JP2003311321A - Method for manufacturing high-strength uoe steel tube - Google Patents

Method for manufacturing high-strength uoe steel tube

Info

Publication number
JP2003311321A
JP2003311321A JP2002123742A JP2002123742A JP2003311321A JP 2003311321 A JP2003311321 A JP 2003311321A JP 2002123742 A JP2002123742 A JP 2002123742A JP 2002123742 A JP2002123742 A JP 2002123742A JP 2003311321 A JP2003311321 A JP 2003311321A
Authority
JP
Japan
Prior art keywords
welding
strength
weld metal
seam
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002123742A
Other languages
Japanese (ja)
Other versions
JP3896031B2 (en
Inventor
Yutaka Morimoto
裕 森本
Shigeru Okita
茂 大北
Hideki Miyazaki
秀樹 宮崎
Tatsuya Yoshida
達哉 吉田
Kunio Koyama
邦夫 小山
Koichi Shinada
功一 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002123742A priority Critical patent/JP3896031B2/en
Publication of JP2003311321A publication Critical patent/JP2003311321A/en
Application granted granted Critical
Publication of JP3896031B2 publication Critical patent/JP3896031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing transverse cracks caused in the weld metal of a seam-welded part when manufacturing a UOE steel tube of high strength of ≥800 N/mm<SP>2</SP>. <P>SOLUTION: In a method for manufacturing the high-strength UOE steel tube having a tensile strength of a base material of ≥800 MPa, an outer diameter of ≥406 mm, and a thickness of ≥10 mm, a steel plate is formed into a tube, and butt parts of the tubes are temporarily welded. A seam welding by a submerged arc welding is performed on an inner surface and an outer surface of the steel tube by using a welding flux of diffusible hydrogen of ≤20 ml/100 g under a condition that the tensile strength of a seam weld metal is ≤1,400 MPa, and 0.8 to 1.4 times the tensile strength of the base metal. After the lapse of 30 minutes from the completion of the welding, the steel tube is expanded under a condition that the expansion ratio is ≤5%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、鋼管の製造方法に
関し、詳しくは、天然ガスや原油などを長距離輸送する
ためのラインパイプ等に用いられる引っ張り強度が80
0MPa以上で大径の高強度UOE鋼管の製造方法に関
するものである。 【0002】 【従来の技術】天然ガスや原油などを長距離輸送するた
めのラインパイプに多く用いられるUOE又はUO鋼管
と呼ばれる大径のシーム溶接鋼管は、一般に、図1
(a)〜(i)に示すように、(a)所定寸法の平鋼板
1を用いて、(b)その板幅調整、両幅端部の開先加工
2を行い、(c)両幅端部の曲げ加工3を行い、さら
に、(d)U形の成形4、(e)O形の成形5により管
状にプレス成形した後、(f)突合わせ部をガスシ−ル
ドアーク溶接、レーザー溶接等により仮付け溶接6、
(g)サブマージアーク溶接などにより内面シーム溶接
7および(h)外面シーム溶接8を行い、その後、
(i)鋼管の真円度を高めるためにエキスパンダ−など
により拡管成形9を行う工程で製造される。最近のUO
E鋼管の製造工場は、高生産性確保のために、これらの
各工程が1本のライン線上に配置され連続的に加工でき
るよう工夫されている。 【0003】近年、ガス、石油の利用量の拡大、輸送コ
ストの低減等を理由にした高圧輸送および輸送効率拡大
のため、ラインパイプの大型化、薄肉・高強度化が進ん
でいる。このような背景で、現在、ラインパイプ材とし
て引張強度700MPa級の高強度UOE鋼管の試作が
開始され、800MPaまたは1000MPa級の高強
度UOE鋼管の開発も進められている。 【0004】一般に、シーム溶接鋼管では、溶接HAZ
および溶接金属の引っ張り強度が母材の引っ張り強度と
同等以上とし、シーム溶接鋼管の引張試験の際に母材部
分で破断することが求められる。しかしながら、引張強
度700MPa級以上の高強度UOE鋼管では、溶接金
属の高強度化により溶接HAZに歪が集中して引張試験
の際に溶接HAZの位置で破断する危険性が高くなる。 【0005】更に、引張強度800MPa以上の高強度
UOE鋼管では、製造工程でシーム溶接部に横割れが発
生するという問題が新たに発生してきた。 【0006】この横割れは、従来から溶接金属の拡散性
水素による水素脆化、割れ感受性の増大、引張応力の付
加の3つ要因により発生する水素割れであると言われて
いる(例えば、溶接接合便覧:丸善(株)平成2年9
月、P885)。 【0007】また、HT80(引張強さ780MPa以
上)の高強度鋼の低温割れに関して溶接金属に発生する
横割れの防止が最も困難であるとの報告がなされており
(「溶接学会誌」第46巻(1977)第12号、87
5〜880頁)、拡散性水素量と溶接ワイヤの組成から
横割れ発生限界を予測する試みが行われている(「溶接
学会誌」第46巻(1977)第8号、561〜566
頁)。 【0008】しかし、これらの報告では、特定の水素含
有量で割れが発生する場合にはシーム溶接時に予熱温度
または層間温度を高くすることにより割れ発生が防止で
きるとの見解を表明するにとどまっている。 【0009】このように溶接金属の横割れの対策として
シーム溶接時の予熱処理または後熱処理の実施や溶接材
料の拡散性水素量の低減等が挙げられる。 【0010】しかし、溶接時の予熱処理または後熱処理
は、UOE鋼管の製造工程を繁雑化し、生産性の低下や
製造コストの増加を招き好ましくない。 【0011】また、800MPa以上の高強度鋼管で
は、鋼管引張試験時の母材破断を実現できる溶接金属の
靱性を確保するためには、サブマージ溶接に高塩基度の
フラックスを用いて溶接金属中の酸素量を低減する必要
があり、一般に高塩基度フラックスは拡散性水素量が高
いため、溶接材料の拡散性水素量の低減は、溶接金属の
靱性確保の点から限界がある。 【0012】更に、特開2001−71176号公報で
は、溶接金属の化学組成を規定することにより溶接後冷
却時のマルテンサイト変態温度を調整し溶接残留応力を
緩和することで溶接金属の横割れを防止する方法が提案
されている。 【0013】しかし、溶接金属のマルテンサイト変態点
の低下のための合金元素の増加は、靱性低下や溶接高温
割れを助長し、鋼管引張試験時の母材破断を実現するた
めの溶接金属の強度と靱性のバランスおよび溶接性の確
保の観点から鋼管の母材および溶接金属の成分設計の制
約が大きくなり好ましくない。 【0014】従って、引張強度800MPa以上の高強
度UOE鋼管を製造する際に発生する溶接金属の横割れ
を、生産性の低下や製造コストの増加、さらには母材お
よび溶接金属の成分設計の制約も少なく、かつ、シーム
溶接部の靱性などの鋼管の機械特性を維持できる方法が
望まれている。 【0015】 【発明が解決しようとする課題】上記の従来技術の問題
に鑑みて、本発明は、800MPa以上の高強度UOE
鋼管を製造する際に、生産性の低下や製造コストの増
加、さらには母材および溶接金属の成分設計の制約も少
なく、かつ、シーム溶接部の靱性などの鋼管の機械特性
を維持しつつ、高強度UOE鋼管の製造時の溶接金属の
横割れを防止し、さらには拡管成形時の拡管割れを防止
できる高強度UOE鋼管の製造方法を提供することを目
的とする。 【0016】 【課題を解決するための手段】本発明は、溶接金属の横
割れの挙動の解析結果から、横割れの発生は、シーム溶
接完了から拡管成形開始までの時間と拡散性水素量、拡
管成形時の拡管率、溶接金属の強度との関係で整理する
ことができ、これらの関係を規定することにより抑制で
きるという知見に基になされたものである。 【0017】つまり、本発明の要旨とするところは、母
材の引張強度が800MPa以上、外径が406mm以
上、かつ肉厚が10mm以上の高強度UOE鋼管の製造
方法において、鋼板を管状に成形後、突合わせ部を仮付
け溶接後、拡散性水素量が20ml/100g以下の溶
接フラックスを用い、シ−ム溶接金属の引張強度が14
00MPa以下、かつ母材の引張強度の0.8倍〜1.
4倍の条件で鋼管の内面および外面をサブマージアーク
溶接によるシーム溶接を行い、この溶接終了時から30
分以上経過した後に、拡管率が5%以下の条件で拡管成
形することを特徴とする高強度UOE鋼管の製造方法、
である。 【0018】 【発明の実施の形態】本発明者らは、まず、800MP
a以上の高強度UOE鋼管を製造する際に、溶接金属の
横割れが発生するUOE鋼管のサイズおよび強度を調査
した結果、以下のことがわかった。 【0019】(1) 高強度UOE鋼管のサイズについ
ては、その肉厚が10mm以上の場合に溶接金属の横割
れが多く発生する。また、その外径が406mm以上の
場合には、通常、板厚が10mm以上となるため溶接金
属の横割れが多く発生する。 【0020】なお、800MPa以上の高強度UOE鋼
管では、設備能力によりU形およびO形のプレス成形ま
たは拡管成形が可能な鋼管の肉厚は規制を受け、現状設
備能力上、製造可能な鋼管の肉厚の上限は約40mmで
ある。 【0021】(2) UOE鋼管の強度については、鋼
管母材の引張強度が800MPa以上で溶接金属の横割
れが多く発生する。 【0022】なお、鋼管母材の引張強度が1200MP
aを超えるような超高強度鋼管は、現状の製造工程で製
造する場合に、成形性の低下、シ−ム溶接部の溶接HA
Zおよび溶接金属の靱性低下および拡管割れの発生など
の問題が多くなり、現状の製造可能な鋼管の引張強度の
上限は、約1200MPaである。 【0023】以上を踏まえて、本発明では、溶接金属の
横割れが多く発生する溶接金属の母材の引張強度が80
0MPa以上、外径が406mm以上、かつ肉厚が10
mm以上の高強度UOE鋼管の製造方法を対象とした。 【0024】以下に本発明の高強度UOE鋼管の製造方
法における製造条件の限定理由について説明する。 【0025】本発明者らは、引っ張り強度が950MP
aの鋼板を管状にプレス成形後、突合せ部を引っ張り強
度および拡散性水素量が異なる種々のフラックスとワイ
ヤを用いてサブマージアーク溶接によるシーム溶接を行
い、その後、シーム溶接後から拡管開始までの時間およ
び拡管率を変えて拡管成形を行うことにより長さ10m
のUOE鋼管を製造し、溶接金属の横割れ発生状況を調
査した。フラックス中の拡散性水素量は、JIS Z3
118鋼溶接部の水素量測定方法に準じて、2号試験片
を使用して当該フラックスを用いてサブマージアーク溶
接直後の溶接金属中の拡散性水素量を、測定したもので
あり、溶着金属100g中の拡散性水素量である(以
下、同様とする)。また、溶接金属の横割れの有無は、
シーム溶接後72時間経過後に溶接ビード表面を超音波
探傷試験により全長にわたり調査し、1個でも横割れが
発生していた場合は、横割れ有りと判断した(以下、同
様とする)。 【0026】本発明者らの実験により、本発明が対象と
する肉厚が約40mm以下のUOE鋼管の製造条件で
は、シーム溶接後、約25分経過すると溶接金属は20
0℃から100℃前後の温度に冷却されることが確認さ
れた。また、溶接金属中の拡散性水素は、100℃を超
える温度では拡散されて母材あるいは管外に放出される
が、100℃前後を境に拡散性水素の拡散速度は急激に
低下するため、100℃以下の温度では溶接金属中の拡
散性水素は移動されにくくなることがわかった。 【0027】一方、鋼管の拡管成形工程では、鋼管内部
から押し広げられるために、母材およびシーム溶接部は
鋼管円周方向に伸ばされ、逆に溶接線方向に縮もうとす
る。この際、シーム溶接部の溶接金属の変形能は母材に
比べて変形能が大きいため、溶接金属が過大な塑性変形
により収縮する際に母材に拘束される結果、溶接金属の
溶接線方向に引張応力が生じることを確認している。 【0028】溶接金属の引っ張り強度が高い場合には、
溶接金属の割れ感受性が高くなり鋼管の拡管成形後に横
割れが多く発生する傾向にあることも確認した。 【0029】これらの知見から、本発明者らは、鋼管の
拡管成形後に、シーム溶接線を横切って鋼管円周方向に
発生する溶接金属の横割の発生は、特に、シーム溶接直
後の溶接金属中の拡散性水素量、シーム溶接後から拡管
成形開始までの時間に依存する拡散性水素の拡散速度、
拡管成形時の拡管率、さらには溶接金属の引っ張り強度
の条件に依存するものと考え、更に、これらの条件につ
いて詳細な検討を行った。 【0030】(フラックス中の拡散性水素量)図2にシ
ーム溶接後から拡管成形開始までの時間とシーム溶接時
に用いるフラックス中の拡散性水素量中の拡散性水素量
および溶接金属の横割れ発生状況との関係を示す。な
お、シーム溶接得られる溶接金属の引っ張り強度は10
00MPa、拡管成形時の拡管率は3%で行った。 【0031】図2から、シーム溶接後から拡管成形開始
までの時間が30分以上で、かつシーム溶接時に用いる
フラックス中の拡散性水素量中の拡散性水素量が20m
l/100g以下の条件で、溶接金属の横割れは発生し
ない。 【0032】シーム溶接時に用いるフラックス中の拡散
性水素量中の拡散性水素量が20ml/100g以下の
場合には、シーム溶接後から拡管成形開始までの時間が
30分で溶接金属中の拡散性水素が十分に拡散されて母
材あるいは管外に放出されるため、その時間が30分以
上での拡管成形時に溶接金属中に残存する拡散性水素量
は少なく、拡管成形により溶接金属の溶接方向に引張応
力が負荷されても水素脆化による横割れが発生しにくく
なる。 【0033】一方、シーム溶接時に用いるフラックス中
の拡散性水素量中の拡散性水素量が20ml/100g
を超える場合には、シーム溶接後から拡管成形開始まで
の時間が30分ではまだ溶接金属中の拡散性水素が十分
に拡散されず残存し、かつ、その時間が30分以上では
溶接金属中の拡散性水素の拡散速度が極度に遅くなり拡
散されにくくなるため、拡管成形により溶接金属の溶接
方向に引張応力が負荷された場合に水素脆化による横割
れが発生しやすくなる。このため、シーム溶接後から拡
管成形開始までの時間が120分の場合でも、拡管成形
後に横割れが生じている。 【0034】従って、本発明では、サブマージアーク溶
接によるシーム溶接時に用いるフラックス中の拡散性水
素量を20ml/100g以下に規定する。なお、フラ
ックス中の拡散性水素量は、JIS Z3118鋼溶接
部の水素量測定方法に準じて、2号試験片を使用して当
該フラックスを用いてサブマージアーク溶接直後の溶接
金属中の拡散性水素量を、測定したものであり、溶着金
属100g中の拡散性水素量である。 【0035】(拡管成形時の拡管率)図3にシーム溶接
後から拡管成形開始までの時間と拡管成形時の拡管率お
よび溶接金属の横割れ発生状況との関係を示す。なお、
シーム溶接で得られる溶接金属の引っ張り強度は100
0MPa、シーム溶接に用いたフラックス中の拡散性水
素量は10ml/100gで行った。 【0036】図2から、シーム溶接後から拡管成形開始
までの時間が30分以上で、かつ拡管成形時の拡管率が
5%以下の条件で、溶接金属の横割れは発生しない。一
方、拡管成形時の拡管率が5%を超える場合には、シー
ム溶接後から拡管成形開始までの時間にかかわらず過剰
な応力集中により横割れが発生し、更に、シーム溶接部
のビード形状によっては、拡管成形時に溶接HAZ(溶
接止端部)位置での破断(拡管割れ)が生じる。 【0037】拡管成形時の拡管率が5%以下の場合に
は、拡管成形により溶接金属の溶接方向に負荷させる引
張応力が小さいために水素脆化による横割れが発生しに
くくなり、シーム溶接後から拡管成形開始までの時間が
30分以上の溶接金属中の拡散性水素が十分に拡散さ
れ、残存する拡散性水素量が少ない場合には、水素脆化
の抑制との相乗作用により横割れは発生しなくなる。 【0038】一方、拡管成形時の拡管率が5%を超える
場合には、拡管成形により溶接金属の溶接方向に負荷さ
せる引張応力が大きいために水素脆化による横割れが発
生しやすくなり、シーム溶接後から拡管成形開始までの
時間が30分以上の溶接金属中の拡散性水素が十分に拡
散され、残存する拡散性水素量が少ない場合でも、溶接
金属の横割れが発生しやすくなり、更に、塑性変形が大
きすぎると、拡管割れ(溶接HAZ位置での破断)が発
生する危険性が生じる。 【0039】従って、本発明では、拡管成形時の拡管率
を5%以下に規定する。 【0040】なお、拡管成形時の拡管率の下限は、特に
規定する必要はないが、母材の引張強度が800MPa
以上の高強度UOE鋼管では、拡管率が過度に小さすぎ
ると、鋼管の真円度が悪化し品質上好ましくないため、
鋼管の品質の観点からその下限を0.3%とするのが好
ましい。 【0041】(溶接金属の引っ張り強度)図4にシーム
溶接後から拡管成形開始までの時間とシーム溶接部の溶
接金属の引っ張り強度および溶接金属の横割れ発生状況
との関係を示す。なお、シーム溶接に用いたフラックス
中の拡散性水素量は10ml/100g、拡管成形時の
拡管率は3%で行った。 【0042】図2から、シーム溶接後から拡管成形開始
までの時間が30分以上で、かつ溶接金属の引っ張り強
度が1400MPa以下の条件で、溶接金属の横割れは
発生しない。一方、溶接金属の引っ張り強度が1400
MPaを超える場合には、シーム溶接後から拡管成形開
始までの時間にかかわらず横割れが発生する。 【0043】溶接金属の引っ張り強度が1400MPa
以下の場合には、溶接金属の高強度化により溶接金属の
水素脆化に対する感受性が増加することによる影響は少
ないため、シーム溶接後から拡管成形開始までの時間が
30分以上の溶接金属中の拡散性水素が十分に拡散さ
れ、残存する拡散性水素量が少ない場合には、水素脆化
の抑制との相乗作用により横割れは発生しなくなる。 【0044】一方、溶接金属の引っ張り強度が1400
MPaを超える場合には、強化元素の増加による溶接金
属の水素脆化に対する感受性が大きくなり、シーム溶接
後から拡管成形開始までの時間が30分以上の溶接金属
中の拡散性水素が十分に拡散され、残存する拡散性水素
量が少ない場合でも、横割れが発生しやすくなる。従っ
て、本発明では、シーム溶接の溶接金属の引っ張り強度
の上限を1400MPa以下に規定する。 【0045】(溶接金属の母材に対する引っ張り強度
比)本発明では、引張強度800MPa以上の高強度U
OE鋼管を対象とするが、このような高強度UOE鋼管
では、溶接金属の横割れの発生と共に、拡管成形時に溶
接HAZまたは溶接金属の位置で破断する拡管割れの発
生が問題となる。 【0046】本発明では、溶接金属の横割れの発生を抑
制すると共に、拡管割れの発生を防止するために、上述
した溶接金属の引っ張り強度の上限を1400MPa以
下に規定すると共に、その引張強度を母材の引っ張り強
度の0.8倍〜1.4倍に規定する。 【0047】溶接金属の引っ張り強度が母材の引っ張り
強度の1.4倍を超えると、拡管時にシーム溶接部の溶
接HAZ部に過剰に塑性歪が集中し拡管割れが発生しや
すくなる。一方、溶接金属の引っ張り強度が母材引っ張
り強度の0.8倍より低くなると、シーム溶接部の引っ
張り強度が母材に比較して低すぎるため、拡管成形時に
シーム溶接部の溶接金属位置で破断しやすくなる。従っ
て、溶接金属の引張強度を母材の引っ張り強度の0.8
倍〜1.4倍に規定する。 【0048】本発明では、上述した製造条件を満足させ
ることにより、母材の引張強度が800MPa以上、外
径が406mm以上、かつ肉厚が10mm以上の高強度
UOE鋼管の製造方法において、溶接金属の横割れ、お
よび、拡管割れの発生を防止し、優れた品質の高強度U
OE鋼管を製造することができる。 【0049】本発明の高強度UO鋼管は、通常のUO鋼
管の製造工程を用いて製造することができる。 【0050】鋼板を管状にプレス成形した後、突合せ部
のシーム溶接に先立って行われる仮付け溶接は、多様さ
れているガスシールドアーク溶接でも、最近実用されつ
つあるレーザーなどのビーム溶接でも良い。 【0051】シーム溶接は、X開先に加工した突合せ部
を、鋼管の内面側および外面側からそれぞれ1層の溶接
を行うことで行われる。このシーム溶接は、溶接能率が
高く、開先形状の許容範囲が広く、更に、仮付け溶接金
属の再溶融が可能である、サブマージアーク溶接が好ま
しく、溶接能率向上の観点から多電極を用い、1電極目
は溶込みの安定性からワイヤ+極の直流電極が好まし
い。電流、電圧条件は、内面溶接は仮付け溶接を突き抜
けない条件で、外面溶接は完全に仮付け溶接を再溶融す
る条件が好ましい。また、溶接速度は板厚にもよるが、
板厚20mmで1.5m/min程度であり、当然早い
ほど好ましい。 【0052】サブマージアーク溶接に用いられるフラッ
クスは、溶接金属中の酸素濃度を低減し溶接金属の靱性
を向上することができる中塩基度また高塩基度のフラッ
クスが好ましい。 【0053】また、本発明の対象である引張強度が80
0MPa以上の鋼管の母材成分は、特に規定する必要は
なく、例えば、以下に示すC:0.02〜0.12%、
Si:0.35%以下、Mn:0.5〜2.0%、N
i:0.02〜4%、CrおよぶMoの何れか1種また
は2種の合計量:0.1〜4%を含有する鋼で良い。な
お、ここで%は質量%を示す(以下、同様である)。 【0054】Cは、鋼中に添加することにより低コスト
で強度を向上することができ、多いほどコスト低減でき
