JP2005272900A - High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal - Google Patents

High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal Download PDF

Info

Publication number
JP2005272900A
JP2005272900A JP2004085775A JP2004085775A JP2005272900A JP 2005272900 A JP2005272900 A JP 2005272900A JP 2004085775 A JP2004085775 A JP 2004085775A JP 2004085775 A JP2004085775 A JP 2004085775A JP 2005272900 A JP2005272900 A JP 2005272900A
Authority
JP
Japan
Prior art keywords
weld metal
toughness
welding
seam
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004085775A
Other languages
Japanese (ja)
Inventor
Yutaka Morimoto
裕 森本
Shigeru Okita
茂 大北
Takuya Hara
卓也 原
Yoshio Terada
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004085775A priority Critical patent/JP2005272900A/en
Publication of JP2005272900A publication Critical patent/JP2005272900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a UOE steel pipe for a high-strength line pipe which has a weld zone having excellent low-temperature toughness and is manufactured by shaping a steel sheet having a tensile strength of 800 to 1,100 MPa to a cylindrical shape, then joining the butt parts of the steel sheet by welding. <P>SOLUTION: The UOE steel pipe is manufactured by shaping the steel sheet having the tensile strength of 800 to 1,100 MPa to the cylindrical shape, then fixing the butt parts of the steel sheet by tack welding or the like, and seam welding the butt parts by submerged arc welding. The high-strength UOE steel pipe having the seam weld metal excellent in the strength and the low-temperature toughness can be obtained by regulating the chemical components of the weld metal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、800MPa以上の引張強度を有する低温靭性に優れた高強度ラインパイプに関するものであり、主として天然ガスや石油の輸送に使用されるラインパイプ用のUOE(またはUOともいうことがある)鋼管に関する。   The present invention relates to a high-strength line pipe excellent in low-temperature toughness having a tensile strength of 800 MPa or more, and UOE (or sometimes referred to as UO) for line pipes mainly used for transportation of natural gas and oil. It relates to steel pipes.

近年、原油・天燃ガスの長距離輸送方法としてラインパイプの重要性が益々高まっている。現在、長距離輸送用の幹線ラインパイプとしては米国石油協会(API)規格X65が設計の基本になっているが、(1)高圧化による輸送効率の向上や、(2)ラインパイプの外径、肉厚、重量の低減による現地施工能率の向上のため、より高強度ラインパイプが要望されている。これまでに、X80までのラインパイプが実用化されているが、さらに高強度のラインパイプのニーズが高まり、X100(引張強度760MPa以上)超の高強度ラインパイプの要望も出始めている。   In recent years, line pipes have become increasingly important as a long-distance transportation method for crude oil and natural gas. Currently, the American Petroleum Institute (API) standard X65 is the basic design for trunk line pipes for long-distance transportation. (1) Improvement of transportation efficiency due to high pressure and (2) Outer diameter of line pipe In order to improve local construction efficiency by reducing wall thickness and weight, higher strength line pipes are desired. So far, line pipes up to X80 have been put into practical use, but the need for high-strength line pipes has increased, and there is a demand for high-strength line pipes exceeding X100 (tensile strength of 760 MPa or more).

これらのラインパイプの製造には(1)強度と低温靭性のバランスのとれた鋼材と(2)同じく強度と低温靭性の優れた溶接部が必要となる。   The production of these line pipes requires (1) a steel material with a good balance between strength and low temperature toughness, and (2) a weld with excellent strength and low temperature toughness.

ラインパイプ用で比較的大型サイズの鋼管は一般にUOE鋼管またはUO鋼管と称され、鋼板をU型プレス成形後、さらにO型プレス成形することによって管状に成形し、その鋼板の突合せ端部を仮付け溶接した後、内面シーム溶接及び外面シーム溶接により接合することにより製造される。この際、仮付け溶接には、主としてMAG溶接やCO溶接等のガスシールドアーク溶接方法が用いられ、また、最近ではレーザ溶接方等も用いられる。通常、仮付け溶接は、管状に成形された鋼板突合せ部の外面側から溶接される。また、シーム溶接は仮付け溶接後の本溶接として、一般には溶接効率と溶接品質の両面から優れる多電極のサブマージアーク溶接(以下、SAW溶接法ともいう。)が主として用いられる。通常、シーム溶接は、仮付溶接された鋼管シーム部の内面側から内面シーム溶接した後、鋼管シーム部の外面側から外面シーム溶接が行なわれる。 Steel pipes of relatively large size for line pipes are generally called UOE steel pipes or UO steel pipes. After a steel sheet is U-shaped press formed, it is further formed into a tubular shape by O-shaped press forming, and the butt end of the steel sheet is temporarily formed. It is manufactured by joining by an inner surface seam welding and an outer surface seam welding. At this time, for the tack welding, a gas shield arc welding method such as MAG welding or CO 2 welding is mainly used, and recently, a laser welding method or the like is also used. Usually, tack welding is welded from the outer surface side of the steel plate butt portion formed into a tubular shape. In addition, seam welding mainly uses multi-electrode submerged arc welding (hereinafter also referred to as SAW welding method), which is superior in both welding efficiency and welding quality, as main welding after tack welding. Usually, in the seam welding, after the inner surface seam welding is performed from the inner surface side of the steel pipe seam portion that has been tack welded, the outer surface seam welding is performed from the outer surface side of the steel pipe seam portion.

従来のUOE鋼管の製造方法として、例えば、特許文献1等で開示されるように鋼材中の強化元素を限定してそのミクロ組織をマルテンサイトあるいはベイナイト等の低温変態組織主体として強度と靭性を確保している。一方、この鋼材のシーム溶接時に適用する溶接材料も、鋼材と同様にその成分組成を限定してシーム溶接部の溶接金属の強度と靭性を確保しようとする。しかし、シーム溶接部は、鋼材のように圧延条件と成分により比較的強度と靭性がコントロールし易いものとは異なり、溶接したままの溶接金属の特性は、溶接時の成分偏析や熱サイクルなどにより機械的特性、特に靭性のバラツキが大きくなる傾向がある。   As a conventional UOE steel pipe manufacturing method, for example, as disclosed in Patent Document 1 and the like, the strengthening elements in the steel material are limited and the microstructure is mainly composed of a low temperature transformation structure such as martensite or bainite to ensure strength and toughness. doing. On the other hand, the welding material applied at the time of seam welding of this steel material is also intended to ensure the strength and toughness of the weld metal in the seam welded part by limiting the composition of the components in the same manner as the steel material. However, seam welds are different from those that are relatively easy to control strength and toughness depending on rolling conditions and components, such as steel, and the properties of weld metal as-welded are due to component segregation during welding and thermal cycles. There is a tendency for mechanical characteristics, particularly toughness variation, to increase.

特に、850MPa超の引張強度を有する高強度鋼管において、シーム溶接部の引張強度を維持しつつ低温靭性も安定して確保することは容易ではない。そのため、従来から、平均値では要求される値を満足するものの、各値では低い値が発生し安定しないことも多々ある。シーム溶接部の健全性を見ると、靭性値の平均のみでなく各値も重要であることは当然である。   In particular, in a high-strength steel pipe having a tensile strength exceeding 850 MPa, it is not easy to stably secure low-temperature toughness while maintaining the tensile strength of the seam welded portion. For this reason, conventionally, although the average value satisfies the required value, a low value is often generated for each value and is not stable. Observing the soundness of the seam weld, it is natural that not only the average toughness value but also each value is important.

シーム溶接部でも溶接熱影響部に関しては、例えば、特許文献2にあるように、母材の合金添加量を限定して溶接熱影響部の靭性を確保できるものの、溶接金属については高強度を確保するために合金添加量ゆえの高温割れに関しては配慮しているが靭性については特段積極的に配慮していない。   Even in the seam welded part, for example, as disclosed in Patent Document 2, the toughness of the welded heat affected zone can be secured by limiting the amount of alloy added to the base metal, but high strength is ensured for the weld metal. For this reason, consideration is given to hot cracking due to the added amount of alloy, but toughness is not particularly considered.

また、特許文献3においても同様に、溶接熱影響部に対しては靭性を確保するために硬度を調整しているが、やはり溶接金属の靭性に関しては、特段積極的に配慮していない。そのため、−20℃での靭性を確保するにとどまっている。   Similarly, in Patent Document 3, the hardness is adjusted to ensure the toughness of the weld heat affected zone, but the toughness of the weld metal is not particularly positively considered. Therefore, the toughness at −20 ° C. is only ensured.

また、特許文献4では溶接金属の成分を規定しているが組織がアシキュラーフェライト主体なので強度が最大でも800MPa代で、さらなる高強度鋼に対しては強度不足である。また、靭性も−20℃を指標でありさらなる低温靭性が要求される場合は困難が生じる。
溶接金属に関しては例えば、特許文献5では溶接金属の成分を規定して強度と靭性を確保しているが、これは溶接後に溶接金属を含めた鋼管を高温に加熱・冷却して熱処理を行っているが、溶接ままで使用するUOE鋼管では適用できない。
Moreover, although the composition of a weld metal is prescribed | regulated in patent document 4, since a structure | tissue is mainly an acicular ferrite, intensity | strength is 800 MPa range at the maximum, and it is inadequate with respect to a further high strength steel. Further, the toughness is -20 ° C as an index, and difficulty arises when further low temperature toughness is required.
With regard to the weld metal, for example, in Patent Document 5, the components of the weld metal are specified to ensure strength and toughness. However, after welding, the steel pipe including the weld metal is heated and cooled to a high temperature to perform heat treatment. However, it cannot be applied to UOE steel pipes used as welded.

特願平11−002042号公報Japanese Patent Application No. 11-002042 特開2000−109952号公報Japanese Patent Laid-Open No. 2000-109592 特開平10−306347号公報Japanese Patent Laid-Open No. 10-306347 特開平9−824203号公報JP-A-9-824203 特開平11−172375号公報JP-A-11-172375

本発明は低温靭性の優れた溶接部を持つ、引張強度が800〜1100MPaの鋼板を円筒状に成型した後、その鋼板の突き合わせ部を溶接により接合して製造する高強度ラインパイプ用のUOE鋼管を提供するものである。   The present invention is a UOE steel pipe for high-strength line pipes, which is manufactured by forming a steel sheet having a tensile strength of 800 to 1100 MPa into a cylindrical shape with a weld having excellent low-temperature toughness and then joining the butted parts of the steel sheet by welding. Is to provide.

本発明者らは、引張強度が800〜1100MPaのUOE鋼管において、溶接金属の化学組成や機械的特性を鋭意調査解析した結果、該高強度UOE鋼管のシーム溶接金属部として満足する強度を有し、且つ安定した低温靭性を有する溶接金属を発明するに至った。   As a result of intensive investigation and analysis of the chemical composition and mechanical properties of the weld metal in the UOE steel pipe having a tensile strength of 800 to 1100 MPa, the present inventors have a strength that satisfies the seam weld metal part of the high-strength UOE steel pipe. The inventors have invented a weld metal having stable low temperature toughness.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

(1)引張強度が800〜1100MPaの母材と、引張強度が850〜1100MPaのシーム溶接金属部からなるUOE鋼管において、
前記溶接金属が、質量%で、
C:0.03〜0.09%、
Si:0.08〜0.5%、
Mn:1.4〜2.3%、
P:0.01%以下、
S:0.01%以下、
Ni:1.3〜3.3%、
Cr:0.4〜1.3%、
Mo:0.5〜2.5%、
Cr及びMoの合計量:1〜2.5%、
Ti:0.004〜0.02%、
O:0.016〜0.035%
を含有し、
Nb:0.01%未満に制限し、
残部がFe及び不可避的不純物からなり、かつ下記(1)式で定義されるPcw値が0.45〜0.8を満足する成分組成であり、さらに、溶接組織がベイナイト組織であることを特徴とするのシーム溶接金属の低温靭性に優れた高強度UOE鋼管。
Pcw=C+0.09×Si+0.08×Mn+0.06×Ni+0.11×Cr+0.014×Mo (1)
ここで、C、Si、Mn、Ni、CrおよびMoは各元素の質量%である。
(1) In a UOE steel pipe composed of a base material having a tensile strength of 800 to 1100 MPa and a seam weld metal portion having a tensile strength of 850 to 1100 MPa,
The weld metal is in mass%,
C: 0.03 to 0.09%,
Si: 0.08 to 0.5%,
Mn: 1.4 to 2.3%
P: 0.01% or less,
S: 0.01% or less,
Ni: 1.3-3.3%,
Cr: 0.4 to 1.3%,
Mo: 0.5 to 2.5%,
Total amount of Cr and Mo: 1 to 2.5%,
Ti: 0.004 to 0.02%,
O: 0.016-0.035%
Containing
Nb: limited to less than 0.01%,
The balance is composed of Fe and inevitable impurities, and the Pcw value defined by the following formula (1) satisfies 0.45 to 0.8, and the welded structure is a bainite structure. High strength UOE steel pipe with excellent low temperature toughness of seam weld metal.
Pcw = C + 0.09 × Si + 0.08 × Mn + 0.06 × Ni + 0.11 × Cr + 0.014 × Mo (1)
Here, C, Si, Mn, Ni, Cr, and Mo are mass% of each element.

(2)前記母材中に、Nb:0.02%以下に制限することを特徴とする前記(1)記載のシーム溶接金属の低温靭性に優れた高強度UOE鋼管。   (2) The high strength UOE steel pipe excellent in the low temperature toughness of the seam weld metal according to the above (1), characterized in that Nb is limited to 0.02% or less in the base material.

(3)質量%で、
C:0.04〜0.1%、
Ni:4〜6%、
Cr:1.8〜3%、
Mo:2〜3.5%、
Ti:0.02〜0.04%
を含有し、
Nb:0.03%以下に制限し、
残部がFe及び不可避的不純物からなる溶接ワイヤを用いてサブマージアーク溶接により前記溶接金属を形成したことを特徴とする、前記(1)または(2)記載のシーム溶接金属の低温靭性に優れた高強度UOE鋼管。
(3) In mass%,
C: 0.04 to 0.1%,
Ni: 4-6%,
Cr: 1.8-3%,
Mo: 2 to 3.5%,
Ti: 0.02 to 0.04%
Containing
Nb: limited to 0.03% or less,
The weld metal is formed by submerged arc welding using a welding wire whose balance is Fe and inevitable impurities, and the seam weld metal according to (1) or (2) is excellent in low-temperature toughness Strength UOE steel pipe.

以下に本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

一般に、高強度UOE鋼は、引張強度が800Mpa以上の高強度鋼板をU型プレスし、さらにO型プレスした突合せ端部を仮付け溶接後、管内面側及び外面側からそれぞれシーム溶接(以下、内外面シーム溶接とする。)が行なわれ接合される。シーム溶接には、通常の溶接効率及び品質の点から優れた多電極サブマージアーク溶接を用いて、管内面側及び管外面側をそれぞれ1層の溶接が行なわれる。内面シーム溶接金属が形成された後、外面シーム溶接をする際には、溶接入熱により内面シーム溶接金属は一部溶融しその周囲に熱影響部が形成される。   In general, high-strength UOE steel is U-pressed on a high-strength steel plate with a tensile strength of 800 Mpa or more, and after O-pressed butt ends are tack welded, and then seam welded (hereinafter referred to as the pipe inner surface and the outer surface). The inner / outer surface seam welding is performed) to be joined. In the seam welding, one-layer welding is performed on each of the tube inner surface side and the tube outer surface side by using multi-electrode submerged arc welding which is superior in terms of normal welding efficiency and quality. When the outer surface seam welding is performed after the inner surface seam weld metal is formed, the inner surface seam weld metal is partially melted by welding heat input, and a heat affected zone is formed around the inner surface seam weld metal.

本発明者らは、高強度UOE鋼のシーム溶接金属の靭性を低下させる原因について、母材鋼板及び溶接材料、溶接条件などを変えた実験を行い、特に溶接金属の成分組成と靭性との関係を調査検討した結果、特にNb含有量が高い溶接金属の場合に靭性が低下することを見出した。   The present inventors conducted an experiment in which the base steel plate, welding material, welding conditions, etc. were changed for the cause of reducing the toughness of the seam weld metal of high-strength UOE steel, and particularly the relationship between the composition of the weld metal and the toughness. As a result of investigation, it was found that the toughness is lowered particularly in the case of a weld metal having a high Nb content.

一般に、母材鋼板中のNbは、鋼板の製造時にNb炭窒化物として析出し組織を微細化するとともに、析出硬化や焼き入れ性を向上させる作用を有するため、引張強度が800MPa以上の高強度鋼板に多く用いられる。通常のシーム溶接に用いられるサブマージアーク溶接は母材鋼板の溶融量が多いため、Nb含有量の高い鋼板をシーム溶接して形成された溶接金属中のNb量は高くなる傾向にある。   In general, Nb in the base steel plate is precipitated as Nb carbonitride during the production of the steel plate and refines the structure and has the effect of improving precipitation hardening and hardenability, so that the tensile strength is 800 MPa or more. It is often used for steel plates. Since the submerged arc welding used for normal seam welding has a large amount of base metal steel sheet, the amount of Nb in a weld metal formed by seam welding a steel sheet having a high Nb content tends to increase.

一方、シーム溶接により溶融、凝固して形成された溶接金属中のNbは、凝固後の冷却速度が速いためにほとんど炭窒物として析出せずに、固溶Nbとして存在し溶接金属の強度向上に寄与することが知られている。このため、800MPa以上の高強度鋼板をシーム溶接する場合に、溶接金属を母材並に向上させるために溶接時に用いる溶接材料中のNb含有量を多くし、溶接金属の固溶Nbによる強度向上が行なわれている。
本発明者らは、シーム溶接部の衝撃試験後の溶接金属破面を走査型電子顕微鏡により詳細観察した結果、シーム溶接金属の靭性低下の原因が、内面シーム溶接金属の熱影響部に多く存在するNb炭化物が破壊の起点になって靭性を低下させることが判った。これは、外面シーム溶接時に、その入熱により高温に加熱、冷却された内面シーム溶接金属の熱影響部において、固溶していたNbが加熱、冷却過程でNb炭化物として多く析出されたためであると考える。
On the other hand, Nb in weld metal formed by melting and solidification by seam welding is not precipitated as carbonitride due to the high cooling rate after solidification, and exists as solid solution Nb, improving the strength of the weld metal. It is known to contribute to For this reason, when seam welding a high-strength steel sheet of 800 MPa or more, the Nb content in the welding material used at the time of welding is increased in order to improve the weld metal to the same level as the base metal, and the strength is improved by the solid solution Nb of the weld metal. Has been done.
As a result of detailed observation of the weld metal fracture surface after the impact test of the seam weld with a scanning electron microscope, the present inventors found that there are many causes of the reduction in the toughness of the seam weld metal in the heat affected zone of the inner seam weld metal. It has been found that Nb carbide to be used as a starting point of fracture reduces toughness. This is because during the outer surface seam welding, a large amount of dissolved Nb was precipitated as Nb carbide in the heating and cooling process in the heat-affected zone of the inner surface seam weld metal heated and cooled to a high temperature by the heat input. I think.

本発明は、以上の知見を基になされたものであり、引張強度が800MPa以上の高強度UOE鋼管を製造する際に、母材鋼材及び溶接金属の強化元素として多く用いられていたNbを極力低減し、シーム溶接金属のNbを除く成分組成及び組織の適正化により母材と同等以上の引張強度を維持しつつ、シーム溶接金属中のNb炭化物に起因する靭性低下を防止し、従来以上に低温靭性を向上させることを技術思想とする。   The present invention has been made on the basis of the above knowledge. When producing a high strength UOE steel pipe having a tensile strength of 800 MPa or more, Nb, which has been widely used as a strengthening element for base steel and weld metal, is used as much as possible. Reduced toughness due to Nb carbides in seam weld metal while preventing tensile strength equal to or higher than that of the base metal by optimizing the composition and structure of the seam weld metal excluding Nb. The technical idea is to improve low temperature toughness.

本発明において、UOE鋼管の母材鋼板を引張強度が800〜1100MPaとすることを前提とする。鋼板引張強度を800MPa以上とする理由は、この鋼板強度でUOE鋼管シーム溶接金属のNb炭化物起因の靭性低下が顕著となるからである。また、鋼板引張強度が1100MPaを超える場合は、溶接金属の引張強度を鋼板と同等以上の引張強度を確保するために溶接金属の靭性低下が非常に大きくなる。この引張強度レベルでは、本発明によっても溶接金属の靭性を十分に向上することができなくなるため、好ましい条件として鋼板引張強度の上限を1100MPaとした。   In the present invention, it is assumed that the base steel plate of the UOE steel pipe has a tensile strength of 800 to 1100 MPa. The reason why the steel sheet tensile strength is 800 MPa or more is that the toughness reduction due to the Nb carbide of the UOE steel pipe seam weld metal becomes remarkable with this steel sheet strength. In addition, when the steel plate tensile strength exceeds 1100 MPa, the weld metal has a very large reduction in toughness in order to ensure the tensile strength of the weld metal equal to or higher than that of the steel plate. At this tensile strength level, even according to the present invention, the toughness of the weld metal cannot be sufficiently improved, so the upper limit of the steel plate tensile strength is set to 1100 MPa as a preferable condition.

本発明は、母材鋼板の引張強度が800〜1100MPaであるUOE鋼管のシーム溶接金属の靭性を向上するために、シーム溶接金属の組成、組織および引張強度を適正に規定する必要がある。   In the present invention, in order to improve the toughness of a seam weld metal of a UOE steel pipe whose base steel plate has a tensile strength of 800 to 1100 MPa, it is necessary to properly define the composition, structure and tensile strength of the seam weld metal.

以下に本発明において規定するシーム溶接金属の成分組成について説明する。なお、以下に示される「%」は、特に説明がない限り、「質量%」を意味する。   The component composition of the seam weld metal specified in the present invention will be described below. Note that “%” shown below means “% by mass” unless otherwise specified.

本発明のシーム溶接金属の成分組成は、Nb含有量を極力少なく規制し、かつ引張強度が800〜1100MPaの鋼板強度との強度・靭性バランスを維持するために必要な溶接金属の引張強度850〜1100MPa、−30℃での靭性130J以上の溶接金属特性を維持するために規定する必要がある。   The component composition of the seam weld metal of the present invention regulates the Nb content as much as possible and maintains the strength / toughness balance of the weld metal with the steel plate strength of 800 to 1100 MPa in tensile strength of 850 to It is necessary to specify in order to maintain a weld metal characteristic of toughness 130J or higher at 1100 MPa and −30 ° C.

Cは、溶接金属組織中のベイナイト組織の生成とベイナイト組織の強度を向上させるために有効な元素である。溶接金属の引張強度を充分に向上するために、その含有量を0.03%以上とした。しかし、Cを過剰に添加すると溶接金属の硬度が高くなり過ぎて充分な靭性が得られず、また、低温割れが発生する危険性も高くなる。そのため、その含有量の上限を0.09%とした。   C is an element effective for generating a bainite structure in the weld metal structure and improving the strength of the bainite structure. In order to sufficiently improve the tensile strength of the weld metal, its content is set to 0.03% or more. However, if C is added excessively, the hardness of the weld metal becomes too high, and sufficient toughness cannot be obtained, and the risk of cold cracking also increases. Therefore, the upper limit of the content is set to 0.09%.

Siは、シーム溶接時のブローホールの発生を抑制する作用を有し、この作用を充分に発揮しブローホールを充分防止するために、その含有量を0.08%以上とした。しかし、Siを過剰に添加すると、シーム溶接金属の靭性を低下させるためその含有量の上限を0.5%とした。   Si has an action of suppressing the generation of blowholes during seam welding, and the content thereof is set to 0.08% or more in order to sufficiently exhibit this action and sufficiently prevent blowholes. However, when Si is added excessively, the toughness of the seam weld metal is lowered, so the upper limit of its content was made 0.5%.

Mnは、シーム溶接金属の引張強度を確保する上で重要な元素である。溶接金属の引張強度を充分に向上するために、その含有量を1.4%以上とした。しかし、過度の添加は、溶接金属の靭性低下を招くため、その含有量の上限を2.3%とした。   Mn is an important element in securing the tensile strength of the seam weld metal. In order to sufficiently improve the tensile strength of the weld metal, its content is set to 1.4% or more. However, excessive addition causes a reduction in the toughness of the weld metal, so the upper limit of its content was made 2.3%.

Pは、シーム溶接金属において靭性等の機械的特性を低下させるため、極力低減させることが望ましい。溶接金属中の一部のPは、シーム溶接時に母材に含有するPの混入によってたらされる。本発明は、母材からの持込を考慮し、溶接金属の靭性低下を抑制する観点からその含有量を0.01%以下に制限する。   P is desirably reduced as much as possible in order to reduce mechanical properties such as toughness in the seam weld metal. Part of the P in the weld metal is caused by the inclusion of P contained in the base material during seam welding. In the present invention, considering the carry-in from the base material, the content is limited to 0.01% or less from the viewpoint of suppressing the decrease in toughness of the weld metal.

Sは、Pと同様に溶接金属の靭性等の機械的特性を低下させるため、母材からの混入も考慮し、溶接金属の靭性低下を抑制する観点からその含有量を0.01%以下に制限した。   S, like P, lowers the mechanical properties such as toughness of the weld metal. Therefore, considering the mixing from the base metal, the content is made 0.01% or less from the viewpoint of suppressing the decrease in the toughness of the weld metal. Restricted.

Niは、シーム溶接金属の焼き入れ性を向上させ、溶接金属をベイナイト組織とし強度を向上させるとともに、靭性も向上させるために有効な元素である。溶接金属の強度と靭性を充分に向上させるために、その含有量を1.3%以上とした。しかし、Niを過剰に添加すると、溶接金属で高温割れを起こしやすくなるため、その含有量の上限を3.3%とした。   Ni is an effective element for improving the hardenability of the seam weld metal, making the weld metal a bainite structure, improving strength, and improving toughness. In order to sufficiently improve the strength and toughness of the weld metal, its content is set to 1.3% or more. However, if Ni is added excessively, hot cracking is likely to occur in the weld metal, so the upper limit of its content was made 3.3%.

Crは、焼き入れ性を向上させ、溶接金属をベイナイト組織とし強度を向上させるために有効な元素である。溶接金属の強度を充分に向上させるためにその含有量を0.4%以上とした。しかし、Crを過剰に添加すると靭性低下を招くため、その含有量の上限を1.3%とした。   Cr is an effective element for improving the hardenability and making the weld metal a bainite structure and improving the strength. In order to sufficiently improve the strength of the weld metal, its content is set to 0.4% or more. However, excessive addition of Cr causes a decrease in toughness, so the upper limit of its content was made 1.3%.

Moは、Crと同様に焼き入れ性を向上させ、溶接金属をベイナイト組織とし強度を向上するために必要な元素であり、この効果を十分にえるためにその含有量を0.5%以上とした。しかし、Moの過剰な添加は、溶接金属強度を必要以上に高くない、靭性を低下させるめその含有量の上限を2.5%、好ましくは2.0%とした。   Mo, like Cr, is an element necessary for improving the hardenability, making the weld metal a bainite structure and improving the strength, and in order to sufficiently obtain this effect, its content is 0.5% or more. did. However, excessive addition of Mo does not increase the weld metal strength more than necessary and lowers the toughness, so the upper limit of its content is 2.5%, preferably 2.0%.

上記のCrとMoは、同じような作用効果を生じるため、適度な強度を有するベイナイトを生成するために、これらの総量を規定する必要がある。焼き入れ性効果による強度向上と、過剰強度向上による靭性低下を制御するために、Cr及びMoの合計量を1〜2.5%の範囲に規定した。   Since the above Cr and Mo produce similar effects, it is necessary to define the total amount of these in order to produce bainite having an appropriate strength. In order to control the strength improvement due to the hardenability effect and the toughness reduction due to the excessive strength improvement, the total amount of Cr and Mo was specified in the range of 1 to 2.5%.

Tiは、シーム溶接時に溶接ワイヤから添加され、その一部は酸化されて、Ti酸化物として溶接金属中に存在し、その他は固溶Tiとして溶接金属中に存在する。Ti酸化物は、溶接金属組織の微細化に寄与し、靭性向上作用があり、また、固溶Tiは微量でも溶接金属の強度向上に寄与する。本発明では、固溶Tiにより強度向上効果を十分に得るために、その含有量を0.004%以上とした。しかし、その含有量が0.02%を超えると、固溶Tiが過剰となり、逆に靭性が低下する。溶接金属中の酸素と結合して過不足無く、Ti酸化物を生成させ、溶接金属組織を微細化させるために、Ti含有量の上限を0.02%とした。   Ti is added from the welding wire at the time of seam welding, and a part thereof is oxidized and exists in the weld metal as Ti oxide, and the other is present in the weld metal as solute Ti. Ti oxide contributes to refinement of the weld metal structure and has an effect of improving toughness, and solute Ti contributes to improvement of the strength of the weld metal even in a small amount. In the present invention, the content is made 0.004% or more in order to sufficiently obtain the strength improvement effect by solute Ti. However, if its content exceeds 0.02%, the solid solution Ti becomes excessive, and conversely, the toughness decreases. The upper limit of the Ti content was set to 0.02% in order to combine with oxygen in the weld metal to generate Ti oxide without any excess and to refine the weld metal structure.

Oは、シーム溶接時に溶接ワイヤ及び大気から溶接金属中に混入するが、上記Tiの脱酸作用により、その量は規定される。溶接金属中のO含有量が0.016%未満の場合では、溶接金属に存在するTi酸化物が減少し、過剰のTiは固溶Tiとして存在するため強度が高くなり、靭性が低下するめ、その含有量を0.016%以上とした。しかし、その含有量が0.035%を超えると、逆に、溶接金属中のTi酸化物の量が多くなり、組織微細化に寄与しない粗大酸化物が形成されやすくなり、靭性が低下する。   O is mixed into the weld metal from the welding wire and the atmosphere during seam welding, but the amount is defined by the deoxidation action of Ti. In the case where the O content in the weld metal is less than 0.016%, the Ti oxide present in the weld metal is reduced, the excess Ti is present as solute Ti, so the strength is increased, and the toughness is reduced. The content was set to 0.016% or more. However, if its content exceeds 0.035%, on the contrary, the amount of Ti oxide in the weld metal increases, and it becomes easy to form coarse oxides that do not contribute to the refinement of the structure, and toughness decreases.

Nbは、上述したように、外面シーム溶接時に内面シーム溶接金属の熱影響部でNb炭化物として析出し、破壊の起点になって靭性を低減するため、本発明においては極力その含有量を低減する必要がある。本発明では、内面溶接金属の熱影響部でのNb炭化物の析出の抑制により靭性を充分向上させるために溶接金属中のNb含有量を0.01%未満に制限する。これ以上、含有量が高くなるとシーム溶接金属の靭性を安定して向上することができず、特に内面シーム溶接金属部の靭性が低下する。   As described above, Nb precipitates as Nb carbide in the heat-affected zone of the inner surface seam weld metal during outer surface seam welding, and serves as a starting point of fracture to reduce toughness. Therefore, the content of Nb is reduced as much as possible in the present invention. There is a need. In the present invention, the Nb content in the weld metal is limited to less than 0.01% in order to sufficiently improve the toughness by suppressing the precipitation of Nb carbide in the heat-affected zone of the inner surface weld metal. If the content is higher than this, the toughness of the seam weld metal cannot be stably improved, and in particular, the toughness of the inner surface seam weld metal part is lowered.

また、本発明では、溶接金属の引張強度を母材強度とのバランスを考慮し、850〜1100MPaの引張強度を確保するとともに靭性を向上させるために、上記溶接金属の各成分組成の規定に加えて、下記の(1)式で定義されるPcw値が0.45〜0.8を満足するように成分組成を規定する必要がある。これにより溶接金属組織を強度及び靭性に優れたベイナイト組織主体組織とすることが可能となる。
Pcw=C+0.09×Si+0.08×Mn+0.06×Ni+0.11×Cr+0.014×Mo (1)
ここで、C、Si、Mn、Ni、CrおよびMoは各元素の質量%である。
In addition, in the present invention, in consideration of the balance between the tensile strength of the weld metal and the base metal strength, in order to ensure the tensile strength of 850 to 1100 MPa and improve the toughness, Therefore, it is necessary to define the component composition so that the Pcw value defined by the following formula (1) satisfies 0.45 to 0.8. As a result, the weld metal structure can be made into a bainite structure main structure excellent in strength and toughness.
Pcw = C + 0.09 × Si + 0.08 × Mn + 0.06 × Ni + 0.11 × Cr + 0.014 × Mo (1)
Here, C, Si, Mn, Ni, Cr, and Mo are mass% of each element.

図1は、シーム溶接金属のPcw値と引張強度及び靭性との関係を示す図である。   FIG. 1 is a diagram showing the relationship between the Pcw value of seam weld metal, tensile strength, and toughness.

シーム溶接金属のPcw値が0.45未満の場合には、溶接金属組織中のフェライト生成量が増加するため、母材強度とのバランスから必要となる850MPa以上の引張強度を確保できない。一方、シーム溶接金属のPcw値が0.80を超える場合は、シーム溶接金属の引張強度が高すぎることになり、溶接金属の充分な靭性(好ましくは、−30℃でも靭性が130J以上)が得られない。したがって、本発明では、溶接金属組織をベイナイト主体とし、その引張強度を850〜1100MPaの範囲とし、シーム溶接金属の十分な引張強度と靭性を確保するために、上記(1)で定義されるPcw値を0.45〜0.8の範囲になるように溶接金属の成分組成を規定した。   When the Pcw value of the seam weld metal is less than 0.45, the amount of ferrite produced in the weld metal structure increases, so that the required tensile strength of 850 MPa or more cannot be ensured from the balance with the base metal strength. On the other hand, when the Pcw value of the seam weld metal exceeds 0.80, the tensile strength of the seam weld metal is too high, and the weld metal has a sufficient toughness (preferably a toughness of 130 J or more even at −30 ° C.). I can't get it. Therefore, in the present invention, the weld metal structure is mainly bainite, the tensile strength thereof is in the range of 850 to 1100 MPa, and the Pcw defined by (1) above is ensured in order to ensure sufficient tensile strength and toughness of the seam weld metal. The component composition of the weld metal was defined so that the value was in the range of 0.45 to 0.8.

また、本発明のシーム溶接金属組織は、強度と靭性に優れたベイナイト組織主体とする必要がある。溶接金属組織がフェライト組織主体となると、溶接金属の強度が低下し、850MPa以上の引張強度を確保できない。また、溶接金属組織がマルテンサイト組織主体となると、溶接金属の強度が高くなりすぎて靭性が低下し、溶接金属の好ましい靭性(−30℃でも靭性が130J以上)が得られない。   Further, the seam weld metal structure of the present invention needs to be mainly composed of a bainite structure excellent in strength and toughness. When the weld metal structure is mainly composed of a ferrite structure, the strength of the weld metal is lowered, and a tensile strength of 850 MPa or more cannot be secured. Further, when the weld metal structure is mainly composed of a martensite structure, the strength of the weld metal becomes too high and the toughness is lowered, and the preferable toughness of the weld metal (the toughness is 130 J or more even at −30 ° C.) cannot be obtained.

シーム溶接金属をベイナイト主体組織とするためには、シーム溶接金属の成分組成を上記規定範囲内になるように調整することで可能となる。
以上のようにシーム溶接金属中のNb含有量を極力少なく規制しつつその他の成分組成を調整し、ベイナイト主体組織とすることにより、引張強度が850〜1100MPaで、かつ−30℃での靭性が130J以上である強度及び靭性に優れた溶接金属を得ることが可能となる。
In order to make the seam weld metal a bainite main structure, it is possible to adjust the component composition of the seam weld metal so as to be within the specified range.
As described above, by adjusting the other component composition while regulating the Nb content in the seam weld metal as much as possible to obtain a bainite main structure, the tensile strength is 850 to 1100 MPa and the toughness at −30 ° C. It becomes possible to obtain a weld metal excellent in strength and toughness of 130 J or more.

シーム溶接中のNb含有量を上記のように極力低減する方法は、母材鋼板またはシーム溶接時に使用する溶接材料中のNb含有量を制限することにより行なわれる。   The method for reducing the Nb content during seam welding as much as possible is performed by limiting the Nb content in the base material steel plate or the welding material used during seam welding.

シーム溶接時に使用する溶接材料中のNb含有量が不可避的不純物量である場合には、溶接金属中のNb含有量は母材鋼材中のNb含有量と溶接入熱に影響される母材鋼材成分の溶込量により決まる。そのため、シーム溶接時の入熱量を小さくするか、母材鋼板の溶け混みを浅くする条件で溶接することにより母材からのNb混入量を少なくするのが好ましい。   When the Nb content in the welding material used during seam welding is an unavoidable amount of impurities, the Nb content in the weld metal is affected by the Nb content in the base steel and the welding heat input. It depends on the amount of penetration of the components. For this reason, it is preferable to reduce the amount of Nb mixed from the base material by reducing the heat input amount during seam welding or by welding under a condition in which the base steel plate melts shallowly.

本発明において、シーム溶接時の溶接材料の成分組成および溶接条件を必要以上に制限せずに溶接金属中のNb含有量を極力低減するために、引張強度が800〜1100MPaの母材鋼板中に含有するNb含有量を0.02%以下に制限することが好ましい。母材鋼板中に含有するNbは、シーム溶接時に鋼板が一部溶融する際に溶接金属中に混入するが、そのNbは一部酸化されることにより消費され、スラグとして溶接金属外に排出される。本発明では、シーム溶接時の母材溶込割合と酸化割合に影響される溶接金属中のNb歩留を考慮し、上記好ましいNb含有量の上限を0.02%とした。   In the present invention, in order to reduce the Nb content in the weld metal as much as possible without limiting the component composition and welding conditions of the welding material at the time of seam welding more than necessary, in the base steel plate having a tensile strength of 800 to 1100 MPa. It is preferable to limit the Nb content to 0.02% or less. Nb contained in the base steel plate is mixed into the weld metal when the steel plate partially melts during seam welding, but the Nb is consumed by being partially oxidized and discharged out of the weld metal as slag. The In the present invention, considering the Nb yield in the weld metal affected by the base metal penetration ratio and the oxidation ratio during seam welding, the upper limit of the preferable Nb content is set to 0.02%.

シーム溶接として、通常用いられるサブマージアーク溶接を行なう場合は、溶接材料は、溶接ワイヤとフラックスを使用するが、このうち、溶接金属の成分組成は溶接ワイヤの成分組成により決まる。   When submerged arc welding that is normally used as seam welding is performed, a welding wire and a flux are used as the welding material. Among these, the component composition of the weld metal is determined by the component composition of the welding wire.

この際の溶接ワイヤの成分組成は、本発明で規定した溶接金属の成分組成及び組織が得られように、母材鋼板の成分組成、シーム溶接時の溶接入熱、溶け込み量の条件に応じてワイヤ成分を調整することで可能であり、特に限定する必要はない。なお、通常のシーム溶接では溶接効率及び品質面で優れる多電極ワイヤを用いる多電極サブマージ溶接を用いるため、各電極の電流比や溶接条件を考慮して溶接ワイヤの成分組成を調整することが好ましい。   The component composition of the welding wire at this time depends on the component composition of the base steel plate, the welding heat input during seam welding, and the penetration amount conditions so that the component composition and structure of the weld metal specified in the present invention can be obtained. This is possible by adjusting the wire component, and is not particularly limited. In addition, since normal seam welding uses multi-electrode submerged welding using a multi-electrode wire excellent in welding efficiency and quality, it is preferable to adjust the composition of the welding wire in consideration of the current ratio and welding conditions of each electrode. .

ただし、上述した本発明の溶接金属の強度及び靭性の機械的特性を安定して確保するためには、シーム溶接時の母材鋼板成分の溶込や酸化による溶接金属中の成分歩留を考慮し、溶接ワイヤ中の成分組成のうち、以下の成分を規定することがより好ましい。   However, in order to stably ensure the mechanical properties of the strength and toughness of the above-described weld metal of the present invention, the component yield in the weld metal due to penetration and oxidation of the base steel plate component during seam welding is considered. And it is more preferable to prescribe | regulate the following components among the component compositions in a welding wire.

溶接ワイヤ中のC含有量は、上述した溶接金属のC含有量の範囲:0.03〜0.09%を安定して得るために、シーム溶接時の母材鋼板中Cの溶込による希釈を考慮して、その含有量を0.04〜0.1%に限定するのが好ましい。   The C content in the welding wire is a dilution by the penetration of C in the base steel plate during seam welding in order to stably obtain the C content range of the weld metal described above: 0.03 to 0.09%. Therefore, it is preferable to limit the content to 0.04 to 0.1%.

溶接ワイヤ中のNi含有量は、鋼板中のNi含有量を過度に高くすることを避けるために、シーム溶接時の母材鋼板中Cの溶込による希釈を考慮して、その含有量の下限を4.0%とするのが好ましい。一方、溶接ワイヤ中のNi含有量が6%を超えると、溶接金属中のNi量が過剰となり高温割れ等の欠陥を生じるようなるため、その上限を6%とするのが好ましい。   In order to avoid excessively increasing the Ni content in the steel sheet, the Ni content in the welding wire takes into account dilution due to penetration of C in the base steel sheet during seam welding, and the lower limit of the content. Is preferably 4.0%. On the other hand, if the Ni content in the welding wire exceeds 6%, the amount of Ni in the weld metal becomes excessive and causes defects such as hot cracks, so the upper limit is preferably made 6%.

溶接ワイヤ中のCrも、Niと同様に、溶接ワイヤから主に溶接金属中に添加することにより上述の溶接金属中Cr含有量の範囲とすることが好ましい。そのため、溶接ワイヤ中のCr含有量の下限を1.8%とするのが好ましい。一方、溶接ワイヤ中のCr含有量が3%を超えると、上述の溶接金属中Cr含有量の上限を超えて靭性が低下するようになるため、その含有量の上限を3%とするのが好ましい。   Similarly to Ni, Cr in the welding wire is preferably added to the weld metal mainly from the welding wire so that the Cr content in the weld metal is within the above range. Therefore, it is preferable that the lower limit of the Cr content in the welding wire is 1.8%. On the other hand, if the Cr content in the welding wire exceeds 3%, the upper limit of the Cr content in the weld metal is exceeded and the toughness decreases, so the upper limit of the content is 3%. preferable.

溶接ワイヤ中のMoも、NiやCrと同様に、溶接ワイヤから主に溶接金属中に添加することにより上述の溶接金属中Mo含有量の範囲とすることが好ましい。そのため、溶接ワイヤ中のMo含有量の下限を2%とするのが好ましい。一方、溶接ワイヤ中のCr含有量が3.5%を超えると、上述の溶接金属中Mo含有量の上限を超えて靭性が低下するようになるため、その含有量の上限を3.5%とするのが好ましい。
溶接ワイヤ中のTiは、溶接時の酸化消耗による溶接金属中のTi歩留量を考慮し、上述の溶接金属中Ti含有量を安定して得るために、その含有量を0.02〜0.04%とするのが好ましい。
Similarly to Ni and Cr, Mo in the welding wire is preferably added to the welding metal mainly from the welding wire to make the range of the Mo content in the welding metal described above. For this reason, the lower limit of the Mo content in the welding wire is preferably 2%. On the other hand, if the Cr content in the welding wire exceeds 3.5%, the upper limit of the Mo content in the weld metal described above exceeds the upper limit of the toughness, so the upper limit of the content is 3.5%. Is preferable.
Considering the Ti yield in the weld metal due to oxidation consumption during welding, the Ti in the welding wire has a content of 0.02 to 0 in order to stably obtain the Ti content in the weld metal. 0.04% is preferable.

溶接ワイヤ中のNbは、上述の溶接金属中のNb含有量とするために極力低減するのが好ましい。母材鋼板中のNbは組織制御のためにある程度添加される場合があること、溶接時の酸化消耗による溶接金属中のNb歩留量を考慮し、溶接ワイヤ中のNb含有量の上限を0.03%以下とすることが好ましい。これにより、母材鋼材中のNb含有量を過度に制限せずに、上述の溶接金属中のNb量:0.01%未満にすることができる。   Nb in the welding wire is preferably reduced as much as possible in order to obtain the Nb content in the above-described weld metal. In consideration of the fact that Nb in the base steel sheet may be added to some extent for microstructure control, and considering the Nb yield in the weld metal due to oxidation consumption during welding, the upper limit of the Nb content in the welding wire is set to 0. 0.03% or less is preferable. Thereby, Nb content in the above-mentioned weld metal can be made less than 0.01% without excessively limiting the Nb content in the base steel.

次に、以下の実施例により本発明の効果を説明する。   Next, the effects of the present invention will be described with reference to the following examples.

表2に示す引張強度が及び成分組成を有する鋼板を管状にUOプレス成形し、MAG溶接により仮付け溶接を行った後、シーム溶接は、3電極のサブマージアーク溶接を用いて行い、表1示す成分組成を有する溶接ワイヤを表3に示すように組み合せて、表3に示す2.0〜3.2kJ/mmの入熱条件で溶接することによって表3に示す成分組成を有するシーム溶接金属を形成した。表4に溶接金属の特性を示した。   A steel sheet having the tensile strength and component composition shown in Table 2 is UO-pressed into a tubular shape and tack welded by MAG welding, and then seam welding is performed using three-electrode submerged arc welding. By combining welding wires having component compositions as shown in Table 3 and welding under heat input conditions of 2.0 to 3.2 kJ / mm shown in Table 3, seam weld metals having the component compositions shown in Table 3 were obtained. Formed. Table 4 shows the characteristics of the weld metal.

なお、サブマージ溶接用フラックスとしては溶融型フラックスを用いた。   A melt type flux was used as the submerged welding flux.

シーム溶接後、全長12mmのシーム溶接部についてX線による非破壊検査を実施し、欠陥の有無を判定した。   After seam welding, a non-destructive inspection by X-ray was performed on a seam weld having a total length of 12 mm to determine the presence or absence of defects.

また、シーム溶接部の機械試験として、外面溶接金属の引張試験と衝撃試験を行った。   In addition, as a mechanical test of the seam welded portion, a tensile test and an impact test of the outer surface weld metal were performed.

衝撃試験片は、図2(a)に示すように、鋼管外表面から板厚方向に板厚の1/2にある内面シーム溶接金属2と外面シーム溶接金属3との会合部にノッチ4を入れた衝撃試験片1(以後、板厚1/2会合部と記す)と、図2(b)に示すように、内面シーム溶接金属2の中央部(以後、内面溶接金属と記す)にノッチ4を入れた衝撃試験片1との2種類を作成した。会合部取りは10mmのフルサイズの衝撃試験片を、内面溶接金属は5mmのサブサイズの衝撃試験片を用いた。衝撃試験は、試験温度を−30℃とし、6本採取した衝撃試験片について繰り返し行い、平均値を求めた。   As shown in FIG. 2 (a), the impact test piece has a notch 4 at the meeting portion of the inner surface seam weld metal 2 and the outer surface seam weld metal 3 that is ½ of the plate thickness in the plate thickness direction from the outer surface of the steel pipe. The impact test piece 1 (hereinafter referred to as “thickness ½ meeting portion”) and a center portion of the inner surface seam weld metal 2 (hereinafter referred to as inner surface weld metal) as shown in FIG. Two types of impact test pieces 1 with 4 were prepared. A 10 mm full-size impact test piece was used for gathering the meeting part, and a 5 mm sub-size impact test piece was used for the inner weld metal. In the impact test, the test temperature was set to −30 ° C., 6 impact test pieces collected were repeated, and an average value was obtained.

表2中の鋼板EおよびFは、鋼板中のNb添加量が本発明のより好ましい範囲0.02%以下を満足する低Nb鋼板であり、鋼板A〜Dは、発明のより好ましい範囲から外れた鋼板である。また、表1中の溶接ワイヤe〜gは、本発明のより好ましい成分範囲の溶接ワイヤであり、溶接ワイヤa〜dは、これから外れた溶接ワイヤである。   Steel plates E and F in Table 2 are low Nb steel plates in which the Nb addition amount in the steel plate satisfies the more preferable range of 0.02% or less of the present invention, and the steel plates A to D deviate from the more preferable range of the present invention. Steel plate. Moreover, the welding wires eg in Table 1 are welding wires having a more preferable component range of the present invention, and the welding wires a to d are welding wires deviating from the above.

表3にシーム溶接金属の化学組成及び引張強度、表4にシーム溶接部の引張強度、靭性および溶接性の評価結果を示す。   Table 3 shows the chemical composition and tensile strength of the seam weld metal, and Table 4 shows the evaluation results of the tensile strength, toughness and weldability of the seam weld.

発明例1〜6は、シーム溶接金属の各成分及びPcw値が本発明で規定する範囲内にあるため、溶接金属の引張強度が880MPa以上の高強度を維持しつつ、板厚1/2会合部における30℃での靭性は平均136J以上、内面溶接金属における30℃での靭性は平均53J以上という優れた低温靭性を得ることができた。また、シーム靭性値を見てもシーム溶接部の溶接線で6本採取した試験片でばらつきが少なく安定していて高い靭性が得られた。   In Invention Examples 1 to 6, each component of the seam weld metal and the Pcw value are within the range specified in the present invention, so that the tensile strength of the weld metal is maintained at a high strength of 880 MPa or more, and the thickness is 1/2 associated. It was possible to obtain excellent low temperature toughness at 30 ° C. on the part at an average of 136 J or more, and internal weld metal toughness at 30 ° C. on the average of 53 J or more. Moreover, even if it looked at the seam toughness value, the test piece extract | collected 6 by the weld line of the seam weld part had little variation, and was stable, and high toughness was obtained.

これらの発明例の中で、発明例5及び6は、母材鋼板の成分組成が本発明のより好ましいNb含有量に制限したため、シーム溶接時に母材からのNb量の溶込量が少なく、溶接金属の靭性値はより安定して改善できた。   Among these inventive examples, the inventive compositions 5 and 6 are such that the component composition of the base steel sheet is limited to the more preferable Nb content of the present invention, so that the amount of penetration of the Nb amount from the base metal during seam welding is small, The toughness value of the weld metal could be improved more stably.

一方、比較例1〜10は、シーム溶接金属の各成分及びPcw値が本発明で規定する範囲から外れた実施例である。その結果、溶接金属の引張強度、板厚1/2会合部における30℃での靭性、内面溶接金属における30℃での靭性の何れかが本発明例に比べて低い結果であった。   On the other hand, Comparative Examples 1 to 10 are examples in which each component of the seam weld metal and the Pcw value are out of the range defined in the present invention. As a result, any of the tensile strength of the weld metal, the toughness at 30 ° C. at the plate thickness ½ meeting portion, and the toughness at 30 ° C. of the inner surface weld metal was a result lower than the example of the present invention.

比較例1は、溶接金属のNb含有量が本発明の規定範囲から高く外れているため、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。   In Comparative Example 1, since the Nb content of the weld metal deviates from the specified range of the present invention, the average value of the toughness at 30 ° C. is low for both the plate thickness ½ meeting part and the inner surface weld metal. A very low toughness value was measured with a large variation in each value of the six test pieces.

比較例2は、溶接金属のSi、P、S及びNbの各含有量、CrとMoの含有量の合計、Pcw値がそれぞれ本発明で規定する範囲を高く外れている。その結果、シーム溶接金属の引張強度が高くなりすぎ、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。   In Comparative Example 2, the contents of Si, P, S, and Nb of the weld metal, the sum of the contents of Cr and Mo, and the Pcw value are far from the ranges specified in the present invention. As a result, the tensile strength of the seam weld metal becomes too high, and the average value of the toughness at 30 ° C. is low for both the plate thickness ½ meeting part and the inner surface weld metal. A very low toughness value with large variation was measured.

比較例3は、Mn、Ni、Mo及びNbの各含有量、CrとMoの含有量の合計、Pcw値がそれぞれ本発明で規定する範囲を高く外れている。その結果、シーム溶接金属の引張強度が高くなりすぎ、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。また、溶接金属中のNi量が多いために、高温割れが発生した。   In Comparative Example 3, the contents of Mn, Ni, Mo, and Nb, the total content of Cr and Mo, and the Pcw value are far outside the ranges defined in the present invention. As a result, the tensile strength of the seam weld metal becomes too high, and the average value of the toughness at 30 ° C. is low for both the plate thickness ½ meeting part and the inner surface weld metal. A very low toughness value with large variation was measured. Moreover, since the amount of Ni in the weld metal was large, hot cracking occurred.

比較例4は、シーム溶接金属のC、P、S、Ni、Mo及びNbの各含有量、CrとMoの含有量の合計、Pcw値がそれぞれ本発明で規定する範囲を高く外れ、Ti及びOの各含有量が本発明で規定する範囲を低く外れている。その結果、シーム溶接金属の引張強度が高くなりすぎ、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。また、溶接金属中のNi量が多いために、高温割れが発生した。   In Comparative Example 4, the C, P, S, Ni, Mo, and Nb contents of the seam weld metal, the sum of the Cr and Mo contents, and the Pcw value deviate from the range specified in the present invention, respectively, and Ti and Each content of O is out of the range defined in the present invention. As a result, the tensile strength of the seam weld metal becomes too high, and the average value of the toughness at 30 ° C. is low for both the plate thickness ½ meeting part and the inner surface weld metal. A very low toughness value with large variation was measured. Moreover, since the amount of Ni in the weld metal was large, hot cracking occurred.

比較例5は、シーム溶接金属のCr及びNbの各含有量、CrとMoの含有量の合計、Pcw値がそれぞれ本発明で規定する範囲を高く外れている。その結果、シーム溶接金属の引張強度が高くなりすぎ、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。   In Comparative Example 5, each of the Cr and Nb contents of the seam weld metal, the sum of the Cr and Mo contents, and the Pcw value are far from the ranges defined in the present invention. As a result, the tensile strength of the seam weld metal becomes too high, and the average value of the toughness at 30 ° C. is low for both the plate thickness ½ meeting part and the inner surface weld metal. A very low toughness value with large variation was measured.

比較例6は、シーム溶接金属のNb及びTiの各含有量がそれぞれ本発明で規定する範囲を高く外れ、Ni含有量及びPcw値が本発明で規定する範囲を低く外れている。その結果、シーム溶接金属の引張強度が低く、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。   In Comparative Example 6, each of the Nb and Ti contents of the seam weld metal deviates from the range defined by the present invention, and the Ni content and the Pcw value deviate from the ranges defined by the present invention. As a result, the tensile strength of the seam weld metal is low, the average value of the toughness at 30 ° C. is low for both the thickness ½ meeting part and the inner surface weld metal, and the values of the six test pieces vary. Large and very low toughness values were measured.

比較例7は、シーム溶接金属のC、Ni及びCrの各含有量、Pcw値がそれぞれ本発明で規定する範囲を低く外れ、Nb含有量が本発明で規定する範囲を高く外れている。その結果、シーム溶接金属の引張強度が低なり、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は低く、また、6本の試験片の各値にばらつきが大きく低い靭性値が測定された。   In Comparative Example 7, the C, Ni, and Cr contents of the seam weld metal and the Pcw value deviate from the range defined by the present invention, and the Nb content deviates from the range defined by the present invention. As a result, the tensile strength of the seam weld metal is low, the average value of the toughness at 30 ° C. is low for both the plate thickness ½ meeting part and the inner surface weld metal, and the values of the six test pieces vary. A large and low toughness value was measured.

比較例8は、シーム溶接金属のSi、Mn、MoおよびOの各含有量、Pcw値ががそれぞれ本発明で規定する範囲を低く外れ、Nb含有量が本発明で規定する範囲を高く外れている。その結果、シーム溶接金属の引張強度が低く、この引張強度が低い理由で、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値は高い値が得られたが、Nb含有量が高いため、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。また、Si量が低いことに起因してシーム溶接部のX線非破壊検査でブローホールが観察された。   In Comparative Example 8, the Si, Mn, Mo, and O contents of the seam weld metal and the Pcw value are out of the range defined in the present invention, and the Nb content is out of the range defined in the present invention. Yes. As a result, the seam weld metal has a low tensile strength, and because the tensile strength is low, the average value of the toughness at 30 ° C. was high for both the plate thickness ½ meeting part and the inner surface weld metal. Because of the high Nb content, the values of the six test pieces varied greatly and very low toughness values were measured. In addition, blowholes were observed in the X-ray nondestructive inspection of the seam weld due to the low amount of Si.

比較例9は、シーム溶接金属のNi及びOの各含有量が本発明で規定する範囲を高く外れ、Ti含有量が本発明で規定する範囲を低く外れている。その結果、シーム溶接金属の引張強度が高くなりすぎ、溶接金属中の酸化物が多くことにより板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値が低く、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。   In Comparative Example 9, the Ni and O contents of the seam weld metal deviate from the range defined by the present invention, and the Ti content deviates from the range defined by the present invention. As a result, the tensile strength of the seam weld metal becomes too high, and the average value of the toughness at 30 ° C. is low at both the plate thickness ½ meeting part and the inner surface weld metal due to the large amount of oxide in the weld metal. The values of the test pieces of the book varied greatly and very low toughness values were measured.

比較例10は、シーム溶接金属のCrとMo含有量の合計値、Pcw値がそれぞれ本発明で規定する範囲を高く外れている。その結果、シーム溶接金属の引張強度が高くなりすぎ、溶接金属中の酸化物が多くことにより板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値が低く、6本の試験片の各値にばらつきが大きく非常に低い靭性値が測定された。   In Comparative Example 10, the total value of the Cr and Mo contents and the Pcw value of the seam weld metal are far outside the ranges defined in the present invention. As a result, the tensile strength of the seam weld metal becomes too high, and the average value of the toughness at 30 ° C. is low at both the plate thickness ½ meeting part and the inner surface weld metal due to the large amount of oxide in the weld metal. The values of the test pieces of the book varied greatly and very low toughness values were measured.

なお、図2〜5には、表4に示した発明例1〜6及び比較例1〜10について6本の試験片の衝撃試験による板厚1/2会合部及び内面溶接金属の30℃での靭性の測定値を示す。これらの発明例1〜6と比較例1〜9と比較しても、本発明例は、板厚1/2会合部及び内面溶接金属の何れも30℃での靭性の平均値が高く、かつ6本の試験片の各値のばらつきが小さく、安定して低温靭性に優れたシーム溶接金属が得られることは明らかである。   2 to 5, the invention examples 1 to 6 and comparative examples 1 to 10 shown in Table 4 were subjected to the impact test of 6 test pieces at the plate thickness 1/2 meeting part and the inner surface weld metal at 30 ° C. The measured value of toughness is shown. Even in comparison with these inventive examples 1 to 6 and comparative examples 1 to 9, the present invention example has a high average value of toughness at 30 ° C. for both the thickness ½ meeting part and the inner surface weld metal, and It is apparent that a seam weld metal having small variations in the values of the six test pieces and having excellent low temperature toughness can be obtained.

Figure 2005272900
Figure 2005272900

Figure 2005272900
Figure 2005272900

Figure 2005272900
Figure 2005272900

Figure 2005272900
Figure 2005272900

本発明により、低温靭性が安定して得られるシーム溶接部を持つ高強度UO鋼管を容易に製造することができ、産業上貢献するところが大きい。   According to the present invention, it is possible to easily manufacture a high-strength UO steel pipe having a seam weld that can stably obtain low-temperature toughness, which greatly contributes industrially.

Pcwと溶接金属の引張強度および靭性の関係を示す図である。It is a figure which shows the relationship between the tensile strength and toughness of Pcw and a weld metal. 溶接部衝撃試験のノッチ位置を示す図である。It is a figure which shows the notch position of a welding part impact test. 本発明実施例の板厚1/2会合部の靭性を示す図である。It is a figure which shows the toughness of the board thickness 1/2 gathering part of this invention Example. 本発明実施例の内面溶接金属の靭性を示す図である。It is a figure which shows the toughness of the inner surface weld metal of an Example of this invention. 比較例の板厚1/2会合部の靭性を示す図である。It is a figure which shows the toughness of the board thickness 1/2 meeting part of a comparative example. 比較例の内面溶接金属の靭性を示す図である。It is a figure which shows the toughness of the internal weld metal of a comparative example.

符号の説明Explanation of symbols

1 衝撃試験片
2 内面シーム溶接金属
3 外面シーム溶接金属
4 ノッチ
1 Impact test piece 2 Inside seam weld metal 3 Outside seam weld metal 4 Notch

Claims (3)

引張強度が800〜1100MPaの母材と、引張強度が850〜1100MPaのシーム溶接金属部からなるUOE鋼管において、
前記溶接金属が、質量%で、
C:0.03〜0.09%、
Si:0.08〜0.5%、
Mn:1.4〜2.3%、
P:0.01%以下、
S:0.01%以下、
Ni:1.3〜3.3%、
Cr:0.4〜1.3%、
Mo:0.5〜2.5%、
Cr及びMoの合計量:1〜2.5%、
Ti:0.004〜0.02%、
O:0.016〜0.035%
を含有し、
Nb:0.01%未満に制限し、
残部がFe及び不可避的不純物からなり、かつ下記(1)式で定義されるPcw値が0.45〜0.8を満足する成分組成であり、さらに、溶接組織がベイナイト組織であることを特徴とするのシーム溶接金属の低温靱性に優れた高強度UOE鋼管。
Pcw=C+0.09×Si+0.08×Mn+0.06×Ni+0.11×Cr+0.014×Mo (1)
ここで、C、Si、Mn、Ni、CrおよびMoは各元素の質量%である。
In a UOE steel pipe composed of a base material having a tensile strength of 800 to 1100 MPa and a seam weld metal portion having a tensile strength of 850 to 1100 MPa,
The weld metal is in mass%,
C: 0.03 to 0.09%,
Si: 0.08 to 0.5%,
Mn: 1.4 to 2.3%
P: 0.01% or less,
S: 0.01% or less,
Ni: 1.3-3.3%,
Cr: 0.4 to 1.3%,
Mo: 0.5 to 2.5%,
Total amount of Cr and Mo: 1 to 2.5%,
Ti: 0.004 to 0.02%,
O: 0.016-0.035%
Containing
Nb: limited to less than 0.01%,
The balance is composed of Fe and inevitable impurities, and the Pcw value defined by the following formula (1) satisfies 0.45 to 0.8, and the welded structure is a bainite structure. High strength UOE steel pipe with excellent low temperature toughness of seam weld metal.
Pcw = C + 0.09 × Si + 0.08 × Mn + 0.06 × Ni + 0.11 × Cr + 0.014 × Mo (1)
Here, C, Si, Mn, Ni, Cr, and Mo are mass% of each element.
前記母材中のNbを0.02%以下に制限することを特徴とする請求項1記載のシーム溶接金属の低温靱性に優れた高強度UOE鋼管。 The high strength UOE steel pipe excellent in low temperature toughness of the seam weld metal according to claim 1, wherein Nb in the base metal is limited to 0.02% or less. 質量%で、
C:0.04〜0.1%、
Ni:4〜6%、
Cr:1.8〜3%、
Mo:2〜3.5%、
Ti:0.02〜0.04%
を含有し、
Nb:0.03%以下に制限し、
残部がFe及び不可避的不純物からなる溶接ワイヤを用いてサブマージアーク溶接により前記溶接金属を形成したことを特徴とする、請求項1または2記載のシーム溶接金属の低温靱性に優れた高強度UOE鋼管。
% By mass
C: 0.04 to 0.1%,
Ni: 4-6%,
Cr: 1.8-3%,
Mo: 2 to 3.5%,
Ti: 0.02 to 0.04%
Containing
Nb: limited to 0.03% or less,
The high-strength UOE steel pipe excellent in low-temperature toughness of seam weld metal according to claim 1 or 2, wherein the weld metal is formed by submerged arc welding using a welding wire whose balance is Fe and inevitable impurities. .
JP2004085775A 2004-03-23 2004-03-23 High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal Pending JP2005272900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085775A JP2005272900A (en) 2004-03-23 2004-03-23 High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085775A JP2005272900A (en) 2004-03-23 2004-03-23 High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal

Publications (1)

Publication Number Publication Date
JP2005272900A true JP2005272900A (en) 2005-10-06

Family

ID=35172878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085775A Pending JP2005272900A (en) 2004-03-23 2004-03-23 High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal

Country Status (1)

Country Link
JP (1) JP2005272900A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885101B (en) * 2009-12-25 2012-11-07 中钢集团鞍山热能研究院有限公司 Method for welding casting red copper oxygen lance spray nozzle
JP2013049896A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone toughness and method for manufacturing the same
CN104018099A (en) * 2014-06-16 2014-09-03 武汉钢铁(集团)公司 X90 line pipe with uniform deformation elongation UEL more than or equal to 5 percent and preparation method thereof
CN106540987A (en) * 2016-11-24 2017-03-29 宝鸡石油钢管有限责任公司 A kind of X80 levels pipe line steel heavy caliber thick wall spiral submerged arc welded pipe manufacturing method
CN106540986A (en) * 2016-11-24 2017-03-29 宝鸡石油钢管有限责任公司 A kind of X90 levels pipe line steel large-caliber spiral submerged-arc welded (SAW) pipe manufacture method
CN108788541A (en) * 2017-04-28 2018-11-13 中国石油天然气集团公司 A kind of welding procedure of X80 grades of pipeline steel tube girth joint

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885101B (en) * 2009-12-25 2012-11-07 中钢集团鞍山热能研究院有限公司 Method for welding casting red copper oxygen lance spray nozzle
JP2013049896A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone toughness and method for manufacturing the same
CN104018099A (en) * 2014-06-16 2014-09-03 武汉钢铁(集团)公司 X90 line pipe with uniform deformation elongation UEL more than or equal to 5 percent and preparation method thereof
CN106540987A (en) * 2016-11-24 2017-03-29 宝鸡石油钢管有限责任公司 A kind of X80 levels pipe line steel heavy caliber thick wall spiral submerged arc welded pipe manufacturing method
CN106540986A (en) * 2016-11-24 2017-03-29 宝鸡石油钢管有限责任公司 A kind of X90 levels pipe line steel large-caliber spiral submerged-arc welded (SAW) pipe manufacture method
CN108788541A (en) * 2017-04-28 2018-11-13 中国石油天然气集团公司 A kind of welding procedure of X80 grades of pipeline steel tube girth joint

Similar Documents

Publication Publication Date Title
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
JP6308337B1 (en) Vertical seam welded steel pipe
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP5137032B2 (en) Steel plate for submerged arc welding
JP4787062B2 (en) Weld metal with excellent toughness and SR cracking resistance
JP2008240096A (en) High strength welded steel pipe having weld metal excellent in low temperature crack resistance, and its manufacturing method
JP6191393B2 (en) Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
JP3339403B2 (en) Method of manufacturing welded steel structure and welded steel structure
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP3770106B2 (en) High strength steel and its manufacturing method
JP6264520B1 (en) Vertical seam welded steel pipe
JPH10324950A (en) High-strength welded steel structure, and its manufacture
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP2015205288A (en) Weld metal excellent in strength, toughness and sr crack resistance
JP2008195991A (en) Steel sheet and steel pipe with excellent high temperature characteristics for steam transport piping, and their manufacturing methods
JP4016800B2 (en) Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method
JP2005272900A (en) High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP4396303B2 (en) High strength welded steel pipe with excellent low temperature toughness
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP6515324B2 (en) Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics
JP2005290526A (en) Ferritic electric resistance welded boiler steel tube having excellent weld zone reheat crack resistance and manufacturing method
JP2000096187A (en) High-strength welded steel tube
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A02