JP2011206828A - Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding - Google Patents

Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding Download PDF

Info

Publication number
JP2011206828A
JP2011206828A JP2010078220A JP2010078220A JP2011206828A JP 2011206828 A JP2011206828 A JP 2011206828A JP 2010078220 A JP2010078220 A JP 2010078220A JP 2010078220 A JP2010078220 A JP 2010078220A JP 2011206828 A JP2011206828 A JP 2011206828A
Authority
JP
Japan
Prior art keywords
wire
flux
welding
less
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010078220A
Other languages
Japanese (ja)
Inventor
Yoshiaki Murakami
善明 村上
Kenji Oi
健次 大井
Naoya Hayakawa
直哉 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010078220A priority Critical patent/JP2011206828A/en
Publication of JP2011206828A publication Critical patent/JP2011206828A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flux-cored welding wire with a diameter of ≤3.2 mm which is favorably used for fine diameter wire multiple electrode submerged arc welding with three or more electrodes and excellent in the low-temperature toughness of a welded metal.SOLUTION: The flux-cored welding wire has the wire entire composition containing by mass, 0.04-0.22% C, 0.1-0.6% Si, 1.0-3.0% Mn, 0.01-0.25% Ti, 0.01-0.5% REM, and further containing one or two kinds of ≤10.0% Ni, ≤3.0% Mo, and further containing 0.1-0.5% BOand ≤0.5% Cu as necessary, and the balance Fe with inevitable impurities, wherein the mass ratio (the filling ratio) of the metallic flux component to the entire wire mass is 10-40%.

Description

本発明は、天然ガス等の用途に供される高強度大径溶接鋼管の製管溶接に使用されるフラックス入り溶接ワイヤに関し、特に3電極以上の細径多電極サブマージアーク溶接に用いて好適な、径3.2mm以下のものに関する。   The present invention relates to a flux-cored welding wire used for pipe-making welding of a high-strength large-diameter welded steel pipe used for natural gas or the like, and is particularly suitable for use in small-diameter multi-electrode submerged arc welding with three or more electrodes. , Relating to a diameter of 3.2 mm or less.

近年、天然ガス、あるいは原油輸送用パイプラインのトータルコスト削減のため、操業圧力の高圧化とともに使用鋼材量の低減と現地溶接施工コスト削減が可能な高強度大径鋼管の適用が検討され始めている。このような溶接鋼管は、その溶接部の品質が優れていること、溶接ビード概観が美麗であること、また、大入熱での高速溶接が可能であること等の特長から、一般的にサブマージアーク溶接による内外面からの両面一層溶接によって製造される。また、適用される鋼管の高強度化、あるいは厚肉化、といった要求は強く、かかる要求を満足させるための鋼管、溶接方法、溶接材料開発は極めて重要な技術である。  In recent years, in order to reduce the total cost of natural gas or crude oil transportation pipelines, the application of high-strength large-diameter steel pipes that can reduce the amount of steel used and reduce the cost of on-site welding as well as increasing the operating pressure has begun to be studied. . Such welded steel pipes are generally submerged due to their superior weld quality, beautiful bead appearance, and high-speed welding with high heat input. Manufactured by single-sided double-sided welding from inside and outside by arc welding. In addition, there is a strong demand for higher strength or thicker steel pipes to be applied, and development of steel pipes, welding methods, and welding materials to satisfy such demands are extremely important technologies.

しかしながら、上述した高強度材、あるいは厚肉材の溶接部においては、その機械的特性、特に溶接熱影響部(以下、HAZと記載する。)の低温靱性の確保が困難である、という事例がしばしば散見されることがある。これは、材料に要求される強度特性を満足させるために鋼板に高い化学成分を有せざるを得ず、また、一般的な多電極両面一層サブマージアーク溶接による熱影響が比較的大きいために起こる問題であり、それを解決するために鋼管組成に係わる発明、溶接方法の発明が多数、提案されている。   However, in the above-described high-strength material or thick-walled welded portion, there is an example in which it is difficult to ensure the mechanical properties, particularly the low temperature toughness of the weld heat affected zone (hereinafter referred to as HAZ). It is often scattered. This is because the steel plate must have a high chemical composition in order to satisfy the strength properties required for the material, and the thermal effect due to general multi-electrode double-sided submerged arc welding is relatively large. In order to solve this problem, many inventions related to the steel pipe composition and welding methods have been proposed.

中でも、例えば特許文献1、特許文献2などで開示されている、細径ワイヤを用いた多電極サブマージアーク溶接方法(以下、細径SAWと記載することとする。)は、細径ワイヤの適用による電流密度増加効果と深溶込み特性によって得られる溶接入熱の低減効果により、適用される鋼管の化学成分を変更することなく所定のHAZ靱性を得ることが可能な溶接方法であり、上述したような高強度・厚肉鋼管のみならず、比較的低強度材であっても厳しい低温靱性が要求される鋼管などでもその靱性向上効果が期待できることから、今後適用の拡大が見込まれている。   Among them, for example, a multi-electrode submerged arc welding method using a thin wire (hereinafter referred to as a thin SAW) disclosed in Patent Document 1, Patent Document 2 and the like is applied to a thin wire. This is a welding method capable of obtaining a predetermined HAZ toughness without changing the chemical composition of the steel pipe to be applied, due to the effect of increasing the current density and the effect of reducing the welding heat input obtained by the deep penetration characteristics. In addition to such high-strength / thick-walled steel pipes, even steel pipes that require severe low-temperature toughness even with relatively low-strength materials can be expected to have an improved toughness.

細径SAWに適用される溶接材料は、中実のソリッドワイヤもしくは中空構造内にフラックス成分を充填したフラックス入りワイヤのいずれかを用いる。高強度・厚肉鋼管、あるいは低温靱性が要求される鋼管用溶接ワイヤは、その機械的特性、特に低温靱性を確保するために、Ni、Mo等の合金元素が添加されるが、高合金系のソリッドワイヤは一般的に強度が高くなる。そのため、線引き・縮径工程の生産性が極めて悪く、縮径工程途中に軟化熱処理を実施せざるを得ず、熱処理を実施した場合においても表面にヒビ、割れ等が発生してしまう場合もあり、さらに縮径加工が厳しくなる細径SAW用溶接ワイヤでは、その生産性・経済性が著しく低下する。   As a welding material applied to the small-diameter SAW, either a solid solid wire or a flux-cored wire in which a flux component is filled in a hollow structure is used. Welding wires for steel pipes that require high-strength, thick-walled steel pipes or low-temperature toughness, alloy elements such as Ni and Mo are added to ensure their mechanical properties, especially low-temperature toughness. The solid wire generally has high strength. For this reason, the productivity of the drawing / reducing process is extremely poor, and a softening heat treatment must be performed in the middle of the diameter reducing process, and even when the heat treatment is performed, cracks, cracks, etc. may occur on the surface. In addition, the productivity and economy of the welding wire for small-diameter SAW, where the diameter reduction processing becomes more severe, are significantly reduced.

一方、フラックス入りワイヤは中空の鋼製外皮内に金属(合金)粉、フラックス成分等を充填して製造されるためにソリッドワイヤ製造時のようなワイヤ伸線時の加工硬化の問題がなく、ソリッドワイヤ製造時のような加工硬化に伴う製造性の低下は細径、且つ高合金系ワイヤであっても基本的に小さく、生産性・経済性に優れ、特許文献3、4では、サブマージアーク溶接用のフラックス入りワイヤが開示されている。   On the other hand, the flux-cored wire is manufactured by filling a hollow steel outer shell with metal (alloy) powder, flux components, etc., so there is no problem of work hardening at the time of wire drawing like during solid wire production, The decrease in manufacturability associated with work hardening as in the production of solid wire is basically small even with a small diameter and high alloy wire, and is excellent in productivity and economy. A flux cored wire for welding is disclosed.

特開2003−33876号公報JP 2003-33876 A 特開2006−263814号公報JP 2006-263814 A 特開昭48−85443号公報Japanese Patent Laid-Open No. 48-85443 特開昭61−242791号公報JP 61-242791 A

既述したように、合金成分を多く含むことが必要な高強度鋼管用溶接ワイヤはその生産性の観点からフラックス入りワイヤが望ましい。特に、細径(3.2mm以下)溶接ワイヤを使用した多電極サブマージアーク溶接方法はワイヤの細径化による電流密度向上効果により、投入される溶接入熱を低減した場合でも深い板厚方向の溶け込みが得られるために高強度鋼管であってもHAZ靱性の確保が容易となるため、細径フラックス入りワイヤの適用が望ましい。   As described above, the high strength steel pipe welding wire that needs to contain a lot of alloy components is preferably a flux-cored wire from the viewpoint of productivity. In particular, the multi-electrode submerged arc welding method using a small-diameter (3.2 mm or less) welding wire is effective in increasing the thickness of the plate even when the welding heat input is reduced due to the effect of improving the current density by reducing the diameter of the wire. Since the penetration is obtained, it is easy to ensure the HAZ toughness even in the case of a high-strength steel pipe. Therefore, it is desirable to use a small-diameter flux-cored wire.

しかしながら、フラックス入りワイヤの場合、充填剤の均質性に起因する化学成分の変動が、溶製によって製造されるソリッドワイヤに比してやや大きいことや、充填される合金成分・フラックス成分に起因して、溶接金属の酸素量がやや上がりやすくなる傾向にあり、溶接金属部の酸素量増大に伴う低温靱性の低下が懸念されている。   However, in the case of a flux-cored wire, the chemical component variation due to the homogeneity of the filler is slightly larger than that of the solid wire manufactured by melting, and due to the alloy component / flux component being filled. The oxygen content of the weld metal tends to be slightly higher, and there is a concern that the low-temperature toughness will decrease with an increase in the oxygen content of the weld metal.

フラックス入りワイヤの特徴として、充填剤に含有される酸化物や結晶水などの影響により、ソリッドワイヤと比較してイニシャルの酸素量が高くなる傾向があること、また、細径SAWの特長である入熱量の低減により、一般的なSAW溶接と比較して溶融部の凝固速度が速くなるため、溶融池内の脱酸反応、脱酸生成物の浮上が十分に促進されず、溶接金属部の酸素量が増大する傾向にある。   As a feature of the flux-cored wire, there is a tendency that the initial oxygen amount tends to be higher than that of the solid wire due to the influence of oxides and water of crystallization contained in the filler, and also a feature of the small diameter SAW. Reduction of heat input increases the solidification rate of the molten part compared with general SAW welding, so the deoxidation reaction in the molten pool and the rise of the deoxidized product are not sufficiently promoted, and oxygen in the weld metal part The amount tends to increase.

溶接金属部の低酸素化、もしくはある程度酸素が高い状況下であっても靱性確保が可能な組成を有するフラックス入りワイヤが渇望されているが、現在、未だ達成されている事例はない。   Although there is a craving for a flux-cored wire having a composition that can ensure toughness even in a situation where the weld metal part is low-oxygenated or oxygen is somewhat high to some extent, no examples have been achieved yet.

そこで、本発明は、細径多電極サブマージ溶接において、優れた溶接金属部特性が得られ、且つ経済生産性に優れた細径多電極サブマージ溶接用フラックス入りワイヤを提供することを目的とする。   Accordingly, an object of the present invention is to provide a flux cored wire for thin multi-electrode multi-merged submerged welding which has excellent weld metal part characteristics and is excellent in economic productivity in thin multi-electrode submerged welding.

一般的に高強度鋼溶接金属部の靱性は、酸素量を低減させることにより向上する傾向がある。溶接金属部の酸素量は適用される母材および溶接ワイヤの組成、含まれる脱酸元素の量、散布されるフラックスの組成比・塩基度、溶接条件(電流、電圧、速度等)といった多様な支配因子の元で決定されるため、その制御は極めて困難である。   Generally, the toughness of the high strength steel weld metal part tends to be improved by reducing the amount of oxygen. The amount of oxygen in the weld metal part varies depending on the composition of the base metal and welding wire to be applied, the amount of deoxidizing element contained, the composition ratio / basicity of the applied flux, welding conditions (current, voltage, speed, etc.) Since it is determined under the control factors, it is extremely difficult to control.

本発明者らは上記課題を解決するため、鋭意検討を行い、溶接ワイヤの製造にあたって炉溶解工程を必要としないというフラックス入りワイヤの製造工程の特長を活かすことで製造することが可能な、REMを比較的多く含有したフラックス入りワイヤの場合、酸素量がある程度多く含まれる溶接金属においても、低温靱性の確保が可能であるという新たな知見を見出した。   In order to solve the above-mentioned problems, the present inventors have intensively studied and are able to manufacture by utilizing the feature of the flux-cored wire manufacturing process that does not require a furnace melting process in manufacturing the welding wire. In the case of a flux-cored wire containing a relatively large amount, a new finding has been found that low temperature toughness can be ensured even in a weld metal containing a certain amount of oxygen.

本発明は上記知見をもとに更に検討を加えてなされたもので、すなわち、本発明は、
1. 3電極以上の多電極サブマージアーク溶接に使用されるメタル系フラックス入りワイヤであって、径3.2mm以下、且つ、鋼製外皮およびフラックス成分の合計がワイヤ全質量%で、C:0.04〜0.22%、Si:0.1〜0.6%、Mn:1.0〜3.0%、Ti:0.01〜0.25%、REM:0.01〜0.5%、更に、Ni:10.0%以下、Mo:3.0%以下の1種又は2種を含有し、残部がFeおよび不可避的不純物からなり、ワイヤ全質量に対するメタル系フラックス成分の質量比(充填率)が10〜40%であることを特徴とする、細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ。
2.鋼製外皮およびフラックス成分の合計がワイヤ全質量%で、更に、質量%で、B;0.1〜0.5%、Cu:0.5%以下、Cr:1.0%以下、V:0.1%以下、Nb:0.05%以下の1種または2種以上を含有することを特徴とする、1記載の細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ。
3.1または2記載の細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤを用いた細径多電極サブマージアーク溶接方法。
4.製管溶接に1または2記載の細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤを用いて製造した溶接鋼管。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1. It is a metal-based flux-cored wire used for multi-electrode submerged arc welding of 3 or more electrodes, the diameter is 3.2 mm or less, and the total of the steel outer sheath and flux components is the total mass% of the wire, C: 0.04 -0.22%, Si: 0.1-0.6%, Mn: 1.0-3.0%, Ti: 0.01-0.25%, REM: 0.01-0.5%, In addition, Ni: 10.0% or less, Mo: 3.0% or less, one or two of the balance, Fe and unavoidable impurities, the mass ratio of the metal-based flux component to the total mass of the wire (filling The flux-cored welding wire for small-diameter multi-electrode submerged arc welding, characterized in that the ratio is 10 to 40%.
2. The total of the steel outer sheath and the flux component is the total mass% of the wire, and further, the mass%, B 2 O 3 ; 0.1 to 0.5%, Cu: 0.5% or less, Cr: 1.0% or less V: 0.1% or less, Nb: 0.05% or less, 1 or 2 or more types, The flux-cored welding wire for small diameter multi-electrode submerged arc welding of 1 characterized by the above-mentioned.
3. A thin multi-electrode submerged arc welding method using the flux-cored welding wire for thin multi-electrode submerged arc welding according to 3.1 or 2.
4). A welded steel pipe manufactured using the flux-cored welding wire for thin multi-electrode submerged arc welding described in 1 or 2 for pipe making welding.

本発明によれば、溶接金属部の靭性に優れた細径多電極サブマージアーク溶接用溶接ワイヤが得られることから、天然ガス、原油輸送用高強度ラインパイプ、構造用高強度鋼管等、高強度と低温靱性が要求される溶接鋼管を、細径多電極サブマージアーク溶接を適用して優れた生産性・経済性の元に製造することが可能となり、産業上極めて有用である。   According to the present invention, it is possible to obtain a welding wire for thin multi-electrode submerged arc welding having excellent toughness of the weld metal part. Therefore, natural gas, high-strength line pipe for crude oil transportation, structural high-strength steel pipe, etc. It is possible to manufacture welded steel pipes that require low-temperature toughness and low-diameter multi-electrode submerged arc welding with excellent productivity and economy, which is extremely useful industrially.

評価継手作製用の開先形状を示す図で(a)は細径ワイヤを用いた場合、(b)は4.0mmφワイヤを用いた場合の開先形状を示す。The figure which shows the groove shape for evaluation joint preparation, (a) shows the groove shape when a thin wire is used, and (b) shows the groove shape when a 4.0 mmφ wire is used. シャルピー衝撃試験片の採取要領を説明する図。The figure explaining the collection point of a Charpy impact test piece.

本発明では、メタル系フラックス入りワイヤの、鋼製外皮とメタル系フラックスの合計の成分組成(以下、ワイヤ全成分組成)と、ワイヤ全質量に対するメタル系フラックス成分の質量比(充填率%)を規定する。
[ワイヤ全成分組成]
以下の説明において%は質量%とする。
C:0.04〜0.22%
Cは強化元素として溶接金属部の強度確保のため、また、アーク雰囲気下でのCOガス生成反応により、溶接金属部の酸素量を低下させる効果と、発生するCOガスのシールド効果により溶接金属部へのNの巻き込み混入を防ぐ効果の複合効果を有する極めて重要な元素である。
In the present invention, the total component composition of the steel-based flux-cored wire and the steel outer sheath and the metal flux (hereinafter referred to as the wire total component composition) and the mass ratio of the metal flux component to the total mass of the wire (filling rate%) Stipulate.
[Total composition of wire components]
In the following description, “%” means “mass%”.
C: 0.04 to 0.22%
C is a strengthening element for securing the strength of the weld metal part, and by the effect of reducing the oxygen content of the weld metal part by the CO gas generation reaction under an arc atmosphere and the shielding effect of the generated CO gas, the weld metal part It is an extremely important element having a combined effect of preventing the inclusion of N into the metal.

含有量0.04%未満ではCOガス生成に起因する効果が得られず、また、高強度鋼への適用を想定した場合には強度不足を引き起こす。一方、含有量が0.22%を超える場合、溶接金属部組織がマルテンサイトなどの焼入組織となり、靱性が低下する。従って、0.04〜0.22%に規定する。   If the content is less than 0.04%, an effect due to the generation of CO gas cannot be obtained, and when application to high-strength steel is assumed, insufficient strength is caused. On the other hand, when the content exceeds 0.22%, the weld metal part structure becomes a quenched structure such as martensite, and the toughness decreases. Therefore, it is specified to be 0.04 to 0.22%.

Si:0.1〜0.6%
Siは強化元素として溶接金属部の強度確保のため、また、脱酸能を有するために、溶接金属部の酸素量を低下させる効果を有する。0.1%未満ではこの効果は不十分で、一方、0.6%を超えて含有すると溶接金属中にM−A(Martensite−Austenite constituent)の生成を助長させて、靱性が低下する。従って、0.1〜0.6%に規定する。
Si: 0.1-0.6%
Si has the effect of reducing the oxygen content of the weld metal part as a strengthening element in order to ensure the strength of the weld metal part and to have a deoxidizing ability. If the content is less than 0.1%, this effect is insufficient. On the other hand, if the content exceeds 0.6%, the formation of MA (Martensite-Austenite constituent) in the weld metal is promoted, and the toughness decreases. Therefore, it is specified to be 0.1 to 0.6%.

Mn:1.0〜3.0%
Mnは焼入性を向上させることにより、溶接金属の強度確保に寄与する。他の合金成分に比較して安価であることから、溶接金属の強度確保のため積極的に含有させることが可能である。1.0%未満では、焼入性が不足するため溶接金属部の強度が低下する。一方、3.0%を超えると焼入性が過剰となり、靱性が低下する。従って、1.0〜3.0%に規定する。
Mn: 1.0-3.0%
Mn contributes to securing the strength of the weld metal by improving the hardenability. Since it is cheaper than other alloy components, it can be actively added to ensure the strength of the weld metal. If it is less than 1.0%, the hardenability is insufficient, so the strength of the weld metal part is lowered. On the other hand, if it exceeds 3.0%, the hardenability becomes excessive and the toughness decreases. Therefore, it is specified to be 1.0 to 3.0%.

Ni:10.0%以下、Mo:3.0%以下の1種又は2種
Niは焼入性向上により溶接金属部の強度確保に寄与すると共に、靱性向上に有効に作用する。含有量が10.0%を超えると靱性向上効果が飽和するとともに、溶接条件等によっては溶接金属部の高温割れを助長させる場合があるため、添加する場合は、10.0%以下に規定する。
1 type or 2 types of Ni: 10.0% or less and Mo: 3.0% or less Ni contributes to securing the strength of the weld metal part by improving hardenability, and effectively acts to improve toughness. If the content exceeds 10.0%, the effect of improving toughness is saturated, and depending on the welding conditions, etc., it may promote high temperature cracking of the weld metal part. .

Moは焼入性向上により溶接金属部の強度を向上させるが、3.0%を超えると、焼入性が過剰となり、靱性低下を助長させる場合があるため、添加する場合は、3.0%以下に規定する。   Mo improves the strength of the weld metal part by improving the hardenability, but if it exceeds 3.0%, the hardenability becomes excessive and may promote toughness reduction. % Or less.

Ti:0.01〜0.25%
Tiは脱酸元素として溶接金属部の低酸素化に効果を有する。また、Ti酸化物やTi窒化物を溶接金属内に生成し、靱性向上に寄与するため、0.01%以上を含有させる。一方、0.25%を超えて含有した場合、Ti炭化物の生成が助長され、靱性を著しく低下させるようになるため、0.01〜0.25%に規定する。
Ti: 0.01 to 0.25%
Ti is effective as a deoxidizing element for reducing oxygen in the weld metal part. Moreover, in order to produce | generate Ti oxide and Ti nitride in a weld metal, and to contribute to toughness improvement, 0.01% or more is contained. On the other hand, when it contains exceeding 0.25%, generation | occurrence | production of Ti carbide | carbonized_material is encouraged and it comes to reduce a toughness remarkably, Therefore It prescribes | regulates to 0.01 to 0.25%.

REM:0.01〜0.5%
REMは本発明において最も重要な元素であり、その効果および限定理由は以下の通りである。REMは主にCe、La等のアルカリ土類金属で構成され、比較的強い脱酸能を有する。また、REMの脱酸生成物はAl酸化物等の凝集しやすい酸化物と異なり、一部は酸硫化物として微細に生成することも知られている。この微細に分散した酸硫化物によるミクロ組織の微細化効果を利用し、例えば大入熱溶接用鋼板等では数十ppmのREMを添加し、その靱性を向上される試みがなされている。
REM: 0.01 to 0.5%
REM is the most important element in the present invention, and its effects and reasons for limitation are as follows. REM is mainly composed of alkaline earth metals such as Ce and La, and has a relatively strong deoxidizing ability. Further, it is known that a deoxidation product of REM is finely generated as an oxysulfide, unlike an oxide that easily aggregates such as Al oxide. An attempt has been made to improve the toughness by adding tens of ppm of REM to a steel sheet for high heat input welding, for example, using the effect of refining the microstructure by the finely dispersed oxysulfide.

一方、溶接金属で同様の効果を達成させるためには、溶接ワイヤの溶融、再凝固過程においてREMの歩留まりが著しく低いために、予め溶接ワイヤに多量のREMを添加しておく必要があるが、一般的なソリッドワイヤの場合、その溶製段階で多量のREMを添加することは、製鋼時のノズル閉塞やビレットの割れ助長など、種々の製造性低下を助長するために現実性は極めて乏しい。一方、フラックス入りワイヤの場合、充填剤の中に直接REMを含有させることが可能であることから、溶接時の低い歩留まり率であっても溶接金属内に十分REM酸硫化物を残すことが可能となる。しかしながら含有量が0.01%未満では溶接金属内にREMが歩留まらず、一方、0.5%を越えて過剰に添加すると逆に酸硫化物の量が多くなり過ぎ、靱性低下を引き起こす。従ってREM含有量は0.01〜0.5%に規定する。   On the other hand, in order to achieve the same effect with the weld metal, it is necessary to add a large amount of REM to the welding wire in advance because the yield of REM is extremely low in the process of melting and resolidifying the welding wire. In the case of a general solid wire, adding a large amount of REM at the melting stage promotes various manufacturability reductions such as nozzle clogging and billet cracking promotion during steelmaking, and thus is not very realistic. On the other hand, in the case of a flux-cored wire, since REM can be directly contained in the filler, it is possible to leave sufficient REM oxysulfide in the weld metal even at a low yield rate during welding. It becomes. However, if the content is less than 0.01%, REM does not yield in the weld metal. On the other hand, if it exceeds 0.5% and is added excessively, the amount of oxysulfide is excessively increased and the toughness is reduced. Therefore, the REM content is specified to be 0.01 to 0.5%.

メタル系フラックスの充填率:10〜40%
メタル系フラックス成分の充填率が10%未満の場合、成型が困難になるとともに、強度靱性を確保するための合金成分が不足する。一方、充填率が40%を超える場合、溶接ワイヤの伸線性が低下し、工程途上での断線など製造性が阻害されるため、10〜40%に規定する。なお、充填率(%)は、ワイヤ全質量に対するメタル系フラックス成分の質量比で、メタル系フラックス/ワイヤ全質量(=鋼製外皮+メタル系フラックス)×100(%)とする。
Metal flux filling rate: 10-40%
When the filling rate of the metal-based flux component is less than 10%, molding becomes difficult and an alloy component for ensuring strength toughness is insufficient. On the other hand, when the filling rate exceeds 40%, the drawability of the welding wire is lowered, and the manufacturability such as disconnection during the process is hindered. The filling rate (%) is a mass ratio of the metal-based flux component to the total mass of the wire, and is defined as metal-based flux / total mass of the wire (= steel outer shell + metal-based flux) × 100 (%).

以上が、本発明の基本構成であるが、更に特性を向上させる場合、ワイヤ全成分組成に更に、B;0.1〜0.5%、Cu:0.5%以下、Cr:1.0%以下、V:0.1%以下、Nb:0.05%以下の1種または2種以上を含有することが可能である。 The above is the basic configuration of the present invention. In the case where the characteristics are further improved, B 2 O 3 ; 0.1 to 0.5%, Cu: 0.5% or less, Cr: It is possible to contain one or more of 1.0% or less, V: 0.1% or less, and Nb: 0.05% or less.

;0.1〜0.5%
はアーク中で解離し、Bを溶接金属に供給する。溶接金属部の焼入性を向上させて強度を高くし、粒界フェライトの生成抑制により靭性を向上させる場合にフラックス成分として含有させるが、0.1%未満では歩留まりが低いためにBが溶接金属内に残存せず上記の効果が得られず、一方、0.5%を超えて含有させると溶接金属のBが過剰となって、靱性低下や、高温割れを助長するため、0.1〜0.5%とする。
B 2 O 3 ; 0.1-0.5%
B 2 O 3 dissociates in the arc and supplies B to the weld metal. In order to improve the hardenability of the weld metal part to increase the strength and improve the toughness by suppressing the formation of intergranular ferrite, it is included as a flux component. However, if it is less than 0.1%, the yield is low, so B is welded. The above effect cannot be obtained without remaining in the metal. On the other hand, if the content exceeds 0.5%, the B of the weld metal becomes excessive and promotes toughness reduction and hot cracking. ˜0.5%.

Cu:0.5%以下、Cr:1.0%以下、V:0.1%以下、Nb:0.05%以下
Cu、Cr、V、Nbは溶接金属部の強度を向上させる場合に含有させるが、過剰に含有すると、靭性が低下するようになるので、Cu:0.5%以下、Cr:1.0%以下、V:0.1%以下、Nb:0.05%以下とする。以下、本発明の効果を実施例により詳細に説明する。
Cu: 0.5% or less, Cr: 1.0% or less, V: 0.1% or less, Nb: 0.05% or less Cu, Cr, V, and Nb are contained when improving the strength of the weld metal part. However, if it is contained excessively, the toughness will decrease, so Cu: 0.5% or less, Cr: 1.0% or less, V: 0.1% or less, Nb: 0.05% or less . Hereinafter, the effects of the present invention will be described in detail with reference to examples.

軟鋼帯鋼をU型に成型加工し、その内部に予め成分調整を行った種々の成分組成のメタル系フラックスを充填、O型にラップ成型後、伸線、焼鈍工程により溶接ワイヤを作製した。なお、ワイヤ径は本発明範囲内である2.4、3.2mm径の細径ワイヤを基本とし、一部、比較例として一般的なサブマージアーク溶接で多く適用されている4.0mm径を追加した。表1に軟鋼帯鋼の寸法と成分組成を、表2にワイヤ全成分組成(鋼製外皮とメタル系フラックスの合計の成分組成)を示す。   Mild steel strip was formed into a U shape, filled with metal fluxes having various component compositions that had been adjusted in advance, and lap-molded into an O shape, and then a welding wire was prepared by wire drawing and annealing processes. Note that the wire diameter is basically a thin wire having a diameter of 2.4 or 3.2 mm within the scope of the present invention, and a diameter of 4.0 mm, which is often applied in general submerged arc welding as a comparative example. Added. Table 1 shows the dimensions and composition of the mild steel strip steel, and Table 2 shows the total composition of the wires (total composition of the steel outer sheath and the metal flux).

Figure 2011206828
Figure 2011206828

Figure 2011206828
Figure 2011206828

得られた溶接ワイヤと溶融型フラックスを組合わせて、図1に示す開先形状を設けた厚鋼板(板厚25.4mm)の継手を両面1層サブマージアーク溶接で溶接した。表3に溶融型フラックスの成分組成を、表4に溶接条件を示す。細径ワイヤを適用する場合、板厚方向の溶込深さが大きくなることから、同じ板厚であっても開先断面積を小さく、溶接入熱を小さくすることが可能である。   By combining the obtained welding wire and the melt type flux, a joint of a thick steel plate (plate thickness 25.4 mm) provided with a groove shape shown in FIG. 1 was welded by double-sided single-layer submerged arc welding. Table 3 shows the composition of the melt type flux, and Table 4 shows the welding conditions. When a thin wire is applied, since the penetration depth in the plate thickness direction is increased, the groove cross-sectional area can be reduced and the welding heat input can be reduced even with the same plate thickness.

Figure 2011206828
Figure 2011206828

Figure 2011206828
Figure 2011206828

得られた溶接継手の溶接部靭性をシャルピー衝撃試験で評価した。シャルピー衝撃試験は図2に示すように、外面側鋼板表面下7mm位置を中心に、シャルピー衝撃試験片(JIS Z2202 4号)を採取し、切欠位置は、(a)溶接金属部中心、および(b)溶融線部(溶接金属と熱影響部の割合がそれぞれ50%となる位置)とし、試験温度−30℃での吸収エネルギー(10本平均値)を求めた。吸収エネルギーは100J以上であれば良好と規定した。評価結果をまとめて表5に記載する。   The weld joint toughness of the obtained welded joint was evaluated by a Charpy impact test. In the Charpy impact test, as shown in FIG. 2, a Charpy impact test piece (JIS Z22024) was sampled around a position 7 mm below the outer steel plate surface, and the notch position was (a) the center of the weld metal part and ( b) The absorbed energy (average value of 10 pieces) at a test temperature of −30 ° C. was determined with the melt line part (position where the ratio of the weld metal and the heat-affected part was 50% each). The absorbed energy was defined as good if it was 100 J or more. The evaluation results are summarized in Table 5.

Figure 2011206828
Figure 2011206828

表5より、本発明からなる細径SAW溶接用溶接ワイヤを用いた継手(A1〜A22)では、溶接金属部、および溶融線部の低温靱性が極めて良好であることが明らかである。   From Table 5, it is clear that in the joints (A1 to A22) using the welding wire for small diameter SAW welding according to the present invention, the low temperature toughness of the weld metal part and the melt line part is very good.

これに対して、溶接ワイヤの化学組成、もしくはフラックスの充填率が、本発明で規定した範囲を逸脱する比較例(B1〜B12)の場合、細径多電極溶接の適用により溶接入熱が低減されているために、溶融線部の低温靱性は良好であるものの、溶接金属部の靱性が低くなったり(B1〜B10)、ワイヤの製造性が低下し、ワイヤの製造中あるいは溶接実施中にワイヤの折れ曲がり(B11)、もしくは断線などが発生した(B12)。   On the other hand, in the case of the comparative examples (B1 to B12) in which the chemical composition of the welding wire or the filling rate of the flux deviates from the range defined in the present invention, the welding heat input is reduced by the application of the small diameter multi-electrode welding. For this reason, although the low temperature toughness of the molten wire portion is good, the toughness of the weld metal portion is low (B1 to B10), the manufacturability of the wire is lowered, and the wire is being manufactured or being welded. Wire bending (B11) or disconnection occurred (B12).

さらに、通常の4.0mmφワイヤを用いた比較例(B13〜B15)の場合、溶接金属部靱性は所定の性能を満足するが、入熱が過多となるために溶融線部の低温靱性が低い結果が得られた。   Furthermore, in the case of the comparative examples (B13 to B15) using the normal 4.0 mmφ wire, the weld metal part toughness satisfies the predetermined performance, but the heat input is excessive, so the low temperature toughness of the melt line part is low. Results were obtained.

Claims (4)

3電極以上の多電極サブマージアーク溶接に使用されるメタル系フラックス入りワイヤであって、径3.2mm以下、且つ、鋼製外皮およびフラックス成分の合計がワイヤ全質量%で、C:0.04〜0.22%、Si:0.1〜0.6%、Mn:1.0〜3.0%、Ti:0.01〜0.25%、REM:0.01〜0.5%、更に、Ni:10.0%以下、Mo:3.0%以下の1種又は2種を含有し、残部がFeおよび不可避的不純物からなり、ワイヤ全質量に対するメタル系フラックス成分の質量比(充填率)が10〜40%であることを特徴とする、細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ。   It is a metal-based flux-cored wire used for multi-electrode submerged arc welding of 3 or more electrodes, the diameter is 3.2 mm or less, and the total of the steel outer sheath and flux components is the total mass% of the wire, C: 0.04 -0.22%, Si: 0.1-0.6%, Mn: 1.0-3.0%, Ti: 0.01-0.25%, REM: 0.01-0.5%, In addition, Ni: 10.0% or less, Mo: 3.0% or less, one or two of the balance, Fe and unavoidable impurities, the mass ratio of the metal-based flux component to the total mass of the wire (filling The flux-cored welding wire for small-diameter multi-electrode submerged arc welding, characterized in that the ratio is 10 to 40%. 鋼製外皮およびフラックス成分の合計がワイヤ全質量%で、更に、質量%で、B;0.1〜0.5%、Cu:0.5%以下、Cr:1.0%以下、V:0.1%以下、Nb:0.05%以下の1種または2種以上を含有することを特徴とする、請求項1記載の細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ。 The total of the steel outer sheath and the flux component is the total mass% of the wire, and further, the mass%, B 2 O 3 ; 0.1 to 0.5%, Cu: 0.5% or less, Cr: 1.0% or less V: 0.1% or less, Nb: 0.05% or less, or one or more of them, containing a flux cored welding wire for small-diameter multi-electrode submerged arc welding according to claim 1. 請求項1または2記載の細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤを用いた細径多電極サブマージアーク溶接方法。   A thin multi-electrode submerged arc welding method using the flux-cored welding wire for thin multi-electrode submerged arc welding according to claim 1 or 2. 製管溶接に請求項1または2記載の細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤを用いて製造した溶接鋼管。   A welded steel pipe manufactured by using the flux-cored welding wire for thin multi-electrode submerged arc welding according to claim 1 or 2 for pipe making welding.
JP2010078220A 2010-03-30 2010-03-30 Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding Withdrawn JP2011206828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078220A JP2011206828A (en) 2010-03-30 2010-03-30 Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078220A JP2011206828A (en) 2010-03-30 2010-03-30 Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding

Publications (1)

Publication Number Publication Date
JP2011206828A true JP2011206828A (en) 2011-10-20

Family

ID=44938508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078220A Withdrawn JP2011206828A (en) 2010-03-30 2010-03-30 Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding

Country Status (1)

Country Link
JP (1) JP2011206828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188427A1 (en) * 2014-06-11 2015-12-17 江苏省沙钢钢铁研究院有限公司 Submerged arc welding wire and welding method
CN108788515A (en) * 2018-04-26 2018-11-13 洛阳双瑞特种合金材料有限公司 A kind of welding of LPG ships seamless medicine core powder, welding wire for submerged-arc welding and preparation and application
CN109175786A (en) * 2018-10-31 2019-01-11 首钢集团有限公司 A kind of high-strength weather-proof gas protecting welding wire wire rod

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188427A1 (en) * 2014-06-11 2015-12-17 江苏省沙钢钢铁研究院有限公司 Submerged arc welding wire and welding method
US20170197273A1 (en) * 2014-06-11 2017-07-13 Institute Of Research Of Iron And Steel, Jiangsu Province/Sha-Steel, Co. Ltd Submerged arc welding wire and welding method
CN108788515A (en) * 2018-04-26 2018-11-13 洛阳双瑞特种合金材料有限公司 A kind of welding of LPG ships seamless medicine core powder, welding wire for submerged-arc welding and preparation and application
CN108788515B (en) * 2018-04-26 2020-12-18 洛阳双瑞特种合金材料有限公司 Seamless flux-cored powder for welding LPG ship, submerged arc welding wire, preparation and application
CN109175786A (en) * 2018-10-31 2019-01-11 首钢集团有限公司 A kind of high-strength weather-proof gas protecting welding wire wire rod

Similar Documents

Publication Publication Date Title
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP5339871B2 (en) Flux-cored wire for submerged arc welding of low temperature steel and welding method.
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP2009255169A (en) Flux-cored wire for extra-low hydrogen welding, and method for producing the same
JP2013220431A (en) Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire
KR102088179B1 (en) Submerged Arc Welding Wire
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP5744816B2 (en) Bond flux for submerged arc welding
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP2007083292A (en) Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
JP5064928B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP2014198344A (en) Submerged arc welding method for high strength steel
JP2005230906A (en) Gas shielded arc welding method
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP5340014B2 (en) Submerged arc welding method for low temperature steel
WO2019082945A1 (en) Flux-cored wire for submerged arc welding, and material for submerged arc welding
JP2005329460A (en) Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP5235008B2 (en) Solid wire for welding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604