るが、あまり多いとシーム溶接した際の溶接HAZ部に
島状マルテンサイトと呼ばれる硬組織が生成し、靱性が
低下するため好ましくなく、一方、少なすぎると焼入れ
性不足で、強度、靱性の確保が難しい。そのため、C含
有量は0.02〜0.12%にするのが好ましい。 【0055】Siは、溶接HAZに島状マルテンサイト
を形成しやすい成分であり、あまり添加量が高いと溶接
HAZ部の靱性低下を引起こすため、その含有量は、
0.35%以下とするのが好ましい。 【0056】Mnは、焼入れ性を高め強度、靱性を確保
するための成分であり、少ないと強度、靱性の確保が難
しい。しかし、含有量が2.0%を超えると造塊割れの
原因になる。そにため、Mn含有量は0.5〜2.0%
にするのが好ましい。 【0057】NiもMnと同様に、強度、靱性、特に靱
性を確保するための成分であり、0.02%以上の添加
が好ましい。しかし、あまり高いと高価な元素のため、
経済的でなくなる。そのため、Ni含有量は0.02〜
4%にするのが好ましい。 【0058】Cr、Moは何れも強度確保のための元素
で、少ないと強度確保ができない。また、あまり高いと
熱影響部が硬くなりすぎ、単に拡管成形のタイミングを
調整しただけでは溶接割れを防止できない。そのため、
CrおよぶMoの何れか1種または2種の合計量を0.
1〜4%にするのが好ましい。 【0059】P、Sは不可避的に混入する成分であり、
靱性確保のため、Pは0.04%以下、Sは0.03%
以下に制限するのが好ましい。 【0060】更に強度、靱性の向上等のために、Al、
Ti、Nb、V、B、CaおよびMgのうちの何れか1
種または2種以上を合計量で1%以下添加しても良い。 【0061】また、鋼管のシーム溶接部の溶接金属の成
分も特に規制しないが、共金系のワイヤおよびフラック
スの溶接材料により溶接金属の成分を母材成分とほぼ同
じ成分系とするのが好ましい。しかし、ラインパイプの
多くは溶接ままで使用され、母材のように圧延による組
織制御により強度、靱性の確保等の操作ができないた
め、母材の機械的特性とのバランスを考慮して添加成分
の含有量を調整するのが好ましい。 【0062】 【実施例】次に、実施例に基づき本発明を更に具体的に
説明する。 【0063】表1に鋼管製造時に用いた鋼板の板厚、強
度および化学成分を、表2にシーム溶接に用いたフラッ
クスおよび溶接条件を、表3にシーム溶接に用いた溶接
ワイヤの化学成分をそれぞれ示す。表4に表1〜3の鋼
板、シーム溶接条件の何れかの条件を組み合わせて、シ
ーム溶接および拡管条件が本発明範囲内(本発明例)お
よび範囲外(比較例)でUOE鋼管を製造後、溶接金属
の横割れおよび拡管割れの発生状況を示す。なお、表2
に示した高塩基度−溶融型フラックスは、SiO2:1
0%、Al23:25%、CaO:15%、CaF2
35%、その他成分:15%からなる、粒度:80以下
のメシュのものを用いた。また、高塩基度−焼成型フラ
ックスの基本成分系は溶融型フラックスと同じであり、
これに合金材として、Fe、Si、Mn、Niを合計量
で5%程度添加し、水ガラスで顆粒状にして480℃で
焼成したものを用いた。 【0064】また、表4におけるフラックス中の拡散性
水素量の調整は、表2に示す密封保管された各フラック
スをそのまま使用する他、密封保管された各フラックス
を4日ほど開封放置して拡散性水素量を高くしたものを
使用することで行った。 【0065】なお、表4におけるフラックス中の拡散性
水素量は、JIS Z3118鋼溶接部の水素量測定方
法に準じて2号試験片を使用し、交流625A、電圧3
0V、溶接速度60cm/min、ワイヤ付出し30m
mで溶接した後、拡散性水素量の測定はガスクロ法で行
った。この際のワイヤは表3に示すWC:径4.8mm
を使用し、フラックスは溶接試験に使用したと同じ条件
のものを使用した。 【0066】溶接ワイヤは表3に示すWA,WB,WC
の3種類を母材強度により、組み合わせを変えて使用し
た。 【0067】溶接金属の横割れ観察は、目視、PTおよ
びRT(JIS Z3104高溶接部の放射線透過試験
方法および透過写真の等級分類方法)でシーム溶接後7
2時間経過した後に行った。 【0068】管の製造は8〜10m長さの鋼板を、まず
管サイズに必要な幅に切断した後、端部をシ−ム溶接部
がX開先になるように開先加工し、この後、Uプレス、
Oプレスを行い、筒状に加工した。その後、仮付け溶接
として、570MPa級ワイヤを使用して入熱6.5k
J/cmの炭酸ガス溶接により鋼管の外側から全線溶接
した。この後、表3に示すワイヤを使用して、表2に示
す条件で鋼管の内面、その後、外面からそれぞれ同一条
件で1パスのサブマージアーク溶接によりシーム溶接を
行った。 【0069】シーム溶接後の拡管成形は、内面から油圧
で押し拡げる装置を使用して行い、拡管前後の管外周長
さを巻き尺を使用して測定し、下記(1)式より拡管率
を求めた。 (拡管率)(%)=((拡管後の外周長さ)−(拡管前の外周長さ))/(拡管 前の外周長さ)×100 ・ ・ ・(1) 【0070】実施番号1の発明例は、板厚16mm、強
度1050MPaで外径930mmの鋼管を、拡散性水
素量4ml/100gの高塩基度の溶融型フラックスを
使用して3電極潜弧溶接し、40分後に拡管率2%の拡
管成形した。このときの溶接金属強度は1077MP
a、溶接金属強度/母材強度は1.03である。この場
合、本発明の条件を満たしているため、溶接金属の横割
れおよび拡管割れのない健全なUOE鋼管が製造でき
た。 【0071】実施番号2の発明例は、実施番号1の発明
例と同じ成分で板厚25mm、強度1010MPa、外
径457mmの鋼管を、拡散性水素量18ml/100
gの高塩基度の溶融型フラックスを使用して3電極潜弧
溶接し、40分後に拡管率5%の拡管成形した。このと
きの溶接金属強度は1145MPa、溶接金属強度/母
材強度は1.35と溶接金属の強度は高い。しかし、拡
管時期が30分以降で、拡散性水素量、拡管率および溶
接金属の強度も本発明の範囲内のため溶接金属の横割れ
および拡管割れのない健全なUOE鋼管が得られてい
る。 【0072】実施番号3の発明例は、板厚14mm、強
度1190MPa、外径762mmの鋼管を、拡散性水
素量10ml/100gの高塩基度の溶融型フラックス
を使用して3電極潜弧溶接し、35分後に拡管率1%の
拡管成形した。このときの溶接金属強度は1030MP
a、溶接金属強度/母材強度0.87である。この場合
も、本発明の条件範囲内のため、溶接金属の横割れおよ
び拡管割れのない健全なUOE鋼管が得られている。 【0073】実施番号4の本発明例は、板厚32mm、
強度830MPa、外径930mmの鋼管を、拡散性水
素量5ml/100gの高塩基度の焼結型フラックスを
使用して4電極潜弧溶接し、35分後に拡管率3%の拡
管成形した。このときの溶接金属強度は805MPa、
溶接金属強度/母材強度0.95であったこの場合も、
本発明の条件を満たしており、溶接金属の横割れおよび
拡管割れのない、健全なUOE鋼管が得られている。 【0074】実施番号5の比較例は、実施番号1の発明
例と同じ材質および寸法の鋼管を同じ溶接条件でシーム
溶接したが、シ−ム溶接後20分で拡管成形したため、
溶接金属に横割れが発生した。 【0075】実施番号6の比較例は、実施例2の発明例
と同じ材質および寸法の鋼管を同じ溶接条件でシ−ム溶
接したが、シ−ム溶接後25分で拡管成形したため、溶
接金属に横割れが発生した。 【0076】実施番号7の比較例は、実施例2の発明例
と同じ成分で板厚が25mの鋼管で、高塩基度の溶融型
フラックスで、3電極潜弧溶接をした。溶接金属中の拡
散性水素量は15ml/100gである。また、シ−ム
溶接後20分で拡管率5%の拡管成形をした。これは溶
接金属の強度が低いため割れは認められなかったが、溶
接金属の強度が低く、溶接金属位置で拡管割れが発生し
た。 【0077】実施番号8の比較例は、板厚14mmで、
強度1190MPa、外径762mmの鋼管を、拡散性
水素量22ml/100gの高塩基度の溶融型フラック
スを使用して3電極で、溶接金属の強度1340MPa
の条件でサブマージアーク溶接した。拡管時期は40分
後で拡管率も本発明の範囲内であるが、このとき使用し
たフラックスが4日ほど開封放置したもので、拡散性水
素量が過剰のため溶接金属に横割れが発生している。 【0078】実施番号9の比較例は、実施番号4の発明
例と同じ材料で板厚32mm、強度930MPaで外径
930mmの鋼管を、高塩基度の焼結型フラックスを使
用して4電極潜弧溶接し、溶接金属強度は890MPa
で、40分後に拡管率2%の拡管成形した。拡管時期、
溶接金属の強度および拡管率は本発明の条件を満たして
いる。また、溶接金属の強度も低く横割れに対しては有
利であるが、このとき使用したフラックスが4日ほど開
封放置したもので、拡散性水素量が24ml/100g
と高く、そのため、溶接金属に横割れが認められた。 【0079】実施番号10の比較例は、板厚16mm、
強度1050MPaで外径930mmの鋼管を、拡散性
水素量5ml/100gの高塩基度の溶融型フラックス
を使用して3電極で、溶接金属強度1500MPaで溶
接金属強度/母材強度1.42の条件で潜弧溶接し、3
5分後に拡管率5%の拡管成形した。拡管時期や拡散性
水素量は本発明の条件範囲にはいっているが、溶接金属
強度が過剰で溶接金属強度/母材強度も1.42と高く
溶接金属に横割れが発生した他、拡管成形時に溶接HA
Z位置で拡管割れが発生した。 【0080】実施番号11の比較例は、実施番号1の発
明例と同じ条件の板厚16mm、強度1050MPaで
外径930mmの鋼管を、拡散性水素量4ml/100
gの高塩基度の溶融型フラックスを使用して3電極で、
溶接金属強度は1079MPa条件で潜弧溶接し、45
分後に拡管率7%の拡管成形した。拡管率が過剰のた
め、溶接金属に微小な横割れが確認された他、拡管成形
時に溶接HAZ位置で拡管割れが発生した。 【0081】 【表1】 【0082】 【表2】 【0083】 【表3】【0084】 【表4】 【0085】 【発明の効果】本発明により、天然ガスや原油などを長
距離輸送するためのラインパイプ等で用いられる引っ張
り強度が800MPa以上の大径の高強度UOE鋼管の
製造方法において、生産性の低下や製造コストの増加、
さらには母材および溶接金属の成分設計の制約も少な
く、かつ、シーム溶接部の靱性などの鋼管の機械特性を
維持しつつ、シーム部の溶接金属の横割れ、さらには拡
管成形時の拡管割れを防止することができる。 【0086】これにより、ガス、石油の利用量の拡大、
輸送コストの低減等を理由にした高圧輸送および輸送効
率拡大のためのラインパイプの大型化、薄肉・高強度化
のニーズに応えられる引っ張り強度が800N/mm2
上の高強度UOE鋼管を高品質および高生産で製造する
ことが期待できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a steel pipe.
Specifically, long-distance transportation of natural gas, crude oil, etc.
The tensile strength used for line pipe etc. is 80
Regarding the manufacturing method of high-strength UOE steel pipes of 0MPa or more and large diameter
To do. [0002] For transporting natural gas, crude oil, etc. over long distances
UOE or UO steel pipe that is often used for line pipes
A large-diameter seam welded steel pipe, generally referred to as FIG.
As shown in (a) to (i), (a) a flat steel plate of a predetermined size
1 (b) adjusting the plate width, groove processing of both width end portions
2) (c) Bending process 3 at both width ends,
(D) U-shaped molding 4 and (e) O-shaped molding 5
(F) Gas seal the butt part
Tack welding 6 by de-arc welding, laser welding, etc.
(G) Internal seam welding by submerged arc welding
7 and (h) external seam welding 8 is performed, and then
(I) Expanders to increase the roundness of steel pipes
Is manufactured in the process of performing the tube expansion molding 9. Recent UO
In order to ensure high productivity, E steel pipe manufacturing plant
Each process is arranged on one line and can be processed continuously
It has been devised. In recent years, the use of gas and oil has increased, transportation costs have increased.
High-pressure transportation due to reduction of strikes and expansion of transportation efficiency
For this reason, line pipes are becoming larger, thinner and stronger.
It is out. With this background, we are currently using line pipe materials.
A prototype of high strength UOE steel pipe with a tensile strength of 700 MPa
Started, 800MPa or 1000MPa class high strength
Development of UOE steel pipe is also underway. In general, in a seam welded steel pipe, a welded HAZ is used.
And the tensile strength of the weld metal
When the tensile test of seam welded steel pipe
It is required to break in minutes. However, tensile strength
For high-strength UOE steel pipes with a degree of 700 MPa or higher,
Tensile test with strain concentrated on welded HAZ due to higher strength of genus
In this case, there is an increased risk of fracture at the position of the weld HAZ. Furthermore, high strength with a tensile strength of 800 MPa or more
In UOE steel pipe, transverse cracks occur in the seam weld during the manufacturing process.
A new problem has arisen. This transverse crack has been caused by the diffusion of weld metal.
Hydrogen embrittlement due to hydrogen, increased cracking susceptibility, tensile stress
It is said that this is a hydrogen crack caused by three additional factors.
(For example, welding joint handbook: Maruzen Co., Ltd. September, 1990)
Moon, P885). HT80 (tensile strength of 780 MPa or less
The above) occurs in weld metal with respect to cold cracking of high strength steel
It has been reported that prevention of lateral cracking is the most difficult
(Journal of the Japan Welding Society, Vol. 46 (1977) No. 12, 87
5 to 880), from the amount of diffusible hydrogen and the composition of the welding wire
Attempts have been made to predict the lateral cracking limit (“welding
Academic Journal, Vol. 46 (1977), No. 8, 561-566
page). However, in these reports, specific hydrogen content
If cracks occur in large quantities, preheating temperature during seam welding
Or cracking can be prevented by raising the interlayer temperature.
He only expressed his view that he can. As a countermeasure against transverse cracks in weld metal,
Pre-heat treatment or post-heat treatment during seam welding and welding materials
Reduction of the amount of diffusible hydrogen in the material. However, pre-heat treatment or post-heat treatment during welding
Has complicated the manufacturing process of UOE steel pipes,
This increases the manufacturing cost and is not preferable. Also, a high strength steel pipe of 800 MPa or more
Is a weld metal that can break the base metal during a steel pipe tensile test.
In order to ensure toughness, high basicity is required for submerged welding.
Need to reduce the amount of oxygen in the weld metal using flux
Generally, high basicity flux has a high amount of diffusible hydrogen.
Therefore, reducing the amount of diffusible hydrogen in the welding material
There is a limit in terms of securing toughness. Further, in Japanese Patent Laid-Open No. 2001-71176
Provides post-weld cooling by prescribing the chemical composition of the weld metal.
The welding residual stress by adjusting the martensitic transformation temperature during
Proposed method to prevent transverse cracking of weld metal by mitigating
Has been. However, the martensitic transformation point of the weld metal
Increase in alloying elements due to decrease in toughness reduces toughness and welding temperature
In order to promote cracking and realize base metal fracture during steel pipe tensile test
Balance of strength and toughness of weld metal for welding and ensuring weldability
From the standpoint of maintenance, control the component design of steel pipe base metal and weld metal.
About large is not preferable. Accordingly, a high strength with a tensile strength of 800 MPa or more.
Transverse cracking of weld metal that occurs when manufacturing UOE steel pipes
Reduced productivity, increased manufacturing costs, and
And there are few restrictions on the component design of weld metal, and seams
A method that can maintain the mechanical properties of steel pipes, such as the toughness of welds.
It is desired. [0015] The problems of the prior art described above
In view of the above, the present invention provides a high strength UOE of 800 MPa or more.
When manufacturing steel pipes, productivity decreases and manufacturing costs increase.
In addition, there are few restrictions on the component design of the base metal and weld metal.
And mechanical properties of steel pipe such as seam weld toughness
While maintaining the strength of the weld metal during the manufacture of high-strength UOE steel pipes
Prevents horizontal cracking, and also prevents cracking during pipe expansion molding
Aiming to provide a method for manufacturing high strength UOE steel pipe
Target. [0016] The present invention provides a method for producing a weld metal laterally.
From the analysis results of crack behavior, the occurrence of transverse cracks
Time from completion of welding to the start of tube expansion molding, diffusible hydrogen content,
Organize according to the expansion ratio during pipe forming and the strength of the weld metal.
Can be suppressed by prescribing these relationships
It was made based on the knowledge that it can. That is, the gist of the present invention is that the mother
The tensile strength of the material is 800 MPa or more and the outer diameter is 406 mm or more.
Manufacturing of high-strength UOE steel pipe with a wall thickness of 10mm or more
In the method, after the steel plate is formed into a tubular shape, the butt portion is temporarily attached.
After melt welding, the amount of diffusible hydrogen is 20 ml / 100 g or less.
Using welded flux, the seam weld metal has a tensile strength of 14
00 MPa or less and 0.8 times the tensile strength of the base material to 1.
Submerged arc on inner and outer surface of steel pipe under 4 times condition
Seam welding is performed by welding, and 30 minutes from the end of this welding.
After more than a minute has passed, the tube expansion rate is 5% or less.
A method of manufacturing a high-strength UOE steel pipe characterized in that it is shaped;
It is. DETAILED DESCRIPTION OF THE INVENTION The present inventors first made 800 MP.
When manufacturing high-strength UOE steel pipes of a or higher,
Investigate the size and strength of UOE steel pipes where transverse cracks occur
As a result, the following was found. (1) About the size of high-strength UOE steel pipe
If the wall thickness is 10 mm or more,
This happens a lot. Moreover, the outer diameter is 406 mm or more
In some cases, the weld thickness is usually 10 mm or more.
Many transverse cracks of the genus occur. [0020] High strength UOE steel of 800 MPa or more
For pipes, U-shaped and O-shaped press molding is possible depending on the equipment capacity.
The thickness of steel pipes that can be expanded or expanded is regulated and is currently
In terms of capacity, the upper limit of the thickness of steel pipe that can be manufactured is about 40 mm.
is there. (2) Regarding the strength of UOE steel pipe,
The transverse strength of the weld metal when the tensile strength of the pipe base material is 800 MPa or more
This happens a lot. The tensile strength of the steel pipe base material is 1200MP.
Ultra-high-strength steel pipes exceeding a are manufactured in the current manufacturing process.
When making, degradation of formability, welding HA of seam welds
Z and weld metal toughness reduction and pipe cracking
Of the tensile strength of steel pipes that can be manufactured at present.
The upper limit is about 1200 MPa. Based on the above, in the present invention, the weld metal
The tensile strength of the base metal of the weld metal that generates a lot of transverse cracks is 80
0 MPa or more, outer diameter 406 mm or more, and wall thickness 10
A method for manufacturing a high-strength UOE steel pipe of mm or more was used. The following is a method for manufacturing the high strength UOE steel pipe of the present invention.
The reason for limiting the manufacturing conditions in the law will be described. The inventors have a tensile strength of 950 MP.
After the steel sheet a is pressed into a tubular shape, the butt portion is pulled strong
Various fluxes and wires with different degrees of diffusive hydrogen content
Perform seam welding by submerged arc welding using
After that, the time from seam welding to the start of tube expansion
10m in length by changing the tube expansion rate and performing tube expansion molding
Manufactured UOE steel pipe and adjusted the occurrence of transverse cracks in weld metal
I investigated. The amount of diffusible hydrogen in the flux is JIS Z3
In accordance with the method for measuring the amount of hydrogen in 118 steel welds, No. 2 test piece
Submerged arc welding using the flux
Measures the amount of diffusible hydrogen in the weld metal immediately after contact.
Yes, the amount of diffusible hydrogen in 100 g of the weld metal
The same shall apply below). In addition, the presence or absence of transverse cracks in the weld metal,
Ultrasound weld bead surface 72 hours after seam welding
Inspected over the entire length by flaw detection test
If it occurred, it was judged that there was a lateral crack (hereinafter the same
) Based on experiments by the inventors, the present invention
The manufacturing conditions for UOE steel pipes with a wall thickness of about 40 mm or less
Is about 20 minutes after seam welding.
It is confirmed that it is cooled from 0 ° C to around 100 ° C.
It was. Also, diffusible hydrogen in the weld metal exceeds 100 ° C.
Diffuses and is released outside the base material or tube
However, the diffusion rate of diffusible hydrogen rapidly increases around 100 ° C.
Therefore, at temperatures below 100 ° C, the expansion in the weld metal
It was found that the diffuse hydrogen becomes difficult to move. On the other hand, in the steel pipe expansion forming process, the inside of the steel pipe
The base metal and seam weld are to be spread out from
Stretched in the circumferential direction of the pipe and conversely tries to shrink in the weld line direction
The At this time, the deformability of the weld metal in the seam welded part is the base material.
Compared to the large deformability, the weld metal has excessive plastic deformation.
As a result of being restrained by the base metal when shrinking due to
It has been confirmed that tensile stress occurs in the weld line direction. When the tensile strength of the weld metal is high,
The weld metal is more susceptible to cracking and is
It was also confirmed that many cracks tend to occur. From these findings, the present inventors have found that
After pipe forming, across the seam weld line in the circumferential direction of the steel pipe
In particular, the occurrence of horizontal splitting of the weld metal
The amount of diffusible hydrogen in the weld metal after the pipe expansion after seam welding
The diffusion rate of diffusible hydrogen depending on the time to start molding,
Tube expansion ratio during tube expansion forming, and tensile strength of weld metal
It depends on the conditions of the
A detailed study was conducted. (Amount of diffusible hydrogen in the flux)
Time from seam welding to the start of pipe expansion and seam welding
Of diffusible hydrogen in diffusible hydrogen in flux
And the relationship with the occurrence of transverse cracks in the weld metal. Na
The tensile strength of the weld metal obtained by seam welding is 10
The expansion rate at the time of 00 MPa and expansion was 3%. From FIG. 2, tube expansion molding starts after seam welding.
It takes 30 minutes or more to be used for seam welding.
The amount of diffusible hydrogen in the amount of diffusible hydrogen in the flux is 20 m.
Under the condition of 1 / 100g or less, transverse cracking of the weld metal occurs.
Absent. Diffusion in the flux used during seam welding
The amount of diffusible hydrogen in the amount of volatile hydrogen is 20 ml / 100 g or less
In some cases, the time from seam welding to the start of tube expansion forming
In 30 minutes, diffusible hydrogen in the weld metal is sufficiently diffused and
Because it is released to the outside of the material or pipe, the time is 30 minutes or less.
Amount of diffusible hydrogen remaining in weld metal during tube expansion
There is little, and it is tensioned in the welding direction of the weld metal by pipe expansion forming.
Even when force is applied, transverse cracking due to hydrogen embrittlement hardly occurs
Become. On the other hand, in the flux used during seam welding
The amount of diffusible hydrogen in the amount of diffusible hydrogen is 20 ml / 100 g
If exceeding, from seam welding to pipe expansion start
If the time is 30 minutes, the diffusible hydrogen in the weld metal is still sufficient.
If it is not diffused and remains for 30 minutes or longer
The diffusion rate of diffusible hydrogen in the weld metal becomes extremely slow and widens.
Weld metal welded by pipe expansion molding because it is difficult to be scattered
Transversely due to hydrogen embrittlement when tensile stress is applied in the direction
This is likely to occur. For this reason, expansion after seam welding is performed.
Even if the time to start tube forming is 120 minutes, tube expansion forming
Later, a lateral crack occurred. Therefore, in the present invention, the submerged arc solution is used.
Diffusible water in fluxes used during seam welding by welding
The elementary amount is defined as 20 ml / 100 g or less. Hula
The amount of diffusible hydrogen in the box is JIS Z3118 steel welded
In accordance with the method for measuring the amount of hydrogen in the
Welding immediately after submerged arc welding using the flux
Measures the amount of diffusible hydrogen in a metal and welds gold
It is the amount of diffusible hydrogen in 100 g of the genus. (Tube expansion ratio during pipe expansion molding) FIG. 3 shows seam welding.
The time until the start of tube expansion and the tube expansion rate during tube expansion
And the relationship with the occurrence of transverse cracks in the weld metal. In addition,
The tensile strength of weld metal obtained by seam welding is 100
0 MPa, diffusible water in flux used for seam welding
The elementary amount was 10 ml / 100 g. From FIG. 2, pipe expansion molding starts after seam welding.
The tube expansion rate is 30 minutes or more and the tube expansion rate during tube expansion molding
Under the condition of 5% or less, transverse cracking of the weld metal does not occur. one
On the other hand, if the tube expansion rate during tube expansion exceeds 5%,
Excessive regardless of the time from pipe welding to the start of pipe expansion forming
Transverse cracks due to excessive stress concentration, and seam welds
Depending on the bead shape, welding HAZ (melt
Breakage (expansion cracking) occurs at the contact end) position. When the tube expansion rate during tube expansion is 5% or less
Is a pipe that is loaded in the welding direction of the weld metal by tube forming.
Since the tensile stress is small, lateral cracking due to hydrogen embrittlement occurs.
The time from seam welding to the start of tube expansion forming
Sufficient diffusion of diffusible hydrogen in weld metal over 30 minutes
If the amount of remaining diffusible hydrogen is small, hydrogen embrittlement
Due to the synergistic effect with the suppression of cracks, transverse cracks do not occur. On the other hand, the tube expansion rate during tube expansion molding exceeds 5%.
In some cases, the weld metal is loaded in the welding direction by tube expansion.
Lateral cracking due to hydrogen embrittlement occurs due to large tensile stress.
From seam welding to the start of tube expansion molding
Sufficient diffusion of diffusible hydrogen in weld metal with a time of 30 minutes or more
Even if the amount of diffused hydrogen remaining is small, welding
Lateral cracking of metal is likely to occur, and plastic deformation is large.
If it is too large, pipe expansion cracks (breaks at the weld HAZ position) will occur.
There is a risk of life. Accordingly, in the present invention, the tube expansion rate at the time of tube expansion molding.
Is defined as 5% or less. The lower limit of the tube expansion rate during tube expansion molding is particularly
Although it is not necessary to specify, the tensile strength of the base material is 800 MPa
With the above high strength UOE steel pipe, the expansion rate is too small
Then, since the roundness of the steel pipe deteriorates and it is not preferable in quality,
The lower limit is preferably 0.3% from the viewpoint of steel pipe quality.
Good. (Tensile strength of weld metal) FIG.
The time from welding to the start of tube expansion and the seam weld zone
Tensile strength of weld metal and occurrence of transverse cracks in weld metal
Shows the relationship. The flux used for seam welding
The amount of diffusible hydrogen inside is 10ml / 100g.
The expansion rate was 3%. From FIG. 2, tube expansion molding starts after seam welding.
It takes 30 minutes or more and the tensile strength of the weld metal
When the degree is 1400 MPa or less, the transverse crack of the weld metal is
Does not occur. On the other hand, the tensile strength of the weld metal is 1400.
If the pressure exceeds MPa, pipe expansion is started after seam welding.
A lateral crack occurs regardless of the time to start. The tensile strength of the weld metal is 1400 MPa.
In the following cases, welding metal
Less affected by increased sensitivity to hydrogen embrittlement
Therefore, the time from seam welding to the start of tube expansion forming
Sufficient diffusion of diffusible hydrogen in weld metal over 30 minutes
If the amount of remaining diffusible hydrogen is small, hydrogen embrittlement
Due to the synergistic effect with the suppression of cracks, transverse cracks do not occur. On the other hand, the tensile strength of the weld metal is 1400.
If it exceeds MPa, the weld metal will increase due to the increase in strengthening elements.
Increases susceptibility to hydrogen embrittlement of the genus, seam welding
Weld metal with a time of 30 minutes or more from the beginning until the start of tube expansion forming
The remaining diffusible hydrogen is fully diffused and remains
Even when the amount is small, lateral cracking is likely to occur. Follow
In the present invention, the tensile strength of the weld metal of seam welding
Is defined as 1400 MPa or less. (Tensile strength of weld metal to base metal
Ratio) In the present invention, a high strength U having a tensile strength of 800 MPa or more.
Targeting OE steel pipe, such high-strength UOE steel pipe
In the case of transverse cracking in the weld metal,
The occurrence of expanded cracks that break at the position of HAZ or weld metal
Life becomes a problem. In the present invention, the occurrence of transverse cracks in the weld metal is suppressed.
In order to prevent the occurrence of expansion cracks,
The upper limit of the tensile strength of the weld metal is 1400 MPa or more
As specified below, the tensile strength of the base metal
It is defined as 0.8 to 1.4 times the degree. The tensile strength of the weld metal is the tensile strength of the base metal.
If the strength exceeds 1.4 times, the seam weld will melt during pipe expansion.
If the plastic strain is excessively concentrated in the HAZ part,
I'm going to be. On the other hand, the tensile strength of the weld metal
If it is less than 0.8 times the shear strength, the seam weld
Since the tensile strength is too low compared to the base material,
It tends to break at the weld metal position of the seam weld. Follow
The tensile strength of the weld metal is 0.8% of the tensile strength of the base metal.
It is specified to be double to 1.4 times. In the present invention, the above-described manufacturing conditions are satisfied.
The tensile strength of the base material is 800 MPa or more,
High strength with diameter of 406mm or more and wall thickness of 10mm or more
In the manufacturing method of UOE steel pipe,
In addition, it prevents the occurrence of expansion cracks and has excellent quality and high strength U
OE steel pipe can be manufactured. The high-strength UO steel pipe of the present invention is an ordinary UO steel.
It can be manufactured using a tube manufacturing process. After pressing the steel sheet into a tubular shape, the butt section
Tack welding that is performed prior to seam welding
Even gas shielded arc welding, which has been used recently
Beam welding such as a laser may be used. Seam welding is a butt section machined into an X groove.
One layer of welding from the inner and outer surfaces of the steel pipe
It is done by doing. This seam welding has welding efficiency
High, wide tolerance range for groove shape, and tack weld metal
Submerged arc welding is preferred because it can remelt the genus.
From the viewpoint of improving welding efficiency, the first electrode
Is preferred for wire + pole DC electrode due to stability of penetration
Yes. For current and voltage conditions, internal welding penetrates tack welding
In other conditions, external welding completely remelts the tack weld.
These conditions are preferred. Also, the welding speed depends on the plate thickness,
It is about 1.5m / min at a plate thickness of 20mm, naturally fast.
The more preferable. A flat used for submerged arc welding.
Reduces the oxygen concentration in the weld metal and reduces the toughness of the weld metal
A medium or high basicity flag.
Is preferred. Further, the tensile strength which is the object of the present invention is 80.
The base material component of the steel pipe of 0 MPa or more needs to be specified in particular.
For example, C shown below: 0.02 to 0.12%,
Si: 0.35% or less, Mn: 0.5 to 2.0%, N
i: 0.02 to 4%, any one of Cr and Mo
May be steel containing two total amounts: 0.1 to 4%. Na
Here,% indicates mass% (the same applies hereinafter). C is low in cost when added to steel.
Can increase the strength, and the more you can, the lower the cost.
However, if it is too much, it will be in the welded HAZ part when seam welding is performed.
Hard structure called island martensite is generated and toughness
On the other hand, if too little, quenching
It is difficult to secure strength and toughness due to insufficient properties. Therefore, including C
The content is preferably 0.02 to 0.12%. Si is an island martensite in the welded HAZ.
It is a component that tends to form, and welding with too much added amount
In order to cause a reduction in the toughness of the HAZ part, its content is
It is preferable to set it to 0.35% or less. Mn increases hardenability and secures strength and toughness.
It is difficult to ensure strength and toughness
That's right. However, if the content exceeds 2.0%, ingot cracking
Cause. Therefore, the Mn content is 0.5 to 2.0%.
Is preferable. Ni, like Mn, has strength, toughness, especially toughness.
It is a component to ensure the property, addition of 0.02% or more
Is preferred. However, because it is too expensive and expensive,
It is not economical. Therefore, Ni content is 0.02-
It is preferable to make it 4%. Cr and Mo are both elements for ensuring strength.
If the amount is too small, the strength cannot be secured. And if it ’s too high,
The heat-affected zone becomes too hard.
It is not possible to prevent weld cracking by just adjusting. for that reason,
The total amount of either one or two of Cr and Mo is 0.00.
It is preferably 1 to 4%. P and S are components inevitably mixed,
To ensure toughness, P is 0.04% or less, S is 0.03%
It is preferable to limit to the following. In order to further improve the strength and toughness, Al,
Any one of Ti, Nb, V, B, Ca and Mg
You may add 1% or less of seed | species or 2 or more types by total amount. In addition, the formation of weld metal in the seam welds of steel pipes.
There is no particular restriction on the amount of wire, but the metal wire and flack
The weld metal material makes the weld metal component almost the same as the base metal component.
The same component system is preferred. But the line pipe
Many are used as welded and are assembled by rolling like the base material.
Operation such as securing strength and toughness cannot be performed by weaving control.
Therefore, considering the balance with the mechanical properties of the base material,
It is preferable to adjust the content of. Next, the present invention will be more specifically described based on examples.
explain. Table 1 shows the plate thickness and strength of the steel plate used in manufacturing the steel pipe.
Table 2 shows the degree and chemical composition of the flat used for seam welding.
Table 3 shows the welding conditions used for seam welding.
The chemical components of the wire are shown respectively. Table 4 shows steels in Tables 1 to 3.
Any combination of plate and seam welding conditions
Welding and pipe expansion conditions are within the scope of the present invention (example of the present invention).
And after manufacturing UOE steel pipe outside the range (comparative example), weld metal
The occurrence of lateral cracks and pipe cracks is shown. Table 2
The high basicity-melting flux shown in FIG. 2 : 1
0%, Al 2 O Three : 25%, CaO: 15%, CaF 2 :
35%, other components: 15%, particle size: 80 or less
The one from Mesh was used. Also, high basicity-fired type
The basic component system is the same as the melt type flux.
The total amount of Fe, Si, Mn, and Ni as alloy materials
Add about 5% and granulate with water glass at 480 ° C.
What was baked was used. Also, the diffusivity in the flux in Table 4
The amount of hydrogen is adjusted for each flack stored in a sealed state as shown in Table 2.
Each flux is stored in a sealed manner.
Left open for about 4 days to increase the amount of diffusible hydrogen
It was done by using. It should be noted that the diffusivity in the flux in Table 4
How to measure the amount of hydrogen in JIS Z3118 steel weld
In accordance with the law, use No. 2 test piece, AC 625A, voltage 3
0V, welding speed 60cm / min, wire attached 30m
After welding at m, the diffusible hydrogen content is measured by gas chromatography.
It was. At this time, the wire is shown in Table 3 as WC: diameter 4.8 mm
And the flux is the same conditions used for the welding test
I used one. The welding wires are WA, WB, WC shown in Table 3.
These three types are used in different combinations depending on the strength of the base material.
It was. Observation of transverse cracks in the weld metal is performed by visual inspection, PT and
And RT (Radiation transmission test of JIS Z3104 high weld zone)
7 after seam welding with the method and grade classification of transmission photographs)
After 2 hours. For the manufacture of the pipe, a steel plate with a length of 8 to 10 m is used.
After cutting to the required width for the tube size, the end is welded to the seam
Beveled so that becomes X groove, then U press,
O-press was performed and processed into a cylindrical shape. Then tack welding
As a heat input 6.5k using 570MPa class wire
Full wire welding from outside of steel pipe by J / cm carbon dioxide welding
did. After this, use the wires shown in Table 3 and
The same condition from the inner surface of the steel pipe and then the outer surface.
Seam welding by 1-pass submerged arc welding
went. Tube expansion after seam welding is performed by hydraulic pressure from the inner surface.
Pipe outer circumference before and after pipe expansion
Measure the thickness using a tape measure, and the tube expansion rate from the following formula (1)
Asked. (Expansion rate) (%) = ((peripheral length after tube expansion) − (peripheral length before tube expansion)) / (peripheral length before tube expansion) × 100 (1) execution number 1 Example of the invention is a plate thickness of 16mm, strong
A steel pipe having an outer diameter of 930 mm at a degree of 1050 MPa is used as diffusible water.
A melt flux with a high basicity of 4ml / 100g
3 electrode sub-arc welding, and after 40 minutes expansion of 2%
Tube forming. The weld metal strength at this time is 1077 MP.
a, weld metal strength / base material strength is 1.03. This place
If the condition of the present invention is satisfied,
Can produce sound UOE steel pipes without cracks
It was. The invention example of execution number 2 is the invention of execution number 1.
The same components as in the example, plate thickness 25 mm, strength 1010 MPa, outside
A steel pipe with a diameter of 457 mm is used as a diffusible hydrogen amount of 18 ml / 100.
3 electrode submerged arc using high basic melt flux
Welding was performed, and after 40 minutes, the tube was formed at a tube expansion rate of 5%. This
The weld metal strength of mushroom is 1145 MPa, weld metal strength / mother
The material strength is 1.35 and the strength of the weld metal is high. However, the expansion
After 30 minutes, the amount of diffusible hydrogen, the expansion rate, and dissolution
Lateral cracking of weld metal because the strength of metal contact is also within the scope of the present invention.
And a sound UOE steel pipe without cracks
The The invention number of run number 3 is 14 mm thick, strong
A steel pipe having a degree of 1190 MPa and an outer diameter of 762 mm is made of diffusible water.
High basicity molten flux with a basic volume of 10ml / 100g
3 electrode submerged arc welding, and after 35 minutes tube expansion rate of 1%
Tube expansion was performed. The weld metal strength at this time is 1030MP.
a, weld metal strength / base material strength 0.87. in this case
However, because it is within the condition range of the present invention,
In addition, a sound UOE steel pipe free from cracks is obtained. The embodiment number 4 of the present invention has a plate thickness of 32 mm,
A steel pipe having a strength of 830 MPa and an outer diameter of 930 mm is made of diffusible water.
Sintered flux with high basicity of 5ml / 100g
4 electrode sub-arc welding is used, and after 35 minutes, the expansion rate is 3%.
Tube forming. The weld metal strength at this time is 805 MPa,
In this case, the weld metal strength / base material strength was 0.95.
Satisfying the conditions of the present invention,
A sound UOE steel pipe without expanded cracks is obtained. The comparative example of run number 5 is the invention of run number 1.
Steel pipe of the same material and dimensions as the example under the same welding conditions
Welded, but expanded 20 minutes after seam welding.
A transverse crack occurred in the weld metal. The comparative example of execution number 6 is the invention example of embodiment 2.
Steel pipes of the same material and dimensions as those under the same welding conditions
However, since it was expanded 25 minutes after seam welding,
Lateral cracks occurred in the metal contact. The comparative example of execution number 7 is the invention example of embodiment 2.
A steel pipe with the same components and a thickness of 25m, and a high basicity melt type
Three-electrode subarc welding was performed with flux. Expansion in weld metal
The amount of diffuse hydrogen is 15 ml / 100 g. The seam
20 minutes after welding, the tube was formed with a tube expansion ratio of 5%. This is dissolved
Cracks were not observed due to the low strength of the metal, but
The strength of metal contact is low, and pipe expansion cracks occur at the weld metal position.
It was. The comparative example of execution number 8 has a plate thickness of 14 mm,
A steel pipe with a strength of 1190 MPa and an outer diameter of 762 mm
Highly basic molten flack with a hydrogen content of 22ml / 100g
The strength of the weld metal is 1340 MPa with 3 electrodes
Submerged arc welding was performed under the conditions of Expansion time is 40 minutes
Later, the tube expansion rate is within the scope of the present invention.
The flux left unopened for about 4 days.
A transverse crack has occurred in the weld metal due to the excessive amount. The comparative example of run number 9 is the invention of run number 4.
The same material as the example, plate thickness 32mm, strength 930MPa, outer diameter
Using a 930mm steel tube with a high basicity sintered flux
4 electrode sub-arc welding, weld metal strength is 890 MPa
Then, after 40 minutes, the tube was expanded at a tube expansion rate of 2%. Expansion period,
The weld metal strength and tube expansion rate satisfy the conditions of the present invention.
Yes. In addition, the strength of the weld metal is low and it is effective against transverse cracks.
The flux used at this time is open for about 4 days.
Sealed and diffusible hydrogen content 24ml / 100g
Therefore, transverse cracks were observed in the weld metal. The comparative example of execution number 10 has a plate thickness of 16 mm,
A steel pipe with a strength of 1050 MPa and an outer diameter of 930 mm is diffused.
High basicity melt flux with 5ml / 100g hydrogen
With 3 electrodes, weld metal strength 1500 MPa
Submerged arc welding with metal contact strength / base material strength of 1.42 and 3
After 5 minutes, the tube was expanded at a tube expansion rate of 5%. Expansion time and diffusivity
Although the amount of hydrogen is within the range of the present invention, the weld metal
Strength is excessive and weld metal strength / base metal strength is as high as 1.42.
In addition to the occurrence of transverse cracks in the weld metal, welding HA during pipe expansion forming
Tube expansion cracks occurred at the Z position. The comparative example with run number 11 is
The plate thickness is 16 mm and the strength is 1050 MPa under the same conditions as the light example.
A steel pipe with an outer diameter of 930 mm is used as a diffusible hydrogen amount of 4 ml / 100.
3 g using high basic melt flux,
The weld metal strength is submerged arc welding under the condition of 1079 MPa, 45
After a minute, the tube was formed with a tube expansion ratio of 7%. The expansion rate is excessive
In addition, minute transverse cracks were confirmed in the weld metal, and tube expansion molding
Sometimes pipe cracking occurred at the weld HAZ position. [Table 1] [Table 2] [Table 3] [Table 4] According to the present invention, natural gas or crude oil can be used for a long time.
Pull used in line pipes for distance transportation
Of high-strength UOE steel pipe with a large diameter of 800 MPa or more
In the manufacturing method, productivity decreases and manufacturing costs increase,
Furthermore, there are few restrictions on the component design of the base metal and weld metal.
And mechanical properties of steel pipes such as the toughness of seam welds
While maintaining, transverse cracks in the weld metal in the seam, and further expansion
It is possible to prevent pipe expansion cracks during pipe forming. As a result, the use of gas and oil is increased,
High-pressure transportation and transportation effectiveness for reasons such as transportation cost reduction
Increasing line pipe size, thickness and strength to increase rate
The tensile strength that can meet the needs of 800N / mm 2 Less than
Manufacture the above high strength UOE steel pipe with high quality and high production
I can expect that.

【図面の簡単な説明】 【図1】一般的なUOE鋼管の製造工程(a)〜(i)
を示す図である。 【図2】シーム溶接後から拡管成形開始までの時間とシ
ーム溶接時に用いるフラックス中の拡散性水素量および
溶接金属の横割れ発生状況との関係を示す図である。 【図3】シーム溶接後から拡管成形開始までの時間と拡
管成形時の拡管率および溶接金属の横割れ発生状況との
関係を示す図である。 【図4】シーム溶接後から拡管成形開始までの時間とシ
ーム溶接部の溶接金属の引っ張り強度および溶接金属の
横割れ発生状況との関係を示す図である。 【符号の説明】 1 鋼板 2 板幅調整、開先加工 3 端部曲げ加工 4 U成形 5 O成形 6 仮付け溶接 7 内面シーム溶接 8 外面シーム溶接 9 拡管成形
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows general UOE steel pipe manufacturing steps (a) to (i).
FIG. FIG. 2 is a diagram showing the relationship between the time from seam welding to the start of tube expansion forming, the amount of diffusible hydrogen in the flux used during seam welding, and the occurrence of transverse cracks in the weld metal. FIG. 3 is a diagram showing the relationship between the time from seam welding to the start of tube expansion forming, the tube expansion rate during tube expansion forming, and the occurrence of transverse cracks in the weld metal. FIG. 4 is a diagram showing the relationship between the time from seam welding to the start of tube expansion forming, the tensile strength of the weld metal in the seam weld, and the occurrence of transverse cracks in the weld metal. [Explanation of Symbols] 1 Steel plate 2 Plate width adjustment, groove processing 3 End bending 4 U forming 5 O forming 6 Tack welding 7 Inner seam welding 8 Outer seam welding 9 Tube expansion forming

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 35/362 310 B23K 35/362 310A // C22C 38/00 301 C22C 38/00 301A 38/58 38/58 B23K 101:06 B23K 101:06 (72)発明者 宮崎 秀樹 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 吉田 達哉 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 小山 邦夫 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 品田 功一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4E001 AA03 BB05 CA02 DC05 DG02 EA02 EA07 4E028 CB04 CB06 CB08 4E063 AA01 BA09 4E084 AA03 AA07 AA12 AA20 BA02 BA03 BA04 BA06 BA25 BA27 CA03 CA12 CA14 DA16 EA02 GA03 ──────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme code (reference) B23K 35/362 310 B23K 35/362 310A // C22C 38/00 301 C22C 38/00 301A 38/58 38 / 58 B23K 101: 06 B23K 101: 06 (72) Inventor Hideki Miyazaki No. 1 Kimitsu, Kimitsu Shin Nippon Steel Co., Ltd. (72) Inventor Tatsuya Yoshida No. 1 Kimitsu, Kimitsu Nippon Steel Corporation Kimitsu Steel Works (72) Inventor Kunio Koyama 20-1 Shintomi, Futtsu Shin Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Koichi Shinada 20-1 Shintomi, Futtsu Shin Nippon Steel Co., Ltd. F-term (Reference) 4E001 AA03 BB05 CA02 DC05 DG02 EA02 EA07 4E028 CB04 CB06 CB08 4E063 AA01 BA09 4E084 AA03 AA07 AA12 AA20 BA02 BA03 BA04 BA06 BA25 BA27 CA03 CA1 2 CA14 DA16 EA02 GA03

Claims (1)

【特許請求の範囲】 【請求項1】 母材の引張強度が800MPa以上、外
径が406mm以上、かつ肉厚が10mm以上の高強度
UOE鋼管の製造方法において、鋼板を管状に成形後、
突合わせ部を仮付け溶接後、拡散性水素量が20ml/
100g以下の溶接フラックスを用い、シ−ム溶接金属
の引張強度が1400MPa以下、かつ母材の引張強度
の0.8倍〜1.4倍の条件で鋼管の内面および外面を
サブマージアーク溶接によるシーム溶接を行い、この溶
接終了時から30分以上経過した後に、拡管率が5%以
下の条件で拡管成形することを特徴とする高強度UOE
鋼管の製造方法。
What is claimed is: 1. In a method for producing a high-strength UOE steel pipe having a tensile strength of a base metal of 800 MPa or more, an outer diameter of 406 mm or more, and a wall thickness of 10 mm or more;
After tack welding the butt joint, the amount of diffusible hydrogen is 20 ml /
A seam by submerged arc welding of the inner and outer surfaces of a steel pipe using a welding flux of 100 g or less, under conditions where the tensile strength of the seam weld metal is 1400 MPa or less and the tensile strength of the base metal is 0.8 to 1.4 times. High strength UOE characterized in that welding is performed, and after 30 minutes or more have elapsed from the end of the welding, the tube expansion rate is 5% or less.
Steel pipe manufacturing method.
JP2002123742A 2002-04-25 2002-04-25 Manufacturing method of high strength UOE steel pipe Expired - Fee Related JP3896031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123742A JP3896031B2 (en) 2002-04-25 2002-04-25 Manufacturing method of high strength UOE steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123742A JP3896031B2 (en) 2002-04-25 2002-04-25 Manufacturing method of high strength UOE steel pipe

Publications (2)

Publication Number Publication Date
JP2003311321A true JP2003311321A (en) 2003-11-05
JP3896031B2 JP3896031B2 (en) 2007-03-22

Family

ID=29538950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123742A Expired - Fee Related JP3896031B2 (en) 2002-04-25 2002-04-25 Manufacturing method of high strength UOE steel pipe

Country Status (1)

Country Link
JP (1) JP3896031B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126519A1 (en) * 2005-05-26 2006-11-30 Sumitomo Metal Industries, Ltd. Fused flux for submerged arc welding
JP2007283356A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
EP1854562A1 (en) * 2005-02-25 2007-11-14 Nippon Steel Corporation High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
JP2008510625A (en) * 2004-08-25 2008-04-10 ティッセンクルップ スチール アクチェンゲゼルシャフト Method and apparatus for producing a hollow profile seam welded longitudinally
WO2008146791A1 (en) * 2007-05-25 2008-12-04 Sumitomo Metal Industries, Ltd. Uoe steel pipe and method for production thereof
JP2009195990A (en) * 2009-06-08 2009-09-03 Nippon Steel Corp Seam welding method of high-strength uo steel pipe excellent in resistance to lateral crack
JP2009202195A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method of manufacturing welded steel pipe weld metal with excellent cold temperature cracking resistance
JP2011104597A (en) * 2009-11-12 2011-06-02 Sumitomo Metal Ind Ltd Method of manufacturing uoe steel pipe
CN103293036A (en) * 2012-03-08 2013-09-11 上海振华重工(集团)股份有限公司 Prefabricating method of high-strength steel re-welded transverse cracks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191953A (en) * 2013-03-28 2013-07-10 温州市富田不锈钢管有限公司 Manufacture method of seamless steel tube by using stainless welded tube

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510625A (en) * 2004-08-25 2008-04-10 ティッセンクルップ スチール アクチェンゲゼルシャフト Method and apparatus for producing a hollow profile seam welded longitudinally
KR101066719B1 (en) * 2005-02-25 2011-09-21 신닛뽄세이테쯔 카부시키카이샤 High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
EP1854562A1 (en) * 2005-02-25 2007-11-14 Nippon Steel Corporation High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
US8653400B2 (en) * 2005-02-25 2014-02-18 Nippon Steel & Sumitomo Metal Corporation High strength welded steel tube superior in hydrogen embrittlement cracking resistance of weld metal and method of production of same
EP1854562A4 (en) * 2005-02-25 2009-04-15 Nippon Steel Corp High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and process for producing the same
JP4581842B2 (en) * 2005-05-26 2010-11-17 住友金属工業株式会社 Fused flux for submerged arc welding
JP2006326642A (en) * 2005-05-26 2006-12-07 Sumitomo Metal Ind Ltd Fused flux for submerged arc welding
WO2006126519A1 (en) * 2005-05-26 2006-11-30 Sumitomo Metal Industries, Ltd. Fused flux for submerged arc welding
JP2007283356A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
JPWO2008146791A1 (en) * 2007-05-25 2010-08-19 住友金属工業株式会社 UOE steel pipe and its manufacturing method
WO2008146791A1 (en) * 2007-05-25 2008-12-04 Sumitomo Metal Industries, Ltd. Uoe steel pipe and method for production thereof
EP2151296A4 (en) * 2007-05-25 2015-10-28 Nippon Steel & Sumitomo Metal Corp Uoe steel pipe and method for production thereof
JP2009202195A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method of manufacturing welded steel pipe weld metal with excellent cold temperature cracking resistance
JP2009195990A (en) * 2009-06-08 2009-09-03 Nippon Steel Corp Seam welding method of high-strength uo steel pipe excellent in resistance to lateral crack
JP2011104597A (en) * 2009-11-12 2011-06-02 Sumitomo Metal Ind Ltd Method of manufacturing uoe steel pipe
CN103293036A (en) * 2012-03-08 2013-09-11 上海振华重工(集团)股份有限公司 Prefabricating method of high-strength steel re-welded transverse cracks

Also Published As

Publication number Publication date
JP3896031B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5200932B2 (en) Bend pipe and manufacturing method thereof
CN101548026B (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP6011743B1 (en) Method for manufacturing circumferential welded joint of low carbon martensitic stainless steel pipe
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
KR20140127849A (en) Double pipe and welded structure utilizing same
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP6741860B2 (en) High Mn austenitic stainless steel for hydrogen excellent in weldability, weld joint and hydrogen equipment using the same, and method for manufacturing weld joint
JP4876350B2 (en) Manufacturing method of high strength steel pipe joint for oil well
JP2001009589A (en) Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
JP2003311321A (en) Method for manufacturing high-strength uoe steel tube
JP2003003233A (en) High strength steel and production method therefor
JP2001179485A (en) Martensitic welded stainless steel pipe and producing method therefor
JP2016216819A (en) Thick steel plate and welded joint
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP6354281B2 (en) Ferritic heat resistant steel pipe
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics
JP2005272900A (en) High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R151 Written notification of patent or utility model registration

Ref document number: 3896031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees