JP2007283356A - Method of manufacturing uoe steel pipe - Google Patents

Method of manufacturing uoe steel pipe Download PDF

Info

Publication number
JP2007283356A
JP2007283356A JP2006113387A JP2006113387A JP2007283356A JP 2007283356 A JP2007283356 A JP 2007283356A JP 2006113387 A JP2006113387 A JP 2006113387A JP 2006113387 A JP2006113387 A JP 2006113387A JP 2007283356 A JP2007283356 A JP 2007283356A
Authority
JP
Japan
Prior art keywords
welding
groove
steel pipe
surface side
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006113387A
Other languages
Japanese (ja)
Other versions
JP4757696B2 (en
Inventor
Shunsuke Fukami
俊介 深見
Yutaka Morimoto
裕 森本
Hideki Miyazaki
秀樹 宮崎
Tatsuya Yoshida
達哉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006113387A priority Critical patent/JP4757696B2/en
Publication of JP2007283356A publication Critical patent/JP2007283356A/en
Application granted granted Critical
Publication of JP4757696B2 publication Critical patent/JP4757696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an innovative UOE steel pipe which is compatible with improvement in productivity and securement of toughness in a HAZ (heat-affected zone) by establishing a welding technique with small heat input and a small number of welding passes. <P>SOLUTION: In the method of manufacturing the UOE steel pipe, when welding an X-groove, (a1) the groove angle on the outside of the X-groove is set to be 20 to 40 degrees, (a2) the outside of the X-groove is weld by a single pass using a composite heat source of a gas shielded arc and a laser with an output of 1 to 20 kW, thereafter, (b) on the inside of the X-groove is weld by a single pass by a submerged-arc welding, so as to complete the welding with two passes in total. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶接部靭性と生産性がともに飛躍的に向上するUOE鋼管の製造方法に関するものである。   The present invention relates to a UOE steel pipe manufacturing method in which both weld toughness and productivity are dramatically improved.

UOE鋼管の溶接部において良好な靭性を確保することは、品質管理の観点から極めて重要なことである。   Ensuring good toughness in the welded portion of the UOE steel pipe is extremely important from the viewpoint of quality control.

溶接部において、良好な靭性確保が困難な部位は、母材の溶接熱影響部(以下「HAZ」ということがある。)であるが、中でも、一旦高温に加熱されて、旧γ粒径が粗粒化したHAZにおいて、次パスの加熱により、Ac1点以上、Ac3点以下の温度域に再加熱された領域は、特に、脆化が懸念される部位である。 In the welded portion, it is difficult to ensure good toughness, which is the weld heat affected zone of the base metal (hereinafter sometimes referred to as “HAZ”). In the coarse-grained HAZ, the region reheated to a temperature range of Ac 1 point or more and Ac 3 point or less by the heating of the next pass is a region where embrittlement is a concern.

即ち、このような2重の熱サイクルを受けたHAZでは、島状マルテンサイト(以下「MAC」ということがある。)と呼ばれる脆化組織が生成する。HAZ靭性の向上においては、このMACの生成を制御することが必須のことである。   That is, in the HAZ that has undergone such a double thermal cycle, an embrittled structure called island martensite (hereinafter sometimes referred to as “MAC”) is generated. In order to improve the HAZ toughness, it is essential to control the generation of this MAC.

それ故、これまで、HAZ靭性を高める方法が数多く提案されている(例えば、特許文献1〜5、参照)が、いずれも、各パスにおける入熱を分散させて再加熱領域を低減し、靭性向上を図ることを基本的な技術思想としている。   Therefore, many methods for increasing the HAZ toughness have been proposed so far (see, for example, Patent Documents 1 to 5), but all of them reduce the reheating region by dispersing the heat input in each pass, and toughness. The basic technical idea is to improve.

上記入熱分散方法は、靭性向上の点で有効であるが、溶接パス数が必然的に増加してしまうので、生産性の低下を回避できないという問題を抱えている。また、仮付け溶接が必要となる場合には、さらに、生産性は低下する。   Although the above heat input dispersion method is effective in terms of improving toughness, the number of welding passes inevitably increases, so that there is a problem that a reduction in productivity cannot be avoided. Further, when tack welding is necessary, the productivity further decreases.

一方、溶接パス数を低減するためには、大入熱の溶接を行うことが必須であるが、HAZが2重の熱サイクルを受けることは回避できず、良好なHAZ靭性を確保することは、困難である。   On the other hand, in order to reduce the number of welding passes, it is indispensable to perform welding with large heat input, but it cannot be avoided that HAZ undergoes a double thermal cycle, and ensuring good HAZ toughness is not possible. ,Have difficulty.

結局、現状のUOE鋼管の製造技術において、溶接パス数を低減して、生産性とHAZ部靭性の向上を同時に図ることは不可能な課題である。   After all, in the current UOE steel pipe manufacturing technology, it is impossible to reduce the number of welding passes and simultaneously improve productivity and HAZ toughness.

特許第2650601号公報Japanese Patent No. 2650601 特開平6−328255号公報JP-A-6-328255 特開昭58−32583号公報JP 58-32583 A 特開平6−155076号公報JP-A-6-1555076 特開2001−113374号公報JP 2001-113374 A 特開平10−216972号公報Japanese Patent Laid-Open No. 10-216972 特開平10−244369号公報JP-A-10-244369 特開2002−172477号公報JP 2002-172477 A

本発明は、UOE鋼管の製造において、上記課題を解決すべく、小入熱で、かつ、溶接パス数が少ない溶接手法を確立し、生産性の向上とHAZ靭性の確保を両立させた革新的なUOE鋼管の製造方法を提供することを目的とする。   In order to solve the above-mentioned problems in the manufacture of UOE steel pipes, the present invention establishes a welding method with a small heat input and a small number of welding passes, and achieves both improvement in productivity and securing of HAZ toughness. An object of the present invention is to provide a method for manufacturing a simple UOE steel pipe.

本発明者は、X開先の溶接において、溶接パス数の削減、溶接部靭性の向上という“相反する技術課題”を克服する手法について鋭意研究し、下記の知見を得た。   The present inventor earnestly researched a technique for overcoming the “conflicting technical problem” of reducing the number of welding passes and improving the toughness of the welded part in the welding of the X groove, and obtained the following knowledge.

(i)消耗多電極式ガスシールアークとレーザとの複合熱源を用いると、プラズマが、先頭アークを開先底まで安定的に誘導する。
(ii)その結果、1パスで、機械的特性に優れた溶接部を形成することができる。
(I) When a combined heat source of a consumable multi-electrode gas seal arc and a laser is used, the plasma stably induces the leading arc to the groove bottom.
(Ii) As a result, a weld with excellent mechanical properties can be formed in one pass.

なお、溶接に際し複合熱源を用いることは、厚板の突合せ溶接又は仮付け溶接において、既に知られている(特許文献6〜8、参照)が、低温靭性が要求されるUOE鋼管のX開先の溶接において、しかも、1パスで外面側溶接を完了することを前提に、複合熱源の利用を試みたのは、本発明者が初めてである。   Note that the use of a composite heat source for welding is already known in butt welding or tack welding of thick plates (see Patent Documents 6 to 8), but the X groove of a UOE steel pipe that requires low temperature toughness. In this welding, the present inventor is the first to use the composite heat source on the premise that the outer surface side welding is completed in one pass.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) UOE鋼管の製造方法において、X開先を溶接する際、
(a1)X開先の外面側の開先角度を、20°以上40°以下とし、
(a2)X開先の外面側を、ガスシールドアークと、出力が1kW以上20kW以下のレーザとの複合熱源を用いて、1パスで溶接し、その後、
(b)X開先の内面側を、サブマージアーク溶接を用いて、1パスで溶接し、
合計2パスで溶接を完了することを特徴とするUOE鋼管の製造方法。
(1) In the method of manufacturing a UOE steel pipe, when welding the X groove,
(A1) The groove angle on the outer surface side of the X groove is 20 ° or more and 40 ° or less,
(A2) The outer surface side of the X groove is welded in one pass using a combined heat source of a gas shield arc and a laser having an output of 1 kW to 20 kW, and then
(B) The inner surface side of the X groove is welded in one pass using submerged arc welding,
A method for manufacturing a UOE steel pipe, characterized in that welding is completed in a total of two passes.

(2) 前記ガスシールドアークが、消耗多電極式ガスシールドアークであることを特徴とする上記(1)に記載のUOE鋼管の製造方法。   (2) The method for manufacturing a UOE steel pipe according to (1), wherein the gas shield arc is a consumable multi-electrode gas shield arc.

(3) 前記外面側の溶接において、シールドガスを溶接進行方向の左右両側から供給することを特徴とする上記(1)又は(2)に記載のUOE鋼管の製造方法。   (3) The method for manufacturing a UOE steel pipe according to (1) or (2) above, wherein in the welding on the outer surface side, shield gas is supplied from both the left and right sides in the welding progress direction.

(4) 前記レーザが、焦点距離100mm以上のレーザであることを特徴とする上記(1)〜(3)のいずれかに記載のUOE鋼管の製造方法。   (4) The method for manufacturing a UOE steel pipe according to any one of (1) to (3), wherein the laser is a laser having a focal length of 100 mm or more.

本発明によれば、UOE鋼管の製造において、X開先を合計2パスで溶接し、しかも、機械的特性に優れた溶接部を形成することができる。   According to the present invention, in manufacture of a UOE steel pipe, the X groove can be welded in a total of two passes, and a welded portion excellent in mechanical properties can be formed.

UOE鋼管は、通常、平鋼板を所定寸法に切断し、この平鋼板を用いて、その板幅調整、両幅端部の開先加工、両幅端部の曲げ加工を行い、さらに、U形の成形、O形の成形により管状にプレス成形した後、突合わせ部をガスシールドアーク溶接等により仮付け溶接を実施し、その後、サブマージアーク溶接等により、内面シーム溶接及び外面シーム溶接を行い、その後、鋼管の真円度を高めるために、エキスパンダー等により拡管成形を行う工程を経て製造される。   A UOE steel pipe is usually obtained by cutting a flat steel plate into a predetermined dimension, and using this flat steel plate, adjusting the plate width, groove processing of both width end portions, bending processing of both width end portions, and U shape After the press molding into a tubular shape by O-shaped molding, the butt portion is subjected to tack welding by gas shield arc welding or the like, and then inner seam welding and outer seam welding are performed by submerged arc welding or the like. Then, in order to raise the roundness of a steel pipe, it manufactures through the process of performing pipe expansion molding with an expander etc.

本発明は、X開先の外面側の溶接を、ガスシールドアークとレーザとの複合熱源を用いて、1パスで終了し、内面側の溶接を、サブマージアーク溶接を用いて、1パスで終了することを特徴とする。即ち、本発明は、合計2パスで総ての溶接を終了するものである。   In the present invention, welding on the outer surface side of the X groove is completed in one pass using a combined heat source of a gas shield arc and a laser, and welding on the inner surface side is completed in one pass using submerged arc welding. It is characterized by doing. That is, according to the present invention, all welding is completed in a total of two passes.

従来の溶接方法では、仮付け溶接、内面側溶接、及び、外面側溶接の3工程を必要とするが、本発明は、仮付け溶接を必要とせず、内面側溶接及び外面側溶接を、それぞれ、1パスで終了するから、従来の溶接に比べ、生産性の点で顕著な優位性を有する。   The conventional welding method requires three steps of tack welding, inner surface side welding, and outer surface side welding, but the present invention does not require tack welding, and inner surface side welding and outer surface side welding are respectively performed. Since it is completed in one pass, it has a significant advantage in terms of productivity compared to conventional welding.

図1及び図2に、本発明の構成を模式的に示す。   1 and 2 schematically show the configuration of the present invention.

鋼管1の外面側の開先2の上方に、溶接方向8に沿って、最も先頭にガスシールドアーク第1電極の溶接トーチ3を配置し、その狙い位置の後方に、距離M1だけ離れて狙い位置がくるように、レーザのトーチ4を配置し、さらにその後方に、距離M2だけ離れて狙い位置がくるように、ガスシールドアーク第2電極の溶接トーチ5を配置し、さらにその後方に、距離M3だけ離れて狙い位置がくるように、ガスシールドアーク第3電極の溶接トーチ6を配置し、そして、溶融池の左右両側から溶接部に対してシールドガスを吹き付けるシールドノズル7を配置し、溶接を行う。   Above the groove 2 on the outer surface side of the steel pipe 1, the welding torch 3 of the first electrode of the gas shield arc is arranged at the forefront along the welding direction 8, and the target is separated by a distance M1 behind the target position. The laser torch 4 is arranged so that the position comes, and further, the welding torch 5 of the gas shielded arc second electrode is arranged so that the target position is separated by a distance M2 behind the laser torch 4, and further behind that, The welding torch 6 of the gas shield arc third electrode is disposed so that the target position is separated by the distance M3, and the shielding nozzle 7 for spraying the shielding gas from the left and right sides of the molten pool to the welded portion is disposed, Weld.

また、ガスシールドアーク第3電極の溶接トーチ6の後方に、さらに所定の距離をおきつつガスシールドアークの溶接トーチを配置することができる。   In addition, a gas shield arc welding torch can be arranged behind the welding torch 6 of the gas shield arc third electrode while keeping a predetermined distance.

本発明においては、HAZ靭性の向上を図るため溶接入熱を抑制し、かつ、生産性の向上を図るため外面側溶接を1パスで終了するという“相反する技術課題”を克服するために、ガスシールドアークとレーザとの複合熱源を用いて外面側溶接を1パスで行う。   In the present invention, in order to overcome the “conflicting technical problem” of suppressing welding heat input in order to improve HAZ toughness and finishing outer surface side welding in one pass in order to improve productivity, Outer surface side welding is performed in one pass using a combined heat source of a gas shield arc and a laser.

まず、HAZ靭性の確保について説明する。   First, securing of HAZ toughness will be described.

通常、溶接部における入熱量を低減するために、開先を狭開先として、必要な溶着金属量を極力低減するが、狭開先溶接においては、開先底までアークが届かず、融合不良が生じることが課題であった。   Normally, in order to reduce the amount of heat input at the weld, the groove is narrow and the required amount of deposited metal is reduced as much as possible. However, in narrow groove welding, the arc does not reach the bottom of the groove, resulting in poor fusion. It was a problem to occur.

図3に、鋼管の外面側を狭開先とし、従来の溶接方法を用いて溶接した場合における溶接部の断面を模式的に示す。図に示すように、溶着金属11が開先底まで届かず、融合不良12が生じてしまう。   FIG. 3 schematically shows a cross section of the welded portion when the outer surface side of the steel pipe is a narrow groove and welding is performed using a conventional welding method. As shown in the figure, the weld metal 11 does not reach the bottom of the groove, resulting in poor fusion 12.

本発明においては、開先を、外面側の開先角度が20°以上40°以下の狭開先とするので、上記課題に対する対策が必要となるが、ガスシールドアークとレーザを組み合せた複合熱源を用いることにより上記課題を解決する。   In the present invention, since the groove is a narrow groove having an outer surface side groove angle of 20 ° or more and 40 ° or less, it is necessary to take measures against the above problem, but a combined heat source in which a gas shield arc and a laser are combined. The above-mentioned problem is solved by using.

即ち、本発明においては、レーザで発生したプラズマにより、アークが開先底まで安定的に誘導されるので、開先底での融合不良の発生が抑制される。   That is, in the present invention, since the arc is stably induced to the groove bottom by the plasma generated by the laser, the occurrence of poor fusion at the groove bottom is suppressed.

このプラズマのアーク誘導機能を充分に確保するため、溶接方向先頭のアークとレーザが複合するように、先頭電極とレーザトーチを配置する。具体的には、先頭アークとレーザの狙い位置の間隔を、溶接線上で10mm以内、好ましくは5mm以内とする。   In order to sufficiently secure the plasma arc induction function, the leading electrode and the laser torch are arranged so that the leading arc and the laser in the welding direction are combined. Specifically, the interval between the leading arc and the target position of the laser is within 10 mm, preferably within 5 mm on the weld line.

図4に、鋼管の開先形状の態様を模式的に示す。板厚tの溶接部において、ルートフェイス長さtをはさんで、外面側に、開先深さdo、開先角度φoの開先と、内面側に開先深さdi、開先角度φiの開先が形成されている。   In FIG. 4, the aspect of the groove shape of a steel pipe is shown typically. In a welded portion having a thickness t, a groove having a groove depth do and a groove angle φo on the outer surface side across the root face length t, and a groove depth di and a groove angle φi on the inner surface side. The groove is formed.

前述したように、本発明おいては、外面側の開先角度(図中、φo)を20°以上40°以下とする。開先角度が20°未満の場合には、開先角度が狭すぎて、プラズマでアークを誘導しても、アークは開先底まで届かず、融合不良が生じる。逆に、開先角度が40°超の場合には、必要とする溶着金属量が多くなって、溶接入熱の抑制が困難となる。   As described above, in the present invention, the groove angle (φo in the figure) on the outer surface side is set to 20 ° or more and 40 ° or less. When the groove angle is less than 20 °, the groove angle is too narrow, and even if the arc is induced by plasma, the arc does not reach the groove bottom, resulting in poor fusion. On the other hand, when the groove angle is more than 40 °, the amount of welding metal required increases, and it becomes difficult to suppress welding heat input.

本発明においては、先頭のガスシールドアークの第1電極の溶接トーチと、レーザのトーチ4の後方に、1本又は2本以上のガスシールドアークの溶接トーチを配置して溶接を行う。これは、溶接能率を向上させるため溶接速度を高速にした場合、狭開先であっても、外面側の開先を埋め、さらに所定の余盛を溶接ビードに確保するのに必要な溶着金属量を確保する必要があるからである。   In the present invention, welding is performed by placing a welding torch of the first electrode of the leading gas shield arc and one or more welding shield torches of the gas shield arc behind the laser torch 4. This is because when the welding speed is increased in order to improve the welding efficiency, the weld metal necessary to fill the outer surface side groove and secure a predetermined surplus on the weld bead even if it is a narrow groove. This is because it is necessary to secure the amount.

溶着金属量を増加させる方法としては、溶接電流値を増加させる方法が一般的であるが、先頭のガスシールドアークの第1電極の溶接電流値を大きくしすぎると、溶融池9が不安定となり、溶接ビード10の両側にアンダーカット欠陥が生じたり、ビード表面に凹凸が発生して、外観形状が不良となる(図2、参照)。   As a method of increasing the amount of deposited metal, a method of increasing the welding current value is generally used. However, if the welding current value of the first electrode of the leading gas shield arc is excessively increased, the weld pool 9 becomes unstable. Undercut defects occur on both sides of the weld bead 10 or irregularities occur on the bead surface, resulting in a poor appearance (see FIG. 2).

そこで、本発明においては、レーザのトーチ4の後方に、1本又は2本以上のガスシールドアークの溶接トーチを配置する。この配置により、溶融池9を安定化し、かつ、充分な溶着金属量を得ることが可能となり、外面側の開先2を1パスで終了することが可能となる。   Therefore, in the present invention, one or two or more gas shield arc welding torches are arranged behind the laser torch 4. With this arrangement, the molten pool 9 can be stabilized and a sufficient amount of deposited metal can be obtained, and the outer surface side groove 2 can be finished in one pass.

また、多電極アークのシールド方法として、例えば、溶接方向の前後からシールドガスを供給する方法が知られている(特開平7−204854号公報、参照)が、本発明者の実験によれば、上記シールド方法では、溶接金属中の窒素が150ppm程度まで高くなる。これは、シールドガスを溶接方向の前後から供給した場合には、溶接方向に長く伸張した溶融プール全体を完全にシールドすることが困難であることによると考えられる。   In addition, as a method for shielding a multi-electrode arc, for example, a method of supplying a shielding gas from before and after the welding direction is known (see JP-A-7-204854). In the above shielding method, nitrogen in the weld metal is increased to about 150 ppm. This is considered to be due to the fact that when the shielding gas is supplied from before and after in the welding direction, it is difficult to completely shield the entire molten pool elongated in the welding direction.

溶接金属に低温靭性が要求されない場合は、溶接金属中の窒素が多少多くなっても、問題はないが、UOE鋼管においては、シールド不良に起因する溶接金属中の窒素量の増加は、溶接部靭性を確保する上で重大な問題となる。   When low temperature toughness is not required for the weld metal, there is no problem even if the amount of nitrogen in the weld metal increases somewhat. However, in UOE steel pipes, an increase in the amount of nitrogen in the weld metal due to poor shielding is caused by This is a serious problem in securing toughness.

そこで、本発明では、溶融プールの完全シールド対策として、図1及び図2に示すように、溶接線の両側からシールドガスを供給する両側面供給方式を採用する。これにより、溶接方向に伸張した溶融プール全体を、完全にシールドすることが可能となる。   Therefore, in the present invention, as a countermeasure for complete shielding of the molten pool, as shown in FIGS. 1 and 2, a double-sided supply system that supplies shield gas from both sides of the weld line is adopted. Thereby, it is possible to completely shield the entire molten pool extended in the welding direction.

なお、シールドガスとしては、He及びArの1種又は2種の不活性ガスに、2〜50vol%のCO2及びO2の1種又は2種を含有せしめた混合ガスが好ましい。CO2及びO2は、溶接金属中でTiなどと微細酸化物を形成する際の酸素源として作用する。この微細酸化物は、溶接金属の結晶粒内に微細アシキュラーフェライトを形成するためのサイトとなり、結晶粒の微細化による溶接金属の靭性向上に寄与する。 The shielding gas is preferably a mixed gas in which one or two kinds of He and Ar are added to one or two kinds of 2 to 50 vol% of CO 2 and O 2 . CO 2 and O 2 act as an oxygen source when forming fine oxides such as Ti in the weld metal. This fine oxide serves as a site for forming fine acicular ferrite in the crystal grains of the weld metal, and contributes to improvement of the toughness of the weld metal by refining the crystal grains.

また、プラズマを生成するレーザの出力は、良好な溶接を行うために、1kW以上必要である。1kW未満では、パワー不足で、アークを開先底まで誘導するのに充分なプラズマが発生せず、融合不良が発生する場合がある。   Further, the output of the laser that generates plasma needs to be 1 kW or more in order to perform good welding. If it is less than 1 kW, the power is insufficient, and sufficient plasma is not generated to induce the arc to the groove bottom, resulting in poor fusion.

プラズマ生成の点で、レーザ出力は大きい方が好ましいが、20kW超となると、パワー過剰となり、僅かな開先ギャップに溶融プールを蒸発反力で押し込んでしまい、その結果、開先内での溶着金属量が不足して溶け落ちが生じ、1パスで溶接が終了できなくなる。したがって、レーザの出力は、1kW以上20kW以下とする。   In terms of plasma generation, it is preferable that the laser output is large. However, if it exceeds 20 kW, the power is excessive and the molten pool is pushed into the slight gap by evaporation reaction force. As a result, welding in the groove is performed. The amount of metal is insufficient and melts off and welding cannot be completed in one pass. Therefore, the output of the laser is 1 kW or more and 20 kW or less.

また、レーザの焦点距離は、好ましくは100mm以上必要である。焦点距離が100mm未満の場合には、電極から発生するスパッタやヒュームから集光光学系を保護するのが極めて困難となり、実用的でない。焦点距離の上限値に、特に制限はないが、焦点距離が長すぎると、焦点スポット径が大きくなり、エネルギー密度が低下して充分なプラズマが生成しない恐れがある。それ故、焦点距離は1000mm以下が好ましい。   The focal length of the laser is preferably 100 mm or more. When the focal length is less than 100 mm, it is extremely difficult to protect the condensing optical system from spatter and fumes generated from the electrodes, which is not practical. The upper limit value of the focal length is not particularly limited, but if the focal length is too long, the focal spot diameter becomes large and the energy density is lowered, and there is a possibility that sufficient plasma is not generated. Therefore, the focal length is preferably 1000 mm or less.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
以下、本発明の有効性を実施例に基づいて説明する。表1に、供試鋼材の成分組成を示す。供試鋼材は、転炉により溶製し、連続鋳造、圧延を経て製造した鋼材である。
(Example)
Hereinafter, the effectiveness of the present invention will be described based on examples. Table 1 shows the component composition of the test steel. The test steel material is a steel material produced by melting in a converter, continuous casting, and rolling.

Figure 2007283356
Figure 2007283356

なお、以下の表において、発明法は、仮付け溶接の工程で、レーザとガスシールドアークとの複合熱源を用いて仮付け溶接と外面シーム溶接を同時に行い、次いで、内面シーム溶接を行い、その後、拡管成形を行うものである。また、比較法は、ガスシールドアークによる仮付け溶接を行った後、内面シーム溶接を行い、次いで、外面シーム溶接を行い、その後、拡管成形を行うものである。   In the following table, the invention method is a tack welding process, in which a tack heat welding and an outer seam welding are simultaneously performed using a combined heat source of a laser and a gas shield arc, and then an inner seam welding is performed, and then Tube expansion molding is performed. Further, in the comparative method, after performing tack welding with a gas shield arc, inner surface seam welding is performed, then outer surface seam welding is performed, and then tube expansion molding is performed.

表2〜4に、従来の技術を用いた場合の比較法における溶接条件を示し、表5〜8に、本発明の方法を用いた場合の発明法の溶接条件を示す。   Tables 2 to 4 show the welding conditions in the comparative method when the conventional technique is used, and Tables 5 to 8 show the welding conditions of the invention method when the method of the present invention is used.

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

なお、表6及び表7中のL1、M1、M2、M3、Wn、θ、Hn、及び、Lnは、図3及び図4中の同記号の寸法を示し、M4は、図3中で、溶接方向に対し最も後方に位置するガスシールドアーク用のトーチのさらに後方に、4電極目のトーチを配置した場合における3電極目のトーチの狙い位置と4電極目のトーチの狙い位置との距離を示す。   In Tables 6 and 7, L1, M1, M2, M3, Wn, θ, Hn, and Ln indicate the dimensions of the same symbols in FIGS. 3 and 4, and M4 in FIG. The distance between the target position of the third electrode torch and the target position of the fourth electrode torch in the case where the fourth electrode torch is arranged further rearward of the gas shield arc torch positioned rearmost in the welding direction Indicates.

表9〜14に、表7に示す比較法及び発明法を用いて溶接した場合における融合不良の発生状況と、低温での溶接部靭性を評価するために、図5に示すように、外面溶接部と内面溶接部の溶接会合部を基準にして、母材側に0.5mm及び1.0mmの位置をノッチ位置として、母材の板厚方向と直角方向に2mmVノッチシャルピー試験片を採取し、それぞれの試験片を、HAZ0.5mm、HAZ1.0mmとして、−30℃でシャルピー試験を行った結果を示す。   In order to evaluate the occurrence of poor fusion and the weld zone toughness at low temperatures when welding was performed using the comparison method and the invention method shown in Table 7 in Tables 9 to 14, as shown in FIG. 2mmV notch Charpy test specimens were taken in the direction perpendicular to the thickness of the base metal, with the 0.5mm and 1.0mm positions as the notch position on the base metal side, with reference to the weld meeting part of the inner part and the inner surface weld part. The result of having performed each Charpy test at -30 degreeC by making each test piece into HAZ0.5mm and HAZ1.0mm is shown.

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

Figure 2007283356
Figure 2007283356

また、発明法を用いた場合の溶接条件として、外面側の開先角度を10°から50°まで変化させ、レーザの出力を0.5kWから25kWまで変化させ、焦点距離を50mmから1000mmまで変化させて溶接し、溶接部の融合不良及び溶け落ち等の溶接欠陥の発生の有無と前記シャルピー試験の結果に基づいて評価を行った。   As welding conditions when using the inventive method, the groove angle on the outer surface side is changed from 10 ° to 50 °, the laser output is changed from 0.5 kW to 25 kW, and the focal length is changed from 50 mm to 1000 mm. Welding was performed, and evaluation was performed based on the presence or absence of occurrence of welding defects such as poor fusion and melt-down of the welded part and the result of the Charpy test.

なお、溶接時のスパッタ発生は、溶接部の品質へ影響する程度は小さいが、レーザ光学系などの溶接装置へダメージを与え、その結果、ランニングコストの負担が増加するので、表中の備考欄に、スパッタ発生有無の評価も併せて記載した。   Note that spattering during welding has a small effect on the quality of the welded part, but damages welding equipment such as laser optics, resulting in increased running costs. In addition, the evaluation of the presence or absence of spatter was also described.

また、溶接部の靭性評価は、シャルピー試験結果が80J以上となる場合に、HAZの低温靭性を合格として、融合不良及び溶け落ち等の溶接欠陥の発生の有無と併せて総合評価を行い、良好を○で示し、不良を×で示した。   In addition, the toughness evaluation of the welded part is good when the Charpy test result is 80 J or more, with the low temperature toughness of HAZ as a pass, and comprehensive evaluation together with the presence or absence of weld defects such as poor fusion and burn-out. Is indicated by ○, and defects are indicated by ×.

表中において、Sは、スパッタによりレーザの光学集光系の集光レンズ又は集光ミラーに汚染が発生したことを示し、Fは、ヒュームにより上記集光レンズ又は集光ミラーに汚染が発生したことを示している。また、表中、LPは、開先底に溶接欠陥である融合不良が発生したことを示し、Btは、開先裏へ溶接金属が溶け落ちて溶接欠陥となったことを示している。   In the table, S indicates that contamination occurs in the condenser lens or condenser mirror of the laser optical condenser system due to sputtering, and F indicates that the condenser lens or condenser mirror is contaminated by fume. It is shown that. In the table, LP indicates that a fusion defect, which is a weld defect, has occurred at the groove bottom, and Bt indicates that the weld metal has melted down to the groove back, resulting in a weld defect.

この結果から、発明法を用い、かつ、本発明で規定した、外面側の開先角度が20°以上、40°以下、レーザ出力が1.0kW以上、20kW以下、かつ、レーザの焦点距離が100mm以上の条件を満足した発明例1〜31は、HAZの低温靭性が高く、かつ、融合不良がなく、良好な溶接がなされていることが解る。   From this result, the groove angle on the outer surface side defined by the present invention using the invention method is 20 ° or more and 40 ° or less, the laser output is 1.0 kW or more and 20 kW or less, and the focal length of the laser is It can be seen that Invention Examples 1 to 31, which satisfy the condition of 100 mm or more, have high HAZ low temperature toughness, no poor fusion, and good welding.

一方、比較法を用いた比較例1、本発明法を用いたものの、本発明で規定した外面側の開先角度から外れた条件で溶接した比較例2〜24は、HAZの低温靭性が低いか、及び/又は、融合不良が発生し、良好な溶接がなされていないことが解る。   On the other hand, Comparative Examples 1 to 24 using the comparative method, and Comparative Examples 2 to 24 using the method of the present invention but welded under conditions deviating from the groove angle on the outer surface defined in the present invention have low low temperature toughness of HAZ. It can be seen that poor fusion occurs and good welding is not performed.

前述したように、本発明によれば、UOE鋼管の製造において、X開先を合計2パスで溶接し、機械的特性に優れた溶接部を形成することができる。したがって、本発明は、生産性の向上とHAZ靭性の確保を両立せしめた革新的なものであって、UOE鋼管製造産業において利用可能性が大きいものである。   As described above, according to the present invention, in manufacture of a UOE steel pipe, the X groove can be welded in a total of two passes to form a welded portion having excellent mechanical characteristics. Therefore, the present invention is an innovative one that achieves both improvement in productivity and securing of HAZ toughness, and is highly applicable in the UOE steel pipe manufacturing industry.

ガスシールドアークとレーザとの複合熱源を用いて、鋼管の外面側を溶接する態様を示す図である。It is a figure which shows the aspect which welds the outer surface side of a steel pipe using the composite heat source of a gas shield arc and a laser. 溶接線の両側からシールドガスを供給して溶融プールをシールドする態様を示す図である。(a)は、側面態様を示し、(b)は、平面態様を示す。It is a figure which shows the aspect which supplies a shielding gas from the both sides of a welding line, and shields a molten pool. (A) shows a side aspect, (b) shows a plane aspect. 狭開先で発生する融合不良の態様を示す図である。It is a figure which shows the aspect of the poor fusion which generate | occur | produces in a narrow groove. 鋼管の開先形状の態様を示す図である。It is a figure which shows the aspect of the groove shape of a steel pipe. 溶接部からシャルピー試験片を採取する際の態様を示す図である。It is a figure which shows the aspect at the time of extract | collecting a Charpy test piece from a welding part.

符号の説明Explanation of symbols

1 鋼管
2 開先
3、5、6 ガスシールドアーク用トーチ
4 レーザ用トーチ
7 シールドノズル
8 溶接方向
9 溶融池
10 溶接ビード
11 溶接金属
12 融合不良
t 鋼管の板厚
do 外面側の開先深さ
df ルートフェイス長さ
di 内面側の開先深さ
φo 外面側の開先角度
φi 内面側の開先角度
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Groove 3, 5, 6 Gas shield arc torch 4 Laser torch 7 Shield nozzle 8 Welding direction 9 Weld pool 10 Weld bead 11 Weld metal 12 Fusion failure t Steel pipe plate thickness dove depth on the outer surface side df Route face length di Groove depth on the inner surface side φo Groove angle on the outer surface side φi Groove angle on the inner surface side

Claims (4)

UOE鋼管の製造方法において、X開先を溶接する際、
(a1)X開先の外面側の開先角度を、20°以上40°以下とし、
(a2)X開先の外面側を、ガスシールドアークと、出力が1kW以上20kW以下のレーザとの複合熱源を用いて、1パスで溶接し、その後、
(b)X開先の内面側を、サブマージアーク溶接を用いて、1パスで溶接し、
合計2パスで溶接を完了することを特徴とするUOE鋼管の製造方法。
In the UOE steel pipe manufacturing method, when welding the X groove,
(A1) The groove angle on the outer surface side of the X groove is 20 ° or more and 40 ° or less,
(A2) The outer surface side of the X groove is welded in one pass using a combined heat source of a gas shield arc and a laser having an output of 1 kW to 20 kW, and then
(B) The inner surface side of the X groove is welded in one pass using submerged arc welding,
A method for manufacturing a UOE steel pipe, characterized in that welding is completed in a total of two passes.
前記ガスシールドアークが、消耗多電極式ガスシールドアークであることを特徴とする請求項1に記載のUOE鋼管の製造方法。   The method for manufacturing a UOE steel pipe according to claim 1, wherein the gas shield arc is a consumable multi-electrode gas shield arc. 前記外面側の溶接において、シールドガスを溶接進行方向の左右両側から供給することを特徴とする請求項1又は2に記載のUOE鋼管の製造方法。   3. The method for manufacturing a UOE steel pipe according to claim 1, wherein in the welding on the outer surface side, a shielding gas is supplied from both right and left sides in the welding progress direction. 前記レーザが、焦点距離100mm以上のレーザであることを特徴とする請求項1〜3のいずれか1項に記載のUOE鋼管の製造方法。   The said laser is a laser with a focal distance of 100 mm or more, The manufacturing method of the UOE steel pipe of any one of Claims 1-3 characterized by the above-mentioned.
JP2006113387A 2006-04-17 2006-04-17 UOE steel pipe manufacturing method Expired - Fee Related JP4757696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113387A JP4757696B2 (en) 2006-04-17 2006-04-17 UOE steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113387A JP4757696B2 (en) 2006-04-17 2006-04-17 UOE steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2007283356A true JP2007283356A (en) 2007-11-01
JP4757696B2 JP4757696B2 (en) 2011-08-24

Family

ID=38755596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113387A Expired - Fee Related JP4757696B2 (en) 2006-04-17 2006-04-17 UOE steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP4757696B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness
WO2010021094A1 (en) * 2008-08-19 2010-02-25 パナソニック株式会社 Composite welding method and composite welding device
CN102581450A (en) * 2012-03-14 2012-07-18 中国海洋石油总公司 Multi-wire submerged-arc multi-layer multi-pass welding process
RU2578303C1 (en) * 2014-10-09 2016-03-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли РФ (МИНПРОМТОРГ РОССИИ) Method of laser-arc welding of vertical joints of thick-sheet steel structures
CN106624403A (en) * 2017-02-10 2017-05-10 中国石油天然气集团公司 Bimetallic composite plate welding method
RU2697532C1 (en) * 2018-12-30 2019-08-15 Публичное акционерное общество "Челябинский трубопрокатный завод" (ПАО "ЧТПЗ") Method of laser-arc welding of pipes
RU2713186C1 (en) * 2019-07-09 2020-02-04 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Method for spatial stabilization of arc
CN111822826A (en) * 2020-07-16 2020-10-27 湖南建工集团有限公司 Wheel type automatic welding lengthening construction method for large-diameter steel pipe column
CN112548268A (en) * 2020-12-31 2021-03-26 江苏京沪重工有限公司 Welding method for butt weld of stainless steel composite plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116273A (en) * 1989-09-29 1991-05-17 Fujitsu Ltd Mechanical translation system using bilingual sentence template pair
JP2650601B2 (en) * 1993-05-20 1997-09-03 住友金属工業株式会社 Manufacturing method of thick wall large diameter steel pipe by welding
JP2002146471A (en) * 2000-11-07 2002-05-22 Nippon Steel Corp Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method
JP2003001453A (en) * 2001-06-20 2003-01-08 Kawasaki Heavy Ind Ltd Combined heat source welding method
JP2003164983A (en) * 2001-11-28 2003-06-10 Toshiba Corp Welding method for metallic member
JP2003311321A (en) * 2002-04-25 2003-11-05 Nippon Steel Corp Method for manufacturing high-strength uoe steel tube
JP2004298896A (en) * 2003-03-28 2004-10-28 Jfe Engineering Kk Groove working method and composite welding method using laser and arc
JP2004306084A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Composite welding method of laser welding and arc welding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116273A (en) * 1989-09-29 1991-05-17 Fujitsu Ltd Mechanical translation system using bilingual sentence template pair
JP2650601B2 (en) * 1993-05-20 1997-09-03 住友金属工業株式会社 Manufacturing method of thick wall large diameter steel pipe by welding
JP2002146471A (en) * 2000-11-07 2002-05-22 Nippon Steel Corp Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method
JP2003001453A (en) * 2001-06-20 2003-01-08 Kawasaki Heavy Ind Ltd Combined heat source welding method
JP2003164983A (en) * 2001-11-28 2003-06-10 Toshiba Corp Welding method for metallic member
JP2003311321A (en) * 2002-04-25 2003-11-05 Nippon Steel Corp Method for manufacturing high-strength uoe steel tube
JP2004298896A (en) * 2003-03-28 2004-10-28 Jfe Engineering Kk Groove working method and composite welding method using laser and arc
JP2004306084A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Composite welding method of laser welding and arc welding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness
WO2010021094A1 (en) * 2008-08-19 2010-02-25 パナソニック株式会社 Composite welding method and composite welding device
JP5278426B2 (en) * 2008-08-19 2013-09-04 パナソニック株式会社 Composite welding method and composite welding apparatus
US8791384B2 (en) 2008-08-19 2014-07-29 Panasonic Corporation Hybrid welding method and hybrid welding apparatus
CN102581450A (en) * 2012-03-14 2012-07-18 中国海洋石油总公司 Multi-wire submerged-arc multi-layer multi-pass welding process
RU2578303C1 (en) * 2014-10-09 2016-03-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли РФ (МИНПРОМТОРГ РОССИИ) Method of laser-arc welding of vertical joints of thick-sheet steel structures
CN106624403A (en) * 2017-02-10 2017-05-10 中国石油天然气集团公司 Bimetallic composite plate welding method
RU2697532C1 (en) * 2018-12-30 2019-08-15 Публичное акционерное общество "Челябинский трубопрокатный завод" (ПАО "ЧТПЗ") Method of laser-arc welding of pipes
RU2713186C1 (en) * 2019-07-09 2020-02-04 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Method for spatial stabilization of arc
CN111822826A (en) * 2020-07-16 2020-10-27 湖南建工集团有限公司 Wheel type automatic welding lengthening construction method for large-diameter steel pipe column
CN111822826B (en) * 2020-07-16 2022-07-12 湖南建工集团有限公司 Wheel type automatic welding lengthening construction method for large-diameter steel pipe column
CN112548268A (en) * 2020-12-31 2021-03-26 江苏京沪重工有限公司 Welding method for butt weld of stainless steel composite plate

Also Published As

Publication number Publication date
JP4757696B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4786402B2 (en) UOE steel pipe manufacturing method
JP4757696B2 (en) UOE steel pipe manufacturing method
US9677692B2 (en) Welded steel pipe joined with high-energy-density beam and method for producing the same
EP2692476B1 (en) Method for producing laser-welded steel tube
JP2004306084A (en) Composite welding method of laser welding and arc welding
JPS58119481A (en) Laser beam melting welding method
CN111730177B (en) Low-dilution-rate double-filler-wire TIG surfacing process and application thereof
CN104874919A (en) Thick plate and narrow gap laser welding method
WO2022016929A1 (en) Laser tailor welding method of aluminum-silicon coated steel
JP5866790B2 (en) Laser welded steel pipe manufacturing method
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
WO2012147213A1 (en) Method for producing laser welded steel pipe
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
WO2017098692A1 (en) Vertical narrow gap gas shielded arc welding method
JP5803160B2 (en) Laser welded steel pipe manufacturing method
CN110153531A (en) A kind of two-sided welding method and two-sided welding product
JP5724294B2 (en) Laser welded steel pipe manufacturing method
JP7485250B1 (en) One-sided submerged arc welding method and method for manufacturing welded joint
JP5483553B2 (en) Laser-arc combined welding method
JP2002103035A (en) Seam welding method of uo steel pipe
Kesse Laser-TIG hybrid welding process
JPH0523869A (en) Manufacture of weld tube
JP2007203309A (en) Method of flash butt welding
JP2005271056A (en) Method for welding thin steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R151 Written notification of patent or utility model registration

Ref document number: 4757696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees