JP2009202167A - Welded steel pipe having excellent weld heat-affected zone toughness - Google Patents

Welded steel pipe having excellent weld heat-affected zone toughness Download PDF

Info

Publication number
JP2009202167A
JP2009202167A JP2008044176A JP2008044176A JP2009202167A JP 2009202167 A JP2009202167 A JP 2009202167A JP 2008044176 A JP2008044176 A JP 2008044176A JP 2008044176 A JP2008044176 A JP 2008044176A JP 2009202167 A JP2009202167 A JP 2009202167A
Authority
JP
Japan
Prior art keywords
welding
affected zone
steel pipe
line
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008044176A
Other languages
Japanese (ja)
Other versions
JP5176591B2 (en
Inventor
Akihiko Tanizawa
彰彦 谷澤
Mitsuhiro Okatsu
光浩 岡津
Junji Shimamura
純二 嶋村
Shigeru Endo
茂 遠藤
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008044176A priority Critical patent/JP5176591B2/en
Publication of JP2009202167A publication Critical patent/JP2009202167A/en
Application granted granted Critical
Publication of JP5176591B2 publication Critical patent/JP5176591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost welded steel pipe for a line pipe with a pipe thickness of ≥25 mm, which has excellent weld heat-affected zone toughness and whose productivity is high. <P>SOLUTION: Disclosed is the welded steel pipe with the pipe thickness of ≥25 mm provided with the following seam-welded zones each by one layer at the internal and external faces, in which the seam welding is performed in such a manner that either the internal face or the external face is made first: 1. in the coarse grain region in the vicinity of the melting line in the Back side seam welding, the average grain size of old austenite in the region reheated to Ac1 to Ac3 transformation points by the Final side welding is ≤100 μm; 2. the angle formed by the tangent of the melting line in the plate surface side of 6 mm and the center line of Final side weld bead, in the Final side welding is ≥20°; and 3. the grain size of old austenite in the coarse grain region in the vicinity of the melting line in the Final side welding is ≤300 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、厚鋼板を冷間曲げ加工により筒状に成形し、突合せ部を溶接することにより製造された管厚25mm以上の溶接鋼管に関し、天然ガスや原油用ラインパイプ用溶接鋼管として好適な、引張強さが565Mpa以上の溶接熱影響部靱性に優れたものに関する。   The present invention relates to a welded steel pipe having a thickness of 25 mm or more manufactured by forming a thick steel plate into a cylindrical shape by cold bending and welding the butt portion, and is suitable as a welded steel pipe for natural gas and crude oil line pipes. Further, the present invention relates to a material having excellent weld heat affected zone toughness having a tensile strength of 565 Mpa or more.

天然ガスや原油の輸送用として使用されるラインパイプは、高圧操業による輸送効率向上を達成するため、年々高強度、厚肉化が進んでいる。   Line pipes used for the transportation of natural gas and crude oil are increasing in strength and thickness year by year in order to achieve improved transport efficiency through high-pressure operation.

また、天然ガスを輸送する海底パイプラインシステムでは、敷設深度が深くなるほど敷設時の耐座屈強度を確保し、操業時の耐水圧強度および潮流に対する安全性の観点から、より厚肉のラインパイプが求められている。   Also, in the submarine pipeline system that transports natural gas, the deeper the laying depth, the better the buckling strength when laying, and the thicker line pipe from the viewpoint of water pressure resistance during operation and safety against tidal currents. Is required.

さらに、ガス田および油田の開発は、ロシアやアラスカなどの酷寒地域や北海などの寒冷海域に拡大する傾向があり、ラインパイプ材にはより低温での母材および溶接熱影響部の靭性が要求される。   In addition, the development of gas and oil fields has a tendency to expand to extremely cold regions such as Russia and Alaska, and cold sea regions such as the North Sea, and line pipe materials require toughness at lower temperatures of the base material and weld heat affected zone. Is done.

ラインパイプ用溶接鋼管は、一般的に厚鋼板を筒状に成型し、突合せ部を内外面から1層ずつシーム溶接をすることで製造されるが、管厚が25mmを超える厚肉鋼管になると、シーム溶接の入熱が増大し、溶接熱影響部靭性を確保することが困難になる。   Welded steel pipes for line pipes are generally manufactured by forming a thick steel plate into a cylindrical shape and seam-welding the butt part one layer at a time from the inner and outer surfaces. The heat input of seam welding increases and it becomes difficult to ensure the toughness of the heat affected zone.

特許文献1は溶接熱影響部靭性に優れた鋼板の製造方法に関し、実質的にAlを含有しない鋼にTi、Mgを添加して、高温で安定な酸化物を生成し鋼中に分散させて溶接熱影響部組織の粗粒化を抑制することが記載されている。   Patent Document 1 relates to a method of manufacturing a steel plate having excellent weld heat affected zone toughness, and Ti and Mg are added to steel that does not substantially contain Al to produce a stable oxide at high temperature and dispersed in the steel. It is described that the coarsening of the weld heat affected zone structure is suppressed.

また、特許文献2は厚肉大径鋼管の溶接による製造方法に関し、通常内外面ずつ1層で行われるシーム溶接を肉厚30mm以上において肉厚の増大にあわせて内面1層外面2層、内面2層外面2層と多層盛溶接とし、1パスあたりの溶接入熱を低減する方法が記載れている。
特許第3378433号公報 特許第2650601号公報
Patent Document 2 relates to a manufacturing method by welding thick-walled large-diameter steel pipes, and seam welding, which is usually performed in one layer for each inner and outer surfaces, has an inner surface of one layer, an outer surface of two layers, an inner surface of 30 mm or more in accordance with the increase in thickness. A method for reducing the welding heat input per pass is described, in which two outer layers and two layers are multilayered.
Japanese Patent No. 3378433 Japanese Patent No. 2650601

しかしながら、特許文献1記載のように鋼中にAlを実質的に含有させない場合、安価かつ強脱酸元素であるAlを用いた脱酸を行うことができず、製鋼コストが増大するだけでなく、酸化物系不純物の増大が懸念される。   However, when Al is not substantially contained in the steel as described in Patent Document 1, deoxidation using Al, which is an inexpensive and strong deoxidizing element, cannot be performed, and not only the steelmaking cost increases. There is a concern about an increase in oxide impurities.

また、Mg系酸化物は、高温で安定であるため溶接熱影響部組織のピンニング効果を発揮するが、酸化物を鋼中に十分なピンニング力を発揮するだけの量を均一かつ微細に分散させることが困難である。   In addition, Mg-based oxides are stable at high temperatures and thus exhibit the pinning effect of the weld heat-affected zone structure, but the oxides are uniformly and finely dispersed in steel to provide a sufficient pinning force. Is difficult.

特許文献2記載のようにシーム溶接を多層にすることは、鋼管の生産性を大幅に低下させるだけでなく、靭性劣化が最も著しいとされるICCGHAZ(Inter Critical Coarse Grain HAZ:先行する溶接によって形成された溶融線近傍の粗大粒からなる溶接熱影響部が後続する溶接によってAc〜Ac変態点に再加熱された領域)のシーム溶接部断面に占める割合を増大させることとなる。 The multi-layer seam welding as described in Patent Document 2 not only significantly reduces the productivity of steel pipes, but is also formed by ICCGHAZ (Inter Critical Coarse Grain HAZ), which is considered to have the most remarkable deterioration in toughness. The ratio of the welded heat-affected zone made of coarse grains near the melted line to the Ac 1 to Ac 3 transformation point by the subsequent welding is increased in the seam weld section.

そこで、本発明は、上述した問題を解決すべく、生産性に優れる管厚25mm以上の溶接熱影響部靭性に優れた溶接鋼管を提供することを目的とする。   Then, this invention aims at providing the welded steel pipe excellent in the weld heat affected zone toughness of the pipe thickness of 25 mm or more which is excellent in productivity, in order to solve the problem mentioned above.

本発明者等は、高い生産性を確保するため、シーム溶接を内外面各1層で行うこととし、当該シーム溶接部において優れた溶接部靭性が得られるミクロ組織や溶け込み形状について再現熱サイクル試験や試験溶接継手を用いて種々検討を行った。   In order to ensure high productivity, the present inventors decided to perform seam welding with one layer on each of the inner and outer surfaces, and reproduced thermal cycle tests on microstructures and penetration shapes that provide excellent weld toughness in the seam welds. Various tests were conducted using test weld joints.

その結果、1.溶接部において最も靭性が低い部分は溶融線近傍粗粒域が特定の温度域に再加熱された領域であること、2.当該領域を細粒化することによって靭性が改善されること、3.溶接部の溶け込み形状によりシャルピー衝撃試験で評価される靭性値が影響を受けることを知見した。   As a result, 1. The portion with the lowest toughness in the weld zone is a region where the coarse grain region near the melting line is reheated to a specific temperature range. 2. Toughness is improved by making the region finer; It was found that the toughness value evaluated by the Charpy impact test is affected by the penetration shape of the weld.

以下の説明において、内外面1層ずつの溶接において先行して行う溶接はback側溶接、後行して行う溶接はfinal側溶接とする。   In the following description, the welding performed in advance in the welding of the inner and outer surfaces one layer at a time is assumed to be the back side welding, and the welding performed subsequently is referred to as the final side welding.

本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
(1)内面または外面のいずれかを先行して行った、内外面各1層の、以下のシーム溶接部を備えた、管厚が25mm以上の溶接鋼管。
1.Back側シーム溶接の溶融線近傍粗粒域で、Final側溶接によってAc1〜Ac3変態点まで再加熱された領域における旧オーステナイト粒の平均粒径が100μm以下。
2.Final側溶接の、表面下6mm位置における溶融線の接線と、前記Final側溶接ビードの中心線が成す角度が20°以上。
3.Final側溶接の溶融線近傍粗粒域における旧オーステナイト粒径が300μm以下。
(2) 鋼の化学成分が、
質量%で、
C: 0.03〜0.08%
Si: 0.05%以下
Mn: 1.0〜2.0%
P: 0.006%以下
S: 0.005%以下
Al: 0.02〜0.05%
Nb: 0.005〜0.025%
Ti: 0.005〜0.030%
N: 0.001〜0.010%
を含有し、さらに、
Cu: 0.10〜0.60%
Ni: 0.10〜1.20%
Cr: 0.05〜0.40%
Mo: 0.05〜0.40%
の1種または2種以上を含有し、
下式で示される炭素等量(Ceq)が0.30≦Ceq≦0.45を満たし、残部Feおよび不可避的不純物からなることを特徴とする(1)記載の溶接熱影響部靭性に優れた溶接鋼管。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
(3) 更に、質量%で、
Zr: 0.0005〜0.0300%
Ca: 0.0005〜0.0100%
Mg: 0.0005〜0.0100%
REM: 0.0005〜0.0200%
の1種または2種以上を含有することを特徴とする2に記載の溶接熱影響部靱性に優れた溶接鋼管。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
(1) A welded steel pipe having a pipe thickness of 25 mm or more provided with the following seam welded portion of each inner and outer surface layer, which was performed in advance on either the inner surface or the outer surface.
1. The average grain size of the prior austenite grains in the region reheated to the Ac1 to Ac3 transformation points by the final side welding in the coarse grain region near the melting line of the back side seam welding is 100 μm or less.
2. The angle formed by the tangent line of the melt line at a position 6 mm below the surface of the final side welding and the center line of the final side weld bead is 20 ° or more.
3. The prior austenite grain size in the coarse grain region near the melting line of final side welding is 300 μm or less.
(2) The chemical composition of steel is
% By mass
C: 0.03 to 0.08%
Si: 0.05% or less Mn: 1.0 to 2.0%
P: 0.006% or less S: 0.005% or less Al: 0.02-0.05%
Nb: 0.005 to 0.025%
Ti: 0.005 to 0.030%
N: 0.001 to 0.010%
In addition,
Cu: 0.10 to 0.60%
Ni: 0.10 to 1.20%
Cr: 0.05-0.40%
Mo: 0.05 to 0.40%
Containing one or more of
The carbon equivalent (Ceq) represented by the following formula satisfies 0.30 ≦ Ceq ≦ 0.45, and consists of the balance Fe and unavoidable impurities, and has excellent weld heat affected zone toughness according to (1) Welded steel pipe.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
(3) Furthermore, in mass%,
Zr: 0.0005 to 0.0300%
Ca: 0.0005 to 0.0100%
Mg: 0.0005 to 0.0100%
REM: 0.0005 to 0.0200%
The welded steel pipe having excellent weld heat affected zone toughness according to 2, characterized by containing one or more of the above.

本発明によれば、管厚25mm以上の溶接熱影響部靭性に優れたラインパイプ用溶接鋼管の製造が低コストかつ生産性良く可能となり産業上極めて有効である。   According to the present invention, it is possible to manufacture a welded steel pipe for a line pipe excellent in weld heat-affected zone toughness having a pipe thickness of 25 mm or more at a low cost and with high productivity, which is extremely effective industrially.

本発明は、溶接部の形状と溶接熱影響部のミクロ組織を規定する。以下に、限定理由を説明する。
1.積層法
シーム溶接部は、内面または外面のいずれかを先行して行った、内外面各1層で溶接する。本発明が対象とする管厚25mm以上の溶接鋼管のシーム溶接を、内外面各1層溶接とするため、多電極サブマージアーク溶接法を用いる。内面と外面のどちらの溶接を先行して行ってもよいが、通常の工場レイアウトは、内面溶接を先行することが多いため、以下の説明は、先行を内面溶接として行い、内面側溶接はback側溶接、外面側溶接をfinal側溶接とする。
2.Back側シーム溶接
内外面各1層のシーム溶接部において最も靭性に劣る領域は、Back側シーム溶接のICCGHAZのため、当該領域のミクロ組織において、旧オーステナイト粒の平均粒径を100μm以下とする。
The present invention defines the shape of the weld and the microstructure of the weld heat affected zone. The reason for limitation will be described below.
1. Lamination method The seam welded part is welded with one layer each on the inner and outer surfaces, which was performed on either the inner surface or the outer surface in advance. A multi-electrode submerged arc welding method is used in order to make seam welding of a welded steel pipe having a thickness of 25 mm or more, which is an object of the present invention, one-layer welding on each of the inner and outer surfaces. Either the inner surface or the outer surface may be preceded, but the normal factory layout often precedes the inner surface welding. Therefore, in the following explanation, the preceding is performed as inner surface welding, and the inner surface side welding is back. Side welding and outer surface welding are referred to as final side welding.
2. Back-side seam welding The region with the least toughness in each seam welded portion of the inner and outer surfaces is ICCGHAZ of Back-side seam welding, so that the average grain size of the prior austenite grains is 100 μm or less in the microstructure of the region.

表1に種々の成分組成のラインパイプ用鋼板を用いて、再現熱サイクルシャルピー衝撃試験(試験温度−30℃、試験本数3本)行った結果を示す。再現熱サイクルは溶接部の4箇所において、管厚25mm以上の溶接鋼管のシーム溶接で得られる熱履歴を模した、以下のものとした。   Table 1 shows the results of a reproducible thermal cycle Charpy impact test (test temperature of -30 ° C., test number of 3) using line pipe steel sheets having various component compositions. The reproducible heat cycle was as follows, which simulated the thermal history obtained by seam welding of a welded steel pipe having a pipe thickness of 25 mm or more at four locations of the weld.

1.final側溶融線近傍粗粒域(以下、final側CGHAZ(CGHAZはCoarse Grain HAZの略称))、
2.back側溶融線近傍粗粒域(以下、back側CGHAZ)、
3.back側溶接の溶融線近傍粗粒域がFinal側溶接によってAc〜Ac変態点に再加熱された領域(以下、ICCGHAZ(Inter Critical Coarse Grain HAZの略称))、
4.back側溶接によって形成された溶融線近傍粗流域がfinal側溶接によって600℃〜Ac変態点に再加熱された領域(以下、SCCGHAZ(Sub Critical Coarse Grain HAZの略称))での熱サイクルとした。
1. final-side melt line vicinity coarse grain region (hereinafter, final-side CGHAZ (CGHAZ is an abbreviation for Coarse Grain HAZ)),
2. back side melt line vicinity coarse grain region (hereinafter, back side CGHAZ),
3. A region where the coarse grain region near the melting line of the back side welding is reheated to the Ac 1 to Ac 3 transformation point by the final side welding (hereinafter referred to as ICCGHAZ (abbreviation of Inter Critical Coarse Grain HAZ)),
4). The thermal cycle in the region where the rough flow region near the melting line formed by the back side welding was reheated from 600 ° C. to the Ac 1 transformation point by the final side welding (hereinafter referred to as SCCGHAZ (abbreviation of Sub Critical Coarse Grain HAZ)) was used. .

Figure 2009202167
Figure 2009202167

得られた試験結果より、back側ICCGHAZで最も靭性が劣っていることが認められる。図1に、表1の鋼No.1〜3についてback側ICCGHAZの靭性に及ぼす旧オーステナイト粒径の影響を調査した結果を示す。旧オーステナイト粒径は、back側CGHAZの再現熱サイクルにおいて、最高温度(1400℃)での保持時間および1400℃から800℃までの冷却時間を変えて変化させた。   From the obtained test results, it is recognized that the back side ICCGHAZ has the worst toughness. In FIG. The result of having investigated the influence of the prior austenite particle size on the toughness of back side ICCGHAZ about 1-3 is shown. The prior austenite particle size was changed by changing the holding time at the maximum temperature (1400 ° C.) and the cooling time from 1400 ° C. to 800 ° C. in the reproduction thermal cycle of the back side CGHAZ.

図1より、旧オーステナイト粒径を微細にするほど、シャルピー衝撃値が高くなることがわかる。ICCGHAZの靱性値は、極めて小さな値となるが、実際の溶接継手のシャルピー衝撃値を評価する際は、ノッチ底に0.5〜2.0mm程度しか含まれない。   FIG. 1 shows that the smaller the prior austenite grain size, the higher the Charpy impact value. The toughness value of ICCGHAZ is extremely small, but when evaluating the Charpy impact value of an actual welded joint, only about 0.5 to 2.0 mm is included in the notch bottom.

そこで、溶接継手とICCGHAZを模擬した再現熱サイクル材のシャルピー衝撃値の相関をとったところ、再現熱サイクル材の3本の平均値を25J以上にすれば、溶接継手で40Jを安定的に確保できることがわかった。ICCGHAZの旧オーステナイト粒径を100μm以下にすることにより、目標値を達成することが可能である。
3.Final側シーム溶接部
溶接鋼管のシーム溶接部のシャルピー衝撃試験は、通常、Final側からシャルピー衝撃試験片を採取して行うため、本発明では、Final側シーム溶接部における溶接部の溶け込み形状と、CGHAZにおける旧オーステナイト粒径を規定する。
Therefore, when the correlation between the Charpy impact value of the simulated thermal cycle material simulating the welded joint and ICCGHAZ was taken, if the average value of the three replicated thermal cycle materials was 25 J or more, 40 J was stably secured by the welded joint. I knew it was possible. By setting the prior austenite grain size of ICCGHAZ to 100 μm or less, it is possible to achieve the target value.
3. Final side seam welded portion Since the Charpy impact test of the seam welded portion of the welded steel pipe is usually performed by collecting a Charpy impact test piece from the final side, in the present invention, the penetration shape of the welded portion in the final side seam welded portion, Defines the prior austenite grain size in CGHAZ.

表2に、板厚26.8mmでV開先を施した表1の鋼No.1を溶接入熱6〜12kJ/cmの4電極サブマージアーク溶接によりFinal側溶接を模擬した片面溶接を施して作成した溶接継手のシャルピー衝撃試験を示す。   Table 2 shows the steel No. 1 in Table 1 having a plate thickness of 26.8 mm and a V groove. 1 shows a Charpy impact test of a welded joint prepared by performing single-sided welding simulating final-side welding by 4-electrode submerged arc welding with a welding heat input of 6 to 12 kJ / cm.

4電極サブマージアーク溶接は、溶け込み形状を変化させるため開先形状の開先角度を4種類とし、旧オーステナイト粒径を変化させるため各開先角度について溶接入熱6〜12kJ/cmとして行った。   Four-electrode submerged arc welding was performed with four types of groove angles in order to change the penetration shape, and with a welding heat input of 6 to 12 kJ / cm for each groove angle in order to change the prior austenite grain size.

シャルピー衝撃試験は継手のFinal側の板厚方向各位置からシャルピー衝撃試験片を採取して、切欠き位置:CGHAZ、試験温度:−30℃、試験本数:9本で実施した。   For the Charpy impact test, Charpy impact test pieces were collected from each position in the plate thickness direction on the final side of the joint, and the test was performed at a notch position: CGHAZ, a test temperature: −30 ° C., and the number of tests: 9.

Figure 2009202167
Figure 2009202167

表2より、Final側溶接の、表面下6mm位置における溶融線の接線と、前記Final側溶接ビードの中心線が成す角度が20°以上で、CGHAZにおける旧オーステナイト粒径が300μm以下の場合、最も優れたシャルピー衝撃試験結果が得られることが認められる。   From Table 2, when the angle formed by the tangent of the melt line at the position of 6 mm below the surface of the final side welding and the center line of the final side weld bead is 20 ° or more, and the prior austenite grain size in CGHAZ is 300 μm or less, It can be seen that excellent Charpy impact test results are obtained.

尚、final側溶接部の表面下6mmの位置は、海底用ラインパイプの材質評価に適用されるDNV−OS F101の外面FLシャルピー試験の採取位置である。   Note that the position 6 mm below the surface of the final-side welded portion is the sampling position of the outer surface FL Charpy test of DNV-OS F101 applied to the material evaluation of the seabed line pipe.

内圧に対する破壊性能を考えた場合、外表面に近いほど高い応力状態になるため、外表面に近くなおかつ一般的に管厚方向との溶融線の傾斜角度が鋭角になり破壊の危険性が高まる箇所であるため、鋼管破壊性能を評価する上で適した位置である。   When considering the fracture performance against internal pressure, the closer to the outer surface, the higher the stress state, so the closer to the outer surface and generally the inclination angle of the melt line with the tube thickness direction becomes acute, increasing the risk of fracture Therefore, it is a suitable position for evaluating steel pipe fracture performance.

当該位置におけるシャルピー衝撃試験では、ラインパイプの供用時に受ける内圧で管周方向に作用する応力に対する管厚方向に入ったき裂や欠陥の破壊抵抗の評価に好適である。   The Charpy impact test at this position is suitable for evaluating the fracture resistance of cracks and defects that have entered the pipe thickness direction against the stress acting in the pipe circumferential direction due to the internal pressure received when the line pipe is in service.

本発明に係る溶接鋼管を565MPa以上の引張強度とする場合に好適な鋼板の成分組成について以下に説明する。なお、成分量の%は全て質量%である。
C:0.03〜0.08%
Cは低温変態組織においては、過飽和に固溶することで強度上昇に寄与する。この効果を得るためには、0.03%以上の添加が必要であるが、0.08%を超えて添加すると大入熱溶接熱影響部の硬度上昇や組織中に島状マルテンサイトを生成し靭性が劣化するため、上限を0.08%とする。
The component composition of the steel sheet suitable for the case where the welded steel pipe according to the present invention has a tensile strength of 565 MPa or more will be described below. In addition, all% of component amount is the mass%.
C: 0.03-0.08%
C contributes to an increase in strength by dissolving in supersaturation in a low temperature transformation structure. In order to obtain this effect, addition of 0.03% or more is necessary. However, if the addition exceeds 0.08%, the hardness of the heat-affected zone with high heat input is increased and island martensite is generated in the structure. Since the toughness deteriorates, the upper limit is made 0.08%.

Si:0.05%以下
Siは脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素であるが、溶接熱影響部の組織が上部ベイナイトであるときは、島状マルテンサイトの生成を助長し、溶接熱影響部靭性を著しく劣化させる。本発明では、Siを実質的に含まないようにすることで、溶接熱影響部が上部ベイナイトである場合の溶接熱影響部靭性が著しく向上するという知見を得た。従って、Siはできるだけ低減することが望ましいが、0.05%までは許容する。好ましくは0.04%未満である。
Si: 0.05% or less Si is an element that acts as a deoxidizer and further increases the strength of the steel by solid solution strengthening. When the structure of the weld heat affected zone is upper bainite, island martensite The generation of heat and significantly deteriorates the weld heat-affected zone toughness. In the present invention, it has been found that the toughness of the weld heat affected zone when the weld heat affected zone is upper bainite is remarkably improved by substantially not containing Si. Therefore, it is desirable to reduce Si as much as possible, but 0.05% is allowed. Preferably it is less than 0.04%.

Mn:1.0〜2.0%
Mnは焼入れ性向上元素として作用し、1.0%以上の添加によりその効果が得られるが、連続鋳造プロセスを適用した場合、中心偏析部の濃度上昇が著しく、2.0%を超える添加を行うと偏析部の靭性が劣化するため、上限を2.0%とする。
Mn: 1.0-2.0%
Mn acts as a hardenability improving element, and its effect can be obtained by addition of 1.0% or more. However, when a continuous casting process is applied, the concentration of the central segregation part is remarkably increased, and the addition exceeds 2.0%. If done, the toughness of the segregation part deteriorates, so the upper limit is made 2.0%.

P:0.006%以下
Pは固溶強化により強度を増加させる元素であるが、母材および溶接熱影響部の靭性や溶接性を劣化させるため、一般的にその含有量を低減することが望まれる。本発明では、Pを低減することにより溶接熱影響部の硬さを低減させ、溶接熱影響部靭性を向上させる。特に、0.006%以下にすることで溶接熱影響部靭性を著しく改善するため、Pは0.006%以下とした。
P: 0.006% or less P is an element that increases the strength by solid solution strengthening. However, in order to deteriorate the toughness and weldability of the base metal and the weld heat affected zone, the content can be generally reduced. desired. In the present invention, by reducing P, the hardness of the weld heat affected zone is reduced and the weld heat affected zone toughness is improved. In particular, P is made 0.006% or less in order to significantly improve the weld heat affected zone toughness by making it 0.006% or less.

S:0.005%以下
Sは鋼中に不可避的不純物として存在する。特に、中心偏析部での偏析が著しい元素であり、母材の偏析部起因の靱性劣化を助長する。従って、Sはできるだけ低減することが望ましいが、製鋼プロセス上の制約から0.005%までは許容する。
S: 0.005% or less S is present as an inevitable impurity in steel. In particular, the segregation at the center segregation part is an element that promotes toughness deterioration due to the segregation part of the base material. Therefore, it is desirable to reduce S as much as possible, but up to 0.005% is allowed due to restrictions in the steelmaking process.

Al:0.02〜0.05%
Alは脱酸元素として作用する。0.02%以上の添加で十分な脱酸効果が得られるが、0.05%を超えて添加すると鋼中の清浄度が低下し、靭性劣化の原因となるため上限を0.05%とする。
Al: 0.02 to 0.05%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.02% or more, but if added over 0.05%, the cleanliness in the steel is lowered and toughness deteriorates, so the upper limit is 0.05%. To do.

Nb:0.005〜0.025%
Nbは、熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり、特に900℃まで未再結晶領域とするためには、0.005%以上の添加が必要である。一方で、Nbの添加量を増大させると溶接熱影響部、特に大入熱溶接の溶接熱影響部に島状マルテンサイトを生成し、さらに多層溶接時の再熱溶接熱影響部では析出脆化を引き起こして靭性が著しく劣化するため、上限を0.025%とする。Nbの添加量は、溶接熱影響部靭性の観点からは低いほど好ましい。
Nb: 0.005 to 0.025%
Nb has the effect of expanding the austenite non-recrystallized region at the time of hot rolling, and in order to make the non-recrystallized region up to 900 ° C., addition of 0.005% or more is necessary. On the other hand, when the amount of Nb added is increased, island martensite is generated in the weld heat affected zone, particularly in the heat affected zone of high heat input welding, and further, precipitation embrittlement occurs in the reheat weld heat affected zone during multi-layer welding. And the toughness deteriorates significantly, so the upper limit is made 0.025%. The amount of Nb added is preferably as low as possible from the viewpoint of weld heat affected zone toughness.

Ti:0.005〜0.030%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効である。析出したTiNはピンニング効果で熱間圧延前のスラブ加熱時の母材および溶接熱影響部、特に大入熱溶接の溶接熱影響部のオーステナイト粒の粗大化を抑制して、母材および溶接熱影響部の靭性の向上に寄与する。この効果を得るためには、0.005%以上の添加が必要であるが、0.030%を超えて添加すると、粗大化したTiNや炭化物の析出により母材および溶接熱影響部靭性が劣化するようになるため上限を0.030%とする。
Ti: 0.005-0.030%
Ti forms nitrides and is effective in reducing the amount of solute N in steel. The precipitated TiN suppresses the coarsening of the austenite grains in the base metal and the weld heat affected zone during slab heating before hot rolling, especially the weld heat affected zone in high heat input welding due to the pinning effect, and the base metal and welding heat Contributes to improved toughness of the affected area. In order to obtain this effect, addition of 0.005% or more is necessary, but if added over 0.030%, the base material and weld heat affected zone toughness deteriorate due to precipitation of coarse TiN and carbides. Therefore, the upper limit is made 0.030%.

N:0.001〜0.010%
Nは通常鋼中に不可避的不純物として存在するが、前述の通りTi添加を行うことで、オーステナイト粗大化を抑制するTiNを形成するため規定する。必要とするピンニング効果を得るためには、0.001%以上鋼中に存在することが必要であるが、0.010%を超える場合は、固溶Nの増大による母材および溶接熱影響部の靭性劣化が著しいため、上限を0.010%とする。
N: 0.001 to 0.010%
N is usually present as an inevitable impurity in steel, but is defined to form TiN that suppresses austenite coarsening by adding Ti as described above. In order to obtain the required pinning effect, it is necessary to be present in the steel in an amount of 0.001% or more. However, if it exceeds 0.010%, the base material and the weld heat affected zone due to an increase in solute N Therefore, the upper limit is made 0.010%.

本発明では、さらに、Cu、Ni、Cr、Moの1種または2種以上を添加する。Cu、Ni、Cr、Moはいずれも焼入れ性向上元素として作用し、これらの元素の1種または2種以上の添加することで板厚6mm以上の厚鋼板において高強度化が可能となる。   In the present invention, one or more of Cu, Ni, Cr, and Mo are further added. Cu, Ni, Cr, and Mo all act as a hardenability improving element, and by adding one or more of these elements, it is possible to increase the strength of a thick steel plate having a thickness of 6 mm or more.

Cu:0.10〜0.60%
Cuは、0.10%以上添加することで鋼の焼入れ性向上に寄与する。一方で、過剰に添加すると母材および溶接熱影響部の靭性を劣化させるため、添加する場合は、上限を0.60%とする。
Cu: 0.10 to 0.60%
Cu contributes to the hardenability improvement of steel by adding 0.10% or more. On the other hand, if added in excess, the toughness of the base metal and the weld heat affected zone is deteriorated, so when added, the upper limit is made 0.60%.

Ni:0.10〜1.20%
Niは、0.10%以上添加することで鋼の焼入れ性向上に寄与する。特に多量に添加しても他の元素に比べ靭性劣化が小さく、強靭化には有効な元素である。しかし、高価な元素で、1.20%を超えて添加すると焼入れ性が過剰に増加して溶接熱影響部靭性が劣化するので、添加する場合は、上限を1.20%とする。
Ni: 0.10 to 1.20%
Ni contributes to improving the hardenability of steel by adding 0.10% or more. In particular, even when added in a large amount, deterioration in toughness is small compared to other elements, and it is an effective element for toughening. However, since it is an expensive element and is added in excess of 1.20%, the hardenability is excessively increased and the weld heat affected zone toughness deteriorates. Therefore, when added, the upper limit is made 1.20%.

Cr:0.05〜0.40%
Crは、0.05%以上添加することで鋼の焼入れ性向上に寄与する。一方で、過剰に添加すると母材および溶接熱影響部の靭性を劣化させるため、添加する場合は、上限を0.40%とする。
Cr: 0.05-0.40%
Cr contributes to the improvement of hardenability of steel by adding 0.05% or more. On the other hand, if added in excess, the toughness of the base metal and the weld heat affected zone is deteriorated. Therefore, when added, the upper limit is made 0.40%.

Mo:0.05〜0.40%
Moは、0.05%以上添加することで鋼の焼入れ性向上に寄与する。一方で、Moの添加量を増大させると大入熱溶接部を靭性を劣化させるようになる。また、多層溶接時の再熱溶接熱影響部で析出脆化を引き起こし靭性が劣化するようになるため、添加する場合は、上限を0.40%とする。Moの添加量は、溶接熱影響部靭性の観点からは低いほど好ましい。
Mo: 0.05-0.40%
Mo contributes to improving the hardenability of steel by adding 0.05% or more. On the other hand, when the amount of Mo added is increased, the toughness of the high heat input welded portion is deteriorated. Moreover, since precipitation embrittlement is caused in the reheat welding heat-affected zone during multi-layer welding, and the toughness deteriorates, the upper limit is made 0.40% when added. The amount of Mo added is preferably as low as possible from the viewpoint of weld heat affected zone toughness.

Ceq:0.30〜0.45
Ceq(=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14.各元素は含有量(質量%)で、含有しない元素は0とする)は、C、Mnなどの焼入れ性元素の効果を見積もる指標として用いることができ、強度確保の観点から0.30以上に制御することが望ましい。一方で、0.45を超えると靭性や溶接性を損なうこととなるので上限を0.45%とする。
Ceq: 0.30 to 0.45
Ceq (= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14. Each element is a content (mass%), and an element not included is 0) is an estimate of the effect of a quenching element such as C and Mn. It can be used as an index and is preferably controlled to 0.30 or more from the viewpoint of securing strength. On the other hand, if it exceeds 0.45, toughness and weldability will be impaired, so the upper limit is made 0.45%.

本発明の基本成分組成は以上であるが、さらに靭性を向上させる場合、Zr、Ca、Mg、REMの1種または2種以上を添加することができる。   The basic component composition of the present invention is as described above, but when further improving toughness, one or more of Zr, Ca, Mg, and REM can be added.

Zr、Ca、Mg、REMは、いずれも鋼中の非金属介在物であるMnSの形態制御、あるいは酸化物あるいは窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒の粗大化をピンニング効果で抑制する。   Zr, Ca, Mg, and REM all control the morphology of MnS, which is a non-metallic inclusion in steel, or form oxides or nitrides, mainly pinning the austenite grain coarsening in the weld heat affected zone Suppress with.

Zr:0.0005〜0.0300%
Zrは、鋼中で炭窒化物を形成し、特に溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには0.0005%以上の添加が必要であるが、0.0300%を超えて添加すると鋼中の清浄度が著しく低下し、靭性が低下するようになるので、添加する場合は0.0005〜0.0300%とする。
Zr: 0.0005 to 0.0300%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but when adding over 0.0300%, the cleanliness in the steel is remarkably lowered, and the toughness is lowered. When adding, it is 0.0005 to 0.0300%.

Ca:0.0005〜0.0100%
Caは、鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靭性に有害なMnSの生成を抑制する。しかし、0.0100%を超えて添加するとCaO−CaSのクラスタを形成し、靭性を劣化させるようになるので、添加する場合は、0.0005〜0.0100%とする。
Ca: 0.0005 to 0.0100%
Ca is an element effective for controlling the form of sulfide in steel, and the addition of 0.0005% or more suppresses the generation of MnS harmful to toughness. However, if added over 0.0100%, a CaO-CaS cluster is formed and the toughness is deteriorated. Therefore, when added, the content is made 0.0005 to 0.0100%.

Mg:0.0005〜0.0100%
Mgは、製鋼過程で鋼中に微細な酸化物として生成し、特に溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.0100%を超えて添加すると鋼中の清浄度が低下し、靭性が低下するようになるため、添加する場合は、0.0005〜0.0100%とする。
Mg: 0.0005 to 0.0100%
Mg is produced as fine oxides in the steel during the steel making process, and has a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.0100%, the cleanliness in the steel decreases, and the toughness decreases, When adding, it is made into 0.0005 to 0.0100%.

REM:0.0005〜0.0200%
REMは、鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靭性に有害なMnSの生成を抑制する。しかし、高価な元素であり、かつ0.0200%を超えて添加しても効果が飽和するため、添加する場合は、0.0005〜0.0200%とする。
REM: 0.0005 to 0.0200%
REM is an element effective for controlling the form of sulfide in steel, and by adding 0.0005% or more, it suppresses the generation of MnS harmful to toughness. However, since it is an expensive element and the effect is saturated even if added over 0.0200%, when added, the content is made 0.0005 to 0.0200%.

残部は、Feおよび不可避的不純物とする。なお、本発明では、HAZ靱性に対し有害な元素であるVおよび溶接性に対して有害な元素であるBの積極的な添加を行わない。これらの元素は、不可避的不純物の1種として取り扱う。望ましくは、Vを0.005%以下およびBを0.0005%以下とする。   The balance is Fe and inevitable impurities. In the present invention, positive addition of V which is an element harmful to HAZ toughness and B which is an element harmful to weldability is not performed. These elements are handled as one of inevitable impurities. Desirably, V is 0.005% or less and B is 0.0005% or less.

本発明に係る溶接鋼管は、上述した成分組成の鋼を板厚が25mm以上の鋼板とした後、筒状に成形し、突合せ部を内外面から1層ずつシーム溶接し、その後、拡管または縮管矯正を行って製造する。鋼板の製造条件は特に規定しないが、565MPa以上の引張強度とする場合、加速冷却や直接焼入れー焼戻しにより製造することが好ましい。   In the welded steel pipe according to the present invention, the steel having the above-described composition is made into a steel sheet having a thickness of 25 mm or more, then formed into a tubular shape, and the butt portion is seam welded one layer at a time from the inner and outer surfaces, and thereafter, the pipe is expanded or contracted Manufactured with tube straightening. The production conditions of the steel sheet are not particularly defined, but when the tensile strength is 565 MPa or more, it is preferably produced by accelerated cooling or direct quenching-tempering.

表3に示す化学成分の溶鋼を真空溶解炉で溶製し、連続鋳造法により150mm厚のスラブとした。ついで、これらのスラブを熱間圧延し、引き続き加速冷却を行うことで厚鋼板(25.4〜30.9mm)とした。   Molten steel having chemical components shown in Table 3 was melted in a vacuum melting furnace, and a 150 mm thick slab was formed by a continuous casting method. Subsequently, these slabs were hot-rolled and subsequently subjected to accelerated cooling to obtain thick steel plates (25.4 to 30.9 mm).

得られた鋼板を用いて、UO成形法により鋼管素材を成形し、仮付け溶接後、4電極サブマージアーク溶接によりシーム部に対し、初層を内面から第2層を外面から溶接し、その後拡管を行うことで溶接鋼管とした。図2に開先形状を、表4に開先形状の各部の寸法を示す。開先形状は鋼板1の外面11側と内面側12に開先を設けたX開先とした。   Using the obtained steel plate, a steel pipe material is formed by the UO forming method. After tack welding, the first layer is welded from the inner surface to the second layer to the seam portion by 4-electrode submerged arc welding, and then the pipe is expanded. To obtain a welded steel pipe. FIG. 2 shows the groove shape, and Table 4 shows the dimensions of each part of the groove shape. The groove shape was an X groove provided with grooves on the outer surface 11 side and the inner surface side 12 of the steel plate 1.

このとき、内外面のオーステナイト粒径は、内外面の入熱バランスを変化させることで、外面溶融線の角度は外面の開先形状を変化させることで変化させた。   At this time, the austenite grain size of the inner and outer surfaces was changed by changing the heat input balance of the inner and outer surfaces, and the angle of the outer surface melt line was changed by changing the groove shape of the outer surface.

得られた溶接鋼管から溶接部断面サンプルを切り出し、鏡面研磨、ナイタールエッチを行い、デジタルカメラにより継手形状を観察し、外面溶接ビードの鋼管外面側表面から1/5t位置(板厚表面下6mm)における溶融線と外面溶接のビード中心線がなす角度(θ)を測定した。   Cut out a weld cross-section sample from the obtained welded steel pipe, perform mirror polishing and nital etching, observe the joint shape with a digital camera, and position 1 / 5t from the outer surface of the outer weld bead on the steel pipe (6mm below the plate thickness surface) ) And the angle (θ) formed between the melt line and the bead center line of the outer surface welding.

また、同サンプルを光学顕微鏡により観察し、内面溶接によって形成された溶融線近傍溶接熱影響部が外面溶接によってAc1〜Ac3変態点まで再加熱された領域における旧オーステナイト粒の平均粒径(D1)および外面溶接によって形成された溶融線近傍溶接熱影響部における旧オーステナイト粒の平均粒径(D2)を測定した。   Further, the sample was observed with an optical microscope, and the average grain size (D1) of prior austenite grains in the region where the heat affected zone near the fusion line formed by inner surface welding was reheated to the Ac1 to Ac3 transformation point by outer surface welding. And the average particle diameter (D2) of the prior austenite grains in the weld heat affected zone near the fusion line formed by outer surface welding was measured.

旧オーステナイトの平均粒径は、当該箇所の溶融線と接する溶接熱影響部の旧オーステナイトの円相当径を画像処理により20個以上求め、その平均値を採用した。なお、Ac1〜Ac3変態点まで再加熱されることによって生じた逆変態オーステナイトと考えられる粒は、測定から除外した。   For the average particle diameter of the prior austenite, 20 or more circle equivalent diameters of the prior austenite of the weld heat affected zone in contact with the melt line of the relevant part were obtained by image processing, and the average value was adopted. In addition, the particle | grains considered to be the reverse transformation austenite produced by being reheated to the Ac1-Ac3 transformation point were excluded from the measurement.

また、得られた溶接鋼管の溶接部から図3に示すようにJIS Z 2202の規格に準拠した、Vノッチシャルピー試験片を採取し、JIS Z 2242の規格に準拠したシャルピー試験を実施し、−30℃での吸収エネルギを各条件について3本ずつ測定し、その平均値および最低値を求めた。   Moreover, as shown in FIG. 3, a V-notch Charpy test piece conforming to the JIS Z 2202 standard was collected from the welded portion of the obtained welded steel pipe, and a Charpy test conforming to the JIS Z 2242 standard was performed. The absorbed energy at 30 ° C. was measured three times for each condition, and the average value and the minimum value were obtained.

表5に作製した溶接鋼管の溶接部ミクロ組織測定結果と、シャルピー試験結果を示す。
本発明例は、いずれも内外面FLシャルピー試験および会合部FLシャルピー試験において、最低値50J以上を達成している。これに対して、本発明の範囲を外れる比較例は、最低値が50Jを下回っている。
Table 5 shows the measurement results of the weld microstructure of the welded steel pipe and the Charpy test results.
In each of the inventive examples, the minimum value of 50 J or more was achieved in the inner and outer surface FL Charpy test and the meeting part FL Charpy test. On the other hand, in the comparative example that is outside the scope of the present invention, the minimum value is less than 50J.

鋼管No.2、6では、外面開先が1段であるため外面溶接の溶融線と外面溶接のビード中心線がなす角度が20°を下回っているため、外面FLシャルピー試験で低い吸収エネルギを呈している。   Steel pipe No. In Nos. 2 and 6, since the outer surface groove is one step, the angle formed by the melt line of the outer surface welding and the bead center line of the outer surface welding is less than 20 °, and therefore, the outer surface FL Charpy test exhibits low absorbed energy. .

また、鋼管No.4は内面溶接入熱が大きいため、鋼管No.10はTiが添加されておらず鋼中でTiNによるオーステナイト粒のピンニングが行われないために、Ac1〜Ac3変態点まで再加熱された領域における旧オーステナイト粒の平均粒径が100μmを超え、会合部FLシャルピー試験で低いエネルギを呈している。   Steel pipe No. No. 4 has a large internal welding heat input, so 10 is not added with Ti and austenite grains are not pinned by TiN in the steel, so the average grain size of the prior austenite grains in the region reheated to the Ac1 to Ac3 transformation point exceeds 100 μm. Part FL Charpy test shows low energy.

また、鋼管No.10、11もTiが添加されておらず鋼中でTiNによるオーステナイト粒のピンニングが行われないことと外面溶接入熱が大きいことにより、外面溶接によって形成された溶融線近傍溶接熱影響部における旧オーステナイト粒の平均粒径が400μmを超え、外面FLシャルピー試験で低いエネルギを呈している。   Steel pipe No. 10 and 11 are not added with Ti and austenite grains are not pinned by TiN in the steel, and the heat input to the outer surface is large. The austenite grains have an average grain size exceeding 400 μm and exhibit low energy in the outer surface FL Charpy test.

Figure 2009202167
Figure 2009202167

Figure 2009202167
Figure 2009202167

Figure 2009202167
Figure 2009202167

back側ICCGHAZの靭性に及ぼす旧オーステナイト粒径の影響を調査した結果を示す図。The figure which shows the result of having investigated the influence of the prior austenite particle size on the toughness of the back side ICCGHAZ. 開先形状を説明する図。The figure explaining groove shape. シャルピー試験片採取位置を示す図。The figure which shows the Charpy test piece collection position.

Claims (3)

内面または外面のいずれかを先行して行った、内外面各1層の、以下のシーム溶接部を備えた、管厚が25mm以上の溶接鋼管。
1.Back側シーム溶接の溶融線近傍粗粒域で、Final側溶接によってAc1〜Ac3変態点まで再加熱された領域における旧オーステナイト粒の平均粒径が100μm以下。
2.Final側溶接の、表面下6mm位置における溶融線の接線と、前記Final側溶接ビードの中心線が成す角度が20°以上。
3.Final側溶接の溶融線近傍粗粒域における旧オーステナイト粒径が300μm以下。
A welded steel pipe having a pipe thickness of 25 mm or more and having the following seam welded portions, each of which has one inner and outer surface layers, which is performed in advance on either the inner surface or the outer surface.
1. The average grain size of the prior austenite grains in the region reheated to the Ac1 to Ac3 transformation points by the final side welding in the coarse grain region near the melting line of the back side seam welding is 100 μm or less.
2. The angle formed by the tangent line of the melt line at a position 6 mm below the surface of the final side welding and the center line of the final side weld bead is 20 ° or more.
3. The prior austenite grain size in the coarse grain region near the melting line of final side welding is 300 μm or less.
鋼の化学成分が、
質量%で、
C: 0.03〜0.08%
Si: 0.05%以下
Mn: 1.0〜2.0%
P: 0.006%以下
S: 0.005%以下
Al: 0.02〜0.05%
Nb: 0.005〜0.025%
Ti: 0.005〜0.030%
N: 0.001〜0.010%
を含有し、さらに、
Cu: 0.10〜0.60%
Ni: 0.10〜1.20%
Cr: 0.05〜0.40%
Mo: 0.05〜0.40%
の1種または2種以上を含有し、
下式で示される炭素等量(Ceq)が0.30≦Ceq≦0.45を満たし、残部Feおよび不可避的不純物からなることを特徴とする請求項1記載の溶接熱影響部靭性に優れた溶接鋼管。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
The chemical composition of steel
% By mass
C: 0.03 to 0.08%
Si: 0.05% or less Mn: 1.0 to 2.0%
P: 0.006% or less S: 0.005% or less Al: 0.02-0.05%
Nb: 0.005 to 0.025%
Ti: 0.005 to 0.030%
N: 0.001 to 0.010%
In addition,
Cu: 0.10 to 0.60%
Ni: 0.10 to 1.20%
Cr: 0.05-0.40%
Mo: 0.05 to 0.40%
Containing one or more of
The carbon equivalent (Ceq) represented by the following formula satisfies 0.30 ≦ Ceq ≦ 0.45, and consists of the balance Fe and unavoidable impurities, and has excellent weld heat affected zone toughness according to claim 1 Welded steel pipe.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
更に、質量%で、
Zr: 0.0005〜0.0300%
Ca: 0.0005〜0.0100%
Mg: 0.0005〜0.0100%
REM: 0.0005〜0.0200%
の1種または2種以上を含有することを特徴とする請求項2に記載の溶接熱影響部靱性に優れた溶接鋼管。
Furthermore, in mass%,
Zr: 0.0005 to 0.0300%
Ca: 0.0005 to 0.0100%
Mg: 0.0005 to 0.0100%
REM: 0.0005 to 0.0200%
The welded steel pipe excellent in weld heat-affected zone toughness according to claim 2, comprising one or more of the following.
JP2008044176A 2008-02-26 2008-02-26 Welded steel pipe with excellent weld heat-affected zone toughness Active JP5176591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044176A JP5176591B2 (en) 2008-02-26 2008-02-26 Welded steel pipe with excellent weld heat-affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044176A JP5176591B2 (en) 2008-02-26 2008-02-26 Welded steel pipe with excellent weld heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JP2009202167A true JP2009202167A (en) 2009-09-10
JP5176591B2 JP5176591B2 (en) 2013-04-03

Family

ID=41144960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044176A Active JP5176591B2 (en) 2008-02-26 2008-02-26 Welded steel pipe with excellent weld heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP5176591B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237755A (en) * 2009-09-18 2011-11-24 Jnc Corp Liquid crystal aligning agent, liquid crystal alignment layer, method for producing liquid crystal alignment layer, and liquid crystal display element
JP2013007079A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
JP2013007080A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
WO2013051249A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP2015150597A (en) * 2014-02-17 2015-08-24 新日鐵住金株式会社 Submerged arc welding part excellent in low temperature toughness
JP2015150602A (en) * 2014-02-17 2015-08-24 新日鐵住金株式会社 Submerged arc welding part excellent in low temperature toughness
JP2019013931A (en) * 2017-07-04 2019-01-31 新日鐵住金株式会社 Welded steel tube
JP2019510634A (en) * 2016-01-20 2019-04-18 浙江三花智能控制股▲ふん▼有限公司 Pipe body, pipe and method of processing pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132584B2 (en) 2016-12-15 2022-09-07 日本油圧工業株式会社 Devices for starting and running AC motors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775876A (en) * 1993-09-03 1995-03-20 Sumitomo Metal Ind Ltd Tube manufacturing welding method
JP2650601B2 (en) * 1993-05-20 1997-09-03 住友金属工業株式会社 Manufacturing method of thick wall large diameter steel pipe by welding
JPH09296253A (en) * 1996-05-02 1997-11-18 Nippon Steel Corp Extremely thick high strength steel pipe excellent in low temperature toughness
JP3378433B2 (en) * 1996-04-12 2003-02-17 新日本製鐵株式会社 Manufacturing method of steel sheet with excellent toughness of weld heat affected zone
JP2004068055A (en) * 2002-08-02 2004-03-04 Nippon Steel Corp High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP2004099930A (en) * 2002-09-05 2004-04-02 Nippon Steel Corp High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP2005262253A (en) * 2004-03-17 2005-09-29 Nippon Steel Corp Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance
JP2007283356A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
WO2008007737A1 (en) * 2006-07-13 2008-01-17 Sumitomo Metal Industries, Ltd. Bend pipe and process for producing the same
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650601B2 (en) * 1993-05-20 1997-09-03 住友金属工業株式会社 Manufacturing method of thick wall large diameter steel pipe by welding
JPH0775876A (en) * 1993-09-03 1995-03-20 Sumitomo Metal Ind Ltd Tube manufacturing welding method
JP3378433B2 (en) * 1996-04-12 2003-02-17 新日本製鐵株式会社 Manufacturing method of steel sheet with excellent toughness of weld heat affected zone
JPH09296253A (en) * 1996-05-02 1997-11-18 Nippon Steel Corp Extremely thick high strength steel pipe excellent in low temperature toughness
JP2004068055A (en) * 2002-08-02 2004-03-04 Nippon Steel Corp High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP2004099930A (en) * 2002-09-05 2004-04-02 Nippon Steel Corp High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP2005262253A (en) * 2004-03-17 2005-09-29 Nippon Steel Corp Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance
JP2007283356A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
WO2008007737A1 (en) * 2006-07-13 2008-01-17 Sumitomo Metal Industries, Ltd. Bend pipe and process for producing the same
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178712A (en) * 2009-09-18 2014-09-25 Jnc Corp Liquid crystal display element
JP2011237755A (en) * 2009-09-18 2011-11-24 Jnc Corp Liquid crystal aligning agent, liquid crystal alignment layer, method for producing liquid crystal alignment layer, and liquid crystal display element
JP2013007079A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
JP2013007080A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
WO2013051249A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
CN103874558A (en) * 2011-10-03 2014-06-18 杰富意钢铁株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP2013078775A (en) * 2011-10-03 2013-05-02 Jfe Steel Corp Welded steel pipe excelling in toughness of welding heat affected part, and method for manufacturing the same
EP2764946A4 (en) * 2011-10-03 2015-06-10 Jfe Steel Corp Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP2015150597A (en) * 2014-02-17 2015-08-24 新日鐵住金株式会社 Submerged arc welding part excellent in low temperature toughness
JP2015150602A (en) * 2014-02-17 2015-08-24 新日鐵住金株式会社 Submerged arc welding part excellent in low temperature toughness
JP2019510634A (en) * 2016-01-20 2019-04-18 浙江三花智能控制股▲ふん▼有限公司 Pipe body, pipe and method of processing pipe
US10907752B2 (en) 2016-01-20 2021-02-02 Zhejiang Sanhua Intelligent Controls Co., Ltd. Pipe body, pipe and method of making pipe
JP2019013931A (en) * 2017-07-04 2019-01-31 新日鐵住金株式会社 Welded steel tube

Also Published As

Publication number Publication date
JP5176591B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5176591B2 (en) Welded steel pipe with excellent weld heat-affected zone toughness
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5176271B2 (en) Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
WO2011065578A1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
KR102119561B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP6299935B2 (en) Steel sheet for high strength and high toughness steel pipe and manufacturing method thereof
US20140227549A1 (en) Welded steel pipe with excellent welded heat-affected zone toughness and process for producing same
JP2007217716A (en) Welded ferritic stainless steel pipe for spinning process, and its manufacturing method
RU2679499C1 (en) Sheet steel for construction pipes or tubes, method of manufacture of sheet steel for construction pipes or tubes and construction pipes and tubes
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP6256655B2 (en) Steel sheet for structural pipe, method for manufacturing steel sheet for structural pipe, and structural pipe
US10500817B2 (en) Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
EP2644732B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5194807B2 (en) Manufacturing method of high yield strength and high toughness thick steel plate
JP2012193446A (en) Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R150 Certificate of patent or registration of utility model

Ref document number: 5176591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250