JP6515324B2 - Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics - Google Patents

Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics Download PDF

Info

Publication number
JP6515324B2
JP6515324B2 JP2015029694A JP2015029694A JP6515324B2 JP 6515324 B2 JP6515324 B2 JP 6515324B2 JP 2015029694 A JP2015029694 A JP 2015029694A JP 2015029694 A JP2015029694 A JP 2015029694A JP 6515324 B2 JP6515324 B2 JP 6515324B2
Authority
JP
Japan
Prior art keywords
weld metal
toughness
less
rem
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015029694A
Other languages
Japanese (ja)
Other versions
JP2016151052A (en
Inventor
浩久 田邉
浩久 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015029694A priority Critical patent/JP6515324B2/en
Publication of JP2016151052A publication Critical patent/JP2016151052A/en
Application granted granted Critical
Publication of JP6515324B2 publication Critical patent/JP6515324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主として、サブマージアーク溶接で製管されるX100グレード以上の高強度UOE鋼管の溶接金属に係り、特に応力除去焼鈍(SR)後における強度、靭性に優れた溶接金属に関する。   The present invention relates mainly to a weld metal of high strength UOE steel pipe of X100 grade or more produced by submerged arc welding, and more particularly to a weld metal excellent in strength and toughness after stress relief annealing (SR).

原油や天然ガスを長距離輸送するパイプラインには、UOE鋼管がよく使用される。パイプラインに接続されて使用される立ち上がり管に、ライザー管とよばれる溶接鋼管があり、UOE鋼管が使用される。パイプライン敷設において、現地円周溶接によりライザー管などの溶接鋼管に、合金元素の非常に多い鍛造品(例えばコネクタ等)を接続する場合、鍛造品の溶接による残留応力の除去を目的として、しばしば応力除去焼鈍(SR)が行なわれる。このSRにより、ライザー管の本体の溶接金属部(通称、シーム溶接金属)の靭性が特に劣化し、問題視されている。また近年、圧力上昇による操業効率向上や素材コスト削減の観点から、API X100グレード以上の高強度溶接鋼管に対する要求も高まっている。   UOE steel pipes are often used in pipelines for transporting crude oil and natural gas over long distances. Among the risers used connected to the pipeline are welded steel pipes called riser pipes, and UOE steel pipes are used. In pipeline construction, when connecting a forged product (such as a connector, etc.) containing a large amount of alloy elements to welded steel pipes such as riser pipes by on-site circumferential welding, it is often used to eliminate residual stress by welding forged products. Stress relief annealing (SR) is performed. The toughness of the weld metal portion (commonly called seam weld metal) of the main body of the riser pipe is particularly deteriorated by this SR, and is considered as a problem. In recent years, the demand for high strength welded steel pipe of API X 100 grade or more is also increasing from the viewpoint of improvement in operation efficiency and material cost reduction due to pressure increase.

このSRによる溶接金属部の靭性低下を抑制する技術が、例えば、特許文献1〜4に開示されている。これらの技術では、主に、製品強度上昇に直結する合金元素量(例えばNb、Si等)を低減し、SR後の強度上昇をできるだけ抑制し、シーム溶接金属の靭性を向上させている点に特徴がある。   The technique which suppresses the toughness fall of the weld metal part by this SR is disclosed by patent documents 1-4, for example. These techniques mainly reduce the amount of alloying elements (for example, Nb, Si, etc.) directly linked to the increase in product strength, suppress the increase in strength after SR as much as possible, and improve the toughness of the seam weld metal. There is a feature.

特開平08−269566号公報Japanese Patent Application Publication No. 08-269566 特開2001−121289号公報JP 2001-121289 A 特開2001−158939号公報JP 2001-158939 A 特許第4380037号公報Patent No. 438 0037

前記従来の技術では、SR後の靭性が優れ、かつ引張強さ760MPa以上を満たす溶接金属の成分組成の範囲が狭いという問題があったため、将来におけるUOE鋼管の高強度化ニーズの増大を鑑みると、製品製造裕度が低く、非常に大きな問題である。
以上の状況より、本発明は、製品製造裕度をできるだけ損なうことなく、高強度(引張強さ760MPa以上)かつSR後靭性に優れる溶接金属を提供することを課題とする。
In the above-mentioned prior art, there is a problem that the toughness after SR is excellent and the range of the component composition of the weld metal satisfying the tensile strength of 760 MPa or more is narrow. , The product production margin is low, it is a very big problem.
From the above situation, an object of the present invention is to provide a weld metal having high strength (tensile strength of 760 MPa or more) and excellent post-SR toughness without deteriorating product manufacturing tolerance as much as possible.

本発明者らは、高強度(引張強さ760MPa以上)かつSR後靭性に優れる溶接金属を得るべく、鋭意検討を行った結果、溶接金属の化学成分の内、Mn、Mo、V、O量の適正化およびREMの添加により上記課題を満足させる方法を知見した。その知見をもとに完成させた本発明は次の通りである。   The inventors of the present invention conducted intensive studies to obtain a weld metal having high strength (tensile strength of 760 MPa or more) and excellent post-SR toughness, and as a result, among the chemical components of the weld metal, the amounts of Mn, Mo, V, O We found a way to satisfy the above problems by optimizing the content of RE and adding REM. The present invention completed based on the findings is as follows.

(1)UOE鋼管の溶接金属において、その化学成分が質量%で、C:0.03〜0.10%、Si:0.05〜0.30%、Mn:1.00〜2.00%、P:0.020%以下、S:0.005%以下、Ni:1.00〜2.00%、Cr:0.50〜1.00%、Mo:0.10〜1.00%、Ti:0.005〜0.020%、Al:0.005〜0.020%、O:0.010〜0.030%、V:0.005〜0.060%、REM:0.005〜0.100%、N:0.010%以下、および、B:0.0007%以下を含有し、残部Fe及び不可避的不純物からなり、昇温速度:158℃/hr、保持温度・時間:620℃×4hr、冷却速度:190℃/hrでのSR後の、衝撃試験温度:−30℃でのシャルピー衝撃試験による吸収エネルギーが80J以上であることを特徴とするSR後の靭性に優れた溶接金属。
(2)さらに、質量%で、Cu:0.40%以下、および、Nb:0.06%以下の少なくとも1種を含有することを特徴とする前記(1)に記載のSR後の靭性に優れた溶接金属。
(3)さらに、REM、O、Mo、Mn、および、Vの含有量が、下記(1)式を満たすことを特徴とする前記(1)または(2)に記載のSR後の靭性に優れた溶接金属。
0.50<([REM]/[O])×([REM]−0.49×[O])
+1.75×[Mo]/[Mn]+4.24[V]<0.65 ・・・(1)
(式中の[REM]、[O]、[Mo]、[Mn]、[V]は溶接金属中の該元素の含有量(質量%)を意味する。)
(1) In the weld metal of the UOE steel pipe, the chemical component is mass%, C: 0.03 to 0.10%, Si: 0.05 to 0.30%, Mn: 1.00 to 2.00% , P: 0.020% or less, S: 0.005% or less, Ni: 1.00 to 2.00%, Cr: 0.50 to 1.00%, Mo: 0.10 to 1.00%, Ti: 0.005 to 0.020%, Al: 0.005 to 0.020%, O: 0.010 to 0.030%, V: 0.005 to 0.060%, REM: 0.005 to 0.100%, N: 0.010% or less, and, B: containing 0.0007% or less, Ri Do the balance Fe and unavoidable impurities, heating rate: 158 ° C. / hr, holding temperature and time: Impact test temperature after SR at 620 ° C x 4hr, cooling rate: 190 ° C / hr Charpy impact test at -30 ° C Weld metal has absorbed energy excellent toughness after SR, characterized in der Rukoto than 80J due.
(2) Furthermore, the toughness after SR described in the above (1) is characterized by containing at least one of Cu: 0.40% or less and Nb: 0.06% or less in mass%. Excellent weld metal.
(3) Furthermore, the toughness after SR described in the above (1) or (2) is characterized in that the content of REM, O, Mo, Mn, and V satisfies the following equation (1): Weld metal.
0.50 <([REM] / [O]) × ([REM] −0.49 × [O])
+ 1.75 × [Mo] / [Mn] +4.24 [V] <0.65 (1)
([REM], [O], [Mo], [Mn], [V] in the formulas mean the content (mass%) of the element in the weld metal)

本発明により、SR過程における溶接金属のPの粒界偏析および粒界への炭化物(VC、M236等)析出による粒界脆化を抑制でき、これにより引張強さ760MPa以上で、かつSR後の靭性に優れた溶接金属を得ることができる。 According to the present invention, it is possible to suppress grain boundary segregation of P of weld metal in the SR process and grain boundary embrittlement due to carbide (VC, M 23 C 6 etc.) precipitation to the grain boundary, and thereby the tensile strength is 760 MPa or more A weld metal excellent in toughness after SR can be obtained.

溶接金属のSRの時間と温度の関係を示す図である。It is a figure which shows the relationship of time and temperature of SR of a weld metal.

次に、本発明のSR後の靭性に優れた溶接金属(以下、「本発明の溶接金属」という)において、成分組成の限定理由について説明する。以後の説明で化学成分についての「%」は「質量%」を表す。   Next, in the weld metal excellent in toughness after SR of the present invention (hereinafter referred to as "the weld metal of the present invention"), the reasons for limiting the component composition will be described. In the following description, “%” for a chemical component represents “mass%”.

(C:0.03〜0.10%)
Cは、溶接金属のSR後強度を確保するための必須元素であり、0.03%より低いとX100以上の所定の強度を確保することが困難となる。一方0.10%を超える添加は、溶接金属の靭性ならびに耐SR特性の低下を招く。したがって、溶接金属のC量は0.03〜0.10%の範囲内とする。より望ましいC量は、0.04〜0.09%である。
(C: 0.03 to 0.10%)
C is an essential element for securing the post-SR strength of the weld metal, and when it is less than 0.03%, it becomes difficult to secure a predetermined strength of X100 or more. On the other hand, the addition of more than 0.10% leads to the deterioration of the toughness and the SR resistance of the weld metal. Therefore, the C content of the weld metal is in the range of 0.03 to 0.10%. A more desirable C amount is 0.04 to 0.09%.

(Si:0.05〜0.30%)
Siは、溶接金属の脱酸および良好な作業性を確保するために必要であり、0.05%未満では十分な脱酸効果が得られない。一方、0.30%超の添加は強度の過大な上昇あるいは島状マルテンサイト等の硬質組織の増加をもたらすほか、酸化物組成がSi酸化物主体となるため、粒内変態組織が生成し難くなり、靭性の低下を招く。したがって、溶接金属のSi量は0.05〜0.30%の範囲内とする。
(Si: 0.05 to 0.30%)
Si is necessary to ensure the deoxidation of the weld metal and good workability, and if less than 0.05%, a sufficient deoxidizing effect can not be obtained. On the other hand, addition of more than 0.30% causes excessive increase in strength or increase in hard structure such as island martensite, and the oxide composition is mainly composed of Si oxide, so it is difficult to form an intragranular transformation structure. Cause a decrease in toughness. Therefore, the Si content of the weld metal is in the range of 0.05 to 0.30%.

(Mn:1.00〜2.00%)
Mnは、溶接金属のSR後強度および靭性の向上に有効な元素である。1.00%未満では、X100以上の所定の強度を確保することが困難となる。一方、2.00%超の添加は強度の過大な上昇をもたらすほか、粒界炭化物サイズの粗大化を招き、強度、靭性低下の原因となる。したがって、溶接金属のMn量は1.00〜2.00%の範囲内とする。なお、MnはPとの相互作用により、SR後の溶接金属靭性に影響をおよぼす。その効果については、後述する。
(Mn: 1.00 to 2.00%)
Mn is an element effective for improving the post-SR strength and toughness of the weld metal. If it is less than 1.00%, it will be difficult to secure a predetermined strength of X100 or more. On the other hand, addition of more than 2.00% causes an excessive increase in strength, and also causes coarsening of intergranular carbide size, which causes a reduction in strength and toughness. Therefore, the Mn content of the weld metal is in the range of 1.00 to 2.00%. Mn affects the weld metal toughness after SR by the interaction with P. The effects will be described later.

(P:0.020%以下)
Pは、溶接金属のSR後靭性を低下させるため、0.020%以下に制限することが望ましい。より望ましくは、0.010%以下である。なお、PはMn、MoおよびREMとの相互作用により、SR後の溶接金属靭性に影響をおよぼす。その効果については、後述する。
(P: 0.020% or less)
It is desirable to limit P to 0.020% or less in order to reduce the post-SR toughness of the weld metal. More preferably, it is 0.010% or less. P affects the weld metal toughness after SR by the interaction with Mn, Mo and REM. The effects will be described later.

(S:0.005%以下)
Sは、溶接金属のSR後靭性を低下させるため、0.005%以下に制限する。より望ましくは、0.003%以下である。
(S: 0.005% or less)
S is limited to 0.005% or less in order to reduce the post-SR toughness of the weld metal. More preferably, it is 0.003% or less.

(Ni:1.00〜2.00%)
Niは、溶接金属のSR後強度および靭性の向上に有効な元素である。1.00%未満ではその効果が十分ではなく、一方、2.00%超の添加は強度の過大な上昇、あるいはマルテンサイト等の硬質組織の増加や靭性低下を招く。したがって、溶接金属のNi量は1.00〜2.00%の範囲内とする。より望ましいNi量は、1.20〜1.80%である。
(Ni: 1.00 to 2.00%)
Ni is an element effective for improving the post-SR strength and toughness of the weld metal. If the content is less than 1.00%, the effect is not sufficient. On the other hand, the addition of more than 2.00% causes an excessive increase in strength or an increase in hard structure such as martensite or a decrease in toughness. Therefore, the Ni content of the weld metal is in the range of 1.00 to 2.00%. A more desirable Ni amount is 1.20 to 1.80%.

(Cr:0.50〜1.00%)
Crは、溶接金属のSR後強度および靭性の向上に有効な元素である。0.50%未満ではその効果が十分ではなく、一方、1.00%超の添加は強度の過大な上昇、あるいはマルテンサイト等の硬質組織の増加をもたらすことに加え、粒界炭化物サイズの粗大化を招き、強度、靭性低下の原因となる。したがって、溶接金属のCr量は0.50〜1.00%の範囲内とする。より望ましいCr量は0.60〜0.90%である。
(Cr: 0.50 to 1.00%)
Cr is an element effective for improving the post-SR strength and toughness of the weld metal. If the content is less than 0.50%, the effect is not sufficient. On the other hand, the addition of more than 1.00% results in an excessive increase in strength or an increase in hard structure such as martensite, and also coarseness of grain boundary carbide size. And cause a decrease in strength and toughness. Therefore, the Cr content of the weld metal is in the range of 0.50 to 1.00%. A more desirable Cr content is 0.60 to 0.90%.

(Mo:0.10〜1.00%)
Moは、焼戻し軟化抵抗が高く、SR後の強度の確保に有効な元素である。0.10%未満ではSR後の強度が得られない。一方、1.00%超の添加は強度の過大な上昇をもたらすほか、粒界炭化物サイズの粗大化を招き、強度、靭性低下の原因となる。したがって、溶接金属のMo量は0.10〜1.00%の範囲内とする。なお、MoはPとの相互作用により、SR後の溶接金属靭性に影響をおよぼす。その効果については、後述する。
(Mo: 0.10 to 1.00%)
Mo has a high resistance to temper softening and is an element effective for securing the strength after SR. If it is less than 0.10%, the strength after SR can not be obtained. On the other hand, addition of more than 1.00% causes an excessive increase in strength and also causes coarsening of intergranular carbide size, which causes strength and toughness to decrease. Therefore, the Mo content of the weld metal is in the range of 0.10 to 1.00%. Mo affects the weld metal toughness after SR by the interaction with P. The effects will be described later.

(Ti:0.005〜0.020%)
Tiは、溶接金属組織の微細化により靭性の改善をもたらす。0.005%未満ではその効果が十分ではなく、一方、0.020%超の添加は靭性低下を招く。したがって、溶接金属のTi量は0.005〜0.020%の範囲内とする。より望ましいTi量は0.007〜0.015%である。
(Ti: 0.005 to 0.020%)
Ti brings about improvement of toughness by refinement of a weld metal structure. If the amount is less than 0.005%, the effect is not sufficient, while the addition of more than 0.020% causes a decrease in toughness. Therefore, the Ti content of the weld metal is in the range of 0.005 to 0.020%. A more desirable Ti amount is 0.007 to 0.015%.

(Al:0.005〜0.020%)
Alは、溶接金属のSR後靭性向上に有効なアシキュラーフェライトの生成核となる酸化物を形成させるための必須元素であり、少なくとも0.005%が必要である。一方、0.020%超の添加は靭性低下の原因となる。したがって、溶接金属のAl量は0.005〜0.020%の範囲内とする。
(Al: 0.005 to 0.020%)
Al is an essential element for forming an oxide serving as a formation nucleus of acicular ferrite effective for improving the after-SR toughness of weld metal, and at least 0.005% is required. On the other hand, addition of more than 0.020% causes a decrease in toughness. Therefore, the Al content of the weld metal is in the range of 0.005 to 0.020%.

(O:0.010〜0.030%)
Oは、溶接金属のSR後靭性の向上に有効なアシキュラーフェライトの生成核となる酸化物を形成させるための必須元素であり、少なくとも0.010%が必要である。一方、0.030%超の添加は靭性低下の原因となる。したがって、溶接金属のO量は0.010〜0.030%の範囲内とする。より望ましいO量は0.015〜0.025%である。
(O: 0.010 to 0.030%)
O is an essential element for forming an oxide serving as a formation nucleus of acicular ferrite which is effective for improving the after-SR toughness of weld metal, and at least 0.010% is required. On the other hand, addition of more than 0.030% causes a decrease in toughness. Therefore, the O content of the weld metal is in the range of 0.010% to 0.030%. A more desirable O content is 0.015 to 0.025%.

(N:0.010%以下)
Nは、ブローホールのような溶接施工欠陥発生の原因になるとともに、靭性にも悪影響をおよぼすため、できるだけ低減することが望ましい。したがって、溶接金属のN量は0.010%以下に制限する。
(N: 0.010% or less)
It is desirable to reduce N as much as possible because it causes defects in welding construction such as blow holes and also adversely affects toughness. Therefore, the N content of the weld metal is limited to 0.010% or less.

(V:0.005〜0.060%)
Vは、SR後の溶接金属中で、微細な炭窒化物を形成し、強度を上昇させる効果を有する。0.005%未満ではその効果が十分ではなく、一方、0.060%超の添加は、炭窒化物サイズの粗大化を招き靭性低下の原因となる。したがって、溶接金属のV量は0.005〜0.060%とする。
(V: 0.005 to 0.060%)
V forms fine carbonitrides in the weld metal after SR and has the effect of increasing the strength. If it is less than 0.005%, the effect is not sufficient. On the other hand, addition of more than 0.060% causes coarsening of the carbonitride size and causes a decrease in toughness. Therefore, the V content of the weld metal is made 0.005 to 0.060%.

(REM:0.005〜0.100%)
REMは、溶接金属の粒界脆化を助長するPを粒内に固定する作用を有する。この効果は0.005%未満では得られない。一方、0.100%超の添加は溶接ままの溶接金属の靭性低下を招き、それに伴いSR後靭性も低下する。したがって、溶接金属のREM量は0.005〜0.100%とする。なお、REMはPとの相互作用により、SR後の溶接金属靭性に影響をおよぼす。その効果については、後述する。
REMはSc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量はこれらの元素の合計量を意味する。
(REM: 0.005 to 0.100%)
REM has the function of fixing P in the grains which promotes intergranular embrittlement of the weld metal. This effect can not be obtained at less than 0.005%. On the other hand, the addition of more than 0.100% causes the toughness of the as-welded weld metal to decrease, and the post-SR toughness also decreases accordingly. Therefore, the REM content of the weld metal is made 0.005 to 0.100%. REM affects the weld metal toughness after SR by the interaction with P. The effects will be described later.
REM is a general term for 17 elements in total of Sc, Y and lanthanoid, and the content of REM means the total amount of these elements.

(B:0.0007%以下)
Bは、SR後の溶接金属中で、粒界炭化物等の析出を助長する効果があり、できるだけ低減した方がよい。溶接金属に0.0007%を超えて添加するとSR後靭性が低下する。したがって、溶接金属のB量は0.0007%以下に制限する。
(B: 0.0007% or less)
B has the effect of promoting precipitation of intergranular carbides and the like in the weld metal after SR, and B should be reduced as much as possible. If added to the weld metal in excess of 0.0007%, the toughness after SR decreases. Therefore, the B content of the weld metal is limited to 0.0007% or less.

本発明の溶接金属は、上述された基本成分(必須元素)に加え、更に、SR後の溶接金属強度を高めるために、必要に応じて、以下の元素を任意で含有させることができる。   In addition to the basic components (essential elements) described above, the weld metal of the present invention can optionally contain the following elements as necessary in order to enhance the weld metal strength after SR.

(Cu:0.40%以下)
Cuは、溶接金属のSR後強度の向上に有効な元素であり、本発明において、添加してもよい。添加する場合、有効な効果を得るには0.05%以上が好ましい。ただし、0.40%超の添加は強度の過大な上昇、あるいはマルテンサイト等の硬質組織の増加による靭性低下を招く。したがって、溶接金属にCuを添加する場合は、Cu量を0.40%以下とする。
(Cu: 0.40% or less)
Cu is an element effective for improving the post SR strength of the weld metal, and may be added in the present invention. When added, 0.05% or more is preferable to obtain an effective effect. However, the addition of more than 0.40% causes a decrease in toughness due to an excessive increase in strength or an increase in hard structure such as martensite. Therefore, when adding Cu to the weld metal, the amount of Cu is made 0.40% or less.

(Nb:0.06%以下)
Nbは、SR後の溶接金属中で、微細な炭窒化物を形成し、強度を上昇させる効果を有するので添加してもよい。添加する場合、有効な効果を得るには、0.01%以上が好ましい。一方、0.06%超の添加は、炭窒化物サイズの粗大化を招き、靭性低下の原因となる。したがって、溶接金属に添加する場合、Nb量は0.06%以下とする。
(Nb: 0.06% or less)
Nb may be added because it forms fine carbonitrides in the weld metal after SR and has the effect of increasing the strength. When added, 0.01% or more is preferable in order to obtain an effective effect. On the other hand, addition of more than 0.06% leads to coarsening of the carbonitride size, which causes a decrease in toughness. Therefore, when adding to the weld metal, the Nb content is made 0.06% or less.

本発明の溶接金属では、溶接金属中の成分のうち、REM、O、Mo、MnおよびVの含有量が(1)式を満たすと、さらにSR後の靭性が向上するので好ましい。
0.50<([REM]/[O])×([REM]−0.49×[O])
+1.75×[Mo]/[Mn]+4.24[V]<0.65 ・・・(1)
(式中の[REM]、[O]、[Mo]、[Mn]、[V]は溶接金属中の該元素の含有量(質量%)を意味する。)
In the weld metal of the present invention, when the contents of REM, O, Mo, Mn and V among the components in the weld metal satisfy the formula (1), the toughness after SR is further improved, which is preferable.
0.50 <([REM] / [O]) × ([REM] −0.49 × [O])
+ 1.75 × [Mo] / [Mn] +4.24 [V] <0.65 (1)
([REM], [O], [Mo], [Mn], [V] in the formulas mean the content (mass%) of the element in the weld metal)

SR後の溶接金属の靭性低下の主要因は、SR過程におけるPの粒界偏析および粒界への炭化物(VC、M23等)析出による粒界脆化である。MnはPの活量を上昇させるため、Pの粒界偏析を助長する。一方、MoはSR過程でのPの拡散速度を遅くするため、Pの粒界偏析を抑制する。また、REMはPをリン化物として粒内に固定する作用を有するため、Pの粒界偏析を抑制する。しかし、REMは優先してOと結合して酸化物を形成してしまうため、溶接金属中のO量が過剰もしくはREM添加量が過少な場合、P固定作用が機能しない。また、Vは粒界への炭化物析出を助長する。 The main factors of the decrease in toughness of weld metal after SR are grain boundary segregation of P at grain boundaries in the SR process and grain boundary embrittlement due to carbide (VC, M 23 C 6 etc.) precipitation to the grain boundaries. Mn promotes grain boundary segregation of P because it increases the activity of P. On the other hand, Mo slows down the diffusion rate of P in the SR process, thereby suppressing segregation of P at grain boundaries. In addition, REM has the effect of fixing P as phosphide in the grains, and therefore suppresses grain boundary segregation of P. However, since REM preferentially combines with O to form an oxide, the P fixing function does not function when the amount of O in the weld metal is excessive or the amount of REM added is too small. Further, V promotes carbide precipitation to grain boundaries.

本発明者らは、上記成分組成を満たす種々の溶接金属を作成し、試験した結果、粒界脆化抑制度合いを表すパラメーターα(=([REM]/[O])×([REM]−0.49×[O])+1.75×[Mo]/[Mn]+4.24[V])を考案した。そして、αが0.50以下の場合、SR過程でPの粒界偏析が助長され、Pによる粒界脆化が進行し、SR後靭性が大きく劣化すること、及び、αが0.65以上の場合、粒界脆化は抑制できるものの、溶接金属マトリクスへの合金元素の過剰な固溶によりSR後靭性が低下することが分かった。   As a result of preparing and testing various weld metals satisfying the above-mentioned component composition, the present inventors have found that a parameter α (= ([REM] / [O]) × ([REM] −) indicating the degree of suppression of intergranular embrittlement. 0.49 × [O]) + 1.75 × [Mo] / [Mn] +4.24 [V]) was devised. And, when α is 0.50 or less, grain boundary segregation of P is promoted in the SR process, grain boundary embrittlement by P progresses, post-SR toughness is greatly degraded, and α is 0.65 or more. In this case, although the grain boundary embrittlement can be suppressed, it has been found that the post-SR toughness decreases due to excessive solid solution of alloying elements in the weld metal matrix.

次に、本発明の溶接金属の形成方法について説明する。
本発明のUOE鋼管における溶接金属は、板厚15mmから40mm程度の厚鋼板をサブマージアーク溶接することにより得られる。厚鋼板を管状とする際は、厚鋼板の端部を突き合わせて内面からサブマージアーク溶接を行った後、外面からサブマージアーク溶接を行うことで形成できる。
Next, the method for forming a weld metal of the present invention will be described.
The weld metal in the UOE steel pipe of the present invention is obtained by submerged arc welding of a thick steel plate having a thickness of about 15 mm to 40 mm. When making a thick steel plate into a tubular shape, the end portions of the thick steel plate are butted, and after performing submerged arc welding from the inner surface, it can be formed by performing submerged arc welding from the outer surface.

厚鋼板の成分組成は、本発明の溶接金属が得られる範囲において、特に限定されるものでないが、好ましい成分は、質量%で、C:0.03〜0.12%、Si:0.01〜0.30%、Mn:1.00〜2.00%、P:0.010%以下、S:0.005%以下、Cu:0.50%以下、Ni:0.05〜1.00%、Cr:0.05〜1.50%、Mo:1.00%以下、V:0.100%以下、Nb:0.10%以下、Ti:0.005〜0.020%、Al:0.001〜0.040%、B:0.0007%以下、O:0.005%以下、N:0.005%以下である。   The composition of the thick steel plate is not particularly limited as long as the weld metal of the present invention can be obtained, but preferred components are C: 0.03 to 0.12%, Si: 0.01 by mass%. ~ 0.30%, Mn: 1.00 to 2.00%, P: 0.010% or less, S: 0.005% or less, Cu: 0.50% or less, Ni: 0.05 to 1.00 %, Cr: 0.05 to 1.50%, Mo: 1.00% or less, V: 0. 100% or less, Nb: 0.10% or less, Ti: 0.005 to 0.020%, Al: 0.001 to 0.040%, B: not more than 0.0007%, O: not more than 0.005%, N: not more than 0.005%.

UOE鋼管のサブマージアーク溶接では、溶接条件は、特に限定されるものでなく、溶接トーチを2〜5電極程度の多電極とし、開先上にフラックスを散布し、サブマージアーク溶接用のワイヤを使用し、入熱15〜120kJ/cmの大入熱サブマージアーク溶接とすることができる。   The welding conditions are not particularly limited in the submerged arc welding of UOE steel pipe, and the welding torch is a multi-electrode of about 2 to 5 electrodes, the flux is dispersed on the groove, and the wire for submerged arc welding is used. High heat input submerged arc welding with a heat input of 15 to 120 kJ / cm.

溶接ワイヤの成分組成は、本発明の溶接金属が得られる範囲において、特に限定されるものでないが、好ましい成分は、質量%で、C:0.03〜0.30%、Si:0.01〜1.00%、Mn:0.50〜3.00%、Cu:0.50%以下、Ni:0.01〜7.00%、Cr:0.01〜2.50%、Mo:0.01〜3.50%、V:0.01〜0.10%、Ti:0.001〜0.160%である。   The composition of the welding wire is not particularly limited as long as the weld metal of the present invention can be obtained, but preferred components are C: 0.03 to 0.30%, Si: 0.01% by mass. 1.00 1.00%, Mn: 0.50 to 3.00%, Cu: 0.50% or less, Ni: 0.01 to 7.00%, Cr: 0.01 to 2.50%, Mo: 0 .01 to 3.50%, V: 0.01 to 0.10%, Ti: 0.001 to 0.160%.

また、フラックスの成分組成も、本発明の溶接金属が得られる範囲において、特に限定されるものでないが、好ましい成分は、質量%で、SiO:5〜25%、MnO:6%以下、CaO:10〜20%、CaF:10〜55%、MgO:2〜7%、Al:5〜35%、TiO:23%以下、BaO:13%以下、B:0.5%以下である。
なお、フラックスは、公知の焼成型フラックス、溶融型フラックなどを使用することができる。また、本発明の溶接金属の必須成分の一つであるREMは、厚鋼板、溶接ワイヤ、フラックスのいずれに添加してもよい。
Also, the component composition of the flux, to the extent that the weld metal of the present invention can be obtained, although not particularly limited, preferred components, in mass%, SiO 2: 5~25%, MnO: 6% or less, CaO : 10 to 20%, CaF 2 : 10 to 55%, MgO: 2 to 7%, Al 2 O 3 : 5 to 35%, TiO 2 : 23% or less, BaO: 13% or less, B 2 O 3 : 0 .5% or less.
As the flux, known firing type flux, melting type flux and the like can be used. Moreover, REM which is one of the essential components of the weld metal of this invention may be added to any of a thick steel plate, a welding wire, and a flux.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, although the Example of this invention is described, the conditions in an Example are one condition example employ | adopted in order to confirm the practicability and effect of this invention, and this invention is the one condition example. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the scope of the present invention.

以下、実施例により本発明の効果をさらに詳細に説明する。
表1に化学成分を示す板厚25mmの母材(Cu量orMo量orV量orNb量orAl量を変量)を、表2に化学成分を示す4mm径の溶接ワイヤ、および表3に化学成分を示す溶融型フラックスを用いて、表5に示す母材と溶接材料の組合せにより、表4に示す溶接条件で4電極サブマージアーク溶接により溶接金属を作製した。溶接金属へのREM添加は、表3に示すフラックスにREM化合物粉末を適宜混合して溶接することにより行なった。表6に溶接金属の成分組成を示す。
Hereinafter, the effects of the present invention will be described in more detail by way of examples.
Table 1 shows the chemical composition in the base material of 25 mm thickness (Cu amount or Mo amount or V amount or Nb amount or Al amount varied), Table 2 shows the 4 mm diameter welding wire whose chemical composition is shown, and Table 3 shows the chemical composition Using a fusion type flux, a combination of a base material and a welding material shown in Table 5 produced a weld metal by 4-electrode submerged arc welding under the welding conditions shown in Table 4. REM addition to the weld metal was performed by appropriately mixing the REM compound powder with the flux shown in Table 3 and welding. Table 6 shows the composition of the weld metal.

また、溶接金属のSRは、図1に示すように昇温速度:158℃/hr、保持温度・時間:620℃×4hr、冷却速度:190℃/hrとして行なった。得られた溶接金属の中央部から引張試験片およびJIS4号Vノッチシャルピー試験片を採取し、JIS Z 2242(2005年)に準拠した引張試験およびシャルピー衝撃試験を実施した。衝撃試験温度は−30℃とした。シャルピー吸収エネルギーは80J以上を良好と評価した。表7に、溶接金属の引張強度、パラメーターα、SR前後のシャルピー吸収エネルギー(靭性)を示す。   In addition, SR of the weld metal was performed at a temperature rising rate of 158 ° C./hr, a holding temperature / time of 620 ° C. × 4 hr, and a cooling rate of 190 ° C./hr as shown in FIG. A tensile test specimen and a JIS No. 4 V-notch Charpy test specimen were collected from the center of the obtained weld metal, and a tensile test and a Charpy impact test were conducted in accordance with JIS Z 2242 (2005). The impact test temperature was -30 ° C. The Charpy absorbed energy evaluated that 80 J or more was favorable. Table 7 shows tensile strength of weld metal, parameter α, and Charpy absorbed energy (toughness) before and after SR.

Figure 0006515324
Figure 0006515324

Figure 0006515324
Figure 0006515324

Figure 0006515324
Figure 0006515324

Figure 0006515324
Figure 0006515324

Figure 0006515324
Figure 0006515324

Figure 0006515324
Figure 0006515324

Figure 0006515324
Figure 0006515324

比較例1、4、6、7、8、および、9では、REMが本発明範囲の下限から逸脱しているため、SR過程で粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
比較例5では、Bが本発明範囲から逸脱しているため、溶接ままの溶接金属の靭性が低下し、それに伴いSR後の靭性も低値となった。
比較例10では、Vが本発明範囲の上限から逸脱しているため、SR過程での粒界炭窒化物サイズ粗大化による粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
比較例11では、V、REMが本発明範囲の下限から逸脱しているため、SR過程での粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
In Comparative Examples 1, 4, 6, 7, 8, and 9, since REM deviates from the lower limit of the range of the present invention, grain boundary embrittlement progresses in the SR process, and the toughness of the weld metal decreases after SR. Arose.
In Comparative Example 5, since B deviates from the scope of the present invention, the toughness of the as-welded weld metal decreases, and the toughness after SR also decreases.
In Comparative Example 10, since V deviates from the upper limit of the range of the present invention, intergranular embrittlement due to grain boundary carbonitride size coarsening in the SR process progresses, resulting in a decrease in toughness of the weld metal after SR. The
In Comparative Example 11, since V and REM deviate from the lower limit of the range of the present invention, grain boundary embrittlement in the SR process progresses, resulting in a decrease in toughness of the weld metal after SR.

比較例12では、本発明範囲にパラメーターαを制御できたため、SR過程での粒界脆化は抑制できたものの、Si、Ni、Cr、Mo、V、REMが本発明範囲から逸脱しているため、溶接ままの溶接金属の靭性が低下し、それに伴いSR後の靭性も低値となった。
比較例13では、Cが本発明範囲の上限から逸脱しているため、溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例14では、Siが本発明範囲の上限から逸脱しているため、硬質組織が増加してSR後の溶接金属の靭性低下を生じた。
比較例3、15では、Mnが本発明範囲の上限から逸脱しているため、SR過程での粒界炭窒化物サイズ粗大化による粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
In Comparative Example 12, although the parameter α was controlled to the range of the present invention, grain boundary embrittlement in the SR process could be suppressed, but Si, Ni, Cr, Mo, V, and REM deviate from the range of the present invention Therefore, the toughness of the as-welded weld metal decreased, and the toughness after SR also decreased.
In Comparative Example 13, since C deviates from the upper limit of the range of the present invention, toughness reduction of the weld metal as-welded and after SR occurs.
In Comparative Example 14, since Si deviates from the upper limit of the range of the present invention, the hard structure is increased to cause the decrease in toughness of the weld metal after SR.
In Comparative Examples 3 and 15, since Mn deviates from the upper limit of the range of the present invention, intergranular embrittlement due to grain boundary carbonitride size coarsening in the SR process progresses, and the toughness of the weld metal decreases after SR. Arose.

比較例16では、Pが本発明範囲から逸脱しているため、溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例17では、Sが本発明範囲から逸脱しているため、溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例18では、Cuが本発明範囲から逸脱しているため、硬質組織が増加して溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例19では、Niが本発明範囲の上限から逸脱しているため、硬質組織が増加して溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例20では、Crが本発明範囲の上限から逸脱しているため、SR過程での粒界炭窒化物サイズ粗大化による粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
比較例21では、Moが本発明範囲の上限から逸脱しているため、SR過程での粒界炭窒化物サイズ粗大化による粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
In Comparative Example 16, since P deviated from the scope of the present invention, the as-welded and after SR SR weld metal toughness reduction occurred.
In Comparative Example 17, since S deviates from the scope of the present invention, the as-welded and after SR SR weld metal toughness decrease occurs.
In Comparative Example 18, since the Cu deviates from the range of the present invention, the hard structure increases to cause a decrease in toughness of the as-welded and weld metal after SR.
In Comparative Example 19, since the Ni deviates from the upper limit of the range of the present invention, the hard structure increases to cause a decrease in toughness of the as-welded and weld metal after SR.
In Comparative Example 20, since Cr deviates from the upper limit of the range of the present invention, intergranular embrittlement due to grain boundary carbonitride size coarsening in the SR process progresses, resulting in reduction in toughness of the weld metal after SR. The
In Comparative Example 21, since Mo deviates from the upper limit of the range of the present invention, intergranular embrittlement due to grain boundary carbonitride size coarsening in the SR process progresses, resulting in a decrease in toughness of the weld metal after SR. The

比較例2、22では、REMが本発明範囲の上限から逸脱しているため、溶接ままの溶接金属の靭性が低下し、それに伴いSR後の靭性も低値となった。
比較例23では、Nbが本発明範囲から逸脱しているため、SR過程での粒界炭窒化物サイズ粗大化による粒界脆化が進行し、SR後の溶接金属の靭性低下を生じた。
比較例24では、Tiが本発明範囲の上限から逸脱しているため、溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例25では、Alが本発明範囲の上限から逸脱しているため、溶接まま、およびSR後の溶接金属の靭性低下を生じた。
比較例26では、Oが本発明範囲の上限から逸脱しているため、溶接ままの溶接金属の靭性が低下し、それに伴いSR後の靭性も低値となった。
比較例27では、Nが本発明範囲から逸脱しているため、溶接まま、およびSR後の溶接金属の靭性低下を生じた。
In Comparative Examples 2 and 22, since REM deviates from the upper limit of the range of the present invention, the toughness of the as-welded weld metal decreases, and the toughness after SR also decreases.
In Comparative Example 23, since Nb deviates from the range of the present invention, intergranular embrittlement due to grain boundary carbonitride size coarsening in the SR process progresses, resulting in a decrease in toughness of the weld metal after SR.
In Comparative Example 24, since Ti deviates from the upper limit of the range of the present invention, a decrease in toughness of the weld metal as-welded and after SR was caused.
In Comparative Example 25, since Al deviates from the upper limit of the range of the present invention, a decrease in toughness of the weld metal as-welded and after SR occurs.
In Comparative Example 26, O deviates from the upper limit of the range of the present invention, so the toughness of the as-welded weld metal decreases, and the toughness after SR also decreases.
In Comparative Example 27, since N deviated from the scope of the present invention, the as-welded and after SR SR weld metal toughness reduction occurred.

上記比較例に対して、本発明例1から13に示したように、本発明範囲に溶接金属成分を制御した溶接金属では、SR後の靭性に優れた溶接金属を得ることができた。また、溶接金属の成分に加えて、パラメーターαも本発明範囲に制御した溶接金属(本発明例10から13)では、SR後の靭性が更に向上した溶接金属を得ることができた。   With respect to the above-described comparative example, as shown in Invention Examples 1 to 13, in the weld metal in which the weld metal component was controlled within the scope of the present invention, a weld metal excellent in toughness after SR could be obtained. Moreover, in addition to the component of a weld metal, in the weld metal (Invention Examples 10 to 13) which parameter (alpha) was also controlled by this invention range, the weld metal in which the toughness after SR further improved was able to be obtained.

本発明によれば、SR過程における溶接金属のPの粒界偏析および粒界への炭化物(VC、M236等)析出による粒界脆化を抑制でき、これにより引張強さ760MPa以上で、かつSR後の溶接金属靭性に優れた溶接金属を得ることができる。よって、本発明は、産業上の利用可能性が大きいものである。 According to the present invention, it is possible to suppress grain boundary segregation of P of the weld metal in the SR process and grain boundary embrittlement due to carbide (VC, M 23 C 6 etc.) precipitation to the grain boundary, and thereby a tensile strength of 760 MPa or more And, it is possible to obtain a weld metal excellent in weld metal toughness after SR. Thus, the present invention has great industrial applicability.

Claims (3)

UOE鋼管の溶接金属において、その化学成分が質量%で、
C :0.03〜0.10%、
Si:0.05〜0.30%、
Mn:1.00〜2.00%、
P :0.020%以下、
S :0.005%以下、
Ni:1.00〜2.00%、
Cr:0.50〜1.00%、
Mo:0.10〜1.00%、
Ti:0.005〜0.020%、
Al:0.005〜0.020%、
O :0.010〜0.030%、
V :0.005〜0.060%、
REM:0.005〜0.100%、
N :0.010%以下、および、
B :0.0007%以下
を含有し、残部がFe及び不可避的不純物からなり、
昇温速度:158℃/hr、保持温度・時間:620℃×4hr、冷却速度:190℃/hrでのSR後の、衝撃試験温度:−30℃でのシャルピー衝撃試験による吸収エネルギーが80J以上であることを特徴とするSR後の靭性に優れた溶接金属。
In the weld metal of UOE steel pipe, its chemical composition is in mass%,
C: 0.03 to 0.10%,
Si: 0.05 to 0.30%,
Mn: 1.00 to 2.00%,
P: 0.020% or less,
S: 0.005% or less,
Ni: 1.00 to 2.00%,
Cr: 0.50 to 1.00%,
Mo: 0.10 to 1.00%,
Ti: 0.005 to 0.020%,
Al: 0.005 to 0.020%,
O: 0.010 to 0.030%,
V: 0.005 to 0.060%,
REM: 0.005 to 0.100%,
N: 0.010% or less, and
B: containing 0.0007% or less, Ri Do from the balance Fe and unavoidable impurities,
Impact test temperature after SR at a temperature rise rate: 158 ° C / hr, holding temperature / time: 620 ° C × 4 hr, cooling rate: 190 ° C / hr Absorbed energy by Charpy impact test at -30 ° C is 80 J or more toughness excellent weld metal after SR, characterized in der Rukoto.
前記溶接金属が、さらに、質量%で、
Cu:0.40%以下、および、
Nb:0.06%以下
の少なくとも1種を含有することを特徴とする請求項1に記載のSR後の靭性に優れた溶接金属。
The above-mentioned weld metal is further in mass%,
Cu: 0.40% or less, and
The weld metal excellent in toughness after SR according to claim 1, containing Nb: at least one of 0.06% or less.
さらに、REM、O、Mo、Mn、および、Vの含有量が、下記(1)式を満たすことを特徴とする請求項1または2に記載のSR後の靭性に優れた溶接金属。
0.50<([REM]/[O])×([REM]−0.49×[O])
+1.75×[Mo]/[Mn]+4.24[V]<0.65 ・・・(1)
(式中の[REM]、[O]、[Mo]、[Mn]、[V]は溶接金属中の該元素の含有量(質量%)を意味する。)
Furthermore, content of REM, O, Mo, Mn, and V satisfy | fills the following (1) Formula, The weld metal excellent in the toughness after SR of Claim 1 or 2 characterized by the above-mentioned.
0.50 <([REM] / [O]) × ([REM] −0.49 × [O])
+ 1.75 × [Mo] / [Mn] +4.24 [V] <0.65 (1)
([REM], [O], [Mo], [Mn], [V] in the formulas mean the content (mass%) of the element in the weld metal)
JP2015029694A 2015-02-18 2015-02-18 Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics Expired - Fee Related JP6515324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029694A JP6515324B2 (en) 2015-02-18 2015-02-18 Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029694A JP6515324B2 (en) 2015-02-18 2015-02-18 Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics

Publications (2)

Publication Number Publication Date
JP2016151052A JP2016151052A (en) 2016-08-22
JP6515324B2 true JP6515324B2 (en) 2019-05-22

Family

ID=56696250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029694A Expired - Fee Related JP6515324B2 (en) 2015-02-18 2015-02-18 Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics

Country Status (1)

Country Link
JP (1) JP6515324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107419195A (en) * 2017-08-04 2017-12-01 杰森能源技术有限公司 A kind of deep well high pressure well high intensity high fatigue life coiled tubing and its manufacture method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269566A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP3339403B2 (en) * 1998-03-19 2002-10-28 住友金属工業株式会社 Method of manufacturing welded steel structure and welded steel structure
JP3764593B2 (en) * 1998-10-02 2006-04-12 新日本製鐵株式会社 High strength steel pipe with excellent toughness of weld heat affected zone
JP2001121289A (en) * 1999-10-21 2001-05-08 Nkk Corp High strength steel pipe excellent in sr resistance
JP2001158939A (en) * 1999-12-03 2001-06-12 Nkk Corp High strength and high toughness steel pipe excellent in resistance to stress relief annealing embrittlement
JP2001279391A (en) * 2000-03-30 2001-10-10 Sumitomo Metal Ind Ltd Ferritic heat resisting steel
JP4380037B2 (en) * 2000-08-17 2009-12-09 Jfeスチール株式会社 High strength high toughness welded steel pipe
JP4739978B2 (en) * 2006-02-20 2011-08-03 新日本製鐵株式会社 Steel pipe for heat treatment simplified high strength low alloy boiler and manufacturing method thereof
JP5217556B2 (en) * 2007-08-08 2013-06-19 Jfeスチール株式会社 High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4853575B2 (en) * 2009-02-06 2012-01-11 Jfeスチール株式会社 High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5314473B2 (en) * 2009-03-26 2013-10-16 株式会社神戸製鋼所 Weld metal with excellent strength and toughness after welding and after stress relief annealing, and welded structure joined by the weld metal
JP2013204103A (en) * 2012-03-29 2013-10-07 Jfe Steel Corp High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance

Also Published As

Publication number Publication date
JP2016151052A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP5671364B2 (en) Weld metal with excellent creep properties
JP4787062B2 (en) Weld metal with excellent toughness and SR cracking resistance
JP5751292B2 (en) Welded joint manufacturing method and welded joint
JP6191393B2 (en) Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
JP6211950B2 (en) Weld metal
WO2016088364A1 (en) Method for producing circumferential weld joint for low-carbon martensite stainless steel tubing
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP4876350B2 (en) Manufacturing method of high strength steel pipe joint for oil well
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
KR102088179B1 (en) Submerged Arc Welding Wire
JPH10324950A (en) High-strength welded steel structure, and its manufacture
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP6515324B2 (en) Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics
JP2017159350A (en) Weld metal, and weld structure including weld metal
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP2023504413A (en) Stainless steel welding wire used in LNG tank manufacturing
JP5670305B2 (en) Solid wire for gas shielded arc welding of high strength steel sheet
JP2005272900A (en) High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal
JP6832830B2 (en) Flux-filled wire for submerged arc welding and materials for submerged arc welding
WO2017038975A1 (en) Wire for submerged arc welding
JPS5970494A (en) Coated electrode for welding cr-mo steel
JP6483540B2 (en) Gas shielded arc welding wire
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6515324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees