JP2650601B2 - Manufacturing method of thick wall large diameter steel pipe by welding - Google Patents

Manufacturing method of thick wall large diameter steel pipe by welding

Info

Publication number
JP2650601B2
JP2650601B2 JP11843193A JP11843193A JP2650601B2 JP 2650601 B2 JP2650601 B2 JP 2650601B2 JP 11843193 A JP11843193 A JP 11843193A JP 11843193 A JP11843193 A JP 11843193A JP 2650601 B2 JP2650601 B2 JP 2650601B2
Authority
JP
Japan
Prior art keywords
welding
steel pipe
thickness
wall thickness
diameter steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11843193A
Other languages
Japanese (ja)
Other versions
JPH06328255A (en
Inventor
善雄 加藤
保彦 田中
孝 浦林
労世 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11843193A priority Critical patent/JP2650601B2/en
Publication of JPH06328255A publication Critical patent/JPH06328255A/en
Application granted granted Critical
Publication of JP2650601B2 publication Critical patent/JP2650601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、厚肉大径鋼管の溶接
法、特に溶接大入熱化に伴う組織粗大化および靱性劣化
が見られない厚肉大径鋼管の溶接法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for welding a large-diameter, large-diameter steel pipe, and more particularly to a method for welding a large-diameter, large-diameter steel pipe which does not show coarsening of the structure and deterioration of toughness due to large heat input.

【0002】[0002]

【従来の技術】従来よりパイプライン・海洋構造物等に
広く用いられている大径溶接鋼管は、エネルギー開発地
域が制限されつつあることから、その使用環境が一層苛
酷化しており、製品としてのパイプ仕様が、厚肉化・高
強度化・低温靱性化に変わりつつあるが、ここで問題と
なるのは厚肉化→高能率化の必要性→溶接大入熱化に伴
う溶接熱影響部 (HAZ)の組織粗大化・靱性劣化である。
特に低温靱性の劣化が大きく、仕様を満足できなくなる
場合がしばしばみられる。
2. Description of the Related Art Large-diameter welded steel pipes, which have been widely used in pipelines and offshore structures, have been used in more severe environments due to the limited energy development area. Pipe specifications are changing to thicker, higher strength, and lower temperature toughness, but the problem here is the need to increase the thickness → necessity of higher efficiency → heat affected zone due to large heat input in welding (HAZ) is a coarsening of the structure and deterioration of toughness.
In particular, the low-temperature toughness is greatly deteriorated, and the specifications often cannot be satisfied.

【0003】このように溶接大入熱化によるHAZ 組織粗
大化、島状マルテンサイト、フェライトサイドプレー
ト、上部ベイナイトの生成は、低温靱性に悪影響を及ぼ
すことから、従来にあっても、様々な手法で組織を微細
フェライト組織とする手法が試みられている。そして、
従来は、主に母材性能面からの検討がなされてきた。
[0003] As described above, the coarsening of the HAZ structure and the formation of island-like martensite, ferrite side plates, and upper bainite due to large heat input of welding have a bad effect on low-temperature toughness. Thus, a method of making the structure into a fine ferrite structure has been attempted. And
Conventionally, studies have been made mainly from the viewpoint of base metal performance.

【0004】例えば、前述の厚肉 (肉厚≧30mm) 、低温
靱性(遷移温度≦−30℃、vE-30 ≧40J) 仕様の鋼管に
対しては、それらの性能を得るために、次のような手法
が採用されている。
[0004] For example, for the above-mentioned steel pipes having the specifications of thick wall (wall thickness ≥ 30 mm) and low temperature toughness (transition temperature ≤ -30 ° C, vE- 30 ≥ 40 J), the following properties are required in order to obtain their performance. Such a method is adopted.

【0005】I)先ず、1パスあたり入熱≦30 KJ/cm程
度に制限し、多層盛溶接用フラックスには、ボンド型フ
ラックスを使用し、一方、従来型の多層盛溶接用のX型
開先加工を行ってから、ロールベンダーまたはC、U、
O成形を行って素管となし、次いで仮付溶接→内面溶接
→外面側ガウジング→外面多層盛溶接という一連の工程
を経て製造し、最後の拡管を行い仕上げるのである。
[0005] I) First, the heat input per pass is limited to about 30 KJ / cm, and a bond type flux is used as the flux for multi-pass welding, while the X-type opening for conventional multi-pass welding is used. After pre-processing, roll bender or C, U,
It is made into a base tube by performing O-forming and then manufactured through a series of steps of tack welding → inner surface welding → outer surface gouging → outer surface multi-layer welding, followed by final expansion and finishing.

【0006】II) 厚さ38mmの鋼板 (海洋構造物用 APIGr
×70、低温靱性−40℃での衝撃値、vE-40 ≧70J) か
ら、溶融型フラックスを用いてUO成形後、内面一層→外
面初層・2層の多層盛溶接を行い、次いでI)の場合と同
様に拡管をしてからQT処理とサイジングを行い仕上げ
る。 (文献:High Strength Pipe for Tension Leg Plat
form'92 TUBE INTERNATIONAL) III) 厚さ44mmの鋼板 (海洋構造物用) をロールベンダ
ー成形後、溶融型フラックスを用いて、内面一層→外面
初層・2層の多層盛溶接を行って製造する。 (文献: 厚
肉板巻鋼管の高能率溶接技術の開発'89 溶接冶金研究委
員会)
II) Steel plate with a thickness of 38 mm (APIGr for offshore structures)
× 70, low temperature toughness -40 ° C impact value, vE -40 ≧ 70 J) From the UO molding using the molten flux, the inner surface layer → outer surface first layer / 2 layer multi-layer welding, then I) After expanding the tube in the same way as in the case of above, finish by performing QT processing and sizing. (Literature: High Strength Pipe for Tension Leg Plat
form'92 TUBE INTERNATIONAL) III) Roll-bendering a 44mm thick steel plate (for offshore structures), then using a molten flux to perform multi-layer welding of one inner layer to the first outer layer and two outer layers. . (Reference: Development of high-efficiency welding technology for thick-walled steel pipes, '89 Welding Metallurgy Research Committee)

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
従来技術にあっては、例えば、I)法では、下記のように
工数が多大で、能率が悪く製造コストが増大し、大ロッ
ト製品のラインパイプ、海洋構造物の製造に対応できな
い。
However, in the above-mentioned prior art, for example, in the method I), the number of steps is large, the efficiency is low, the production cost is increased, and Inability to manufacture pipes and offshore structures.

【0008】(1) 開先加工の工数大 (通常のUO法×開先
に比べて切削低能率) (2) 内面溶接後、外面ガウジングの工数大 (3) 外面多層盛溶接:ボンド型フラックスを用いて、2
電極低速度にて多層溶接を実施するため、通常の溶融型
フラックスを用いた3電極以上の高速溶接に比較して、
能率が著しく低下する。また、パス数が多いため、溶接
欠陥発生率が増加し、補修手入が必要である。
[0008] (1) Large man-hours for groove processing (UU method x lower cutting efficiency compared to groove) (2) Large man-hours for outer gouging after inner surface welding (3) Multi-layer outer surface welding: bond type flux Using 2
In order to carry out multi-layer welding at a low electrode speed, compared to high-speed welding of three or more electrodes using ordinary molten flux,
Efficiency is significantly reduced. Also, since the number of passes is large, the incidence of welding defects increases, and repair work is required.

【0009】製品性能を確保した上での、製造の大ロッ
ト化、高能率製造法の確立が求められる。上記II) 法に
あっても次のような欠点がみられ、必ずしも満足される
ものではない。
[0009] It is required to increase the production lot and establish a highly efficient production method while ensuring product performance. The following disadvantages are observed even in the above-mentioned method II), and are not always satisfactory.

【0010】すなわち、I)法でいう工数大・低能率は改
善されるも、厚板38mmの素管の3パス溶接では、1パス
あたりの入熱が60〜70 KJ/cm以上となり、後工程でQT
処理によるHAZ 組織改善が必要となる。また、QT処理・
サイジング工程を付加するため工程増による製造コスト
増大は避けられない。
[0010] That is, although the man-hour and the efficiency of the method I) are improved, the heat input per pass becomes 60 to 70 KJ / cm or more in the three-pass welding of a 38 mm thick tube. QT in process
It is necessary to improve the HAZ organization by processing. In addition, QT processing
Since a sizing step is added, an increase in manufacturing cost due to an increase in the number of steps is inevitable.

【0011】さらに、上記III)法にあっては、極厚肉域
(肉厚≧40mm) まで、対応可能としているが、1パスあ
たりの入熱が100 KJ/cmであり、高強度 (APIGr ≧×
65)の母材成分系では、HAZ 組織が劣化し、靱性(vTs−3
0℃以下) が確保できない。また、この方法はロールベ
ンダー方式のものであり、能率の低下は免れない。
Further, in the above-mentioned method III), an extremely thick region
(Thickness ≥40 mm), but heat input per pass is 100 KJ / cm, and high strength (APIGr ≧ ×
65), the HAZ structure deteriorates and the toughness (vTs-3
(0 ° C or less) cannot be secured. In addition, this method is a roll bender method, and the efficiency is inevitably reduced.

【0012】ここに、本発明の一般的な目的は、溶接入
熱を低減しても溶接能率が一層改善されるという一見矛
盾した作用を発揮できる、厚肉大径鋼管のより能率的な
溶接法を提供することである。
It is a general object of the present invention to provide a more efficient welding of a thick-walled, large-diameter steel pipe which can exhibit a seemingly contradictory effect that the welding efficiency is further improved even when the welding heat input is reduced. Is to provide the law.

【0013】本発明のより具体的な目的は、UO成形大径
鋼管製品の今後増々厳しくなる仕様の中で、30mm以上の
厚肉でvE-30 ≧40J という優れた低温靱性の要求される
ラインパイプ、海洋構造物に対してその仕様を十分に満
足し得る、高性能な大径鋼管を高能率で製造可能ならし
める方法を提供することである。
[0013] A more specific object of the present invention, in the future an increase of s stringent specifications UO forming large diameter steel pipe products, lines required for low-temperature toughness was excellent as vE -30 ≧ 40 J at 30mm or more thick It is an object of the present invention to provide a method for manufacturing a high-performance large-diameter steel pipe which can sufficiently satisfy the specifications for pipes and offshore structures.

【0014】[0014]

【課題を解決するための手段】本発明者らは、UO成形後
のシーム溶接に際しての低入熱化、すなわち、入熱1パ
ス≦60 KJ/cmでの高能率化の可能性を検討した。つま
り、厚肉化による必然的な溶接入熱の増大、そしてそれ
によりもたらされる種々の欠点を、従来は必然と考えら
れてきた溶接入熱の増大と反対の発想により一挙に解決
しようとするものである。
Means for Solving the Problems The present inventors have studied the possibility of reducing heat input during seam welding after UO forming, that is, the possibility of increasing the efficiency at a heat input of 1 pass ≦ 60 KJ / cm. . In other words, the inevitable increase in welding heat input due to the increase in thickness, and the various disadvantages caused by it, are to be solved at once by a concept opposite to the increase in welding heat input, which was conventionally considered inevitable. It is.

【0015】図4は内面1パス、外面1パスで溶接する
場合の肉厚と所要入熱量との関係を示すグラフであり、
従来より肉厚増加に伴って入熱量を増加する必要がある
と考えられてきたのである。
FIG. 4 is a graph showing the relationship between the wall thickness and the required heat input when welding is performed in one pass on the inner surface and one pass on the outer surface.
It has conventionally been thought that it is necessary to increase the heat input as the wall thickness increases.

【0016】本発明者らの検討結果によれば、図2(a)
または(b) に示すように溶接ビード近傍の部分に3mm以
上の開先残りがある場合、あるいは溶接ビード近傍と開
先残り部分との角度が90度以下の場合、溶接ビード近傍
にガラス状に強固に凝固したスラグが残り、著しく作業
性を悪化させること、さらに残スラグを付着させたま
ま、第2層溶接を実施すると、完全にこの部分を溶融す
ることができず、溶接金属中にスラグを残すことにな
り、溶接欠陥の発生は免れないことが判明し、これらの
知見に基づき、スラグ残りを解消すべく、開先両肩部を
完全に、または殆ど溶融し、開先残り深さを3mm以内で
かつ残り角度を90度以上にコントロールすることによっ
て、50〜60 KJ/cmという溶接入熱であっても、溶接能率
は少しも低下することがなく、また低入熱であるためHA
Z 組織の粗大化、靱性劣化も見られないことが判明し、
さらにそれを実現するためには内外面のパス数を規定す
ることで十分であることを知り、本発明を完成した。
According to the study results of the present inventors, FIG.
Or, as shown in (b), when there is a groove gap of 3 mm or more near the weld bead, or when the angle between the weld bead and the remaining groove is 90 degrees or less, a glassy shape is formed near the weld bead. If the slag solidified firmly remains and the workability deteriorates remarkably, and if the second layer welding is carried out with the remaining slag adhered, this part cannot be completely melted and the slag is contained in the weld metal. It was found that the occurrence of welding defects was unavoidable, and based on these findings, in order to eliminate the remaining slag, the shoulders of the groove were completely or almost melted, and the depth of the groove remained By controlling the remaining angle within 3 mm and the remaining angle to 90 degrees or more, even if the welding heat input is 50-60 KJ / cm, the welding efficiency does not decrease at all and the heat input is low. HA
It was found that no coarsening of the Z structure and no deterioration in toughness were observed.
Further, they have found that it is sufficient to specify the number of passes on the inner and outer surfaces to achieve this, and have completed the present invention.

【0017】ここに、本発明は、UO成形した肉厚30mm以
上の厚肉大径鋼素管を、溶融型フラックスを使い、溶接
入熱を1パス当たり50〜60 KJ/cmとし、かつ肉厚30〜
35mmの大径鋼管では内面1パス、外面2パスとし、肉厚
35mm超の大径鋼管では内面2パス、外面2パスとする多
電極サブマージアーク溶接法により、好ましくは外面の
開先形状を付着スラグがないようにして、溶接すること
を特徴とする厚肉大径鋼管の溶接による製造方法であ
る。
Here, the present invention relates to a UO-molded thick large-diameter steel tube having a wall thickness of 30 mm or more, using a molten flux, a welding heat input of 50 to 60 KJ / cm per pass, and Thickness 30 ~
For a 35mm large diameter steel pipe, use one pass for the inner surface and two passes for the outer surface.
A large-diameter steel pipe having a diameter of more than 35 mm is welded by a multi-electrode submerged arc welding method in which the inner surface has two passes and the outer surface has two passes, preferably in such a manner that the groove shape on the outer surface is free of attached slag. This is a manufacturing method by welding steel pipes.

【0018】この付着スラグ防止には、より具体的に
は、開先両肩部を完全に、または殆ど溶融し、開先残り
深さを3mm以内でかつ残り角度を90度以上にコントロー
ルすることで行ってもよい。因みに、従来は、内外面各
1パス溶接であった。
More specifically, in order to prevent the adhered slag, more specifically, the shoulder portions of the groove are completely or almost melted, and the remaining depth of the groove is controlled within 3 mm and the remaining angle is controlled to 90 degrees or more. May be performed. Incidentally, conventionally, one-pass welding was performed on each of the inner and outer surfaces.

【0019】本発明の好適態様にあっては、さらに、内
外初層溶接でのスラグ剥離を容易にするために初層ビー
ドの表面形状の管理を行う。特に、内面2層目におい
て、溶接ビード倣いロールの先端形状を断面楕円形状に
規定することでシーム倣いでのずれを防止するようにし
てもよい。その場合にあっても、内外各層共、HAZ 靱性
を得るために、母材、溶接材料からの希釈を考慮した各
層の溶接材料の設計も必要である。
In a preferred embodiment of the present invention, the surface shape of the first layer bead is further controlled in order to facilitate slag peeling in the inner and outer first layer welding. In particular, in the second layer on the inner surface, the tip of the weld bead copying roll may be defined to have an elliptical cross section to prevent displacement during seam copying. Even in such a case, in order to obtain HAZ toughness for both the inner and outer layers, it is necessary to design the welding material for each layer in consideration of dilution from the base material and welding material.

【0020】さらに本発明は、その好適態様によれば、
開先形状は特定のX形状で鋼管内面側の2段の段付と
し、肉厚に関係なく鋼管外面側の開先深さは15〜18
mmで、鋼管内面側でかつ肉厚中心側のルートフェイス
は4〜9mm、前記鋼管内面側でかつ肉厚表面側の開先
角度は30±5°の開先形状とするとともに、鋼管外面
側の開先角度は肉厚30〜35mmの場合には25±5
°、肉厚35mm超の場合には30±5°とし、鋼管内
面側でかつ肉厚中心側の開先角度は肉厚30〜35mm
の場合には5±3°、肉厚35mm超の場合には、7±
3°としたことを特徴とする厚肉大径鋼管の溶接による
製造方法である。
Further, according to a preferred embodiment of the present invention,
The groove shape is a specific X shape and has two steps on the inner surface side of the steel pipe, and the groove depth on the outer surface side of the steel pipe is 15 to 18 regardless of the wall thickness.
mm, the root face on the steel pipe inner surface side and the thickness center side is 4 to 9 mm, the groove angle on the steel pipe inner surface side and the wall thickness surface side is 30 ± 5 °, and the steel pipe outer surface side Groove angle is 25 ± 5 when the wall thickness is 30 to 35 mm
°, if the wall thickness is more than 35mm, 30 ± 5 °, the groove angle on the inner side of the steel pipe and the center side of the wall thickness is 30-35mm
5 ± 3 ° in case of, 7 ± in case of thickness over 35mm
This is a method for manufacturing a thick-walled large-diameter steel pipe by welding at 3 °.

【0021】[0021]

【作用】次に、本発明の作用について添付図面を参照し
ながら、さらに詳述する。本発明にかかる溶接鋼管の製
造方法は、工程としては従来のように、Uプレス→Oプ
レス→仮付→内面溶接→外面溶接→拡管の各工程から構
成されるものであるが、特に本発明にあっては内面、外
面溶接が所定の条件下で行われるのである。その他の工
程は従来法に準じて行えばよく、本発明にあっても特に
制限はなく、本明細書でもそれらの説明は割愛する。
Next, the operation of the present invention will be described in more detail with reference to the accompanying drawings. The method for manufacturing a welded steel pipe according to the present invention comprises the steps of U-press → O-press → temporary attachment → inside welding → outside welding → expansion as in the prior art. In this case, the inner and outer surfaces are welded under predetermined conditions. Other steps may be performed according to a conventional method, and there is no particular limitation in the present invention, and the description thereof is omitted in this specification.

【0022】図1は、後述する実施例の溶接条件下で入
熱量を変化させながら溶接したときの溶接鋼管の遷移温
度(vTs) および−30℃での衝撃エネルギー値 (vE-30)を
示すグラフである。入熱量の低下にともなって遷移温度
の低下、衝撃エネルギーの上昇がみられる。
FIG. 1 shows the transition temperature (vTs) of a welded steel pipe and the impact energy value at -30 ° C. (vE -30 ) when welding was performed while changing the heat input under the welding conditions of Examples described later. It is a graph. As the heat input decreases, the transition temperature decreases and the impact energy increases.

【0023】UO成形後の鋼素管を内外面各1パスのサブ
マージアーク溶接を行うという従来法によって、高強度
(APIGr.≧×60) かつ良低温靱性(vTsが−30℃以下、vE
-30≧40J) 仕様の厚肉大径溶接鋼管を製造しようとす
ると、肉厚≧30mmの場合、1パスあたりの溶接入熱を60
KJ/cm超としなければならず、これではHAZ 靱性を確保
できず熱処理、他の追加処理が必要になってくる。
The UO-formed steel tube is subjected to submerged arc welding of one pass for each of the inner and outer surfaces, thereby achieving high strength.
(APIGr. ≧ × 60) and good low temperature toughness (vTs is -30 ° C or less, vE
-30 ≧ 40J) When trying to manufacture a thick-walled large-diameter welded steel pipe with specifications, if the wall thickness ≧ 30 mm, the welding heat input per pass is 60
It must be higher than KJ / cm, and HAZ toughness cannot be secured, and heat treatment and other additional treatments are required.

【0024】しかしながら、本発明によれば、肉厚:30
〜35mmの場合、内面1パス→外面2パス (入熱/ パス:
50〜60 KJ/cm) 、肉厚:35〜42mmの場合、内面2パス→
外面2パス (入熱/ パス:50〜60 KJ/cm) とする低入熱
サブマージアーク溶接法により熱処理、他の追加処理も
不要のため、能率悪化もなく低温靱性確保が可能とな
る。
However, according to the present invention, the thickness: 30
In the case of ~ 35mm, 1 inner pass → 2 outer passes (heat input / pass:
50-60 KJ / cm), wall thickness: 35-42mm, inner surface 2 passes →
The low heat input submerged arc welding method with two external passes (heat input / pass: 50-60 KJ / cm) eliminates the need for heat treatment and other additional treatments, thus ensuring low-temperature toughness without deterioration in efficiency.

【0025】さらに、本発明によれば、かかる低入熱溶
接による作業性の低下は、溶融型フラックスを用いるこ
と、そして外面の開先形状を付着スラグがないようにす
ることでさらに一層効果的に抑制できる。
Further, according to the present invention, the reduction in workability due to the low heat input welding is further effectively achieved by using a molten flux and by making the groove shape of the outer surface free of attached slag. Can be suppressed.

【0026】一方、内面2パス溶接時の効率化および品
質確保を図るために内面溶接時のビード表面または開先
部に接触する溶接機の倣いロールの先端形状を楕円形と
する。
On the other hand, in order to increase the efficiency and ensure the quality of the inner surface two-pass welding, the shape of the tip of the copying roll of the welding machine that contacts the bead surface or the groove during the inner surface welding is made elliptical.

【0027】本発明にあって用いる溶融型フラックス
は、原料鉱石を所定の組成に配合し、電気炉などで例え
ば1400℃以上の高温で溶融冷却後、所要の粒度に粉砕、
整粒したガラス質のフラックスである。本発明において
かかる溶融型フラックスを用いるのは、吸湿の心配がほ
とんどなく、高速溶接が可能で、スラグ剥離性も良好で
秀麗なビード外観が得られ、また、高速溶接性を損なわ
ない程度の脱酸剤の配合や溶接ワイヤからの合金成分調
整により、溶接金属の性能を向上させることができるか
らである。
The molten flux used in the present invention is obtained by blending raw ore into a predetermined composition, melting and cooling at a high temperature of, for example, 1400 ° C. or more in an electric furnace or the like, and then pulverizing to a required particle size.
This is a sized glassy flux. The use of such a molten flux in the present invention has little concern for moisture absorption, enables high-speed welding, provides excellent slag removability, and provides an excellent bead appearance. This is because the performance of the weld metal can be improved by mixing the acid agent and adjusting the alloy component from the welding wire.

【0028】図2は、初層ビード表面形状を模式的に示
すもので、図2(a) では外面の1パス終了時の開先残り
10および付着スラグ12の様子を示し、図2(b) は別の場
合の同様の開先残りを示し、さらに図2(c) は、付着ス
ラグを完全に除去しないで、2パス目の溶接を行った場
合にスラグ残り14が残留した場合を説明する。図2(d)
はスラグ剥離性が良好な場合のビード形状を示す。
FIG. 2 schematically shows the surface shape of the first layer bead. In FIG. 2 (a), the groove remaining at the end of one pass on the outer surface is shown.
Fig. 2 (b) shows a similar groove residue in another case, and Fig. 2 (c) shows the second pass welding without completely removing the attached slag. The case where the remaining slag 14 remains when the above is performed will be described. Fig. 2 (d)
Indicates a bead shape when the slag removability is good.

【0029】このように、スラグ剥離性を考慮した場
合、初層ビードへの付着スラグの残留は避けなければな
らず、そのためには開先残り10、さらには付着スラグを
残留させないために開先形状の規定をするのである。
As described above, in consideration of the slag removability, it is necessary to avoid the residual slag adhered to the first layer bead. For this purpose, the groove 10 is left, and the groove is formed so as not to leave the adhered slag. It defines the shape.

【0030】本発明におけるサブマージ溶接は多電極を
用いて行うが、この点に関しては慣用のそれに準じて行
えばよく、本発明にあって特に制限されることはない。
次に、実施例によって本発明の作用をさらに具体的に詳
述する。
In the present invention, the submerged welding is performed using multiple electrodes, but in this regard, it may be performed according to a conventional method, and there is no particular limitation in the present invention.
Next, the operation of the present invention will be described more specifically with reference to examples.

【0031】[0031]

【実施例】本例では、表1に示す鋼組成の板厚30mm以上
の厚板を用いて、慣用のUO成形法にしたがって鋼素管を
成形した。かかる厚肉大径鋼素管を表2に示す組成の溶
接ワイヤを用いてサブマージアーク溶接を行った。な
お、本例において使用した溶融型フラックスはその組成
が下記の通りであり、STM 48/145メッシュ域に入る粒度
を有したものであった。
EXAMPLE In this example, a steel tube was formed by a conventional UO forming method using a plate having a steel composition shown in Table 1 and a plate thickness of 30 mm or more. Submerged arc welding was performed on the thick large-diameter steel tube using a welding wire having the composition shown in Table 2. The molten flux used in this example had the following composition and had a particle size within the STM 48/145 mesh region.

【0032】SiO2 : 5〜25%、 Al2O3 : 2〜20%、
MnO : 0.5〜15%、 TiO2 : 2〜10%、CaO : 5〜25
%、 BaO : 1〜5%、MgO : 3〜15%、 CaF2
: 25〜60%、B2O3 : 2%以下。
SiO 2 : 5 to 25%, Al 2 O 3 : 2 to 20%,
MnO: 0.5~15%, TiO 2: 2~10%, CaO: 5~25
%, BaO: 1-5%, MgO: 3-15%, CaF 2
: 25 to 60%, B 2 O 3 : 2% or less.

【0033】溶接条件は表3、表5にまとめて示す。開
先状態は図3にまとめて示す。Run No.1〜3の場合は、
鋼素管肉厚t=32mmで、内面1パス、外面2パス溶接を
行って、厚肉大径鋼管を製造した。
The welding conditions are summarized in Tables 3 and 5. The groove state is shown in FIG. For Run Nos. 1-3,
One pass of the inner surface and two passes of the outer surface were performed with a steel tube wall thickness t = 32 mm to produce a thick-walled large-diameter steel tube.

【0034】Run No.4〜7の場合は、鋼板厚さt=38m
m、内面2パス、外面2パス溶接を行って、厚肉大径鋼
管を製造した。このようにして製造された鋼管について
特性評価を行った。結果は、それぞれ表4、表6にまと
めて示す。
In the case of Run Nos. 4 to 7, the steel sheet thickness t = 38 m
m, two passes on the inner surface and two passes on the outer surface were performed to produce a thick-walled large-diameter steel pipe. The characteristics of the steel pipe manufactured as described above were evaluated. The results are summarized in Tables 4 and 6, respectively.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【発明の効果】このように、本発明にあっては、HAZ 靱
性を確保するために溶接入熱を制限する一方で、高能率
な溶接を実現するために、溶融型フラックスを用いたサ
ブマージアーク溶接による多層盛溶接を行い、そのとき
の溶接作業をより能率的にし、UST 欠陥のない良品質の
溶接部とするために、開先形状やビード外観をスラグ残
りが生じないように規制する。
As described above, according to the present invention, while the welding heat input is limited in order to secure the HAZ toughness, the submerged arc using the molten flux is used in order to realize highly efficient welding. Multi-pass welding is performed by welding, and in order to make the welding work more efficient at that time and to obtain a high quality weld without UST defects, the groove shape and bead appearance are regulated so that no slag remains.

【0042】したがって、肉厚30〜42mm前後の鋼素管を
従来のように内外面溶接をそれぞれ1パスで行うとすれ
ば図4に示すように、入熱は60〜100KJ/cmが必要であり
図1に示す如く靱性は劣化するが、本発明方法によれば
HAZ 靱性の劣化がなく、溶接作業の能率化および溶接部
の高品質化を図ることができるのであって、本発明の実
際上の意義は大きい。
Therefore, if the inner and outer surfaces of a steel pipe having a wall thickness of about 30 to 42 mm are welded in a single pass as in the prior art, a heat input of 60 to 100 KJ / cm is required as shown in FIG. Although the toughness deteriorates as shown in FIG. 1, according to the method of the present invention,
Since the HAZ toughness does not deteriorate and the efficiency of the welding operation and the quality of the welded portion can be improved, the practical significance of the present invention is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例での遷移温度と衝撃エネルギー値との関
係を示すグラフである。
FIG. 1 is a graph showing a relationship between a transition temperature and an impact energy value in an example.

【図2】初層ビード表面形状を模式的に示す図である。FIG. 2 is a diagram schematically showing a surface shape of an initial layer bead.

【図3】開先形状を示す図である。FIG. 3 is a diagram showing a groove shape.

【図4】肉厚と所要入熱量との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between wall thickness and required heat input.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 労世 茨城県鹿島郡鹿島町大字光3番地 住友 金属工業株式会社鹿島製鉄所内 (56)参考文献 特開 昭63−36973(JP,A) 特開 平5−50235(JP,A) 特開 昭63−295070(JP,A) 特開 昭58−32583(JP,A) 特開 平6−63750(JP,A) 実開 昭61−97372(JP,U) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Ryoyo Sato, Kashima-cho, Kashima-gun, Ibaraki 3rd, Kashima Works Sumitomo Metal Industries Co., Ltd. (56) References JP-A-63-36973 (JP, A) JP-A-5-50235 (JP, A) JP-A-63-295070 (JP, A) JP-A-58-32583 (JP, A) JP-A-6-63750 (JP, A) JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 UO成形した肉厚30mm以上の厚肉大径鋼素
管を、溶融型フラックスを使い、溶接入熱を1パス当た
り50〜60 KJ/cmとし、かつ肉厚30〜35mmの大径鋼管で
は内面1パス、外面2パスとし、肉厚35mm超の大径鋼管
では内面2パス、外面2パスとする多電極サブマージア
ーク溶接法により溶接することを特徴とする厚肉大径鋼
管の溶接による製造方法。
1. A UO-molded thick large-diameter steel tube having a wall thickness of 30 mm or more is welded with a welding heat input of 50-60 KJ / cm per pass and a wall thickness of 30-35 mm. A large-diameter steel pipe characterized in that it is welded by a multi-electrode submerged arc welding method in which a large-diameter steel pipe has one inner surface and two outer surfaces, and a large-diameter steel tube having a wall thickness of more than 35 mm has two inner surfaces and two outer surfaces. Manufacturing method by welding.
【請求項2】 2パスで行う内面溶接に際して、第1パ
ス目のビード表面に接触する倣いロールの先端形状を断
面楕円形状にすることを特徴とする請求項1記載の厚肉
大径鋼管の溶接による製造方法。
2. The thick-walled large-diameter steel pipe according to claim 1, wherein, during the inner surface welding performed in two passes, the tip shape of the copying roll that comes into contact with the bead surface in the first pass has an elliptical cross section. Manufacturing method by welding.
【請求項3】 開先形伏は特定のX形状で鋼管内面側の
2段の段付とし、肉厚に関係なく鋼管外面側の開先深さ
は15〜18mmで、鋼管内面側でかつ肉厚中心側のル
ートフェイスは4〜9mm、前記鋼管内面側でかつ肉厚
表面側の開先角度は30±5°の開先形状とするととも
に、鋼管外面側の開先角度は肉厚30〜35mmの場合
には25±5°、肉厚35mm超の場合には30±5°
とし、鋼管内面側でかつ肉厚中心側の開先角度は肉厚3
0〜35mmの場合には5±3°、肉厚35mm超の場
合には、7±3°としたことを特徴とする請求項1また
は2記載の厚肉大径鋼管の溶接による製造方法。
3. The groove shape has a specific X shape and has two steps on the inner surface side of the steel pipe. The groove depth on the outer surface side of the steel pipe is 15 to 18 mm regardless of the wall thickness. The root face on the inner surface side and the thickness center side is 4 to 9 mm, the groove angle on the inner surface side of the steel pipe and the thick surface side is 30 ± 5 °, and the groove angle on the outer surface side of the steel pipe. Is 25 ± 5 ° when the thickness is 30 to 35 mm, and 30 ± 5 ° when the thickness is more than 35 mm.
The groove angle on the inner side of the steel pipe and on the center side of the wall thickness is 3
3. The method according to claim 1, wherein the thickness is set to 5 ± 3 ° when the thickness is 0 to 35 mm and 7 ± 3 ° when the thickness is more than 35 mm.
JP11843193A 1993-05-20 1993-05-20 Manufacturing method of thick wall large diameter steel pipe by welding Expired - Lifetime JP2650601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11843193A JP2650601B2 (en) 1993-05-20 1993-05-20 Manufacturing method of thick wall large diameter steel pipe by welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11843193A JP2650601B2 (en) 1993-05-20 1993-05-20 Manufacturing method of thick wall large diameter steel pipe by welding

Publications (2)

Publication Number Publication Date
JPH06328255A JPH06328255A (en) 1994-11-29
JP2650601B2 true JP2650601B2 (en) 1997-09-03

Family

ID=14736478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11843193A Expired - Lifetime JP2650601B2 (en) 1993-05-20 1993-05-20 Manufacturing method of thick wall large diameter steel pipe by welding

Country Status (1)

Country Link
JP (1) JP2650601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283356A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448655B (en) * 2009-05-27 2015-11-25 杰富意钢铁株式会社 The submerged arc welding method of steel plate
CN101704156A (en) * 2009-11-19 2010-05-12 中冶天工建设有限公司 Large-caliber pipeline fitting and welding process
JP2013078775A (en) 2011-10-03 2013-05-02 Jfe Steel Corp Welded steel pipe excelling in toughness of welding heat affected part, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283356A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness

Also Published As

Publication number Publication date
JPH06328255A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
EP2067566A1 (en) Flux-cored wire for submerged arc welding of low-temperature steel and a method for welding using the same
KR920007690B1 (en) Method of submerged arc welding a thick steel plate with large heat input
JP2000199036A (en) Superhigh strength linepipe excellent in low temperature toughness and its production
JP4171169B2 (en) Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof
JP2650601B2 (en) Manufacturing method of thick wall large diameter steel pipe by welding
CN113814536A (en) Novel Q345qENH high-performance weathering steel submerged-arc welding method for bridge
JP3304815B2 (en) Manufacturing method of thick wall large diameter welded steel pipe
CN110871312A (en) MAG welding method of low-alloy steel plate with yield strength of 600MPa
JPH0673757B2 (en) Large heat input latent arc welding method for thick steel plate
JP4125688B2 (en) Two-electrode large heat input submerged arc welding method
JP2669283B2 (en) Pipe welding method for thick and large diameter welded steel pipe
CN106425020A (en) Welding base plate and application of welding base plate to magnesium/aluminum dissimilar metal welding
JP3765761B2 (en) Bond flux for submerged arc welding
CN109530962B (en) Flux-cored wire for high-current vertical upward welding and preparation method and application thereof
CN114505563A (en) Rare earth weather-resistant bridge steel CO2Gas shielded welding method
JPS61115682A (en) Two-electrode submerged arc welding
JPS5832583A (en) Tube welding method for large diameter steel tube
JP2000015353A (en) Welded joining metallic plate excellent in press formability and production thereof
CN113579430B (en) Narrow-slit submerged arc welding method suitable for medium plate wear-resistant steel
JP3266093B2 (en) High toughness UOE steel pipe and method of manufacturing the same
CN1089048C (en) Preparation of low Cr and high Mn austenitic steel welding bar for hand electric arc-welding
JP2520454B2 (en) Manufacturing method of high strength ERW steel pipe
JPS6171196A (en) Submerged arc welding method of low cr-mo alloy steel
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JP2920431B2 (en) Manufacturing method of flux cored wire for welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 17

EXPY Cancellation because of completion of term