JP4171169B2 - Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof - Google Patents

Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof Download PDF

Info

Publication number
JP4171169B2
JP4171169B2 JP2000310935A JP2000310935A JP4171169B2 JP 4171169 B2 JP4171169 B2 JP 4171169B2 JP 2000310935 A JP2000310935 A JP 2000310935A JP 2000310935 A JP2000310935 A JP 2000310935A JP 4171169 B2 JP4171169 B2 JP 4171169B2
Authority
JP
Japan
Prior art keywords
welding
weld metal
steel pipe
seam
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000310935A
Other languages
Japanese (ja)
Other versions
JP2002115032A (en
Inventor
卓也 原
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000310935A priority Critical patent/JP4171169B2/en
Publication of JP2002115032A publication Critical patent/JP2002115032A/en
Application granted granted Critical
Publication of JP4171169B2 publication Critical patent/JP4171169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス・原油輸送用ラインパイプとして広く使用でき、かつ高圧化・高効率輸送、小外径・低重量での高効率の現地施工が可能となる超高強度鋼管およびその製造方法に関し、特に耐低温割れ性に優れたシーム溶接部を有する引張強さ(TS)が900MPa以上の超高強度鋼管およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、原油・天然ガスの長距離輸送方法としてパイプラインの重要性がますます高まっている。現在、長距離輸送用の幹線ラインパイプとしては米国石油協会(API)規格X65が設計の基本になっており、実際の使用量も圧倒的に多い。
【0003】
しかし、(1)高圧化による輸送効率の向上、(2)ラインパイプの外径・重量の低減による現地施工能率の向上のため、より高強度ラインパイプが要望されている。これまでにX80(引張強さ620MPa以上)までのラインパイプの実用化がされているが、さらに高強度のラインパイプに対するニーズが強くなってきた。現在、超高強度ラインパイプ製造法の研究は、従来のX80ラインパイプの製造技術(たとえばNKK技報No.138(1992), pp24-31 およびThe 7th Offshore Mechanics and Arctic Engineering (1988), Volume V, pp179-185) を基本に検討されているが、これではせいぜい、X100(引張強さ760MPa以上)ラインパイプの製造が限界と考えられる。X100を越える超高強度ラインパイプについても、既に鋼板製造の研究は行われている(PCT/JP96/00155、00157)が、強度・低温靱性バランスを始めとして、溶接熱影響部(HAZ)および溶接金属の靱性、現地溶接性、継手軟化、バースト試験による管体破断が可能な溶接部特性などの多くの問題を抱えており、これらを克服した超高強度(X100超)ラインパイプの製造技術の早期開発が要望されている。
【0004】
一方、HT80、HT100クラスの高張力鋼管のシーム溶接効率を向上する目的で、シーム溶接を従来の小入熱の多層溶接から大入熱による両面1パス溶接で行う方法が検討されている。しかしながら、このような超高強度鋼管のシーム溶接を大入熱1パス溶接する場合には、溶接金属の低温割れが発生しやすくなり、従来、このような低温割れを防止するために、溶接部の予熱あるいは後熱処理を行わざるを得なかった(溶接学会誌49(1980)p.572)。
【0005】
実際の超高強度ラインパイプ製造ラインのシーム溶接時にこのような予熱あるいは後熱処理を適用すると、その装置のために多大な費用がかかるだけではく、予熱、後熱のための処理時間を考慮すると必ずしも生産性向上のための抜本的解決策とは言えなかった。
【0006】
【発明が解決しようとする課題】
上記従来技術の問題点を鑑みて、本発明は、引張強さ900MPa以上(API規格X100超)の超高強度ラインパイプの製造方法において、大入熱での両面1パスシーム溶接を行う際に、溶接金属の低温割れがない超高強度鋼管および溶接金属の低温割れを防止できる超高強度鋼管の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記の課題を解決するものであり、その要旨とするところは、以下の通りである。
(1)シーム溶接部の溶接金属において、本シーム溶接で形成される内面および外面本溶接金属の成分が、質量%で、C:0.04〜0.14%、Si:0.05〜1%、Mn:1.2〜2.2%、P:≦0.01%、S:≦0.01%、Ni:1.3〜6%、Ti:0.018〜0.05%、Al:≦0.010%、B:≦0.005%を含有し、さらに、CrおよびMoの2種を合計量で1〜2.5%含有し、あるいはCr、MoおよびVの3種を合計量で1〜2.5%含有し、残部が鉄および不可避的不純物からなり、前記内面および外面本溶接金属の内の少なくとも内面本溶接金属の組織中に残留オーステナイト相を1%以上含有することを特徴とする耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管。
)前記溶接金属のベイナイト・マルテンサイト分率が50%以上であることを特徴とする上記(1)に記載の耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管。
)前記溶接金属の引張り強度が900MPa以上であることを特徴とする上記(1)または2)に記載の耐低温割れ性に優れたシーム溶接部を有する超高強度鋼
管。
)質量%で、C:0.03〜0.1%、Si:≦0.6%、Mn:1.7〜2.5%、P:≦0.015%、S:≦0.003%、Ni:0.1〜1%、Mo:0.15〜0.6%、Nb:0.01〜0.1%、Ti:0.005〜0.03%、Al:≦0.0134%、N:0.001〜0.006%、Mg:≦0.006%を含有し、さらに、B:≦0.005%、V:≦0.1%、Cu:≦1%、Cr:≦0.8%、Ca:≦0.01%、およびREM:≦0.02%の内の1種または2種以上を含有し、残部が鉄および不可避的不純物からなる鋼板をUO工程で管状に成形し、開先加工が施された鋼板端部を突き合わせた後、その突き合わせ開先部を、仮付け溶接を行った後、質量%で、C:0.01〜0.12%、Si:≦0.3%、Mn:1.2〜2.4%、Ni:4〜8.5%、Cr、MoおよびVの内の1種または2種以上の合計量:3〜5%、Ti:0.060〜0.15%を含有し、Al:≦0.033%に規制し、残部が鉄および不可避的不純物からなる溶接ワイヤ−と焼成型フラックスもしくは溶融型フラックスを用いて内面側および外面側からサブマージアーク溶接により本溶接を行い、その後、拡管を行うことを特徴とする耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管の製造方法。
【0008】
【発明の実施の形態】
以下、本発明の内容について詳細に説明する。
本発明が目的とする900MPa以上の引張強さ(TS)を有する耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管において、この強度レベルの超高強度鋼管では、従来の主流であるX65と較べて約2倍の圧力に耐えるため、同じサイズで約2倍のガスを輸送することが可能になる。一方、X65を用いて上記超高強度ラインパイプと同等なガス輸送効率を達成する場合は、圧力を高めるために肉厚を厚くする必要があり、材料費、輸送費、現地溶接施工費が高くなってパイプライン敷設費が大幅に上昇する。これが900MPa以上の引張強さ(TS)を有する超高強度ラインパイプが必要とされる理由であるが、このような超高強度ラインパイプでは、極端に鋼管の製造が困難になる。
【0009】
特に、鋼管の製造時のシーム溶接において発生する溶接金属の低温割れは、溶接金属の強度およびシーム溶接時の入熱量に依存してその発生頻度が高くなる傾向がある。溶接金属の強度低下は、母材との強度バランスを確保するために限界があり、シーム溶接時の入熱量低下(小入熱多層盛溶接化)は、生産性低下の問題がある。したがって、従来、超高強度鋼管のシーム溶接を大入熱両面1パス溶接で行う場合には、溶接部の予熱、後熱処理によって溶接金属の低温割れを防止していた。
【0010】
本発明者らは、引張強さが900MPa以上の超高強度鋼管の製造時の大入熱両面1パスシーム溶接において、従来の溶接部の予熱、後熱処理を行わずとも溶接金属の低温割れを防止できる生産性に優れた超高強度鋼管の製造方法を実験等により鋭意検討した。
図1に超高強度鋼管のシーム溶接部を示す。通常の鋼管製造時のシーム溶接は、管状に成形した鋼板両端部を付き合わせた後、付き合わせ部を最初に外面からMAGアーク溶接等で仮付け溶接を行い、その後、その仮付け溶接部をさらに内面、次ぎに外面からサブマージドアーク溶接等で本溶接を行う。通常、図1に示すように仮付け溶接時に形成された仮付け溶接金属部4と重複するように、内面から本溶接を行って内面本溶接金属部2を形成し、この内面本溶接金属部2と重複すし、かつ仮付け溶接金属部4を溶融するように、外面から本溶接を行って外面溶接金属部1を形成する。
【0011】
発明者らは、種々の溶接条件にてシーム溶接を行って、その溶接金属の組織と耐低温割れ性との関係を詳細に検討した。その結果、超高強度の溶接金属の低温割れは、図1に示される外面からの本溶接後の内面本溶接金属2中で生じ、この内面本溶接金属2の組織中に残留オーステナイト相が多く存在した場合に、耐低温割れ性が良好となり、特に残留オーステナイト相の含有量が1%以上でその効果は顕著に発揮されることを見いだした。
【0012】
これは、この内面本溶接金属2中に残留オーステナイトが多く存在すると、溶接金属中の水素がトラップされ、見かけの水素の拡散定数が下がり、溶接金属の低温割れが生じない許容限界水素量が増加するためと考えられる。
本発明は、これらの知見をもとになされたものであり、シーム溶接部中の本溶接時に形成される内面本溶接金属および外面本溶接金属の内の少なくとも内面本溶接金属の組織中に残留オーステナイト相を1%以上含有することを特徴とする耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管である。
【0013】
本発明では、内面本溶接金属および外面本溶接金属の内の少なくとも内面本溶接金属の組織中に残留オーステナイト相を1%以上含有する必要があるが、これは、残留オーステナイト相を1%未満になると、溶接金属中の水素トラップによる低温割れが生じない許容限界水素量を増加させる効果が充分発揮されず、引張強さ(TS):900MPa以上の超高強度の溶接金属の低温割れを防止することができなくなるためである。
【0014】
また、溶接金属の引張り強度を900MPa以上とするためには、溶接金属のベイナイト・マルテンサイト組織においてベイナイト・マルテンサイト分率が50%以上とすることが必要がある。
また、本発明では、溶接金属の成分を以下のように規定する。
なお、以下に示す%は、特に説明がない限りは質量%を意味する。
【0015】
C量は0.04〜0.14%に限定する。Cは鋼の強度向上に極めて有効であり、マルテンサイト組織において目標とする強度を得るためには、最低0.04%は必要である。しかし、C量が多すぎると溶接低温割れが発生しやすくなり、現地溶接部とシーム溶接が交わるいわゆるTクロス部のHAZ最高硬さの上昇を招くので、その上限を0.14%とした。さらに、望ましくは、上限値は0.1%がよい。
【0016】
Siは低温割れを抑制するための残留オーステナイトを形成させるために0.05%以上は必要であるが、含有量が多いと低温靱性を著しく劣化させ、内外面本溶接の低温靱性を確保するために上限を1%とした。
Mnは優れた強度・低温靱性のバランスを確保する上で不可欠な元素であり、また、Mn含有硫化物の介在物を生成し、それを核として粒内ベイナイトを生成させて溶接金属の低温靱性を向上させる。特に粒内に陽イオン空孔型のTi含有酸化物が存在すると、そのTi含有酸化物の周囲にMn含有硫化物が析出し、粒内のMn含有硫化物の生成を促進し、粒内ベイナイトが生成が促進される。また、Mnは本発明の目的とする低温割れを抑制するための残留オーステナイトを形成するためにも必要な成分である。これらの効果を得るために、その添加量の下限を1.2%とする。しかし、Mnが多すぎると偏析が助長され低温靱性を劣化させるだけでなく、溶接材料の製造も困難になるので上限を2.2%とした。
【0017】
P、Sは、溶接金属の低温靭性の劣化、低温割れ感受性の低減のために、その含有量は低くすることが好ましく、それぞれの上限量を0.010%と規定した。
Niは、焼入れ性を高めて強度を確保し、さらには、低温靱性向上させ、かつ低温割れを抑制するための残留オーステナイトを形成させるために必要である。1.3%以下では目標の強度・低温靭性を得ることが難しいため、下限を1.3%とする。一方、含有量が多すぎると高温割れの危険があるため上限は6%とした。
【0018】
Cr、Mo、Vは、いずれも焼入れ性を高め、高強度を得るために必要な元素であり、CrおよびMoの2種を合計量で1〜2.5%の範囲で添加するか、あるいはCr、MoおよびVの3種を合計量で1〜2.5%の範囲で添加する。その含有量の合計量が1%未満では効果が十分でなく、一方、過度に多量添加すると低温割れの危険が増すため上限を2.5%とした。Bは微量で焼入れ性を高め、溶接金属の低温靭性向上に有効な元素であるが、含有量が多すぎると却って低温靭性が低下するので含有範囲を0.005%以下とした。
【0019】
Alは、脱酸成分として知られ、Al23等の酸化物を生成するが、その酸化物は、陰イオン空孔型酸化物であり、MnS等のMn含有硫化物との結合性が悪いため、粒内でのMn含有硫化物の生成を阻害しないために極力低くすることが好ましい。そのために、本発明では、その含有量の上限を0.02%に規定する。なお、溶接金属のAl量の上限は、本発明の実施例の表4の実施No.1のAl量の0.010%に基づいて、0.010%以下とする。
【0020】
Tiは、粒内ベイナイトを生成させるTi含有酸化物やこの酸化物とMn含有硫化物の複合粒子の介在物を生成させるために必須な成分であり、粒内にこれらの介在物を核として粒内ベイナイトを生成させて溶接金属の低温靱性を向上させる。これらの効果を得るためにその含有量の下限は0.003%とする。また、Tiが過度に多すぎるとTi炭化物が多く生成し、低温靱性を劣化させるので上限を0.05%にした。なお、溶接金属のTi量の下限は、本発明の実施例の表4の実施No.2のTi量の0.018%に基づいて、0.018%以上とする。
【0021】
また、本発明では、上記成分の他に、溶接時の精錬・凝固を良好に行わせるために必要に応じて、さらに、溶接金属中にZr、Nb、Mg等の元素を含有させても良い。なお、溶接金属に含まれる酸素量は、20ppm以上であることが好ましい。
次に本発明の超高強度鋼管の製造方法について、以下に説明する。
【0022】
本発明の超高強度鋼管は、鋼板をU形次いでO形に成形するUO工程で管状に成形した後、この突き合わせ部をアーク溶接にて仮付けシーム溶接後、内外面から大入熱で1パスのサブマージドアーク溶接により本シーム溶接を行い、その後、拡管して真円度を高める鋼管の製造方法にて効率良く製造することができる。このようなサブマージドアーク溶接による本シーム溶接は、溶接効率に優れるが、母材の希釈率が大きいため、所望の溶接金属組成および特性を得るためには、母材からの成分希釈を考慮して溶接材料を選択する必要がある。また、本シーム溶接の前に行う仮付けシーム溶接は、本シーム溶接に比べてその溶接面積が少なく溶接金属部の品質への影響が小さい。したがって、本発明においては、本シーム溶接に用いる溶接ワイヤーの成分は規定する必要があるが、仮付けシーム溶接に用いる溶接ワイヤーの成分は特に規定する必要はない。
【0023】
以下に、本発明の鋼管製造時の本シーム溶接に用いる溶接ワイヤーの化学組成の限定理由を述べる。なお、以下に示す%は、特に説明がない限りは、質量%を示すものとする。
Cは、溶接金属で必要とされるC量の範囲を得るために、母材成分による希釈および雰囲気からCの混入を考慮して0.01〜0.12%とした。
【0024】
Siは、溶接金属で必要とされるSi量の範囲を得るために、母材成分による希釈を考慮して0.3%以下とした。
Mnは、溶接金属で必要とされるMn量の範囲を得るために、母材成分による希釈を考慮して1.2%〜2.4%とした。
Niは、溶接金属で必要とされるNi量の範囲を得るために、母材成分による希釈を考慮して4%〜8.5%とした。
【0025】
Cr、Mo、Vは、これらの成分のうちの1種又は2種以上の合計量が溶接金属で必要とされる含有量の範囲を得るために、母材成分による希釈を考慮して3〜5%とした。Tiは溶接金属で必要とされるTi量の範囲を得るために、母材成分による希釈を考慮して0.005〜0.15%とした。なお、溶接ワイヤのTi量の下限は、本発明の実施例の表3の実施No.2のTi量の0.060%に基づいて、0.060%以上とする。
【0026】
また、P、S、Alは、不可避的不純物成分であり、本発明では、溶接金属の低温靱性の劣化を抑制するために、極力少ない方が望ましく、PおよびSはそれぞれ0.01%以下とし、Alは、0.02%以下に規制することが好ましい。なお、溶接ワイヤのAl量は、本発明の実施例の表3の実施No.1のAl量の0.033%に基づいて、0.033%以下に規制する。また、溶接ワイヤ中のB含有量は、本発明では、特に規定する必要はないが、焼き入れ性成分として、強度調整の必要に応じて添加しても良い。
【0027】
また、溶接ワイヤ中に脱酸材として、Zr、Nb、Mg等添加させても良い。なお、本発明では、仮付けシーム溶接及び本シーム溶接を単極だけでなく、複数電極を用いて溶接することも可能である。溶接効率を考慮すると、とくに本シーム溶接は、複数電極でのガスシールドアーク溶接またはサブマージアーク溶接が好ましい。複数電極での溶接の場合は各種ワイヤーの組み合わせが可能であり、個々のワイヤーが上記成分範囲にある必要はなく、それぞれのワイヤー成分と消費量からの平均組成が上記成分範囲にあれば良い。
【0028】
また、本発明の鋼管製造時のサブマージアーク溶接による本シーム溶接に使用される充填フラックスは、焼成型フラックスと溶融型フラックスに大別される。焼成型フラックスは合金材添加が可能で拡散性水素量が低い利点があるが、粉化しやすく繰り返し使用が難しい欠点がある。一方、溶融型フラックスはガラス粉状で、粒強度が高く、吸湿しにくい利点があり、拡散性水素がやや高い欠点がある。本願発明の目的である超高強度の溶接金属の低温割れ低減の点からは、焼成型フラックスがより望ましいが、コストが高いという問題がある。一方、溶融型フラックスは回収して繰り返し使用が可能であり、大量生産に向きコストが低いが、工業的に対処可能な範囲ではあるが厳密な品質管理が必要である点で問題がある。したがって、本発明では、特にフラックスの種類を限定する必要はなくどちらでも使用可能である。
【0029】
次ぎに本発明の鋼管製造時に用いられる鋼板成分の限定理由を述べる。
C量は、0.03〜0.1%に限定する。Cは、鋼の強度向上に極めて有効であり、マルテンサイト組織において目標とする強度を得るためには、最低0.03%は必要である。しかし、C量が多すぎると母材、HAZの低温靱性や現地溶接性の著しい劣化を招くので、その上限を0.1%とした。さらに、望ましくは上限値は0.07%が好ましい。
【0030】
Siは、脱酸や強度向上のために添加する元素であるが、多く添加するとHAZ靱性、現地溶接性を著しく劣化させるので、上限を0.6%とした。鋼の脱酸はAlでもTiでも十分可能であり、Siは必ずしも添加する必要はない。
Mnは、本発明鋼のミクロ組織をマルテンサイト主体の組織とし、優れた強度・低温靱性のバランスを確保する上で不可欠な元素であり、その下限は1.7%である。しかし、Mnが多すぎると鋼の焼入れ性が増してHAZ靱性、現地溶接性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、母材の低温靱性をも劣化させるので上限を2.5%とした。
【0031】
Niを添加する目的は低炭素の本発明鋼を低温靱性や現地溶接性を劣化させることなく向上させるためである。Ni添加はMnやCr、Mo添加に比較して圧延組織(とくに連続鋳造鋼片の中心偏析帯)中に低温靱性に有害な硬化組織を形成することが少ないばかりか、0.1%以上の微量Ni添加がHAZ靱性の改善にも有効であることが判明した(HAZ靱性上、とくに有効なNi添加量は0.3%以上である)。しかし、添加量が多すぎると、経済性だけでなく、HAZ靱性や現地溶接性を劣化させるので、その上限を1%とした。また、Ni添加は連続鋳造時、熱間圧延時におけるCu割れの防止にも有効である。この場合、NiはCu量の1/3以上添加する必要がある。
【0032】
Moは、鋼板の焼入れ性を向上させ、目的とするマルテンサイト主体の組織を得るために、0.15%以上添加する。特にB添加鋼においてはMoの焼入れ性向上効果が高まり、また、MoはNbと共存させることにより制御圧延時にオーステナイトの再結晶を抑制し、オーステナイト組織の微細化にも効果がある。しかし、過剰に添加すると、HAZ靱性や現地溶接性を劣化させ、さらにBの焼入れ性向上効果を低減させるため、その上限を0.6%とする。
【0033】
Nbは、上記のMoと共存させることにより制御圧延時にオーステナイトの再結晶を抑制して組織を微細化するだけでなく、析出硬化や焼入れ性増大にも寄与し、鋼を強靱化する。特にNbとBが共存すると焼入れ性向上効果が相乗的に高まる。これらの効果を得るために本発明では、Nbを0.01%以上添加する。しかし、Nb添加量が多すぎると、HAZ靱性や現地溶接性に悪影響をもたらすので、その上限を0.1%とした。
【0034】
Tiは、鋼中で微細なTiNを形成し、スラブ再加熱時およびHAZのオーステナイト粒の粗大化を抑制してミクロ組織を微細化し、母材およびHAZの低温靱性を改善する。また、Bの焼入れ性向上効果に有害な固溶NをTiNとして固定する役割も有する。この目的のために、Ti量は3.4N(各々重量%)以上添加することが望ましい。また、Al量が少ない時(たとえば0.005%以下)、Tiは酸化物を形成し、HAZにおいて粒内フェライト生成核として作用し、HAZ組織を微細化する効果も有する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多すぎると、TiNの粗大化やTiCによる析出硬化が生じ、低温靱性を劣化させるので、その上限を0.030%に限定した。
【0035】
P、Sは、不可避的不純物元素であり、本発明では、母材およびHAZの低温靱性をより一層向上させるために、P、Sの含有量をそれぞれ0.015%、0.003%以下に規制する。P含有量の低減は連続鋳造スラブの中心偏析を軽減するとともに、粒界破壊を防止して低温靱性を向上させる。また、S含有量の低減は熱間圧延で延伸化するMnSを低減して延靱性を向上させる効果がある。
Alは、通常脱酸材として鋼に含まれる元素で、組織の微細化にも効果を有する。しかし、Al量が0.06%を越えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.06%とした。なお、鋼板のAl量の上限は、本発明の実施例の表1の実施No.9のAl量の0.0134%に基づいて、0.0134%以下とする。
Nは、TiNを形成しスラブ再加熱時およびHAZのオーステナイト粒の粗大化を抑制して母材、HAZの低温靱性を向上させる。このために必要な最小量は0.001%である。しかし、N量が多すぎるとスラブ表面疵や固溶NによるHAZ靱性の劣化、Bの焼入れ性向上効果の低下の原因となるので、その上限は0.006%に抑える必要がある。
Mgは、微細分散した酸化物を形成し、溶接熱影響部の粒粗大化を抑制して低温靭性を向上させる。0.006%を超えて添加すると、粗大酸化物を生成し逆に靭性を劣化させるために、その含有量の上限を0.006%とする。
【0036】
以上が本発明で使用する鋼板の基本成分であるが、さらに、選択的に以下のような成分を以下の範囲で添加する。
【0037】
Bは、極微量で鋼の焼入れ性を飛躍的に高め、目的とするマルテンサイト主体の組織を得るために、非常に有効な元素である。さらに、BはMoの焼入れ性向上効果を高めると共に、Nbと共存して相乗的に焼入れ性を増す。一方、過剰に添加すると、低温靱性を劣化させるだけでなく、かえってBの焼入れ性向上効果を消失せしめることもあるので、その上限を0.005%とした。
【0039】
V、Cu、Cr、Ca、REMは、本発明鋼の優れた特徴を損なうことなく、強度・靱性の一層の向上や製造可能な鋼材サイズの拡大をはかるため以下のように適量添加することが可能である。
Vは、Nbとほぼ同様の効果を有するが、その効果はNbに比較して弱い。しかし、超高強度鋼におけるV添加の効果は大きく、NbとVの複合添加は本発明鋼の優れた特徴をさらに顕著なものとする。上限はHAZ靱性、現地溶接性の点から0.1%まで許容できるが、特に0.03〜0.08%の添加が望ましい範囲である。
【0040】
Cuは、母材、溶接部の強度を増加させるが、多すぎるとHAZ靱性や現地溶接性を著しく劣化させる。このためCu量の上限は1%である。
Crは、母材、溶接部の強度を増加させるが、多すぎるとHAZ靱性や現地溶接性を著しく劣化させる。このためCr量の上限は0.8%である。
CaおよびREMは、硫化物(MnS)の形態を制御し、低温靱性を向上(シャルピー試験の吸収エネルギーの増加など)させる。Ca含有量が0.01%、REM含有量が0.02%を越えてると、CaO−CaSまたはREM−CaSが大量に生成して大型クラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響をおよぼす。このためCa添加量の上限を0.01%またはREM添加量の条件を0.02%に制限した。
【0041】
なお、超高強度ラインパイプでは、S、O量をそれぞれ0.001%、0.002%以下に低減し、以下に示すMnSのクラスターの形状を制御するための指標であるESSP(Effestive Sulphide Shape Controlling Parameter)が0.5≦ESSP≦10.0を満足するようにCa、S、Oを調整することがとくに有効である。
ESSP=(Ca)〔1−124(O)〕/1.25S ・ ・ ・(1)
上記のESSPが0.5未満になるとCaO−CaSが大量の生成して粗大なクラスター、粗大介在物となり溶接割れ等の溶接性を悪化させ、上記ESSPが10.0を越えると、MnSの形状制御の効果がなくなるため、ESSPを0.5〜10.0に規定する。
【0042】
上の個々の添加元素の限定に加えて、強度・靱性バランスを達成するために、さらに以下に示す焼き入れ性指標であるP値を1.9≦P≦4.0に制限することが望ましい。なお、P値が高くなるほど強度は大きくなり、金属組織がベイナイト・マルテンサイト組織になりやすいことを示す。
P=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+(1+β)Mo−1+β ・ ・ ・ (2)
但し、B≧3ppmではβ=1、B<3ppmではβ=0とする。
【0043】
P値を上記のように制限する理由は、目的とする強度・低温靱性バランスを達成するためである。P値の下限を1.9としたのは900MPa以上の強度と優れた低温靱性を得るためである。また、P値の上限を4.0としたのは優れたHAZ靱性、現地溶接性を維持するためである。
また、本発明の超高強度鋼管用の鋼板(母材)は、引張強さを900MPa以上とするために、鋼板組織をマルテンサイト・ベイナイト等の低温変態組織主体のミクロ組織とする必要がある。このために、上記成分を規定した鋼を鋳造後、熱間加工し、その後急冷したり、場合によっては焼戻しを行って製造され、鋼板組織は、フェライト組織を抑制し、マルテンサイト・ベイナイト等の低温変態組織主体のミクロ組織にする必要がある。
【0044】
【実施例】
次に、本発明の実施例について述べる。
300トン転炉で表1に示す化学成分の超高強度鋼管用鋼を溶製後、連続鋳造鋼片とし、その後1100℃加熱後800〜900℃での累積圧下量が80%の仕上げ圧延を行い、その後、800℃から200℃までを水冷して900MPa以上の引張り強度を有する16mmの鋼板を作製した。この鋼板を用いて、UO工場で管状に成形し、80%Ar+20%CO2のシールドガスでMAGアーク溶接を用いて仮付け溶接後、表2に示す種々の成分の溶接ワイヤ−およびフラックスを用いて、3電極、1.75m/分、入熱量2.2KJ/mmの溶接条件で内外面から各1パスのサブマージドアーク溶接を行い、その後1%の拡管を行った。表3に得られた鋼管の溶接部の溶接金属の化学成分、組織および特性を示す。表3において、比較例No.15〜22は、本シーム溶接時に用いたワイヤの化学成分、溶接金属の組織および化学成分が本発明範囲外であり、本発明の溶接金属の低温靱性(−20℃でのシャルピー吸収エネルギーが80J以上)を満足していないか、もしくは溶接時に低温割れが生じている例である。
【0045】
No.15、17、19、21は、ワイヤ成分が本発明の範囲を外れているために溶接金属中のC、Mn、Si、Ni含有量がそれぞれ本発明範囲より低くなり、溶接金属強度はTSで900MPa以上を満足しているが、内面本溶接金属中の残留オーステナイトが1%未満と少なすぎるために、溶接金属の低温割れが発生した。
【0046】
No.16、18、20、22は、ワイヤ成分が本発明の範囲を外れているために溶接金属中のC、Mn、Si、Ni含有量がそれぞれ本発明範囲より大幅に高くなり、溶接金属の低温靱性が著しく低下し、溶接金属に低温割れあるいは高温割れが生じた。一方、本発明例であるNo.1〜9、11、13、14では、鋼板およびワイヤ成分が本発明の範囲内であり溶接金属中の成分および組織も本発明範囲であるため、溶接金属の引張り強度、低温靱性の機械特性が良好であり、かつ溶接金属の低温割れも発生しなかった。
【0047】
【表1】

Figure 0004171169
【0048】
【表2】
Figure 0004171169
【0049】
【表3】
Figure 0004171169
【0050】
【表4】
Figure 0004171169
【0051】
【表5】
Figure 0004171169
【0052】
【発明の効果】
本発明によれば、引張強さ900MPa以上(API規格X100超)の超高強度鋼管製造時の大入熱での内外面1パスシーム溶接を行う際に、従来のような溶接部の予熱、後熱処理を行わずに溶接金属の低温割れを防止することができ、強度・低温靱性に優れた超高強度鋼管を高生産性かつ低コストで製造できる。
【図面の簡単な説明】
【図1】鋼管シーム溶接部の溶接金属を示す図である。
【符号の説明】
1…外面本溶接金属
2…内面本溶接金属
3…鋼管母材
4…仮付け溶接金属[0001]
BACKGROUND OF THE INVENTION
The present invention is an ultra-high-strength steel pipe that can be used widely as a line pipe for transporting natural gas and crude oil, and that enables high-pressure, high-efficiency transport, and high-efficiency local construction with a small outer diameter and low weight, and a method for manufacturing the same In particular, the present invention relates to an ultra-high strength steel pipe having a seam welded portion excellent in cold cracking resistance and having a tensile strength (TS) of 900 MPa or more and a method for producing the same.
[0002]
[Prior art]
In recent years, pipelines have become increasingly important as long-distance transportation methods for crude oil and natural gas. Currently, the American Petroleum Institute (API) standard X65 is the basic design for trunk line pipes for long-distance transportation, and the actual usage is overwhelmingly large.
[0003]
However, in order to (1) improve transportation efficiency by increasing pressure and (2) improve local construction efficiency by reducing the outer diameter and weight of the line pipe, a higher strength line pipe is required. Up to now, line pipes up to X80 (tensile strength of 620 MPa or more) have been put into practical use, but the need for higher-strength line pipes has become stronger. Currently, research on ultra-high-strength line pipe manufacturing methods is based on conventional X80 line pipe manufacturing techniques (eg NKK Technical Report No. 138 (1992), pp24-31 and The 7th Offshore Mechanics and Arctic Engineering (1988), Volume V , pp. 179-185), but it is considered that the production of X100 (tensile strength of 760 MPa or more) line pipe is the limit. For ultra-high-strength line pipes exceeding X100, steel plate production has already been studied (PCT / JP96 / 00155, 00157), but the balance between strength and low-temperature toughness, welding heat affected zone (HAZ) and welding We have many problems such as metal toughness, on-site weldability, joint softening, weld properties that can break the pipe by burst test, etc. Early development is desired.
[0004]
On the other hand, in order to improve the seam welding efficiency of HT80 and HT100 class high-tensile steel pipes, a method of performing seam welding by double-sided one-pass welding with large heat input from conventional multi-layer welding with small heat input has been studied. However, when seam welding of such an ultra-high strength steel pipe is performed with one pass of high heat input, cold cracking of the weld metal is likely to occur. Conventionally, in order to prevent such cold cracking, It was necessary to preheat or postheat the steel (Journal of the Japan Welding Society 49 (1980) p.572).
[0005]
If such preheating or post heat treatment is applied during seam welding in an actual ultra high strength line pipe production line, it will not only cost a lot for the equipment, but also considering the processing time for preheating and postheating. It was not necessarily a fundamental solution for improving productivity.
[0006]
[Problems to be solved by the invention]
In view of the problems of the above prior art, the present invention provides a method for producing an ultra-high-strength line pipe having a tensile strength of 900 MPa or more (API standard X100 or more) when performing double-sided one-pass seam welding with large heat input. It is an object of the present invention to provide an ultra-high strength steel pipe free from cold cracking of weld metal and a method for producing an ultra-high strength steel pipe capable of preventing cold cracking of weld metal.
[0007]
[Means for Solving the Problems]
  This invention solves said subject and the place made into the summary is as follows.
(1) In the weld metal of the seam welded portion, the components of the inner and outer surfaces of the weld metal formed by the seam welding are mass%, C: 0.04 to 0.14%, Si: 0.05 to 1. %, Mn: 1.2-2.2%, P: ≦ 0.01%, S: ≦ 0.01%, Ni: 1.3-6%, Ti:0.018~ 0.05%, Al: ≦0.010%, B: ≦ 0.005%In addition, 2 types of Cr and Mo are contained in a total amount of 1 to 2.5%, or 3 types of Cr, Mo and V are contained in a total amount of 1 to 2.5%, with the balance being iron. And a seam weld having excellent low-temperature cracking resistance, comprising at least 1% of the retained austenite phase in the structure of at least the inner surface of the inner and outer surface of the weld metal, the inevitable impurities. Having ultra high strength steel pipe.
(2The above-mentioned (1), wherein the weld metal has a bainite martensite fraction of 50% or more.)An ultra-high-strength steel pipe having a seam welded portion having excellent cold cracking resistance as described.
(3(1) The tensile strength of the weld metal is 900 MPa or more.Or(2)Ultra high strength steel with seam welds with excellent cold crack resistance
tube.
(4)% By mass, C: 0.03-0.1%, Si: ≦ 0.6%, Mn: 1.7-2.5%, P: ≦ 0.015%, S: ≦ 0.003% Ni: 0.1-1%, Mo: 0.15-0.6%, Nb: 0.01-0.1%, Ti: 0.005-0.03%, Al: ≦0.0134%N: 0.001 to 0.006%, Mg: ≦ 0.006%, B: ≦ 0.005%, V: ≦ 0.1%, Cu: ≦ 1%, Cr: ≦ A steel plate containing one or more of 0.8%, Ca: ≦ 0.01%, and REM: ≦ 0.02%, the balance being iron and unavoidable impurities is formed into a tubular shape in the UO process After shaping | molding and butting | matching the steel plate edge part to which the groove processing was given, after performing the tack welding of the butted groove part, C: 0.01-0.12%, Si: ≦ 0.3%, Mn: 1.2 to 2.4%, Ni: 4 to 8.5%, total amount of one or more of Cr, Mo and V: 3 to 5%, Ti :0.060Containing ~ 0.15%,Al: ≦ 0.033%,Low temperature resistance characterized in that main welding is performed by submerged arc welding from the inner surface and outer surface using a welding wire consisting of iron and inevitable impurities and the firing-type flux or fusion-type flux, and then tube expansion is performed. A method for producing an ultra-high-strength steel pipe having a seam welded portion with excellent crackability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the contents of the present invention will be described in detail.
The ultra-high strength steel pipe having a seam welded portion having a tensile strength (TS) of 900 MPa or more and excellent in low-temperature cracking resistance, which is an object of the present invention. Because it withstands about twice the pressure compared to X65, it can transport about twice as much gas at the same size. On the other hand, when using X65 to achieve the same gas transport efficiency as the above ultra-high-strength line pipe, it is necessary to increase the wall thickness in order to increase the pressure, resulting in high material costs, transport costs, and local welding costs. As a result, the pipeline laying costs will rise significantly. This is the reason why an ultra-high-strength line pipe having a tensile strength (TS) of 900 MPa or more is required, but with such an ultra-high-strength line pipe, it is extremely difficult to manufacture a steel pipe.
[0009]
In particular, the low-temperature cracking of weld metal that occurs in seam welding during the manufacture of steel pipes tends to occur more frequently depending on the strength of the weld metal and the amount of heat input during seam welding. The decrease in the strength of the weld metal has a limit in order to ensure the strength balance with the base metal, and the decrease in the heat input during seam welding (small heat input multi-layer welding) has the problem of a decrease in productivity. Therefore, conventionally, when performing seam welding of an ultra-high strength steel pipe by high heat input double-sided one-pass welding, cold cracking of the weld metal has been prevented by preheating and post heat treatment of the welded portion.
[0010]
The present inventors prevent cold cracking of weld metal without performing preheating and post heat treatment of conventional welds in large heat input double pass 1-pass seam welding when manufacturing ultra-high strength steel pipes with a tensile strength of 900 MPa or more. The production method of the super high strength steel pipe with excellent productivity was studied by experiments.
FIG. 1 shows a seam weld of an ultra high strength steel pipe. In seam welding at the time of normal steel pipe manufacturing, after attaching both ends of a steel plate formed into a tubular shape, the attachment portion is first tack welded from the outer surface by MAG arc welding or the like, and then the tack welded portion is attached. Further, main welding is performed from the inner surface and then from the outer surface by submerged arc welding or the like. Usually, as shown in FIG. 1, the inner surface main weld metal part 2 is formed by performing main welding from the inner surface so as to overlap with the tack weld metal part 4 formed at the time of tack welding. The outer surface weld metal portion 1 is formed by performing main welding from the outer surface so as to overlap with 2 and melt the tack weld metal portion 4.
[0011]
The inventors conducted seam welding under various welding conditions and examined in detail the relationship between the structure of the weld metal and the cold cracking resistance. As a result, the low-temperature cracking of the ultra-high-strength weld metal occurs in the inner surface main weld metal 2 after the main welding from the outer surface shown in FIG. 1, and there are many residual austenite phases in the structure of the inner surface main welding metal 2. When present, it has been found that the low temperature cracking resistance is good, and that the effect is remarkably exhibited especially when the content of the retained austenite phase is 1% or more.
[0012]
This is because if there is a lot of retained austenite in the inner surface of the main weld metal 2, hydrogen in the weld metal is trapped, the apparent hydrogen diffusion constant decreases, and the allowable limit hydrogen amount that does not cause cold cracking of the weld metal increases. It is thought to do.
The present invention has been made based on these findings, and remains in the structure of at least the inner surface main weld metal and the inner surface main weld metal formed during the main welding in the seam weld. An ultrahigh strength steel pipe having a seam welded portion excellent in cold cracking resistance, characterized by containing 1% or more of an austenite phase.
[0013]
In the present invention, it is necessary that at least 1% of the retained austenite phase is contained in the structure of at least the inner surface main weld metal of the inner surface main weld metal and the outer surface main weld metal. This means that the residual austenite phase is less than 1%. Then, the effect of increasing the allowable limit hydrogen amount that does not cause low temperature cracking due to hydrogen trap in the weld metal is not sufficiently exerted, and the tensile strength (TS): preventing low temperature cracking of the super high strength weld metal of 900 MPa or more. It is because it becomes impossible.
[0014]
In order to make the tensile strength of the weld metal 900 MPa or more, the bainite / martensite fraction needs to be 50% or more in the bainite / martensite structure of the weld metal.
Moreover, in this invention, the component of a weld metal is prescribed | regulated as follows.
In addition,% shown below means the mass% unless there is particular description.
[0015]
The amount of C is limited to 0.04 to 0.14%. C is extremely effective for improving the strength of steel, and at least 0.04% is necessary to obtain the target strength in the martensite structure. However, if the amount of C is too large, cold cracking is likely to occur, leading to an increase in the HAZ maximum hardness of the so-called T-cross portion where the on-site weld and seam welding intersect, so the upper limit was made 0.14%. Furthermore, the upper limit is preferably 0.1%.
[0016]
Si needs to be 0.05% or more in order to form retained austenite to suppress low temperature cracking, but if the content is large, the low temperature toughness will be significantly deteriorated, and the low temperature toughness of inner and outer surface main welding will be ensured. The upper limit was 1%.
Mn is an indispensable element for ensuring an excellent balance between strength and low-temperature toughness. In addition, Mn-containing sulfide inclusions are generated and intragranular bainite is generated as a core to produce low-temperature toughness of weld metals. To improve. In particular, when a cation vacancy type Ti-containing oxide is present in the grain, Mn-containing sulfide is precipitated around the Ti-containing oxide, and the generation of Mn-containing sulfide in the grain is promoted. Generation is promoted. Further, Mn is a component necessary for forming retained austenite for suppressing the low-temperature cracking that is the object of the present invention. In order to obtain these effects, the lower limit of the addition amount is set to 1.2%. However, too much Mn not only promotes segregation and deteriorates low-temperature toughness, but also makes it difficult to produce a welding material, so the upper limit was made 2.2%.
[0017]
The content of P and S is preferably low in order to reduce the low temperature toughness of the weld metal and reduce the low temperature cracking susceptibility, and the upper limit of each is defined as 0.010%.
Ni is necessary for increasing the hardenability to ensure strength, further improving low-temperature toughness and forming retained austenite for suppressing low-temperature cracking. Since it is difficult to obtain the target strength and low temperature toughness at 1.3% or less, the lower limit is set to 1.3%. On the other hand, if the content is too high, there is a risk of hot cracking, so the upper limit was made 6%.
[0018]
  Cr, Mo, and V are all elements that are necessary for improving the hardenability and obtaining high strength.Add 2 types of Cr and Mo in the range of 1 to 2.5% in total amount, or 3 types of Cr, Mo and V in total amountAdd in the range of 1-2.5%. If the total content is less than 1%, the effect is not sufficient. On the other hand, if excessively added, the risk of cold cracking increases, so the upper limit was made 2.5%. B is an element that enhances the hardenability in a small amount and is effective for improving the low temperature toughness of the weld metal. However, if the content is too large, the low temperature toughness is lowered, so the content range is set to 0.005% or less.
[0019]
  Al is known as a deoxidizing component and Al2OThreeThe oxide is an anion vacancy type oxide and has poor bonding with Mn-containing sulfides such as MnS. In order not to inhibit, it is preferable to make it as low as possible. Therefore, in this invention, the upper limit of the content is prescribed | regulated to 0.02%.In addition, the upper limit of the amount of Al of the weld metal is the implementation No. in Table 4 of the examples of the present invention. Based on 0.010% of the Al content of 1, the content is made 0.010% or less.
[0020]
  Ti is an essential component for generating inclusions of Ti-containing oxides that generate intragranular bainite and composite particles of this oxide and Mn-containing sulfide, and these inclusions serve as nuclei in the grains. Inner bainite is generated to improve the low temperature toughness of the weld metal. In order to obtain these effects, the lower limit of the content is 0.003%. Further, if the Ti content is excessively large, a large amount of Ti carbide is generated and the low temperature toughness is deteriorated, so the upper limit was made 0.05%.In addition, the lower limit of the amount of Ti of the weld metal is the implementation No. in Table 4 of the examples of the present invention. Based on 0.018% of the Ti content of 2, it is set to 0.018% or more.
[0021]
Further, in the present invention, in addition to the above components, elements such as Zr, Nb, and Mg may be further contained in the weld metal as necessary in order to improve refining and solidification during welding. . In addition, it is preferable that the oxygen amount contained in a weld metal is 20 ppm or more.
Next, the manufacturing method of the ultra high strength steel pipe of this invention is demonstrated below.
[0022]
The ultra high strength steel pipe of the present invention is formed into a tubular shape in the UO process in which the steel sheet is formed into a U shape and then into an O shape. This seam welding is performed by submerged arc welding of a pass, and thereafter, it can be efficiently manufactured by a method of manufacturing a steel pipe that is expanded to increase the roundness. This seam welding by submerged arc welding is excellent in welding efficiency, but since the dilution rate of the base metal is large, in order to obtain the desired weld metal composition and characteristics, dilution of the component from the base material is considered. It is necessary to select a welding material. Further, the tack seam welding performed before the seam welding has a smaller welding area and less influence on the quality of the weld metal part than the seam welding. Therefore, in this invention, although the component of the welding wire used for this seam welding needs to be prescribed | regulated, the component of the welding wire used for temporary seam welding does not need to prescribe | regulate in particular.
[0023]
The reason for limiting the chemical composition of the welding wire used for the present seam welding at the time of manufacturing the steel pipe of the present invention is described below. In addition, unless otherwise indicated,% shown below shall show the mass%.
C was set to 0.01 to 0.12% in consideration of dilution with the base material component and mixing of C from the atmosphere in order to obtain a range of C amount required for the weld metal.
[0024]
In order to obtain a range of Si amount required for the weld metal, Si is set to 0.3% or less in consideration of dilution by the base material component.
Mn is set to 1.2% to 2.4% in consideration of dilution by a base material component in order to obtain a range of Mn amount required for the weld metal.
In order to obtain a range of Ni amount required for the weld metal, Ni is set to 4% to 8.5% in consideration of dilution by the base material component.
[0025]
  In order to obtain a range of contents in which the total amount of one or more of these components is required for the weld metal, Cr, Mo, and V are 3 to 3 in consideration of dilution by the base material components. 5%. In order to obtain a range of Ti amount required for the weld metal, Ti takes into account 0.005 to 0.005 in consideration of dilution by the base material component.0.15%It was.In addition, the lower limit of the Ti amount of the welding wire is the implementation No. in Table 3 of the examples of the present invention. Based on 0.060% of the Ti amount of 2, it is made 0.060% or more.
[0026]
  P, S, and Al are unavoidable impurity components. In the present invention, P, S, and Al are desirably as small as possible in order to suppress deterioration of the low temperature toughness of the weld metal. P and S are each 0.01% or less. , Al is preferably regulated to 0.02% or less.Note that the Al amount of the welding wire is the same as that in Table 3 of the embodiment of the present invention. Based on 0.033% of the Al content of 1, the content is regulated to 0.033% or less.Further, in the present invention, the B content in the welding wire is not particularly required to be specified, but may be added as a hardenability component according to the necessity of adjusting the strength.
[0027]
Moreover, you may add Zr, Nb, Mg, etc. as a deoxidizer in a welding wire. In the present invention, the temporary seam welding and the main seam welding can be welded using not only a single electrode but also a plurality of electrodes. In consideration of welding efficiency, the seam welding is particularly preferably gas shielded arc welding or submerged arc welding with a plurality of electrodes. In the case of welding with a plurality of electrodes, it is possible to combine various wires, and it is not necessary for each wire to be in the above component range, and it is sufficient that the average composition from each wire component and consumption is in the above component range.
[0028]
Moreover, the filling flux used for this seam welding by the submerged arc welding at the time of manufacturing the steel pipe of the present invention is roughly classified into a firing type flux and a melting type flux. Firing-type fluxes have the advantage that alloy materials can be added and the amount of diffusible hydrogen is low, but they have the disadvantage of being easily pulverized and difficult to use repeatedly. On the other hand, the melt-type flux is in the form of glass powder, has the advantages of high grain strength and is difficult to absorb moisture, and has the disadvantage that diffusible hydrogen is slightly high. From the viewpoint of reducing the low temperature cracking of the ultra-high strength weld metal, which is the object of the present invention, a calcined flux is more desirable, but there is a problem of high cost. On the other hand, molten flux can be recovered and used repeatedly, and it is suitable for mass production and has a low cost. However, there is a problem in that strict quality control is required although it can be handled industrially. Therefore, in the present invention, it is not particularly necessary to limit the type of flux, and either can be used.
[0029]
Next, the reasons for limiting the steel plate components used in manufacturing the steel pipe of the present invention will be described.
The amount of C is limited to 0.03 to 0.1%. C is extremely effective for improving the strength of steel, and at least 0.03% is necessary to obtain the target strength in the martensite structure. However, if the amount of C is too large, the base metal, HAZ low temperature toughness and on-site weldability are significantly deteriorated, so the upper limit was made 0.1%. Furthermore, the upper limit is preferably 0.07%.
[0030]
Si is an element added for deoxidation and strength improvement, but if added in a large amount, the HAZ toughness and on-site weldability are remarkably deteriorated, so the upper limit was made 0.6%. Steel can be deoxidized with either Al or Ti, and Si does not necessarily have to be added.
Mn is a martensite-based microstructure of the steel of the present invention, and is an indispensable element for ensuring an excellent balance between strength and low temperature toughness, and its lower limit is 1.7%. However, if Mn is too much, not only the hardenability of the steel will increase and the HAZ toughness and on-site weldability will deteriorate, but also the center segregation of the continuously cast steel slab will be promoted and the low temperature toughness of the base metal will also deteriorate, so the upper limit is set. 2.5%.
[0031]
The purpose of adding Ni is to improve the low carbon steel of the present invention without deteriorating the low temperature toughness and on-site weldability. Compared with the addition of Mn, Cr and Mo, the addition of Ni is less likely to form a hardened structure harmful to low temperature toughness in the rolled structure (especially the central segregation zone of the continuous cast steel slab). It has been found that the addition of a trace amount of Ni is also effective for improving the HAZ toughness (in particular, the effective Ni addition amount is 0.3% or more in terms of HAZ toughness). However, if the addition amount is too large, not only the economy but also the HAZ toughness and on-site weldability are deteriorated, so the upper limit was made 1%. Ni addition is also effective for preventing Cu cracking during continuous casting and hot rolling. In this case, Ni needs to be added by 1/3 or more of the amount of Cu.
[0032]
Mo is added in an amount of 0.15% or more in order to improve the hardenability of the steel sheet and to obtain a target martensite-based structure. In particular, in the B-added steel, the effect of improving the hardenability of Mo is enhanced, and when Mo coexists with Nb, recrystallization of austenite during controlled rolling is suppressed, and the austenite structure is refined. However, if added in excess, the upper limit is made 0.6% in order to degrade the HAZ toughness and field weldability and further reduce the effect of improving the hardenability of B.
[0033]
By coexisting with the Mo described above, Nb not only suppresses austenite recrystallization during controlled rolling and refines the structure, but also contributes to precipitation hardening and hardenability, thereby strengthening the steel. In particular, when Nb and B coexist, the effect of improving hardenability increases synergistically. In order to obtain these effects, 0.01% or more of Nb is added in the present invention. However, if the amount of Nb added is too large, the HAZ toughness and on-site weldability are adversely affected, so the upper limit was made 0.1%.
[0034]
Ti forms fine TiN in the steel, suppresses coarsening of austenite grains during slab reheating and HAZ, refines the microstructure, and improves the low temperature toughness of the base material and HAZ. Moreover, it has a role which fixes solid solution N harmful to the hardenability improvement effect of B as TiN. For this purpose, it is desirable to add Ti in an amount of 3.4 N (each by weight%) or more. Further, when the amount of Al is small (for example, 0.005% or less), Ti forms an oxide, acts as an intragranular ferrite formation nucleus in the HAZ, and has an effect of refining the HAZ structure. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur and the low temperature toughness is deteriorated, so the upper limit was limited to 0.030%.
[0035]
  P and S are unavoidable impurity elements. In the present invention, in order to further improve the low temperature toughness of the base material and the HAZ, the contents of P and S are respectively 0.015% and 0.003% or less. regulate. The reduction of the P content reduces the center segregation of the continuously cast slab, prevents the grain boundary fracture and improves the low temperature toughness. Moreover, the reduction of the S content has an effect of improving the ductility by reducing MnS that is stretched by hot rolling.
  Al is an element usually contained in steel as a deoxidizing material, and has an effect on refinement of the structure. However, if the amount of Al exceeds 0.06%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.06%.In addition, the upper limit of the amount of Al of the steel plate is the implementation No. Based on 0.0134% of the Al content of 9, the content is made 0.0134% or less.
  N forms TiN and suppresses coarsening of the austenite grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, it will cause deterioration of the HAZ toughness due to slab surface defects and solute N, and decrease in the effect of improving the hardenability of B, so the upper limit must be limited to 0.006%.
  Mg forms finely dispersed oxide and suppresses the coarsening of the weld heat-affected zone to improve the low temperature toughness. If over 0.006% is added, a coarse oxide is formed and, on the contrary, the toughness is deteriorated, so the upper limit of the content is made 0.006%.
[0036]
  The above are the basic components of the steel sheet used in the present invention, and the following components are selectively added in the following ranges.
[0037]
B is an extremely effective element for dramatically increasing the hardenability of steel in a very small amount and obtaining the target martensite-based structure. Further, B enhances the hardenability improvement effect of Mo, and synergistically increases the hardenability by coexisting with Nb. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.005%.
[0039]
  V, Cu, Cr, Ca, REM isIn order to further improve the strength and toughness and expand the size of the steel material that can be manufactured without impairing the excellent characteristics of the steel of the present invention, it is possible to add an appropriate amount as follows.
  V has almost the same effect as Nb, but the effect is weaker than Nb. However, the effect of V addition in the ultra high strength steel is great, and the combined addition of Nb and V makes the excellent characteristics of the steel of the present invention even more remarkable. The upper limit is acceptable up to 0.1% in terms of HAZ toughness and on-site weldability, but 0.03 to 0.08% is particularly desirable.
[0040]
Cu increases the strength of the base metal and the welded portion, but if too much, the HAZ toughness and on-site weldability deteriorate significantly. For this reason, the upper limit of the amount of Cu is 1%.
Cr increases the strength of the base metal and the weld, but if too much, the HAZ toughness and on-site weldability deteriorate significantly. For this reason, the upper limit of the Cr content is 0.8%.
Ca and REM control the form of sulfide (MnS) and improve low-temperature toughness (such as an increase in absorbed energy in the Charpy test). If the Ca content exceeds 0.01% and the REM content exceeds 0.02%, a large amount of CaO-CaS or REM-CaS is generated, resulting in large clusters and large inclusions, which only harms the cleanliness of the steel. In addition, it adversely affects on-site weldability. For this reason, the upper limit of the Ca addition amount is limited to 0.01% or the condition of the REM addition amount is limited to 0.02%.
[0041]
In the ultra-high-strength line pipe, the amount of S and O is reduced to 0.001% and 0.002% or less, respectively, and ESSP (Effective Sulphide Shape) is an index for controlling the shape of the MnS cluster shown below. It is particularly effective to adjust Ca, S, and O so that Controlling Parameter) satisfies 0.5 ≦ ESSP ≦ 10.0.
ESSP = (Ca) [1-124 (O)] / 1.25S (1)
When the above ESSP is less than 0.5, a large amount of CaO-CaS is formed, resulting in coarse clusters and coarse inclusions, which deteriorate weldability such as weld cracks. When the ESSP exceeds 10.0, the shape of MnS Since the effect of control is lost, ESSP is specified to be 0.5 to 10.0.
[0042]
  Less thanIn addition to the limitations of the individual additive elements above, it is desirable to further limit the P value, which is a hardenability index shown below, to 1.9 ≦ P ≦ 4.0 in order to achieve a strength / toughness balance. . In addition, intensity | strength becomes large, so that P value becomes high, and it shows that a metal structure tends to become a bainite martensite structure.
P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + (1 + β) Mo-1 + β (2)
However, β = 1 when B ≧ 3 ppm, and β = 0 when B <3 ppm.
[0043]
The reason for limiting the P value as described above is to achieve the desired balance between strength and low temperature toughness. The lower limit of the P value is set to 1.9 in order to obtain a strength of 900 MPa or more and excellent low temperature toughness. The upper limit of the P value is set to 4.0 in order to maintain excellent HAZ toughness and on-site weldability.
In addition, the steel sheet (base material) for the ultra-high-strength steel pipe of the present invention needs to have a steel sheet structure of a microstructure mainly composed of a low-temperature transformation structure such as martensite and bainite in order to set the tensile strength to 900 MPa or more. . For this purpose, the steel having the above-mentioned components is cast, then hot worked, and then rapidly cooled, or in some cases, tempered and manufactured, and the steel sheet structure suppresses the ferrite structure, such as martensite and bainite. It is necessary to make the microstructure mainly composed of low-temperature transformation structures.
[0044]
【Example】
Next, examples of the present invention will be described.
After the ultra high strength steel pipe steel having the chemical composition shown in Table 1 is melted in a 300 ton converter, it is made into a continuous cast steel piece, and then heated at 1100 ° C. and then subjected to finish rolling with a cumulative reduction of 80% at 800-900 ° C. After that, a 16 mm steel plate having a tensile strength of 900 MPa or more was produced by water cooling from 800 ° C. to 200 ° C. Using this steel plate, it is formed into a tube at a UO factory, and 80% Ar + 20% CO2After tentative welding using MAG arc welding with various shielding gases, welding with 3 electrodes, 1.75 m / min, heat input 2.2 KJ / mm using welding wires and fluxes of various components shown in Table 2 Under conditions, submerged arc welding was performed for each pass from the inner and outer surfaces, and then 1% pipe expansion was performed. Table 3 shows the chemical composition, structure and characteristics of the weld metal of the welded portion of the steel pipe obtained. In Table 3, Comparative Example No. 15-22, the chemical composition of the wire used in the seam welding, the structure and chemical composition of the weld metal are outside the scope of the present invention, and the low temperature toughness of the weld metal of the present invention (Charpy absorbed energy at −20 ° C. is 80 J). This is an example that does not satisfy the above) or that cold cracking occurs during welding.
[0045]
No. 15, 17, 19 and 21, the wire component is outside the scope of the present invention, so the contents of C, Mn, Si and Ni in the weld metal are lower than the scope of the present invention, respectively, and the weld metal strength is TS. Although 900 MPa or more was satisfied, since the retained austenite in the inner surface main weld metal was too low, less than 1%, cold cracking of the weld metal occurred.
[0046]
  No. Nos. 16, 18, 20, and 22 show that the content of C, Mn, Si, and Ni in the weld metal is significantly higher than the range of the present invention because the wire component is out of the range of the present invention. The toughness was significantly reduced and cold cracking or hot cracking occurred in the weld metal. On the other hand, No. which is an example of the invention. 1 to9, 11, 13,No. 14, the steel plate and wire components are within the scope of the present invention, and the components and structures in the weld metal are also within the scope of the present invention. Therefore, the tensile strength and low temperature toughness of the weld metal are good, and the weld metal Cold cracking did not occur.
[0047]
[Table 1]
Figure 0004171169
[0048]
[Table 2]
Figure 0004171169
[0049]
[Table 3]
Figure 0004171169
[0050]
[Table 4]
Figure 0004171169
[0051]
[Table 5]
Figure 0004171169
[0052]
【The invention's effect】
According to the present invention, when performing one-pass seam welding on the inner and outer surfaces with high heat input when manufacturing an ultra-high strength steel pipe having a tensile strength of 900 MPa or more (API standard X100 or more), Cold cracking of the weld metal can be prevented without heat treatment, and an ultra-high strength steel pipe excellent in strength and low temperature toughness can be produced at high productivity and at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a weld metal in a steel pipe seam weld.
[Explanation of symbols]
1 ... Outside real weld metal
2 ... Inner main weld metal
3. Steel pipe base material
4 ... Temporary weld metal

Claims (4)

シーム溶接部の溶接金属において、本シーム溶接で形成される内面および外面本溶接金属の成分が、質量%で、C:0.04〜0.14%、Si:0.05〜1%、Mn:1.2〜2.2%、P:≦0.01%、S:≦0.01%、Ni:1.3〜6%、Ti:0.018〜0.05%、Al:≦0.010%、B:≦0.005%を含有し、さらに、CrおよびMoの2種を合計量で1〜2.5%含有し、あるいはCr、MoおよびVの3種を合計量で1〜2.5%含有し、残部が鉄および不可避的不純物からなり、前記内面および外面本溶接金属の内の少なくとも内面本溶接金属の組織中に残留オーステナイト相を1%以上含有することを特徴とする耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管。In the weld metal of the seam weld portion, the components of the inner and outer surfaces of the weld metal formed by the present seam welding are mass%, C: 0.04 to 0.14%, Si: 0.05 to 1%, Mn : 1.2 to 2.2%, P: ≤ 0.01%, S: ≤ 0.01%, Ni: 1.3 to 6%, Ti: 0.018 to 0.05%, Al: ≤ 0 0.010%, B: ≦ 0.005% , and further, 2 types of Cr and Mo are contained in a total amount of 1 to 2.5%, or 3 types of Cr, Mo and V are 1 in a total amount. -2.5%, the balance is made of iron and inevitable impurities, and at least 1% of the retained austenite phase is contained in the structure of at least the inner surface of the inner and outer surface weld metals. Super high strength steel pipe with seam welds with excellent cold cracking resistance. 前記溶接金属のベイナイト・マルテンサイト分率が50%以上であることを特徴とする請求項1に記載の耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管。The ultrahigh strength steel pipe having a seam welded portion having excellent cold crack resistance according to claim 1, wherein the weld metal has a bainite-martensite fraction of 50% or more. 前記溶接金属の引張り強度が900MPa以上であることを特徴とする請求項1または請求項2に記載の耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管。The tensile strength of the weld metal is 900 MPa or more, and the ultra high strength steel pipe having a seam welded portion having excellent cold crack resistance according to claim 1 or 2 . 質量%で、C:0.03〜0.1%、Si:≦0.6%、Mn:1.7〜2.5%、P:≦0.015%、S:≦0.003%、Ni:0.1〜1%、Mo:0.15〜0.6%、Nb:0.01〜0.1%、Ti:0.005〜0.03%、Al:≦0.0134%、N:0.001〜0.006%、Mg:≦0.006%を含有し、さらに、B:≦0.005%、V:≦0.1%、Cu:≦1%、Cr:≦0.8%、Ca:≦0.01%、およびREM:≦0.02%の内の1種または2種以上を含有し、残部が鉄および不可避的不純物からなる鋼板をUO工程で管状に成形し、開先加工が施された鋼板端部を突き合わせた後、その突き合わせ開先部を、仮付け溶接を行った後、質量%で、C:0.01〜0.12%、Si:≦0.3%、Mn:1.2〜2.4%、Ni:4〜8.5%、Cr、MoおよびVの内の1種または2種以上の合計量:3〜5%、Ti:0.060〜0.15%を含有し、Al:≦0.033%に規制し、残部が鉄および不可避的不純物からなる溶接ワイヤ−と焼成型フラックスもしくは溶融型フラックスを用いて内面側および外面側からサブマージアーク溶接により本溶接を行い、その後、拡管を行うことを特徴とする耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管の製造方法。In mass%, C: 0.03-0.1%, Si: ≦ 0.6%, Mn: 1.7-2.5%, P: ≦ 0.015%, S: ≦ 0.003%, Ni: 0.1-1%, Mo: 0.15-0.6%, Nb: 0.01-0.1%, Ti: 0.005-0.03% , Al: ≦ 0.0134% N: 0.001 to 0.006%, Mg: ≦ 0.006%, B: ≦ 0.005%, V: ≦ 0.1%, Cu: ≦ 1%, Cr: ≦ 0 .8%, Ca: ≦ 0.01%, and REM: ≦ 0.02% containing one or more of them, the balance being iron and inevitable impurities formed into a steel sheet in the UO process Then, after the end portions of the steel sheets subjected to the groove processing are butted, the butted groove portions are subjected to tack welding, and then in mass%, C: 0.01 to 0.12%, Si: ≦ 0.3 , Mn: 1.2~2.4%, Ni: 4~8.5%, Cr, 1 or two or more of the total amount of Mo and V: 3~5%, Ti: 0.060 ~ Containing 0.15%, Al: ≦ 0.033%, the balance is submerged arc from the inner and outer surfaces using a welding wire consisting of iron and unavoidable impurities and a calcined or molten flux A method for producing an ultra-high-strength steel pipe having a seam welded portion excellent in cold cracking resistance, characterized in that main welding is performed by welding and then pipe expansion is performed.
JP2000310935A 2000-10-11 2000-10-11 Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof Expired - Fee Related JP4171169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310935A JP4171169B2 (en) 2000-10-11 2000-10-11 Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310935A JP4171169B2 (en) 2000-10-11 2000-10-11 Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002115032A JP2002115032A (en) 2002-04-19
JP4171169B2 true JP4171169B2 (en) 2008-10-22

Family

ID=18790794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310935A Expired - Fee Related JP4171169B2 (en) 2000-10-11 2000-10-11 Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4171169B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564245B2 (en) * 2003-07-25 2010-10-20 新日本製鐵株式会社 Super high strength welded joint with excellent low temperature cracking property of weld metal and method for producing high strength welded steel pipe
JP4482355B2 (en) * 2004-03-17 2010-06-16 新日本製鐵株式会社 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance
JP4566146B2 (en) * 2006-02-28 2010-10-20 住友金属工業株式会社 High tensile welded joint with excellent joint toughness and method for producing the same
JP4969915B2 (en) * 2006-05-24 2012-07-04 新日本製鐵株式会社 Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5202862B2 (en) 2007-03-28 2013-06-05 Jfeスチール株式会社 High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP4860722B2 (en) * 2009-06-08 2012-01-25 新日本製鐵株式会社 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance
JP5321493B2 (en) * 2010-02-12 2013-10-23 新日鐵住金株式会社 Spiral steel pipe manufacturing method and spiral steel pipe
CN101733584B (en) * 2010-02-13 2012-02-01 宝鸡石油钢管有限责任公司 High-strength submerged-arc welding wire for pipe line steel
JP5607002B2 (en) 2011-02-02 2014-10-15 株式会社神戸製鋼所 Weld metal with excellent resistance to hydrogen embrittlement
JP5606985B2 (en) * 2011-04-08 2014-10-15 株式会社神戸製鋼所 Weld metal with excellent resistance to hydrogen embrittlement
KR101351267B1 (en) 2011-10-21 2014-02-13 한양대학교 산학협력단 1GPa HIGH STRENGTH WELDING JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS
JP5894463B2 (en) * 2012-02-27 2016-03-30 株式会社神戸製鋼所 Method for forming weld metal with excellent resistance to hydrogen embrittlement
DE112013006287B4 (en) 2012-12-27 2022-01-27 Posco High-strength flux-cored arc-weld joint with excellent impact resistance, and welding wire for its manufacture
CA2892428A1 (en) 2013-01-11 2014-10-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Weld metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding
US10266929B2 (en) 2013-12-24 2019-04-23 Posco Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
CN107803574A (en) * 2017-10-31 2018-03-16 中国石油天然气集团公司 A kind of X100 levels pipe line steel large-caliber spiral submerged-arc welded (SAW) pipe manufacture method

Also Published As

Publication number Publication date
JP2002115032A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP3519966B2 (en) Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP4268317B2 (en) Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof
JP5181639B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP2003138340A (en) Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP4171169B2 (en) Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof
WO2018185851A1 (en) Vertical-seam-welded steel pipe
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP3814112B2 (en) Super high strength steel pipe excellent in low temperature toughness of seam welded portion and manufacturing method thereof
WO2018185853A1 (en) Vertical-seam-welded steel pipe
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP2002146471A (en) Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness
JP3764593B2 (en) High strength steel pipe with excellent toughness of weld heat affected zone
JPH0525580B2 (en)
JP4380037B2 (en) High strength high toughness welded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4171169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees