はないが、不純物として0.01%以上含まれる。
【0021】
Mnは本発明鋼のミクロ組織を下部ベイナイトとし、優れた強度と低温靱性のバランスを確保するうえで不可欠な元素であり、その下限は1.5%以上である。しかし、Mnが2.5%よりも多すぎると鋼の焼き入れ性が増してHAZ靱性および現地溶接性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、母材の低温靱性をも劣化させるので上限を2.5%以下とした。
【0022】
PおよびSは不純物元素であり、上限をそれぞれ0.015%以下および0.003%以下とする。この主たる理由は母材およびHAZの低温靱性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を軽減するとともに、粒界破壊を防止して低温靱性を向上させる。また、S量の低減は熱間圧延で延伸化するMnSを低減し、延靱性を向上させる効果がある。なお、PおよびSの下限は、現状の技術ではそれぞれ0.003%以上および0.0001%以上である。
【0023】
Niを添加する目的はC量の少ない本発明鋼の強度を、低温靱性や現地溶接性を劣化させることなく向上させるためである。Ni添加は、Mn、CrまたはMo添加と比較して、圧延組織中に低温靱性に有害な硬化組織を形成することが少ないばかりか、0.1%以上の微量Ni添加がHAZ靱性の向上にも有効である。なお、HAZ靱性を向上させるためには、Ni添加量を0.3%以上とすることが好ましい。しかし、添加量が2.0%よりも多すぎると経済性だけでなく、HAZ靱性や現地溶接性を劣化させるので、その上限を2.0%以下とした。また、Ni添加は連続鋳造時、熱間圧延時におけるCu割れの防止にも有効である。この場合、Ni量はCu量の1/3以上添加する必要がある。
【0024】
Moを添加する理由は鋼の焼き入れ性を向上させ、ミクロ組織を下部ベイナイトとするためである。B添加鋼においてはMoの焼き入れ向上効果が高まり、また、MoはNbと共存して制御圧延時にオーステナイトの再結晶を抑制し、オーステナイト組織の微細化にも効果がある。このような効果を得るためにMoは0.1%以上添加する必要がある。しかし、0.6%を超える過剰なMo添加はHAZ靱性、現地溶接性を劣化させ、さらにBの焼き入れ性向上効果を損なうので、その上限を0.6%以下とした。
【0025】
NbはMoと共存して制御圧延時にオーステナイトの再結晶を抑制して組織を微細化するだけでなく、析出硬化や焼き入れ性増大にも寄与し、鋼を強靱化する。特にNbとBが共存すると焼き入れ性向上効果が相乗的に高まる。その効果を得るにはNb量が0.001%以上必要であるため下限を0.001%とした。しかし、Nb添加量が0.10%よりも多すぎると、HAZ靱性や現地溶接性に悪影響をもたらすので、その上限を0.10%以下とした。
【0026】
Ti添加は微細なTiNを形成し、スラブ再加熱時の結晶粒の粗大化およびHAZのオーステナイト粒の粗大化を抑制してミクロ組織を微細化し、母材およびHAZの低温靱性を改善する。このような効果を得るには、Ti含有量の下限を0.001%とすることが好ましい。また、Bの焼き入れ性向上効果に有害な固溶NをTiNとして固定する役割も有する。この目的のためには、Tiを3.4N以上添加することが好ましい。また、Alが0.004%未満の場合、Tiは酸化物を形成し、HAZにおいて粒内フェライト生成核として作用し、HAZ靱性を微細化する効果も有する。しかし、Ti量が0.03%よりも多すぎると、TiNの粗大化やTiCによる析出効果が生じ、低温靱性を劣化させるので、その上限を0.03%に限定した。
【0027】
Alは通常脱酸材として鋼に含まれる元素で、組織の微細化にも効果を有する。しかし、Al量が0.07%を越えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.07%以下とした。脱酸はTiまたはSiでも可能であり、Alは必ずしも添加する必要がないが、現状の技術では、不純物として0.001%以上含有する。
【0028】
次に、B、N、V、Cu、Cr、Ca、REM、Mgを添加する目的について説明する。
【0029】
基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度および低温靱性の一層の向上や製造可能な鋼材サイズの拡大を図るためである。
【0030】
Bは極微量で鋼の焼き入れ性を飛躍的に高め、ミクロ組織を下部ベイナイトとするために非常に有効な元素である。さらに、BはMoの焼き入れ性向上効果を高めると共に、Nbと共存して相乗的に焼き入れ性を増す。この効果を得るには、Bを0.0003%以上添加することが好ましい。一方、0.0020%を超えて過剰に添加すると、低温靱性を劣化させるだけでなく、かえってBの焼き入れ性向上効果を消失せしめることもあるので、その上限を0.0020%以下とした。
【0031】
NはTiNを形成し、スラブ再加熱時およびHAZのオーステナイト粒の粗大化を抑制して母材、HAZの低温靱性を向上させる。しかし、N量が0.006%よりも多すぎるとスラブ表面疵や固溶NによるHAZ靱性の劣化、Bの焼き入れ性低下の原因となるので、Nの上限を0.006%以下とする必要がある。N量は低いほど良いため下限を規定しないが、通常、不純物として0.0015%以上を含有している。
【0032】
VはNbとほぼ同等の効果を有し、NbとVの複合添加は本発明鋼の優れた特徴をさらに顕著なものとする。この効果を十分に発現させるためにはVを0.03%以上添加することが好ましい。上限はHAZ靱性、現地溶接性の点から0.10%以下まで許容できるが、特に0.03〜0.08%の添加が好ましい範囲である。
【0033】
Cuは母材、溶接部の強度を増加させるが、この効果を十分に発現させるためにはCuは0.01%以上添加することが好ましい。一方Cuを1.0%以上添加するとHAZ靱性や現地溶接性を著しく劣化させる。このためCu量の上限を1.0%未満とした。
【0034】
Crは母材、溶接部の強度を増加させるが、この効果を十分に発現させるためにはCrを0.01%以上添加することが好ましい。一方Cr量が1.0%よりも多すぎるとHAZ靱性や現地溶接性を著しく劣化させる。このため、Cr量の上限を1.0%以下とした。
【0035】
CaおよびREMは硫化物(MnS)の形態を制御し、低温靱性を向上させる。この効果を十分に発現させるためにはCaおよびREMを0.0001%以上添加することが好ましい。Ca量が0.01%、REMが0.02%を越えて添加するとCaO−CaSまたはREM−CaSが多量に生成して大型クラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響を及ぼす。このためCa添加量の上限を0.01%以下、REM添加量の上限を0.02%以下に制限した。なお、S、O量をそれぞれ0.003%以下、0.002%以下に低減し、かつESSP=(Ca)[1−124(O)]/1.25Sを0.5≦ESSP≦10.0にすることが特に有効である。
【0036】
Mgは微細分散した酸化物を形成し、HAZの粒粗大化を抑制して低温靱性を向上させる。この効果を十分に発現させるためには、Mgを0.0001%以上添加することが好ましい。一方、Mg量が0.006%超では粗大な酸化物を生成し、逆に靱性を劣化させるため、上限を0.006%以下とした。
【0037】
次に溶接金属の限定理由について述べる。
【0038】
C量は0.02〜0.14%に限定する。Cは鋼の強度向上に極めて有効であり、目標とする強度を得るためには、0.02%以上必要である。しかし、C量が0.14%よりも多すぎると溶接低温割れが発生しやすくなり、現地溶接を行った鋼管の周方向の溶接部とシーム溶接が交わる、いわゆるTクロスHAZ部の最高硬さの上昇を招くので、その上限を0.14%以下とした。なお、Cの好ましい上限は0.10%以下である。
【0039】
Siはブローホール防止のために0.05%以上は必要であるが、0.4%よりも多いと低温靱性、特にHAZ粗粒域の低温靱性を著しく劣化させる。従って、Siの範囲を0.05〜0.4%とした。
【0040】
Mnは優れた強度と低温靱性のバランスを確保する上で不可欠な元素であり、その下限は1.2%である。しかし、Mnが2.2%よりも多すぎると偏析が助長され低温靱性を劣化させるだけでなく、溶接材料の製造も困難になるので上限を2.2%とした。
【0041】
PおよびSは不純物元素であり、溶接金属の低温靱性および低温割れ感受性を低下させるため、上限を共に0.010%以下とする。なお、PおよびSの下限は、現状の技術ではそれぞれ0.003%以上および0.0001%以上である。Niは焼き入れ性を高めて強度を確保し、さらに低温靱性を向上させる元素であるが、1.3%未満では目標の強度および低温靱性を得られないため1.3%以上を下限とした。一方、Ni量が3.2%よりも多すぎると高温割れの危険があるため、上限を3.2%とした。
【0042】
Bは微量で焼き入れ性を高め、溶接金属の低温靱性向上に有効な元素であるが、含有量が0.005%よりも多すぎると溶接金属の低温靱性が低下する。従ってB量の上限を0.005%以下とした。なお、Bは、0.0003%以上添加することが好ましい。
【0043】
Cr、Mo、Vは、いずれも焼き入れ性を高める元素であり、一種または二種以上を、高強度を得るために添加する。この効果は、Cr+Mo+Vが1.0%未満では十分でなく、2.5%よりも多量に添加すると低温割れが生じ易くなる。従って、Cr+Mo+Vの範囲を1.0〜2.5%とした。
【0044】
溶接金属には、その他に溶接時の精錬および凝固を良好に行わせるために必要に応じて添加されたTi、Al、Zr、Nb、Mg等の元素を含有しても良い。次に溶接ワイヤ−について述べる。
【0045】
Cは溶接金属で必要とされるC量の範囲を得るために、母材成分による希釈および雰囲気からCの混入を考慮して0.01〜0.12%とした。
【0046】
Siは溶接金属で必要とされるSi量の範囲を得るために、母材成分による希釈を考慮して0.05〜0.3%とした。
【0047】
Mnは溶接金属で必要とされるMn量の範囲を得るために、母材成分による希釈を考慮して1.2〜2.4%とした。
【0048】
Niは溶接金属で必要とされるNi量の範囲を得るために、母材成分による希釈を考慮して4.0〜8.5%とした。
【0049】
Cr+Mo+Vは、一種または二種以上を添加するが、溶接金属で必要とされるCr+Mo+V量の範囲を得るために、母材成分による希釈を考慮して3.0〜5.0%とした。
【0050】
その他P、Sの不純物は極力少ない方が望ましく、Bは強度確保に添加することも可能である。また、Ti、Al、Zr、Nb、Mg等が脱酸を目的として使用される。
【0051】
また、溶接金属は凝固組織であり、母材よりも靭性が劣るため、靭性を向上させるNiを母材よりも高めることが好ましい。この効果を十分に発現させるには、溶接金属のNi量は母材よりも1%以上高くすることが好ましい。
【0052】
次にビッカース硬さについて説明する。
【0053】
HAZ粗粒域の低温靭性を向上させるには、図1に示したHAZ粗粒域のビッカース硬さを230Hvとする必要がある。HAZ粗粒域のビッカース硬さが230Hv未満であると、HAZ粗粒域のミクロ組織はグラニュラーベイナイトまたは上部ベイナイトであり、粒内および/または粒界にMAが存在しているため、−30℃におけるシャルピー吸収エネルギーが50J未満に低下する。さらに、HAZの低温靭性を向上させ、−30℃におけるシャルピー吸収エネルギーを100J以上とするには、HAZ粗粒域のビッカース硬さを250Hv以上にすることが好ましい。HAZ粗粒域のビッカース硬さの上限は、母材のC量からHv=270+1300Cによって算出するHvとする。
【0054】
また、HAZのビッカース硬さの測定値は、母材のC量からHv=270+1300Cによって算出するHvとの比が、0.5〜1の範囲とする。これを満足し、HAZ粗粒域のビッカース硬さを230Hv以上であり、かつ光学顕微鏡写真、走査電子顕微鏡写真または過電子顕微鏡写真により、ポリゴナルフェライトが生成していないことが好ましい。これによりHAZ粗粒域は、下部ベイナイトおよびマルテンサイトが主体であり、残部が残留オーステナイトからなるミクロ組織を有する。下部ベイナイトおよびマルテンサイトが主体であるとは、下部ベイナイトおよびマルテンサイトが面積率で90〜100%であり、残部が残留オーステナイトからなるミクロ組織であることを意味する。
なお、HAZ粗粒域のビッカース硬さは、JIS Z 2244に準拠して測定する。また、試料は、溶接方向に垂直な断面を観察面として溶接金属およびHAZを含む部位の小片を切り出し、鏡面研磨し、ナイタールエッチングする。この試料のミクロ組織を光学顕微鏡で観察して、HAZ粗粒域のビッカース硬さを測定する。試料のエッチングは、レペラーエッチングでも良い。測定は複数の試料を切り出して行い、3〜5点程度の平均値として算出することが好ましい。ビッカース硬さの測定は0.09807〜980.7Nの範囲の試験力で行うが、試験力が小さいと圧痕が小さいため精度が低下し、試験力が大きすぎると圧痕が大きくなり測定点が少なくなるため、0.9807〜98.07Nの範囲とすることが好ましい。
【0055】
溶接金属およびHAZのビッカース硬さについても、溶接金属およびHAZのビッカース硬さの測定値が、溶接金属および母材のC量からHv=270+1300Cによって算出するHvとの比が、0.5〜1の範囲であることが好ましい。これを満足し、かつ光学顕微鏡写真、走査電子顕微鏡写真または過電子顕微鏡写真により、ポリゴナルフェライトが生成していないことが好ましい。これは、溶接金属およびHAZが、下部ベイナイトおよびマルテンサイトの面積率が90〜100%であり、残部が残留オーステナイトからなるミクロ組織を有することに相当する。溶接金属およびHAZのビッカース硬さは、HAZ粗粒域のビッカース硬さと同様にして複数の試料を作製し、3〜5点程度の平均値として算出することが好ましい。溶接金属およびHAZのC量の測定は、溶接金属およびHAZより試料を採取し、JIS G 1211に準拠して行う。
【0056】
次に製造条件について説明する。
【0057】
鋼板を管状に成形し、その突き合わせ部を内外面から、サブマージアーク溶接を行い、その後拡管を行う。突き合わせ部の溶接は、外面をMAGアーク溶接し、その後内外面をサブマージアーク溶接しても良い。
【0058】
溶接後、少なくとも、冷却時にベイナイト変態が開始する600℃から、ベイナイト変態が50%程度終了する400℃までの冷却速度を1℃/s以上にすることが極めて重要である。これによりHAZ粗粒域が、ラス状フェライトと微細なセメンタイトからなる下部ベイナイトおよびマルテンサイトと残留オーステナイトからなるミクロ組織になり、靭性が良好になる。一方、冷却速度が1℃/s未満では、ラス状のフェライトとラス境界のMAからなる上部ベイナイトが生成し、さらに冷却速度が遅くなると上部ベイナイトが崩れたグラニュラーベイナイトが生成し、靭性が低下する。なお、グラニュラーベイナイトは500〜600℃で、上部ベイナイトは450〜500℃で、下部ベイナイトは400〜450℃で生成するため、600℃から450℃までの温度域を特に速く冷却することが好ましい。さらに、HAZ粗粒域の靭性を向上させ、−30℃におけるシャルピー吸収エネルギーを100J以上とするためには、冷却速度を5℃/s以上とすることが好ましい。冷却速度が速いほど、HAZ粗粒域の靭性をさらに向上させることができる。すなわち、−30℃におけるシャルピー吸収エネルギーを150J以上、200J以上と向上させるには冷却速度をそれぞれ10℃/s以上、30℃/s以上とすることが好ましい。冷却速度の上限は特に規定しないが、技術的な制約による限界があり、板厚によって異なるが、現状では300℃/sより速く冷却することは難しい。
【0059】
溶接後の冷却速度を大きくする強制冷却は、ファンによる強制空冷でも良いが、エアー、窒素、ヘリウム、アルゴン等のガス、水、ミストまたはドライアイスを吹き付けることができる。なお、強制冷却は、少なくとも最終溶接後に実施する必要があるが、各パスの溶接後に行っても良い。
【0060】
【実施例】
表1に示した成分の鋼を転炉で溶製し、連続鋳造によって240mm厚の鋳片とした。これらの鋳片を表2に示した条件で14〜25mmの鋼板に圧延した。さらに、これらの鋼板をUO成形した後、表3に示した成分のワイヤーおよびフラックスを用いて、内面および外面よりサブマージアーク溶接した。外面溶接後、ファンによる強制空冷またはエアー等のガスの吹き付けによる強制冷却を実施した。この際の冷却速度の測定は、内面溶接後に溶接金属の鋼管外側表面より3mmの部位に装着した熱電対によって行った。その後、拡管して外径711〜1219mmの鋼管にした。
【0061】
これらの鋼管の溶接部の一部より分析試料を採取し、成分分析を行った結果を表4に示す。鋼管の母材および溶接金属より試験片を採取し、ASTM E8に準拠して引張試験を実施し、母材および溶接金属の引張強さが800MPa以上であることを確認した。さらに鋼管の溶接部およびHAZよりJIS Z 2202のVノッチ試験片を採取し、JIS Z 2242に従って−30℃でシャルピー衝撃試験を行ってシャルピー吸収エネルギ−で評価した。なお、ノッチ位置は板厚中央部における母材と溶接金属の会合部および会合部より母材に1mmのHAZとした。
【0062】
またHAZから複数の小片を切り出して鏡面研磨およびナイタールエッチングし、HAZ粗粒域のビッカース硬さをJIS Z 2244に準拠して、試験力980.7Nで3〜5点測定し、平均値として算出した。試験結果を600℃から400℃までの冷却速度とともに表5に示す。なお、表5のvE−30は、−30℃でのシャルピー吸収エネルギ−であり、FLはノッチ位置が母材と溶接金属の会合部、FL+1mmは、会合部から母材に1mmのHAZであることを意味する。
【0063】
本発明に従って溶接部を熱処理した製造No.1〜20は、−30℃のシャルピー吸収エネルギ−が50Jを越えており、極めて良好である。一方、製造No.21〜32は、溶接後の冷却速度が本発明の範囲ではないために、HAZ粗粒域のビッカース硬さが低下しており、溶接部、特にFL+1mmで示されたHAZの低温靭性が著しく低下し、−30℃におけるシャルピー吸収エネルギーが50J未満である。
【0064】
【表1】

Figure 2004099930
【0065】
【表2】
Figure 2004099930
【0066】
【表3】
Figure 2004099930
【0067】
【表4】
Figure 2004099930
【0068】
【表5】
Figure 2004099930
【0069】
【発明の効果】
本発明により低温靱性および現地溶接性の優れた高強度ラインパイプ(引張強さ800MPa以上、API規格X100超)用溶接鋼管が安定して大量に製造できるようになった。これにより、パイプラインの輸送効率、施工能率の飛躍的な向上が可能となり、産業上の貢献が極めて高い。
【図面の簡単な説明】
【図1】溶接熱影響部粗粒域の模式図。
【図2】Ac近傍に再熱された粗粒HAZ部のミクロ組織の模式図。
【図3】Ac近傍に再熱された粗粒HAZ部のミクロ組織の模式図。
【図4】溶接部の−30℃でのシャルピー吸収エネルギ−[J]と溶接後の600℃から400℃までの冷却速度[℃/s]の関係を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-temperature toughness (hereinafter, weld toughness) and a field weldability of a weld metal and a weld heat affected zone (hereinafter, HAZ) having a tensile strength of 800 MPa or more and suitable for a crude oil / natural gas line pipe or the like. The present invention relates to a high-strength steel pipe excellent in heat resistance and a method for producing the same.
[0002]
[Prior art]
In recent years, pipelines that transport crude oil and natural gas over long distances have been required to increase the efficiency of 1) higher transport efficiency by increasing the pressure and 2) improve the efficiency of on-site construction by reducing the outer diameter and weight of line pipes. High strength steel pipes for line pipes are used. Up to now, line pipes up to X80 (yield strength of 551 MPa or more, tensile strength of 620 to 827 MPa) according to the American Petroleum Institute of Technology (API) standard have been put to practical use, but further higher strength is required.
[0003]
Since a high-strength line pipe of X100 (tensile strength of 800 MPa) or more withstands a pressure approximately twice as high as that of X65, it is possible to increase the pressure and reduce the outer diameter and the wall thickness. Therefore, by adopting a high-strength line pipe of X100 or more, the material cost, transportation cost, and on-site welding construction cost can be suppressed as compared with X65, so that the pipeline laying cost can be significantly reduced.
[0004]
Until now, a high-strength steel pipe of X100 or more has been developed, and its manufacturing method is disclosed in Patent Document 1. In this method, the steel pipe is welded after being formed, and then the entire steel pipe is subjected to aging treatment to increase the strength by precipitation strengthening of Cu, resulting in an increase in manufacturing cost. Patent Document 2 discloses a high-strength steel pipe in which HAZ softening is suppressed by optimizing the components of a weld metal.
[0005]
However, in high-strength steel pipes exceeding X100, it is very difficult to ensure the low-temperature toughness of the HAZ, and in particular, the toughness of the HAZ that has been subjected to multi-pass welding in two or more passes is significantly reduced. For example, Charpy at −30 ° C. Some have an absorption energy of less than 50 J. This is due to the coarsening of the particle size of the HAZ reheated to a high temperature by two or more passes of welding.
[0006]
As described above, as a problem associated with increasing the strength of steel pipes for line pipes, weld toughness and on-site weldability are particularly important, and there is a demand for an early development of an epoch-making high-strength steel pipe (over X100) that overcomes these. Have been.
[Patent Document 1]
Japanese Patent Application Laid-Open No. H8-311549 [Patent Document 2]
JP-A-10-306347
[Problems to be solved by the invention]
The present invention provides a high-strength welded steel pipe having an excellent balance between strength and low-temperature toughness, good weld toughness, and easy on-site weldability and a tensile strength of 800 MPa or more (API standard X100 or more) and a method for producing the same. Things.
[0008]
[Means for Solving the Problems]
In order to develop a high-strength welded steel pipe having a tensile strength of 800 MPa or more and excellent weld toughness and on-site weldability, the present inventors clarify the cause of the decrease in the low-temperature toughness of the weld and the HAZ. I did diligent research for that. First, it was found that the low-temperature toughness of the weld and the HAZ was in the HAZ coarse grain region shown in FIG. FIG. 1 schematically shows a welded portion obtained by performing two-pass welding. The HAZ coarse-grained region is a portion where the HAZ obtained by the first-pass welding is reheated to a high temperature by the second-pass welding. And the particle size is coarse.
[0009]
Furthermore, in these HAZ coarse-grained regions, as shown in FIG. 2 at the prior austenite grain boundaries, and within the grains of the prior austenite, as shown in FIG. 3, as shown in FIG. ) Was formed, and it was found that this was the starting point of brittle fracture. 2 and 3 schematically show the inside of one old austenite grain and the grain boundary. The inside of the prior austenite grains and the grain boundaries near the crystal grains in the center of the figure have the same fine structure, but are omitted except for the inside of the crystal grains and the grain boundaries in the center of the figure in order to clearly show the features.
[0010]
The present inventors have conducted a more detailed study, and at least after the final welding, have been cooled from 600 ° C. to 400 ° C. at 1 ° C./s, thereby suppressing the generation of MA in the weld heat affected zone coarse grain region, We succeeded in improving the toughness and invented a new high-strength welded steel pipe with excellent weld toughness and on-site weldability. That is, the gist of the present invention is as follows.
(1) The tensile strength of the base metal and the weld metal is 800 MPa or more, the Vickers hardness of the weld heat-affected zone coarse-grained area is 230 Hv or more, and the C content [mass%] of the base metal is calculated by the formula (1). A high strength welded steel pipe excellent in weld toughness, characterized in that the calculated ratio to Hv is 0.5 to 1.
Hv = 270 + 1300C (1)
(2) The base material is, by mass%, C: 0.02 to 0.10%, Si: 0.6% or less, Mn: 1.5 to 2.5%, P: 0.015% or less, S : 0.003% or less, Ni: 0.1 to 2.0%, Mo: 0.1 to 0.6%, Nb: 0.001 to 0.10%, Ti: 0.030% or less, Al: B: 0.0020% or less, N: 0.006% or less, V: 0.10% or less, Cu: less than 1.0%, Cr: 1.0% or less, One or more of Ca: 0.01% or less, REM: 0.02% or less, Mg: 0.006% or less, the balance consisting of iron and inevitable impurities, and the mass of the weld metal is %, C: 0.02 to 0.14%, Si: 0.05 to 0.4%, Mn: 1.2 to 2.2%, P: 0.010% or less, S: 0.010% Less than, i: 1.3 to 3.2% or less, B: 0.005% or less, and one or more of Cr, Mo, and V in the range of Cr + Mo + V: 1.0 to 2.5%. The high-strength welded steel pipe according to (1), wherein the high-strength welded steel pipe contains iron and unavoidable impurities.
(3) The Ni content of the weld metal is 1% by mass or more higher than the base metal, and the above formula (1) is obtained from the Vickers hardness of the weld metal and the weld heat affected zone and the C content [mass%] of the weld metal and the base material. (1) or (2), wherein the ratio of Hv calculated according to (1) or (2) is high.
(4) In a method for manufacturing a steel pipe in which a steel sheet is formed into a tubular shape and the butted portion is subjected to submerged arc welding from the inner and outer surfaces and expanded, at least after final welding, the welded portion is at least 1 ° C / s from 600 ° C to 400 ° C. The method for producing a high-strength welded steel pipe having excellent weld toughness according to any one of (1) to (3), characterized in that the steel pipe is cooled by a cooling method.
(5) In mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.3%, Mn: 1.2 to 2.4%, Ni: 4.0 to 8.5%. And a welding wire and a sintering mold or a molten metal containing one or more of Cr, Mo, and V in the range of Cr + Mo + V: 3.0 to 5.0%, with the balance being iron and unavoidable impurities. (4) The method for producing a high-strength welded steel pipe excellent in toughness of a weld portion according to (4), wherein the welding is performed using a mold flux.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the contents of the present invention will be described in detail.
[0012]
The present inventors conducted a tensile test of a base metal and a weld metal of a welded steel pipe in accordance with ASTM E8, and conducted a detailed study on the weld toughness of a steel pipe having a tensile strength of 800 MPa or more. First, a V-notch test piece of JIS Z 2202 was collected from the HAZ coarse grain area shown in FIG. 1 and subjected to a Charpy impact test at −30 ° C. in accordance with JIS Z 2242.
[0013]
Since the test piece having a Charpy absorbed energy of less than 50 J was partially brittle, the starting point was investigated. As a result, it became clear that the starting point of the brittle fracture can be classified into the following two types according to the strength of the steel pipe.
(1) MA shown in FIG. 2 which exists in the HAZ coarse-grained region where the HAZ heated to just below the melting point by the first pass welding is further reheated to the vicinity of Ac 1 by the second pass welding. The temperature immediately below the melting point is a temperature of 1100 ° C. or more and less than the melting point, and the temperature near Ac 1 is in a range of 650 to 750 ° C. In the HAZ coarse-grained region, depending on the heat input of welding, massive MA having a length of about several tens of μm exists along a coarse old austenite grain boundary composed of upper bainite of about 100 to 300 μm. This is often seen as a starting point of brittle fracture of HAZ in a high-strength steel pipe of X100 or less.
(2) MA shown in FIG. 3 in which the HAZ heated just below the melting point by the first pass welding is present in the HAZ coarse-grained region reheated to the vicinity of Ac 3 by the second pass welding. The temperature in the vicinity of Ac 3 is in the range of 850 to 1000 ° C. In this HAZ coarse grain region, although different depending on the heat input of welding, about 10 μm old austenite grains are mixed in the grain boundaries of coarse old austenite grains of about 100 to 300 μm, and in the coarse old austenite grains, Lumpy MA having a length of about several tens of μm exists. The inside of the former austenite grains is granular bainite. This is often seen as a starting point of brittle fracture of HAZ in a high-strength steel pipe of X120 or more.
[0014]
The reason why old austenite grains of about 10 μm are mixed in the grain boundaries of coarse old austenite grains of about 100 to 300 μm will be described. At the time of cooling after welding in the first pass, residual austenite is generated in the grains, which grow and coalesce during heating by welding in the second pass. Further, the growth of the austenite grains newly generated at the grain boundaries is suppressed by the fine Nb carbide. As a result, a structure in which austenite grains having a size of about 10 μm are formed at grain boundaries of coarse austenite grains having a size of about 100 to 300 μm is formed, and is cooled to become austenite grains. Moreover, because it is heated to Ac 3 near the temperature higher than Ac 1 near, B, etc. to improve the hardenability to form precipitates, the amount of solid solution decreases. As a result, the quenchability is reduced, the material is transformed into granular bainite upon cooling, and MA is generated in the grains.
[0015]
In addition, when it does not distinguish upper bainite, lower bainite, and granular bainite, it is called bainite. Although bainite contains retained austenite and martensite, it is difficult to distinguish between bainite and martensite and to observe retained austenite in an optical microscope structure.
[0016]
The MA formed in the grain boundaries and in the grains of the upper bainite and the granular bainite is coarse and harder than the upper bainite and the granular bainite, so that it is a starting point of the brittle fracture. Therefore, it was considered that toughness would be improved if the cooling rate after welding was increased to suppress the formation of MA, and if the microstructure was mainly composed of lower bainite and martensite and the remainder was retained austenite. Therefore, the influence of the cooling rate after welding on the weld toughness of a 0.07% C-1.9% Mn-based welded steel pipe in which the tensile strength of the base metal and the weld metal is 800 MPa or more was investigated in detail. The control of the cooling rate was performed in a range from 600 ° C. at which the bainite transformation started at the time of cooling to 400 ° C. at which the bainite transformation was completed by about 50%.
[0017]
FIG. 4 shows the relationship between the cooling rate from 600 ° C. to 400 ° C. after welding and the Charpy absorbed energy at −30 ° C. As a result, it was found that it is necessary to cool from 600 ° C. to 400 ° C. at 1 ° C./s or more in order to make the Charpy absorbed energy at −30 ° C. to be 50 J or more. Further, it was found that the Charpy absorbed energy should be 100 J or more, 150 J or more, and 200 J or more by setting the cooling rate to 5 C / s or more, 10 C / s or more, and 30 C / s or more, respectively.
[0018]
Next, the reasons for limiting the component elements will be described below.
[0019]
C content is limited to 0.02 to 0.10%. C is extremely effective in improving the strength of steel, and in order to obtain the target strength, an amount of C of 0.02% or more is necessary, and it is preferable to contain 0.04% or more. However, if the C content is too large than 0.10%, the low-temperature toughness and on-site weldability of the base material and HAZ are significantly deteriorated, so the upper limit is made 0.10% or less. Further, a preferable upper limit of C is 0.08% or less.
[0020]
Si is an element added for deoxidation and improvement of strength, but if added in excess of 0.6%, the HAZ toughness and on-site weldability are significantly deteriorated, so the upper limit was made 0.6% or less. Steel can be deoxidized with Al and Ti, and Si need not always be added, but is contained as an impurity in an amount of 0.01% or more.
[0021]
Mn is an element indispensable for ensuring the balance between excellent strength and low-temperature toughness with the microstructure of the steel of the present invention as lower bainite, and the lower limit thereof is 1.5% or more. However, if the Mn content is more than 2.5%, the hardenability of the steel increases to deteriorate the HAZ toughness and the on-site weldability, and also promotes the center segregation of the continuously cast steel slab and the low-temperature toughness of the base metal. Is also deteriorated, so the upper limit is made 2.5% or less.
[0022]
P and S are impurity elements, and the upper limits are set to 0.015% or less and 0.003% or less, respectively. The main reason for this is to further improve the low-temperature toughness of the base material and the HAZ. The reduction of the P content reduces the center segregation of the continuously cast slab, and also prevents the intergranular fracture and improves the low-temperature toughness. Further, the reduction of the amount of S has an effect of reducing MnS to be elongated by hot rolling and improving ductility. Note that the lower limits of P and S are 0.003% or more and 0.0001% or more in the current technology, respectively.
[0023]
The purpose of adding Ni is to improve the strength of the steel of the present invention having a small C content without deteriorating the low-temperature toughness and the on-site weldability. Compared with Mn, Cr or Mo addition, Ni addition not only causes less formation of a hardened structure harmful to low-temperature toughness in the rolled structure, but addition of a small amount of 0.1% or more Ni improves HAZ toughness. Is also effective. In order to improve the HAZ toughness, the amount of Ni added is preferably set to 0.3% or more. However, if the addition amount is more than 2.0%, not only economy but also HAZ toughness and on-site weldability deteriorate, so the upper limit is made 2.0% or less. Ni addition is also effective in preventing Cu cracking during continuous casting and hot rolling. In this case, it is necessary to add the Ni amount at least 1/3 of the Cu amount.
[0024]
The reason for adding Mo is to improve the hardenability of steel and make the microstructure lower bainite. In the B-added steel, the effect of improving the quenching of Mo is enhanced, and Mo coexists with Nb to suppress recrystallization of austenite during controlled rolling, and is also effective in refining the austenite structure. In order to obtain such an effect, it is necessary to add Mo by 0.1% or more. However, excessive Mo addition exceeding 0.6% deteriorates HAZ toughness and on-site weldability, and further impairs the effect of improving the hardenability of B, so the upper limit was made 0.6% or less.
[0025]
Nb coexists with Mo to suppress the recrystallization of austenite during controlled rolling, not only to refine the structure, but also to contribute to precipitation hardening and hardenability, and toughen the steel. In particular, when Nb and B coexist, the effect of improving hardenability increases synergistically. Since the Nb content is required to be 0.001% or more to obtain the effect, the lower limit is set to 0.001%. However, if the added amount of Nb is more than 0.10%, the HAZ toughness and on-site weldability are adversely affected, so the upper limit is set to 0.10% or less.
[0026]
The addition of Ti forms fine TiN, suppresses the coarsening of crystal grains and the austenite grains of HAZ during reheating of the slab, refines the microstructure, and improves the low-temperature toughness of the base material and HAZ. To obtain such an effect, the lower limit of the Ti content is preferably set to 0.001%. Further, it also has a role of fixing solid solution N harmful to the effect of improving the hardenability of B as TiN. For this purpose, it is preferable to add 3.4 N or more of Ti. When Al is less than 0.004%, Ti forms an oxide, acts as an intragranular ferrite generation nucleus in the HAZ, and has an effect of reducing the HAZ toughness. However, if the amount of Ti is too large than 0.03%, coarsening of TiN and a precipitation effect by TiC occur, deteriorating low-temperature toughness. Therefore, the upper limit is limited to 0.03%.
[0027]
Al is an element usually contained in steel as a deoxidizing material, and also has an effect on refining the structure. However, if the amount of Al exceeds 0.07%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.07% or less. Deoxidation can be performed with Ti or Si, and Al need not always be added. However, in the current technology, the content is 0.001% or more as an impurity.
[0028]
Next, the purpose of adding B, N, V, Cu, Cr, Ca, REM, and Mg will be described.
[0029]
The main purpose of further adding these elements to the basic components is to further improve the strength and low-temperature toughness and expand the size of a steel material that can be manufactured without impairing the excellent characteristics of the steel of the present invention. .
[0030]
B is a very effective element for dramatically increasing the hardenability of steel in a trace amount and for making the microstructure lower bainite. Further, B enhances the effect of improving the hardenability of Mo, and synergistically increases the hardenability together with Nb. To obtain this effect, it is preferable to add B in an amount of 0.0003% or more. On the other hand, if it is added in excess of 0.0020%, not only the low-temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.0020% or less.
[0031]
N forms TiN and suppresses the coarsening of the austenite grains of the HAZ during reheating of the slab and improves the low-temperature toughness of the base material and the HAZ. However, if the N content is more than 0.006%, HAZ toughness is degraded due to slab surface flaws and solid solution N, and the hardenability of B is reduced. Therefore, the upper limit of N is made 0.006% or less. There is a need. Since the lower the N content, the better, the lower limit is not specified, but usually contains 0.0015% or more as an impurity.
[0032]
V has almost the same effect as Nb, and the combined addition of Nb and V further enhances the excellent characteristics of the steel of the present invention. In order to sufficiently exhibit this effect, it is preferable to add V at 0.03% or more. The upper limit is acceptable up to 0.10% or less from the viewpoint of HAZ toughness and on-site weldability, but the addition of 0.03 to 0.08% is particularly preferable.
[0033]
Although Cu increases the strength of the base material and the welded portion, it is preferable to add 0.01% or more of Cu in order to sufficiently exhibit this effect. On the other hand, if Cu is added in an amount of 1.0% or more, HAZ toughness and on-site weldability are significantly deteriorated. Therefore, the upper limit of the amount of Cu is set to less than 1.0%.
[0034]
Although Cr increases the strength of the base metal and the welded portion, it is preferable to add 0.01% or more of Cr in order to sufficiently exhibit this effect. On the other hand, if the Cr content is more than 1.0%, the HAZ toughness and the on-site weldability are significantly deteriorated. For this reason, the upper limit of the Cr content is set to 1.0% or less.
[0035]
Ca and REM control the sulfide (MnS) morphology and improve low temperature toughness. In order to sufficiently exhibit this effect, it is preferable to add 0.0001% or more of Ca and REM. If the Ca content exceeds 0.01% and the REM exceeds 0.02%, CaO-CaS or REM-CaS is generated in large amounts to form large clusters and large inclusions, which not only impairs the cleanliness of the steel, It also has an adverse effect on local weldability. Therefore, the upper limit of the amount of Ca added is limited to 0.01% or less, and the upper limit of the amount of REM added is limited to 0.02% or less. Note that the S and O contents were reduced to 0.003% or less and 0.002% or less, respectively, and ESSP = (Ca) [1-124 (O)] / 1.25S was set to 0.5 ≦ ESSP ≦ 10. It is particularly effective to set it to 0.
[0036]
Mg forms a finely dispersed oxide, suppresses coarsening of the HAZ, and improves low-temperature toughness. In order to sufficiently exhibit this effect, it is preferable to add Mg in an amount of 0.0001% or more. On the other hand, if the amount of Mg exceeds 0.006%, a coarse oxide is generated, and on the contrary, the toughness is deteriorated. Therefore, the upper limit is made 0.006% or less.
[0037]
Next, the reasons for limiting the weld metal will be described.
[0038]
C content is limited to 0.02 to 0.14%. C is extremely effective in improving the strength of steel, and is required to be 0.02% or more in order to obtain a target strength. However, if the C content is more than 0.14%, low-temperature welding cracks are liable to occur, and the highest hardness of the so-called T-cross HAZ portion where seam welding intersects the circumferentially welded portion of the steel pipe subjected to field welding. , The upper limit is set to 0.14% or less. Note that a preferable upper limit of C is 0.10% or less.
[0039]
Si is required to be 0.05% or more in order to prevent blowholes, but if it exceeds 0.4%, the low-temperature toughness, particularly the low-temperature toughness in the HAZ coarse-grain region, is remarkably deteriorated. Therefore, the range of Si is set to 0.05 to 0.4%.
[0040]
Mn is an indispensable element for securing a balance between excellent strength and low-temperature toughness, and its lower limit is 1.2%. However, if Mn is more than 2.2%, segregation is promoted and not only the low-temperature toughness is deteriorated, but also the production of a welding material becomes difficult, so the upper limit was made 2.2%.
[0041]
P and S are impurity elements, and in order to reduce the low-temperature toughness and low-temperature cracking susceptibility of the weld metal, both upper limits are set to 0.010% or less. Note that the lower limits of P and S are 0.003% or more and 0.0001% or more in the current technology, respectively. Ni is an element that enhances hardenability to secure strength and further improves low-temperature toughness. However, if it is less than 1.3%, the target strength and low-temperature toughness cannot be obtained, so the lower limit is 1.3% or more. . On the other hand, if the Ni content is more than 3.2%, there is a risk of hot cracking, so the upper limit was made 3.2%.
[0042]
B is a very small element that enhances hardenability and is effective in improving the low-temperature toughness of the weld metal. However, if the content is more than 0.005%, the low-temperature toughness of the weld metal decreases. Therefore, the upper limit of the B content is set to 0.005% or less. Note that B is preferably added at 0.0003% or more.
[0043]
Cr, Mo, and V are all elements that enhance hardenability, and one or more of them are added to obtain high strength. This effect is not sufficient when Cr + Mo + V is less than 1.0%, and when Cr + Mo + V is added in an amount larger than 2.5%, low-temperature cracking tends to occur. Therefore, the range of Cr + Mo + V is set to 1.0 to 2.5%.
[0044]
In addition, the weld metal may contain elements such as Ti, Al, Zr, Nb, and Mg that are added as necessary to improve the refining and solidification during welding. Next, the welding wire will be described.
[0045]
C is set to 0.01 to 0.12% in consideration of dilution with the base metal component and mixing of C from the atmosphere in order to obtain a range of the amount of C required for the weld metal.
[0046]
Si is set to 0.05 to 0.3% in consideration of dilution with a base metal component in order to obtain a range of Si amount required for the weld metal.
[0047]
Mn was set to 1.2 to 2.4% in consideration of dilution by a base metal component in order to obtain a range of Mn amount required for the weld metal.
[0048]
Ni was set to 4.0 to 8.5% in consideration of dilution with a base metal component in order to obtain a range of the amount of Ni required for the weld metal.
[0049]
One or two or more types of Cr + Mo + V are added. However, in order to obtain a range of the amount of Cr + Mo + V required for the weld metal, the content is set to 3.0 to 5.0% in consideration of dilution with a base metal component.
[0050]
In addition, it is desirable that the impurities of P and S are as small as possible, and B can be added for securing the strength. Further, Ti, Al, Zr, Nb, Mg and the like are used for the purpose of deoxidation.
[0051]
In addition, since the weld metal has a solidified structure and is inferior in toughness to the base metal, it is preferable to increase Ni, which improves the toughness, to be higher than the base material. In order to sufficiently exhibit this effect, it is preferable that the Ni content of the weld metal is 1% or more higher than that of the base metal.
[0052]
Next, the Vickers hardness will be described.
[0053]
In order to improve the low-temperature toughness of the HAZ coarse-grain region, the Vickers hardness of the HAZ coarse-grain region shown in FIG. 1 needs to be 230 Hv. If the Vickers hardness of the HAZ coarse-grained area is less than 230 Hv, the microstructure of the HAZ coarse-grained area is granular bainite or upper bainite, and -30 ° C because MA exists in the grains and / or at the grain boundaries. , The Charpy absorbed energy of the sample falls to less than 50 J. Further, in order to improve the low-temperature toughness of the HAZ and make the Charpy absorbed energy at −30 ° C. to be 100 J or more, it is preferable that the Vickers hardness of the HAZ coarse-grained region be 250 Hv or more. The upper limit of the Vickers hardness in the HAZ coarse-grain area is Hv calculated from the C content of the base material by Hv = 270 + 1300C.
[0054]
The measured value of the Vickers hardness of the HAZ is such that the ratio to the Hv calculated from the C content of the base material by Hv = 270 + 1300C is in the range of 0.5 to 1. Satisfying this, it is preferable that the Vickers hardness of the HAZ coarse-grained area is 230 Hv or more, and that no polygonal ferrite is generated by an optical micrograph, a scanning electron micrograph, or a hyperelectron micrograph. As a result, the HAZ coarse-grained region has a microstructure mainly composed of lower bainite and martensite, and the remainder is composed of retained austenite. Main lower bainite and martensite means that the lower bainite and martensite have a microstructure of 90 to 100% in area ratio, and the rest is retained austenite.
The Vickers hardness of the HAZ coarse grain area is measured according to JIS Z2244. In addition, a small piece of a portion containing the weld metal and the HAZ is cut out from the sample with the cross section perpendicular to the welding direction as an observation surface, mirror-polished, and nital-etched. The microstructure of this sample is observed with an optical microscope, and the Vickers hardness of the HAZ coarse grain region is measured. The sample may be etched by repeller etching. The measurement is preferably performed by cutting out a plurality of samples and calculating as an average value of about 3 to 5 points. The Vickers hardness is measured with a test force in the range of 0.09807 to 980.7 N. If the test force is small, the indentation is small and the accuracy is reduced. Therefore, it is preferable to set the range of 0.9807 to 98.07N.
[0055]
Regarding the Vickers hardness of the weld metal and the HAZ, the ratio of the measured value of the Vickers hardness of the weld metal and the HAZ to the Hv calculated from the C content of the weld metal and the base material by Hv = 270 + 1300C is 0.5 to 1%. Is preferably within the range. It is preferable that this is satisfied, and that no polygonal ferrite is formed by an optical micrograph, a scanning electron micrograph, or a hyperelectron micrograph. This corresponds to the fact that the weld metal and the HAZ have an area ratio of lower bainite and martensite of 90 to 100%, and the balance has a microstructure consisting of retained austenite. The Vickers hardness of the weld metal and the HAZ is preferably calculated as an average value of about 3 to 5 points by preparing a plurality of samples in the same manner as the Vickers hardness of the HAZ coarse grain region. The measurement of the C content of the weld metal and the HAZ is performed by taking a sample from the weld metal and the HAZ and conforming to JIS G1211.
[0056]
Next, the manufacturing conditions will be described.
[0057]
A steel plate is formed into a tube, and the butted portion is subjected to submerged arc welding from the inner and outer surfaces, and then expanded. The welding of the butt portion may be performed by MAG arc welding on the outer surface and then by submerged arc welding on the inner and outer surfaces.
[0058]
After welding, it is extremely important that the cooling rate from 600 ° C. at which bainite transformation starts at the time of cooling to 400 ° C. at which bainite transformation ends by about 50% be at least 1 ° C./s. Thereby, the HAZ coarse-grained region becomes a microstructure composed of lower bainite composed of lath-like ferrite and fine cementite and a microstructure composed of martensite and retained austenite, thereby improving toughness. On the other hand, when the cooling rate is less than 1 ° C./s, upper bainite composed of lath-like ferrite and MA at the lath boundary is generated, and when the cooling rate is further reduced, granular bainite in which the upper bainite has collapsed is generated and the toughness is reduced. . Since granular bainite is formed at 500 to 600 ° C, upper bainite is formed at 450 to 500 ° C, and lower bainite is formed at 400 to 450 ° C, it is preferable to cool the temperature range from 600 ° C to 450 ° C particularly quickly. Furthermore, in order to improve the toughness of the HAZ coarse-grained region and make the Charpy absorbed energy at −30 ° C. 100 J or more, the cooling rate is preferably 5 ° C./s or more. The higher the cooling rate, the more the toughness of the HAZ coarse grain region can be further improved. That is, in order to improve the Charpy absorbed energy at −30 ° C. to 150 J or more and 200 J or more, the cooling rate is preferably set to 10 ° C./s or more and 30 ° C./s or more, respectively. Although the upper limit of the cooling rate is not particularly defined, there is a limit due to technical restrictions and it depends on the sheet thickness, but at present, it is difficult to cool faster than 300 ° C./s.
[0059]
The forced cooling for increasing the cooling rate after welding may be forced air cooling by a fan, but air, nitrogen, helium, argon or other gas, water, mist or dry ice can be blown. The forced cooling needs to be performed at least after the final welding, but may be performed after each pass welding.
[0060]
【Example】
Steel having the components shown in Table 1 was melted in a converter, and cast into 240 mm thick slabs by continuous casting. These slabs were rolled into steel sheets of 14 to 25 mm under the conditions shown in Table 2. Further, after these steel sheets were subjected to UO forming, submerged arc welding was performed from the inner surface and the outer surface using wires and fluxes having the components shown in Table 3. After the outer surface welding, forced air cooling by a fan or forced cooling by blowing gas such as air was performed. The measurement of the cooling rate at this time was performed by a thermocouple attached to a portion 3 mm from the outer surface of the steel pipe of the weld metal after the inner surface welding. Thereafter, the pipe was expanded to a steel pipe having an outer diameter of 711 to 1219 mm.
[0061]
An analysis sample was taken from a part of the welded portion of these steel pipes, and the result of component analysis is shown in Table 4. Test pieces were taken from the base material and the weld metal of the steel pipe, and a tensile test was performed in accordance with ASTM E8, and it was confirmed that the tensile strength of the base material and the weld metal was 800 MPa or more. Further, a V-notch test piece of JIS Z 2202 was taken from the welded portion of the steel pipe and the HAZ, and a Charpy impact test was performed at −30 ° C. in accordance with JIS Z 2242 to evaluate the Charpy absorbed energy. In addition, the notch position was HAZ of 1 mm on the base material from the meeting part of the base metal and the weld metal in the center part of the plate thickness and the meeting part.
[0062]
Also, a plurality of small pieces were cut out from the HAZ, mirror-polished and nital-etched, and the Vickers hardness of the HAZ coarse-grained area was measured at 3 to 5 points at a test force of 980.7 N in accordance with JIS Z 2244, and the average value was obtained. Calculated. Table 5 shows the test results together with the cooling rates from 600 ° C to 400 ° C. Note that vE- 30 in Table 5 is the Charpy absorbed energy at -30 ° C, FL is a notch position where the base metal and the weld metal meet, and FL + 1 mm is a 1 mm HAZ from the meeting portion to the base metal. Means that.
[0063]
Production No. in which the weld was heat-treated according to the present invention. In Nos. 1 to 20, the Charpy absorbed energy at -30 ° C exceeded 50 J, which was extremely good. On the other hand, the production No. In Nos. 21 to 32, since the cooling rate after welding is not within the range of the present invention, the Vickers hardness in the HAZ coarse-grained area is reduced, and the low-temperature toughness of the weld, particularly the HAZ indicated by FL + 1 mm, is significantly reduced. And the Charpy absorbed energy at −30 ° C. is less than 50 J.
[0064]
[Table 1]
Figure 2004099930
[0065]
[Table 2]
Figure 2004099930
[0066]
[Table 3]
Figure 2004099930
[0067]
[Table 4]
Figure 2004099930
[0068]
[Table 5]
Figure 2004099930
[0069]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, a high-strength welded steel pipe for a high-strength line pipe (tensile strength 800 MPa or more, API standard X100 or more) excellent in low-temperature toughness and on-site weldability can be stably mass-produced. As a result, the transportation efficiency and construction efficiency of the pipeline can be dramatically improved, and the industrial contribution is extremely high.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a welding heat affected zone coarse grain region.
Schematic diagram of a microstructure of FIG. 2 Ac 1 coarse-grained HAZ portion is reheated in the vicinity.
[3] Ac 3 schematic diagram of the microstructure of the coarse-grained HAZ portion is reheated in the vicinity.
FIG. 4 is a graph showing the relationship between the Charpy absorbed energy at -30 ° C. [J] of a welded portion and the cooling rate [° C./s] from 600 ° C. to 400 ° C. after welding.

Claims (5)

母材および溶接金属の引張強さが800MPa以上で、溶接熱影響部粗粒域のビッカース硬さが230Hv以上であり、かつ母材のC量[質量%]から式(1)によって計算したHvとの比が0.5〜1であることを特徴とする溶接部靱性に優れた高強度溶接鋼管。
Hv=270+1300C  ・・・ (1)
The tensile strength of the base metal and the weld metal is 800 MPa or more, the Vickers hardness of the weld heat-affected zone coarse grain area is 230 Hv or more, and Hv calculated from the C content [mass%] of the base material by the formula (1). The high strength welded steel pipe excellent in weld toughness characterized by having a ratio of 0.5 to 1.
Hv = 270 + 1300C (1)
母材が、質量%で、
C :0.02〜0.10%、
Si:0.6%以下、
Mn:1.5〜2.5%、
P :0.015%以下、
S :0.003%以下、
Ni:0.1〜2.0%、
Mo:0.1〜0.6%、
Nb:0.001〜0.10%、
Ti:0.030%以下、
Al:0.07%以下
を含み、さらに、
B :0.0020%以下、
N :0.006%以下、
V :0.10%以下、
Cu:1.0%未満、
Cr:1.0%以下、
Ca:0.01%以下、
REM:0.02%以下、
Mg:0.006%以下
の1種または2種以上を含有して残部が鉄および不可避的不純物からなり、かつ溶接金属が、質量%で、
C :0.02〜0.14%、
Si:0.05〜0.4%、
Mn:1.2〜2.2%、
P :0.010%以下、
S :0.010%以下、
Ni:1.3〜3.2%以下、
B :0.005%以下
を含み、さらに、Cr、Mo、Vの1種または2種以上を
Cr+Mo+V:1.0〜2.5%
の範囲で含有し、残部が鉄および不可避的不純物からなることを特徴とする請求項1に記載の溶接部靱性に優れた高強度溶接鋼管。
The base material is mass%
C: 0.02 to 0.10%,
Si: 0.6% or less,
Mn: 1.5 to 2.5%,
P: 0.015% or less,
S: 0.003% or less,
Ni: 0.1 to 2.0%,
Mo: 0.1 to 0.6%,
Nb: 0.001 to 0.10%,
Ti: 0.030% or less,
Al: not more than 0.07%,
B: 0.0020% or less,
N: 0.006% or less,
V: 0.10% or less,
Cu: less than 1.0%,
Cr: 1.0% or less,
Ca: 0.01% or less,
REM: 0.02% or less,
Mg: one or more of 0.006% or less, the balance being iron and unavoidable impurities, and the weld metal in mass%
C: 0.02 to 0.14%,
Si: 0.05 to 0.4%,
Mn: 1.2 to 2.2%,
P: 0.010% or less,
S: 0.010% or less,
Ni: 1.3 to 3.2% or less,
B: contains 0.005% or less, and further contains one or more of Cr, Mo, and V as Cr + Mo + V: 1.0 to 2.5%
The high-strength welded steel pipe having excellent weld toughness according to claim 1, characterized in that the content is within the range described above, and the balance consists of iron and inevitable impurities.
溶接金属のNi量が母材に比べて1質量%以上高く、溶接金属および溶接熱影響部のビッカース硬さと、溶接金属および母材のC量[質量%]から前記式(1)によって計算したHvの比が0.5〜1であることを特徴とする請求項1または2に記載の溶接部靱性に優れた高強度溶接鋼管。The Ni content of the weld metal was 1% by mass or more higher than that of the base metal, and was calculated from the Vickers hardness of the weld metal and the weld heat-affected zone and the C content [mass%] of the weld metal and the base material according to the above equation (1). The high strength welded steel pipe having excellent weld toughness according to claim 1 or 2, wherein the ratio of Hv is 0.5 to 1. 鋼板を管状に成形し、その突き合わせ部を内外面から、サブマージアーク溶接し、拡管する鋼管の製造方法において、少なくとも最終溶接後、溶接部を600℃から400℃まで1℃/s以上で冷却することを特徴とする請求項1〜3のいずれか1項に記載の溶接部靱性に優れた高強度溶接鋼管の製造方法。In a method of manufacturing a steel pipe in which a steel plate is formed into a tubular shape and the butted portion is subjected to submerged arc welding from the inner and outer surfaces and expanded, at least after final welding, the welded portion is cooled at a rate of 1 ° C / s or more from 600 ° C to 400 ° C. The method for producing a high-strength welded steel pipe having excellent weld toughness according to any one of claims 1 to 3, characterized in that: 質量%で、
C :0.01〜0.12%、
Si:0.05〜0.3%、
Mn:1.2〜2.4%、
Ni:4.0〜8.5%
を含み、さらに、Cr、Mo、Vの1種または2種以上を
Cr+Mo+V:3.0〜5.0%
の範囲で含有し、残部が鉄および不可避的不純物からなる溶接ワイヤーおよび焼成型または溶融型フラックスを使用して溶接することを特徴とする請求項4に記載の溶接部靱性に優れた高強度溶接鋼管の製造方法。
In mass%,
C: 0.01 to 0.12%,
Si: 0.05-0.3%,
Mn: 1.2 to 2.4%,
Ni: 4.0 to 8.5%
And one or more of Cr, Mo and V are Cr + Mo + V: 3.0 to 5.0%
The high-strength welding according to claim 4, characterized in that the welding is performed using a welding wire composed of iron and unavoidable impurities and a sintering type or a molten type flux. Manufacturing method of steel pipe.
JP2002260244A 2002-09-05 2002-09-05 High strength welded steel pipe with excellent weld toughness and manufacturing method thereof Expired - Fee Related JP4171267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260244A JP4171267B2 (en) 2002-09-05 2002-09-05 High strength welded steel pipe with excellent weld toughness and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260244A JP4171267B2 (en) 2002-09-05 2002-09-05 High strength welded steel pipe with excellent weld toughness and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004099930A true JP2004099930A (en) 2004-04-02
JP4171267B2 JP4171267B2 (en) 2008-10-22

Family

ID=32261017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260244A Expired - Fee Related JP4171267B2 (en) 2002-09-05 2002-09-05 High strength welded steel pipe with excellent weld toughness and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4171267B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108636A1 (en) * 2004-05-11 2005-11-17 Sumitomo Metal Industries, Ltd. Super high strength uoe steel pipe and method for production thereof
WO2008004680A1 (en) 2006-07-04 2008-01-10 Nippon Steel Corporation High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
CN100434562C (en) * 2005-11-30 2008-11-19 鞍钢股份有限公司 Chromium-containing high-strength pipeline steel hot-rolled plate
JP2009057629A (en) * 2007-08-08 2009-03-19 Jfe Steel Kk High strength steel pipe for low temperature use having excellent buckling resistance and weld heat-affected zone toughness, and method for producing the same
JP2009091653A (en) * 2007-09-19 2009-04-30 Jfe Steel Kk High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
EP2093302A1 (en) * 2006-11-30 2009-08-26 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness
JP2011021263A (en) * 2009-07-17 2011-02-03 Kobe Steel Ltd Steel plate excellent in weld heat affected zone toughness
WO2013051249A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
CN104520049A (en) * 2012-08-09 2015-04-15 杰富意钢铁株式会社 Submerged arc welding method, welded joint formed by said welding method, and steel tube having said welded joint
KR20160023989A (en) 2014-08-21 2016-03-04 주식회사 포스코 Welded joint having excellent impact toughness and method for manufacturing thereof
JP2016079474A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Weld joint

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746175A1 (en) * 2004-05-11 2007-01-24 Sumitomo Metal Industries, Ltd. Super high strength uoe steel pipe and method for production thereof
EP1746175A4 (en) * 2004-05-11 2007-07-04 Sumitomo Metal Ind Super high strength uoe steel pipe and method for production thereof
WO2005108636A1 (en) * 2004-05-11 2005-11-17 Sumitomo Metal Industries, Ltd. Super high strength uoe steel pipe and method for production thereof
CN100434562C (en) * 2005-11-30 2008-11-19 鞍钢股份有限公司 Chromium-containing high-strength pipeline steel hot-rolled plate
US8764918B2 (en) 2006-07-04 2014-07-01 Nippon Steel & Sumitomo Metal Corporation High strength steel pipe for line pipe superior in low temperature toughness and high strength steel plate for line pipe and methods of production of the same
US9719615B2 (en) 2006-07-04 2017-08-01 Nippon Steel & Sumitomo Metal Corporation High strength steel pipe for line pipe superior in low temperature toughness and high strength steel plate for line pipe and methods of production of the same
WO2008004680A1 (en) 2006-07-04 2008-01-10 Nippon Steel Corporation High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
EP2093302A1 (en) * 2006-11-30 2009-08-26 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
EP2093302A4 (en) * 2006-11-30 2011-07-27 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2009057629A (en) * 2007-08-08 2009-03-19 Jfe Steel Kk High strength steel pipe for low temperature use having excellent buckling resistance and weld heat-affected zone toughness, and method for producing the same
JP2009091653A (en) * 2007-09-19 2009-04-30 Jfe Steel Kk High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness
JP2011021263A (en) * 2009-07-17 2011-02-03 Kobe Steel Ltd Steel plate excellent in weld heat affected zone toughness
WO2013051249A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
CN104520049B (en) * 2012-08-09 2016-11-02 杰富意钢铁株式会社 Submerged-arc welding method, the welding point formed by this welding method and there is the steel pipe of this welding point
CN104520049A (en) * 2012-08-09 2015-04-15 杰富意钢铁株式会社 Submerged arc welding method, welded joint formed by said welding method, and steel tube having said welded joint
KR20160023989A (en) 2014-08-21 2016-03-04 주식회사 포스코 Welded joint having excellent impact toughness and method for manufacturing thereof
JP2016079474A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Weld joint

Also Published As

Publication number Publication date
JP4171267B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP5098235B2 (en) High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP6665525B2 (en) H-shaped steel for low temperature and method for producing the same
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP5181639B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP2010202976A (en) High-strength steel tube for low temperature use having superior buckling resistance and toughness in weld heat-affected area, and manufacturing method for same
JP2007314828A (en) High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them
JP5137032B2 (en) Steel plate for submerged arc welding
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP2003138340A (en) Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JPWO2018185851A1 (en) Vertical seam welded steel pipe
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP7155703B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP2008280573A (en) Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4171267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees