JP2003138340A - Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method - Google Patents

Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method

Info

Publication number
JP2003138340A
JP2003138340A JP2001335174A JP2001335174A JP2003138340A JP 2003138340 A JP2003138340 A JP 2003138340A JP 2001335174 A JP2001335174 A JP 2001335174A JP 2001335174 A JP2001335174 A JP 2001335174A JP 2003138340 A JP2003138340 A JP 2003138340A
Authority
JP
Japan
Prior art keywords
weld
sulfide
steel pipe
toughness
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001335174A
Other languages
Japanese (ja)
Inventor
Takuya Hara
卓也 原
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001335174A priority Critical patent/JP2003138340A/en
Publication of JP2003138340A publication Critical patent/JP2003138340A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel pipe having excellent toughness at low temperature and >=900 MPa (exceeding API Standard X100) tensile strength and also to provide its manufacturing method. SOLUTION: In the high strength welded steel structure with excellent toughness of weld zone, integranular bainite is formed using compound inclusions as nuclei in a weld metal zone or in a weld heat-affected zone, and the nuclei are: compound sulfides which consist of two phases of oxides and sulfides composed essentially of Mn sulfide and sulfides composed essentially of Cu sulfide both precipitated in the periphery of the oxides; or compound inclusions in which nitrides are further precipitated in the compound sulfides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶接部の低温靱性に
優れた高強度溶接鋼構造物(建築、橋梁、海溝、ライン
パイプ等の溶接構造物)に用いられる超高強度鋼板およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high strength steel sheet used for a high-strength welded steel structure excellent in low-temperature toughness of a welded portion (welded structure such as construction, bridge, trench, line pipe), and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】近年、HT80,HT100クラスの高
張力鋼もその製造技術の進歩により低炭素当量で製造さ
れ、溶接性特に低温割れ感受性が向上している。
2. Description of the Related Art In recent years, HT80 and HT100 class high-strength steels have been manufactured with a low carbon equivalent due to the progress of the manufacturing technology, and the weldability, especially the cold cracking sensitivity, has been improved.

【0003】一方、高張力鋼の溶接も、能率向上のた
め、溶接部の大入熱化が指向されている。これまでは、
小入熱の多層溶接が一般的であったHT80,HT10
0の両面1パス溶接が検討されている。また、天然ガス
を輸送ラインパイプのシーム溶接も同様である。長距離
輸送用の幹線ラインパイプとしては米国石油協会(AP
I)規格X65が設計の基本になっており、実際の使用
量も圧倒的に多い。
On the other hand, the welding of high-strength steel is also aimed at increasing the heat input of the welded portion in order to improve the efficiency. until now,
Multi-layer welding with small heat input was common HT80, HT10
0 double-sided one-pass welding is being considered. The same applies to seam welding of natural gas transportation line pipes. The American Petroleum Institute (AP) is the main line for long-distance transportation.
I) Standard X65 is the basis of design, and the actual amount used is overwhelmingly large.

【0004】しかし、1)高圧化による輸送効率の向上
や、2)ラインパイプの外径・重量の低減による現地施
工能率の向上のため、より高強度ラインパイプが要望さ
れている。これまでにX80(引張強さ620MPa以
上)までのラインパイプの実用化がなされているが、さ
らに高強度のラインパイプに対するニーズが強くなって
きた。
However, there is a demand for a higher strength line pipe in order to 1) improve the transportation efficiency by increasing the pressure and 2) improve the on-site construction efficiency by reducing the outer diameter and weight of the line pipe. Up to now, line pipes up to X80 (tensile strength of 620 MPa or more) have been put into practical use, but there is a growing need for line pipes with even higher strength.

【0005】現在、超高強度ラインパイプ製造法の研究
は、従来のX80ラインパイプの製造技術(たとえばN
KK技報No.138(1992),pp24−31お
よびThe 7Th Offshore Mechan
ics and Arctic Engineerin
g(1988),Volume V,pp179−18
5)を基本に検討されているが、これではせいぜい、X
100(引張強さ760MPa以上)ラインパイプの製
造が限界と考えられる。X100を越える超高強度ライ
ンパイプについては、既に鋼板製造の研究は行われてい
る(PCT/JP96/00155、00157)。
At present, research on a method for manufacturing an ultra-high strength line pipe is conducted by using a conventional X80 line pipe manufacturing technology (for example, N
KK Technical Report No. 138 (1992), pp24-31 and The 7Th Offshore Mechan.
ics and Arctic Engineerin
g (1988), Volume V, pp179-18.
5) is being considered as the basis, but this is at most X
The production of 100 (tensile strength of 760 MPa or more) line pipe is considered to be the limit. Regarding ultra-high strength line pipes exceeding X100, research on steel plate production has already been conducted (PCT / JP96 / 00155, 00157).

【0006】しかし、このような超高強度ラインパイプ
では、特に溶接部の靱性を確保することは難しく、これ
に関する課題が解決できないと鋼板は製造できても鋼管
の製造は不可能である。パイプラインの超高強度化は母
材の強度・低温靱性バランスを始めとして溶接金属およ
び溶接熱影響部(HAZ)靱性、現地溶接性、継手軟
化、バースト試験による管体破断など多くの問題を抱え
ており、これらを克服した画期的な超高強度ラインパイ
プ(X100超)の早期開発が要望されている。
[0006] However, in such an ultra-high strength line pipe, it is difficult to secure the toughness of the welded portion in particular, and if the problems relating to this cannot be solved, the steel pipe can be manufactured even if the steel plate can be manufactured. The ultra-high strength of pipelines has many problems such as the balance of strength and low temperature toughness of the base metal, weld metal and weld heat affected zone (HAZ) toughness, field weldability, joint softening, and tube breakage due to burst test. Therefore, there is a demand for early development of an epoch-making ultra-high-strength line pipe (X100 or more) that overcomes these problems.

【0007】厚板等では、超高強度溶接部特に溶接熱影
響部および溶接金属の低温靱性を向上させるには、一般
に多量のNiを添加するか(例えば、溶接接合便覧pp
888)、もしくは低入熱で多層盛りを行うか(例えば
新日本製鐵CATNo.EXE332(1973)pp
1〜69)のどちらが好ましい。
In a thick plate or the like, in order to improve the low temperature toughness of an ultra-high strength welded portion, particularly a weld heat affected zone and a weld metal, is it necessary to add a large amount of Ni (for example, a manual for welding and joining pp).
888), or multi-layer heaping with low heat input (for example, Nippon Steel CAT No. EXE332 (1973) pp
1 to 69) is preferable.

【0008】しかしながら、これらを実際のラインパイ
プに適用する場合には多大な費用がかかるという問題点
が残されている。
However, there remains a problem that it costs a great deal to apply these to an actual line pipe.

【0009】[0009]

【発明が解決しようとする課題】本発明は低温靱性に優
れた引張強さ900MPa以上(API規格X100
超)を有する鋼管およびその製造方法を提供するもので
ある。
DISCLOSURE OF THE INVENTION The present invention has a tensile strength of 900 MPa or more excellent in low temperature toughness (API standard X100.
And a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、溶接金属
の引張強さが900MPa以上で、かつ低温靱性に優れ
た超高強度シーム溶接部が満足すべき条件について鋭意
研究を行い、新しい超高強度溶接部およびその製造方法
を発明するに至った。本発明の要旨は以下のとおりであ
る。 (1)溶接金属部もしくは溶接熱影響部において複合介
在物を核にして粒内ベイナイト分率が50%以上生成
し、その複合介在物が酸化物、および酸化物の周辺に析
出したMn主体の硫化物とCu主体の硫化物の2相より
なる複合硫化物であることを特徴とする溶接部靱性に優
れた超高強度鋼管。 (2)溶接金属部もしくは溶接熱影響部において複合介
在物を核にして粒内ベイナイト分率が50%以上生成
し、その複合介在物が酸化物、および酸化物の周辺に析
出したMn主体の硫化物とCu主体の硫化物の2相より
なる複合硫化物およびこの複合硫化物に窒化物が析出し
た複合介在物であることを特徴とする溶接部靱性に優れ
た超高強度鋼管。 (3)前記酸化物がTi含有酸化物であることを特徴と
する(1)または(2)記載の溶接部靭性に優れた超高
強度鋼管。 (4)前記酸化物、硫化物からなる複合硫化物、または
前記酸化物、硫化物および窒化物からなる複合介在物の
サイズが、平均円相当径で0.01〜5μmであり、か
つ平均密度が1×103 個/mm2 以上で溶接金属中に
存在することを特徴とする(1)〜(3)の何れかの項
に記載の溶接部靱性に優れた高強度溶接鋼構造物。 (5)母材の引張強度が900MPa以上を有すること
を特徴とする(1)〜(4)の何れかの項に記載の溶接
部靭性に優れた超高強度鋼管。 (6)前記溶接金属のベイナイト・マルテンサイト分率
が50%以上であることを特徴とする(1)〜(5)の
何れかの項に記載の溶接部靭性に優れた超高強度鋼管。 (7)溶接金属の化学成分が、質量%で、C:0.04
〜0.14%、Si:0.05〜0.40%、Mn:
1.2〜2.2%、P:≦0.01%、S:≦0.01
0%、Ni:1.3〜3.2%、Cu:0.1〜1.0
%、Cr+Mo+V:1.0〜2.5%、Ti: 0.
003〜0.050%、Al:≦0.02%、B:≦
0.005%を含み、残部Feおよび不可避的不純物か
らなることを特徴とする(1)〜(6)の何れかの項に
記載の溶接部靱性に優れた超高強度鋼管。 (8)母材の化学成分が、質量%で、C:0.03〜
0.10%、Si:≦0.6%、Mn:1.7〜2.5
%、P:≦0.015%、S:≦0.003%、Ni:
0.1〜2.0%、Cu:0.1〜1.0%、Mo:
0.15〜2.5%、Nb:0.01〜0.10%、T
i:0.005〜0.030%、Al:≦0.06%を
含み、さらに選択的に、B:≦0.005%、N:0.
001〜0.006%、V:≦0.10%、Cr:≦
0.8%、Ca:≦0.01%、REM:≦0.02
%、Mg:≦0.006%の1種または2種以上を含有
し、残部Feおよび不可避的不純物からなることを特徴
とする(1)〜(7)の何れかの項に記載の溶接部靱性
に優れた超高強度鋼管。 (9)質量%で、C:0.03〜0.10%、Si:≦
0.6%、Mn:1.7〜2.5%、P:≦0.015
%、S:≦0.003%、Ni:0.1〜2.0%、C
u:0.1〜1.0%、Mo:0.15〜2.5%、N
b:0.01〜0.10%、Ti:0.005〜0.0
30%、Al:≦0.06%を含み、さらに選択的に、
B:≦0.005%、N:0.001〜0.006%、
V:≦0.10%、Cr:≦0.8%、Ca:≦0.0
1%、REM:≦0.02%、Mg:≦0.006%の
1種または2種以上を含有し、残部Feおよび不可避的
不純物からなる鋼板をUO工程で管状に成形し、その鋼
板の突合せ部の内外面から、質量%で、C:0.01〜
0.12%、Si:≦0.3%、Mn:1.2〜2.4
%、Ni:4.0〜8.5%、Cu:0.1〜2.0
%、Cr+Mo+V:3.0〜5.0%、Ti:0.0
05〜0.150%、Al:≦0.02%、残部Feを
主成分とする溶接ワイヤと焼成型もしくは溶融型フラッ
クスを使用してサブマージアーク溶接を行い、その後、
拡管することを特徴とする溶接部靭性に優れた超高強度
鋼管の製造方法。
[Means for Solving the Problems] The inventors of the present invention have conducted earnest researches on conditions to be satisfied by an ultra-high-strength seam weld having a weld metal having a tensile strength of 900 MPa or more and excellent low temperature toughness. The inventors have invented an ultra-high-strength weld and a method for manufacturing the same. The gist of the present invention is as follows. (1) In the weld metal part or in the heat affected zone of the weld, the intergranular bainite fraction of 50% or more is generated with the complex inclusion as a nucleus, and the complex inclusion is mainly composed of an oxide and Mn mainly precipitated around the oxide. An ultra-high strength steel pipe having excellent weld toughness, which is a composite sulfide consisting of two phases of sulfide and sulfide mainly composed of Cu. (2) In the weld metal part or in the heat affected zone of the weld, an intergranular bainite fraction of 50% or more is formed with the composite inclusion as a nucleus, and the composite inclusion is mainly composed of oxide and Mn mainly precipitated around the oxide. An ultrahigh-strength steel pipe having excellent weld toughness, which is a composite sulfide composed of two phases of sulfide and a sulfide mainly containing Cu and a composite inclusion in which nitride is precipitated on the composite sulfide. (3) The ultra-high-strength steel pipe excellent in weld toughness according to (1) or (2), characterized in that the oxide is a Ti-containing oxide. (4) The size of the composite sulfide composed of the oxide or sulfide or the composite inclusion composed of the oxide, sulfide, or nitride is 0.01 to 5 μm in terms of average circle equivalent diameter, and the average density. Is present in the weld metal in an amount of 1 × 10 3 pieces / mm 2 or more, the high-strength welded steel structure having excellent weld toughness according to any one of (1) to (3). (5) The ultrahigh-strength steel pipe having excellent weld toughness according to any one of (1) to (4), wherein the base material has a tensile strength of 900 MPa or more. (6) The ultra-high-strength steel pipe with excellent weld toughness according to any one of (1) to (5), wherein the weld metal has a bainite / martensite fraction of 50% or more. (7) The chemical composition of the weld metal is C: 0.04 in mass%.
~ 0.14%, Si: 0.05-0.40%, Mn:
1.2-2.2%, P: ≦ 0.01%, S: ≦ 0.01
0%, Ni: 1.3 to 3.2%, Cu: 0.1 to 1.0
%, Cr + Mo + V: 1.0 to 2.5%, Ti: 0.
003 to 0.050%, Al: ≤ 0.02%, B: ≤
An ultrahigh-strength steel pipe excellent in weld toughness according to any one of (1) to (6), characterized in that it contains 0.005% and the balance is Fe and unavoidable impurities. (8) The chemical composition of the base material is C: 0.03% by mass%.
0.10%, Si: ≤ 0.6%, Mn: 1.7 to 2.5
%, P: ≤ 0.015%, S: ≤ 0.003%, Ni:
0.1-2.0%, Cu: 0.1-1.0%, Mo:
0.15 to 2.5%, Nb: 0.01 to 0.10%, T
i: 0.005 to 0.030%, Al: ≤ 0.06%, and optionally, B: ≤ 0.005%, N: 0.
001 to 0.006%, V: ≦ 0.10%, Cr: ≦
0.8%, Ca: ≤0.01%, REM: ≤0.02
%, Mg: ≦ 0.006%, one or two or more, and the balance Fe and inevitable impurities are contained, and the welded part according to any one of (1) to (7). Ultra high strength steel pipe with excellent toughness. (9) C: 0.03 to 0.10% by mass%, Si: ≤
0.6%, Mn: 1.7 to 2.5%, P: ≤ 0.015
%, S: 0.003%, Ni: 0.1 to 2.0%, C
u: 0.1 to 1.0%, Mo: 0.15 to 2.5%, N
b: 0.01 to 0.10%, Ti: 0.005 to 0.0
30%, Al: ≤ 0.06%, and optionally,
B: ≤ 0.005%, N: 0.001 to 0.006%,
V: ≤0.10%, Cr: ≤0.8%, Ca: ≤0.0
1%, REM: ≤ 0.02%, Mg: ≤ 0.006%, one or more of them, and a balance of Fe and unavoidable impurities is used to form a steel plate into a tubular shape in the UO process, From the inner and outer surfaces of the butted portion, in mass%, C: 0.01 to
0.12%, Si: ≤ 0.3%, Mn: 1.2 to 2.4
%, Ni: 4.0 to 8.5%, Cu: 0.1 to 2.0
%, Cr + Mo + V: 3.0 to 5.0%, Ti: 0.0
05-0.150%, Al: ≤ 0.02%, submerged arc welding is performed using a welding wire containing the balance Fe as the main component and a baking type or melting type flux, and then
A method for producing an ultra-high strength steel pipe having excellent weld toughness, which is characterized by expanding the pipe.

【0011】[0011]

【発明の実施の形態】以下、本発明の内容について詳細
に説明する。
DETAILED DESCRIPTION OF THE INVENTION The contents of the present invention will be described in detail below.

【0012】本発明は900MPa以上の引張強さ(T
S)を有する低温靱性に優れた超高強度溶接部に関する
発明である。
The present invention has a tensile strength (T
It is an invention relating to an ultra-high strength weld having S) and excellent low temperature toughness.

【0013】前述したように、この高強度溶接部を適用
するものとして、900MPa以上の引張り強度を有す
る超高強度ラインパイプがある。このラインパイプで
は、従来主流であるX65と較べて約2倍の圧力に耐え
るため、同じサイズで約2倍のガスを輸送することが可
能になる。X65の場合は圧力を高めるためには肉厚を
厚くする必要があり、材料費、輸送費、現地溶接施工費
が高くなってパイプライン敷設費が大幅に上昇する。こ
れが900MPa以上の引張強さ(TS)を有する低温
靱性に優れた超高強度ラインパイプが必要とされる理由
である。
As described above, as an application of this high-strength welded portion, there is an ultra-high-strength line pipe having a tensile strength of 900 MPa or more. This line pipe withstands about twice as much pressure as the conventional mainstream X65, so it is possible to transport about twice as much gas with the same size. In the case of X65, in order to increase the pressure, it is necessary to increase the wall thickness, which increases material costs, transportation costs, and local welding construction costs, resulting in a significant increase in pipeline construction costs. This is the reason why an ultrahigh strength line pipe having a tensile strength (TS) of 900 MPa or more and excellent in low temperature toughness is required.

【0014】一方、高強度になると急激に鋼管の製造が
困難になる。この場合、シーム溶接部も含めた目標特性
を得るには、特に溶接部(ここでは溶接金属と溶接熱影
響部)の低温靱性を改善しなければならない。
On the other hand, when the strength becomes high, it becomes difficult to manufacture the steel pipe rapidly. In this case, in order to obtain the target properties including the seam weld, the low temperature toughness of the weld (here, the weld metal and the weld heat affected zone) must be improved.

【0015】溶接金属の低温靱性は、強度依存性が高
く、図1に示すように、例えば、−20℃で84Jのシ
ャルピー吸収エネルギ−を満足させるには最悪のケース
を考えて、溶接金属強度を1025MPa未満にする必
要があるが、必要に応じて1025MPaを越える場合
もあり、より高強度で高靱性の溶接金属の開発が要望さ
れている。
The low temperature toughness of the weld metal has a high strength dependency, and as shown in FIG. 1, for example, considering the worst case to satisfy the Charpy absorbed energy of 84 J at −20 ° C., the weld metal strength is considered. Is required to be less than 1025 MPa, but in some cases it may exceed 1025 MPa, and there is a demand for the development of a weld metal having higher strength and higher toughness.

【0016】また、溶接熱影響部の低温靱性について
は、内面溶接後に生じた粗粒部が外面溶接での熱影響を
受けることによって粗粒再熱部が生じ、そこの靱性が著
しく劣化することが知られている。この原因は粗大なベ
イナイト組織が原因であるが、これを克服するには組織
を細分化させることが要望されている。
Regarding the low-temperature toughness of the heat-affected zone of welding, the coarse-grained portion produced after the inner surface welding is affected by the heat in the outer surface welding to produce the coarse-grained reheated portion, which significantly deteriorates the toughness. It has been known. This cause is caused by a coarse bainite structure, but it is desired to subdivide the structure in order to overcome this.

【0017】溶接熱影響部および溶接金属の低温靱性を
向上させるために発明者ら鋭意研究を行った結果、介在
物を核にベイナイトを生成させると粒内の組織が細分化
され、シャルピー破面単位が極めて小さくなることを見
いだした。
As a result of intensive studies by the inventors for improving the low temperature toughness of the heat-affected zone of the weld metal and the weld metal, when bainite is generated with inclusions as nuclei, the internal structure of the grains is subdivided and the Charpy fracture surface We have found that the unit is extremely small.

【0018】図2の介在物を核にした粒内ベイナイト組
織を図2に示す。
FIG. 2 shows an intragranular bainite structure having the inclusions of FIG. 2 as a nucleus.

【0019】粒内ベイナイトの核である介在物はTiを
主成分とする酸化物(Al,Si,Mn,Cr,Mg,
Caも含有することがある)とCuとMnを主成分とす
る硫化物(Ca,Mgが含有する場合がある)が複合析
出した場合に、この介在物を核にしてベイナイトが著し
く生成することを見いだした。
The inclusions, which are the core of the intragranular bainite, are oxides containing Ti as a main component (Al, Si, Mn, Cr, Mg,
When Ca is also contained) and a sulfide containing Cu and Mn as main components (Ca and Mg may be contained), bainite is remarkably formed with these inclusions as nuclei. I found it.

【0020】Tiを主成分とする酸化物にCuSおよび
MnSが複合析出した介在物が存在するとこの介在物か
らベイナイトが生成する理由を筆者らは次のように考え
ている。Tiの酸化物は陽イオン空孔型の酸化物である
ので、例えば、Mnのイオンを多く取り込むことが可能
であり、その回りにはMnの欠乏層が存在する。また、
MnSが酸化物の周囲に析出するとその回りはMnの欠
乏層が存在する。
The authors consider the reason why bainite is formed from inclusions in which CuS and MnS are complexly precipitated in the oxide containing Ti as the main component, as follows. Since the oxide of Ti is a cation vacancy type oxide, it is possible to take in a large amount of Mn ions, for example, and a Mn-deficient layer exists around it. Also,
When MnS is deposited around the oxide, a Mn-depleted layer exists around it.

【0021】さらに、CuSが酸化物の周辺に析出する
とその周りはCuの欠乏層が存在する。従って、高温の
オーステナイト相からフェライト変態する場合、このM
n欠乏層およびCu欠乏層の存在によって介在物を核と
してベイナイト変態が生成しやすくなる。このMn欠乏
層およびCu欠乏層の存在が粒内ベイナイト生成のメカ
ニズムであると考えられる。さらに、冷却速度が早い場
合や焼き入れ性が高いような場合には、粒内からのベイ
ナイト変態が生じやすくなる。
Further, when CuS is deposited around the oxide, a Cu-depleted layer exists around it. Therefore, in the case of ferrite transformation from the high temperature austenite phase, this M
The presence of the n-deficient layer and the Cu-deficient layer facilitates the formation of bainite transformation with inclusions as nuclei. It is considered that the existence of the Mn-depleted layer and the Cu-depleted layer is the mechanism for the formation of intragrain bainite. Furthermore, if the cooling rate is fast or the quenchability is high, bainite transformation from inside the grains is likely to occur.

【0022】次に介在物のサイズと数について説明す
る。Ti含有酸化物のサイズは0.01〜5μmの範囲
にあればよい。また、密度は、1×103個/mm2以上
有れば粒内ベイナイトが生成すると考えられる。また、
この酸化物に複合析出するMnSおよびCuSのサイズ
もTi含有酸化物と同様0.01〜5μmの範囲にあれ
ばよい。
Next, the size and number of inclusions will be described. The size of the Ti-containing oxide may be in the range of 0.01 to 5 μm. If the density is 1 × 10 3 particles / mm 2 or more, it is considered that intragrain bainite is generated. Also,
The size of MnS and CuS that are compositely precipitated in this oxide may be in the range of 0.01 to 5 μm as in the Ti-containing oxide.

【0023】また、上述のTi含有酸化物などの酸化物
の周辺には、MnまたはCu主体の硫化物、或いはTi
N,VN等の窒化物が析出する。
Around the oxides such as the above Ti-containing oxides, sulfides mainly composed of Mn or Cu, or Ti
Nitride such as N and VN is deposited.

【0024】酸化物の組成は前述したようにTiの他に
Mn,Si,Al,Ca,Mg,Cr等の元素が含有し
ている場合が多く、硫化物はMnおよびCuの他にC
a,Mg等の元素が含有している場合がある。
As described above, the oxide composition often contains elements such as Mn, Si, Al, Ca, Mg, and Cr in addition to Ti, and the sulfide contains C in addition to Mn and Cu.
In some cases, elements such as a and Mg are contained.

【0025】以下、溶接金属の成分の限定理由について
述べる。
The reasons for limiting the components of the weld metal will be described below.

【0026】C量は0.04〜0.14%に限定する。
Cは鋼の強度向上に極めて有効であり、マルテンサイト
組織において目標とする強度を得るためには、最低0.
04%は必要である。しかし、C量が多すぎると溶接低
温割れが発生しやすくなり、現地溶接部とシーム溶接が
交わるいわゆるTクロス部のHAZ最高硬さの上昇を招
くので、その上限を0.14%とした。望ましくは、上
限値は0.10%がよい。
The C content is limited to 0.04 to 0.14%.
C is extremely effective in improving the strength of the steel, and in order to obtain the target strength in the martensitic structure, at least 0.
04% is required. However, if the amount of C is too large, welding cold cracking is likely to occur and the HAZ maximum hardness of the so-called T-cross portion where the on-site weld and the seam weld intersect is increased, so the upper limit was made 0.14%. Desirably, the upper limit is 0.10%.

【0027】Siはブローホール防止のために0.05
%以上は必要であるが、含有量が多いと低温靱性を著し
く劣化させるので、上限を0.6%とした。特に、内外
面溶接や多層溶接を行う場合、再熱部の低温靱性を劣化
させる。
Si is 0.05 to prevent blowholes.
% Or more is necessary, but if the content is large, the low temperature toughness is significantly deteriorated, so the upper limit was made 0.6%. In particular, when performing inner / outer surface welding or multi-layer welding, the low temperature toughness of the reheated portion is deteriorated.

【0028】Mnは優れた強度・低温靱性のバランスを
確保する上で不可欠な元素であり、また、粒内ベイナイ
トを生成させる介在物としても不可欠な元素である。そ
の下限は1.2%である。しかし、Mnが多すぎると偏
析が助長され、低温靱性を劣化させるだけでなく、溶接
材料の製造も困難になるので、上限を2.2%とした。
Mn is an essential element for ensuring an excellent balance between strength and low temperature toughness, and is also an essential element as an inclusion for forming intragranular bainite. The lower limit is 1.2%. However, if the Mn content is too large, segregation is promoted, which not only deteriorates the low temperature toughness but also makes it difficult to manufacture a welding material, so the upper limit was made 2.2%.

【0029】Niを添加する目的は焼き入れ性を高めて
強度を確保し、さらに、低温靱性を向上させるためであ
る。1.3%以下では目標の強度・低温靱性を得ること
が難しい。一方、含有量が多すぎると高温割れの危険が
あるため上限は3.2%とした。
The purpose of adding Ni is to improve the hardenability, to secure the strength, and to improve the low temperature toughness. If it is 1.3% or less, it is difficult to obtain the target strength and low temperature toughness. On the other hand, if the content is too large, there is a risk of hot cracking, so the upper limit was made 3.2%.

【0030】Cuは粒内ベイナイトを生成させる介在物
としても不可欠な元素である。その下限は0.1%であ
る。しかし、Cuが多すぎると低温靱性を劣化させるだ
けでなく、溶接材料の製造も困難になるので、上限を
1.0%とした。
Cu is an indispensable element also as an inclusion for generating intragrain bainite. The lower limit is 0.1%. However, too much Cu not only deteriorates the low temperature toughness but also makes it difficult to manufacture a welding material, so the upper limit was made 1.0%.

【0031】Cr,Mo,Vの効果の違いを厳密には区
別することはできないが、いずれも焼き入れ性を高め、
高強度を得るために添加する。Cr+Mo+Vの合計が
1.2%以下では効果が十分でなく、多量に添加すると
低温割れの危険が増すため上限を2.5%とした。
Although it is not possible to strictly distinguish between the effects of Cr, Mo, and V, it is difficult to distinguish between them.
Add to obtain high strength. If the total of Cr + Mo + V is 1.2% or less, the effect is not sufficient, and if added in a large amount, the risk of cold cracking increases, so the upper limit was made 2.5%.

【0032】Bは微量で焼き入れ性を高め、溶接金属の
低温靱性に有効なな元素であるが、含有量が多すぎると
かえって低温靱性を劣化させるので含有範囲を0.00
5%以下とした。
B is an element effective for the low temperature toughness of the weld metal by increasing the hardenability in a small amount, but if the content is too large, the low temperature toughness is rather deteriorated, so the content range is 0.00.
It was set to 5% or less.

【0033】Tiは粒内ベイナイトを生成させる介在物
の主成分として不可欠であり、その下限は0.003%
である。Tiが多すぎるとTiの炭化物が多く生成し、低
温靱性を劣化させるので上限を0.05%にした。
Ti is indispensable as a main component of inclusions that form intragranular bainite, and its lower limit is 0.003%.
Is. If the amount of Ti is too large, a large amount of Ti carbide is generated and the low temperature toughness is deteriorated, so the upper limit was made 0.05%.

【0034】溶接金属には、その他に溶接時の精錬・凝
固を良好に行わせるために必要に応じて添加させたA
l,Zr,Nb,Mg等の元素を含有する場合がある。
なお、粒内ベイナイト生成のためにTiの酸化物を生成
する必要があり、Alは出来る限り低い方が望ましい。
望ましくは0.001〜0.015%以下がよい。さら
に、低温靱性の劣化、低温割れ感受性の低減のためには
P,S量は低い方が望ましい。
Other than the above, A is added to the weld metal as needed in order to favorably perform refining and solidification during welding.
In some cases, elements such as 1, Zr, Nb, and Mg are contained.
It is necessary to generate an oxide of Ti in order to generate intragranular bainite, and it is desirable that Al is as low as possible.
Desirably, 0.001 to 0.015% or less is preferable. Furthermore, in order to deteriorate the low temperature toughness and reduce the low temperature cracking susceptibility, it is desirable that the amounts of P and S be low.

【0035】次に溶接金属の組織について規定する溶接
金属強度の引張り強度が900MPa以上にするには組
織をベイナイト・マルテンサイト分率が80%以上でな
ければならない。さらに溶接金属の低温靱性を良好にす
るには粒内ベイナイト分率が多ければ多い方が好まし
く、80%以上にした方がよい。
Next, the bainite-martensite fraction must be 80% or more in order to obtain a tensile strength of 900 MPa or more of the weld metal strength that defines the structure of the weld metal. Further, in order to improve the low temperature toughness of the weld metal, the larger the intragrain bainite fraction is, the more preferable it is, and the more preferable ratio is 80% or more.

【0036】本発明が目指す鋼板をUO法にてO形に成
形する工程で製管し、突き合わせ部をアーク溶接する、
製造方法が確立されている。
The steel sheet aimed at by the present invention is formed into a pipe in the O-shape by the UO method, and the butt portion is arc-welded.
The manufacturing method is established.

【0037】アーク溶接のなかにサブマージドアーク溶
接、MIG溶接、TIG溶接、MAG溶接等の溶接方法
が考えられる。
Among the arc welding, welding methods such as submerged arc welding, MIG welding, TIG welding and MAG welding can be considered.

【0038】次に鋼板成分の限定理由を述べる。Next, the reasons for limiting the components of the steel sheet will be described.

【0039】C量は0.03〜0.10%に限定する。
Cは鋼の強度向上に極めて有効であり、マルテンサイト
組織において目標とする強度を得るためには、最低0.
03%は必要である。しかし、C量が多すぎると母材、
HAZの低温靱性や現地溶接性の著しい劣化を招くの
で、その上限を0.10%とした。更に望ましくは上限
は0.07%が好ましい。
The amount of C is limited to 0.03 to 0.10%.
C is extremely effective in improving the strength of the steel, and in order to obtain the target strength in the martensitic structure, at least 0.
03% is required. However, if the C content is too high, the base metal,
Since the low temperature toughness of HAZ and the field weldability are remarkably deteriorated, the upper limit was made 0.10%. More desirably, the upper limit is preferably 0.07%.

【0040】Siは脱酸や強度向上のために添加する元
素であるが、多く添加するとHAZ靱性、現地溶接性を
著しく劣化させるので、上限を0.6%とした。鋼の脱
酸はAlでもTiでも十分可能であり、Siは必ずしも
添加する必要はない。
Si is an element added for deoxidation and strength improvement, but if added in a large amount, HAZ toughness and field weldability are significantly deteriorated, so the upper limit was made 0.6%. Deoxidation of steel is sufficiently possible with Al or Ti, and Si is not necessarily added.

【0041】Mnは本発明鋼のミクロ組織をマルテンサ
イト主体の組織とし、優れた強度・低温靱性のバランス
を確保する上で不可欠な元素であり、その下限は1.7
%である。その上溶接熱影響部にて硫化物として粒内ベ
イナイトを生成させる主要な元素である。しかし、Mn
を多く入れすぎると鋼の焼き入れ性が増してHAZ靱
性、現地溶接性を劣化させるだけでなく、連続鋳造鋼片
の中心偏析を助長し、母材の低温靱性をも劣化させるの
で上限を2.5%とした。
Mn is an element indispensable for ensuring a good balance between strength and low temperature toughness by making the microstructure of the steel of the present invention a structure mainly composed of martensite, and its lower limit is 1.7.
%. In addition, it is a main element that produces intragrain bainite as sulfide in the weld heat affected zone. However, Mn
If too much is added, not only the hardenability of the steel increases and HAZ toughness and field weldability deteriorate, but also the center segregation of continuously cast steel slabs is promoted and the low temperature toughness of the base metal also deteriorates, so the upper limit is 2 It was set to 0.5%.

【0042】Niを添加する目的は低炭素の本発明鋼を
低温靱性や現地溶接性を劣化させることなく向上させる
ためである。Ni添加はMnやCr,Mo添加に比較し
て圧延組織(とくに連続鋳造鋼片の中心偏析帯)中に低
温靱性に有害な硬化組織を形成することが少ないばかり
か、0.1%以上の微量Ni添加がHAZ靱性の改善に
も有効であることが判明した(HAZ靱性上、とくに有
効なNi添加量は0.3%以上である)。しかし添加量
が多すぎると、経済性だけでなく、HAZ靱性や現地溶接
性を劣化させるので、その上限を2.0%とした。ま
た、Ni添加は連続鋳造時、熱間圧延時におけるCu割
れ防止にも有効である。この場合、NiはCu量の1/
3以上添加する必要がある。
The purpose of adding Ni is to improve the low carbon steel of the present invention without deteriorating the low temperature toughness and field weldability. Compared to Mn, Cr, and Mo additions, addition of Ni is less likely to form a hardened structure detrimental to low-temperature toughness in the rolling structure (especially the central segregation zone of continuously cast steel pieces), and is not less than 0.1%. It was found that the addition of a trace amount of Ni is also effective in improving the HAZ toughness (the amount of Ni added which is particularly effective in terms of HAZ toughness is 0.3% or more). However, if the addition amount is too large, not only the economical efficiency but also the HAZ toughness and field weldability are deteriorated, so the upper limit was made 2.0%. Further, addition of Ni is also effective for preventing Cu cracking during continuous casting and hot rolling. In this case, Ni is 1 / Cu
It is necessary to add 3 or more.

【0043】Cuは母材、溶接部の強度を増加させるう
えにMnと同様、溶接熱影響部にて硫化物として粒内ベ
イナイトを生成させる主要な元素である。多すぎるとH
AZ靱性や現地溶接性を著しく劣化させる。このためC
u量の上限は1.0%である。
Cu is a main element for increasing the strength of the base material and the welded portion and, like Mn, for forming intragranular bainite as a sulfide in the weld heat affected zone. H is too much
It significantly deteriorates AZ toughness and field weldability. Therefore C
The upper limit of the amount of u is 1.0%.

【0044】Moを添加する理由は鋼の焼き入れ性を向
上させ、目的とするマルテンサイト主体の組織を得るた
めである。B添加鋼においてはMoの焼き入れ性効果が
高まり、またMoとNbと共存して制御圧延時にオース
テナイトの再結晶を抑制し、オーステナイトの組織微細
化にも効果がある。
The reason for adding Mo is to improve the hardenability of steel and to obtain the target structure mainly composed of martensite. In the B-added steel, the hardenability effect of Mo is enhanced, and the co-presence of Mo and Nb suppresses recrystallization of austenite during controlled rolling, and is also effective in refining the structure of austenite.

【0045】Bは極微量で鋼の焼入れ性を飛躍的に高
め、目的とするマルテンサイト主体の組織を得るため
に、非常に有効な元素である。さらに、BはMoの焼入
れ性向上効果を高めると共に、Nbと共存して相乗的に
焼入れ性を増す。一方、過剰に添加すると、低温靱性を
劣化させるだけでなく、かえってBの焼入れ性向上効果
を消失せしめることもあるので、その上限を0.003
0%とした。
B is a very effective element in order to dramatically improve the hardenability of steel with a very small amount and to obtain the target structure mainly composed of martensite. Further, B enhances the hardenability improving effect of Mo and, together with Nb, synergistically increases the hardenability. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the hardenability improving effect of B may be lost, so the upper limit is 0.003.
It was set to 0%.

【0046】また、本発明鋼では、必須の元素としてN
b:0.01〜0.10%、Ti:0.005〜0.0
30%を含有する。NbはMoと共存して制御圧延時に
オーステナイトの再結晶を抑制して組織を微細化するだ
けでなく、析出硬化や焼入れ性増大にも寄与し、鋼を強
靱化する。特にNbとBが共存すると焼入れ性向上効果
が相乗的に高まる。しかし、Nb添加量が多すぎると、
HAZ靱性や現地溶接性に悪影響をもたらすので、その
上限を0.10%とした。一方、Ti添加は微細なTi
Nを形成し、スラブ再加熱時およびHAZのオーステナ
イト粒の粗大化を抑制してミクロ組織を微細化し、母材
およびHAZの低温靱性を改善する。また、Bの焼入れ
性向上効果に有害な固溶NをTiNとして固定する役割
も有する。この目的のために、Ti量は3.4N(各々
重量%)以上添加することが望ましい。また、Al量が
少ない時(たとえば0.005%以下)、Tiは酸化物
を形成し、HAZにおいて粒内フェライト生成核として
作用し、HAZ組織を微細化する効果も有する。このよ
うなTiNの効果を発現させるためには、最低0.00
5%のTi添加が必要である。しかし、Ti量が多すぎ
ると、TiNの粗大化やTiCによる析出硬化が生じ、
低温靱性を劣化させるので、その上限を0.030%に
限定した。
In the steel of the present invention, N is an essential element.
b: 0.01 to 0.10%, Ti: 0.005 to 0.0
Contains 30%. Nb coexists with Mo and not only suppresses recrystallization of austenite during controlled rolling to refine the structure, but also contributes to precipitation hardening and increase in hardenability and strengthens steel. In particular, coexistence of Nb and B synergistically enhances the hardenability improving effect. However, if the amount of Nb added is too large,
The HAZ toughness and field weldability are adversely affected, so the upper limit was made 0.10%. On the other hand, Ti addition is fine Ti
N is formed to suppress the coarsening of austenite grains of the HAZ during reheating of the slab and refine the microstructure to improve the low temperature toughness of the base material and the HAZ. It also has a role of fixing solid solution N, which is harmful to the effect of improving the hardenability of B, as TiN. For this purpose, it is desirable to add Ti in an amount of 3.4 N (each weight%) or more. Further, when the amount of Al is small (for example, 0.005% or less), Ti forms an oxide and acts as an intragranular ferrite formation nucleus in the HAZ, which also has the effect of refining the HAZ structure. In order to exert such an effect of TiN, at least 0.00
5% Ti addition is required. However, if the amount of Ti is too large, coarsening of TiN and precipitation hardening due to TiC occur,
Since the low temperature toughness is deteriorated, the upper limit is limited to 0.030%.

【0047】Alは通常脱酸材として鋼に含まれる元素
で、組織の微細化にも効果を有する。しかし、粒内ベイ
ナイトを生成させるにはAl量はできる限り低いことが
好ましく、望ましくは0.001%〜0.015%である。脱酸はT
iあるいはSiでも可能であり、Alは必ずしも添加す
る必要はない。
Al is an element usually contained in steel as a deoxidizing material, and has an effect on the refinement of the structure. However, the amount of Al is preferably as low as possible in order to generate intragrain bainite, and is preferably 0.001% to 0.015%. Deoxidation is T
It is also possible to use i or Si, and it is not always necessary to add Al.

【0048】NはTiNを形成しスラブ再加熱時および
HAZのオーステナイト粒の粗大化を抑制して母材、H
AZの低温靱性を向上させる。このために必要な最小量
は0.001%である。しかし、N量が多すぎるとスラ
ブ表面疵や固溶NによるHAZ靱性の劣化、Bの焼入れ
性低下の原因となるので、その上限は0.006%に抑
える必要がある。
N forms TiN and suppresses the coarsening of austenite grains in the HAZ during reheating of the slab and the base metal, H
Improve the low temperature toughness of AZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, it causes deterioration of HAZ toughness due to slab surface defects and solid solution N, and deterioration of hardenability of B, so the upper limit must be suppressed to 0.006%.

【0049】さらに、本発明では、不純物元素である
P、S量をそれぞれ0.015%、0.003%以下と
する。この主たる理由は母材およびHAZの低温靱性を
より一層向上させるためである。P量の低減は連続鋳造
スラブの中心偏析を軽減するとともに、粒界破壊を防止
して低温靱性を向上させる。また、S量の低減は熱間圧
延で延伸化するMnSを低減して延靱性を向上させる効
果がある。
Further, in the present invention, the amounts of P and S which are impurity elements are set to 0.015% and 0.003% or less, respectively. The main reason for this is to further improve the low temperature toughness of the base material and HAZ. Reduction of the amount of P reduces the center segregation of the continuously cast slab, prevents grain boundary fracture, and improves the low temperature toughness. Further, the reduction of the amount of S has the effect of reducing MnS that is drawn by hot rolling and improving the ductility and toughness.

【0050】つぎに、V、Cr、Ca、REM、Mgを
添加する目的について説明する。
Next, the purpose of adding V, Cr, Ca, REM and Mg will be described.

【0051】基本となる成分に、更にこれらの元素を添
加する主たる目的は、本発明鋼の優れた特徴を損なうこ
となく、強度・靱性の一層の向上や製造可能な鋼材サイ
ズの拡大をはかるためである。したがって、その添加量
は自ずから制限されるべき性質のものである。
The main purpose of adding these elements to the basic composition is to further improve the strength and toughness and to expand the size of steel that can be manufactured without impairing the excellent characteristics of the steel of the present invention. Is. Therefore, the amount added is of a nature that should be limited by itself.

【0052】VはNbとほぼ同様の効果を有するが、そ
の効果はNbに比較して弱い。しかし、超高強度鋼にお
けるV添加の効果は大きく、NbとVの複合添加は本発
明鋼の優れた特徴をさらに顕著なものとする。上限はH
AZ靱性、現地溶接性の点から0.10%まで許容でき
るが、特に0.03〜0.08%の添加が望ましい範囲
である。
V has almost the same effect as Nb, but the effect is weaker than that of Nb. However, the effect of V addition in the ultra-high strength steel is great, and the combined addition of Nb and V makes the excellent characteristics of the steel of the present invention more remarkable. The upper limit is H
From the viewpoint of AZ toughness and on-site weldability, 0.10% is acceptable, but addition of 0.03 to 0.08% is a particularly desirable range.

【0053】Crは母材、溶接部の強度を増加させる
が、多すぎるとHAZ靱性や現地溶接性を著しく劣化さ
せる。このためCr量の上限は0.6%である。
Cr increases the strength of the base material and the welded portion, but if it is too much, it significantly deteriorates HAZ toughness and field weldability. Therefore, the upper limit of the amount of Cr is 0.6%.

【0054】CaおよびREMは硫化物(MnS)の形
態を制御し、低温靱性を向上(シャルピー試験の吸収エ
ネルギーの増加など)させる。Ca量が0.006%、
REMが0.02%を越えて添加するとCaO−CaS
またはREM−CaSが大量に生成して大型クラスタ
ー、大型介在物となり、鋼の清浄度を害するだけでな
く、現地溶接性にも悪影響をおよぼす。このためCa添
加量の上限を0.006%またはREM添加量の条件を
0.02%に制限した。なお超高強度ラインパイプで
は、S、O量をそれぞれ0.001%、0.002%以
下に低減し、かつESSP=(Ca)〔1−124
(O)〕/1.25Sを0.5≦ESSP≦10.0と
することがとくに有効である。
Ca and REM control the morphology of sulfide (MnS) and improve low temperature toughness (such as increase in absorbed energy in Charpy test). The amount of Ca is 0.006%,
CaO-CaS when REM is added over 0.02%
Alternatively, a large amount of REM-CaS is produced to form large clusters and large inclusions, which not only impairs the cleanliness of steel but also adversely affects the on-site weldability. Therefore, the upper limit of the amount of Ca added is limited to 0.006% or the condition of the amount of REM added is limited to 0.02%. In the ultra high strength line pipe, the S and O contents were reduced to 0.001% and 0.002% or less, respectively, and ESSP = (Ca) [1-124
It is particularly effective to set (O)] / 1.25S to 0.5 ≦ ESSP ≦ 10.0.

【0055】Mgは微細分散した酸化物を形成し、溶接
熱影響部の粒粗大化を抑制して低温靭性を向上させる。
0.006%以上では粗大酸化物を生成し逆に靭性を劣
化させる。
Mg forms an oxide that is finely dispersed, suppresses grain coarsening in the heat-affected zone of welding, and improves low temperature toughness.
If it is 0.006% or more, coarse oxides are produced and conversely the toughness is deteriorated.

【0056】以上個々の添加元素の限定に加えて、さら
にP=2.7C+0.4Si+Mn+0.8Cr+0.
45(Ni+Cu)+(1+β)Mo−1+βを1.9
≦P≦4.0に制限することが望ましい。但し、B≧3
ppmではβ=1、B<3ppmではβ=0。これは、目
的とする強度・低温靱性バランスを達成するためであ
る。P値の下限を1.9としたのは900MPa以上の
強度と優れた低温靱性を得るためである。また、P値の
上限を4.0としたのは優れたHAZ靱性、現地溶接性
を維持するためである。
In addition to the above limitations on the individual additive elements, P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.
45 (Ni + Cu) + (1 + β) Mo-1 + β = 1.9
It is desirable to limit to ≦ P ≦ 4.0. However, B ≧ 3
β = 1 at ppm, β = 0 at B <3 ppm. This is to achieve the desired strength / low temperature toughness balance. The lower limit of the P value is set to 1.9 in order to obtain strength of 900 MPa or more and excellent low temperature toughness. The upper limit of the P value is set to 4.0 in order to maintain excellent HAZ toughness and field weldability.

【0057】また、上記鋼板を突合わせて高強度鋼管と
するに際しては、前記突合せ部の内外面から、質量%
で、C:0.01〜0.12%、Si:0.3%以下、
Mn:1.2〜2.4%、Ni:4.0〜8.5%、C
u:0.1〜2.0%、Cr+Mo+V:3.0〜5.
0%、Ti:0.005〜0.15%、Al:0.02
%以下を含有し、残部がFeを主成分とする溶接ワイヤ
と焼成型もしくは溶融型フラックスを使用してサブマー
ジアーク溶接を行うことが好ましい。このようにして溶
接された高強度鋼管はその後拡管して超高強度鋼管とな
しうる。
When the above steel plates are butted to each other to form a high-strength steel pipe, the mass% is measured from the inner and outer surfaces of the butted part.
C: 0.01 to 0.12%, Si: 0.3% or less,
Mn: 1.2 to 2.4%, Ni: 4.0 to 8.5%, C
u: 0.1 to 2.0%, Cr + Mo + V: 3.0 to 5.
0%, Ti: 0.005 to 0.15%, Al: 0.02
% Or less, with the balance being Fe as the main component, and submerged arc welding is preferably performed using a baking type or melting type flux. The high-strength steel pipe welded in this way can then be expanded into an ultra-high-strength steel pipe.

【0058】[0058]

【実施例】次に、本発明の実施例について述べる。EXAMPLES Next, examples of the present invention will be described.

【0059】300トン転炉で溶製後、連続鋳造鋼片と
し、その後1100℃加熱後800〜900℃での累積
圧下量が80%の仕上げ圧延を行い、900MPa以上
の引張り強度を有する16mmの鋼板を作製した。この
鋼板を用いて、UO工場で管状に成形し、仮付け溶接
後、溶接ワイヤ−およびフラックスを用いて、3電極、
1.75m/分、入熱2.2kJ/mmの溶接条件で内
外面各パスのサブマージドアーク溶接を行った。その後
1%の拡管を行った。表1、表2(表1のつづき)に母
材の化学成分、機械的性質、溶接熱影響部の靱性を示
す。
After smelting in a 300 ton converter, it is made into a continuously cast steel slab, and then it is heated at 1100 ° C. and then finish-rolled at a cumulative reduction of 80% at 800 to 900 ° C. to obtain a 16 mm tensile strength of 900 MPa or more. A steel plate was produced. Using this steel plate, it was formed into a tubular shape at the UO factory, after tack welding, using a welding wire and flux, 3 electrodes,
Submerged arc welding of each pass on the inner and outer surfaces was performed under welding conditions of 1.75 m / min and heat input of 2.2 kJ / mm. After that, the tube was expanded by 1%. Tables 1 and 2 (continued from Table 1) show the chemical composition of the base metal, the mechanical properties, and the toughness of the weld heat affected zone.

【0060】なお、母材の引張り試験は鋼管の周方向か
らは試験片を採取している。母材靱性はシャルピー試験
片を鋼管周方向から採取し、ノッチは板厚方向に入れて
いる。溶接熱影響部靱性は溶接部の外表面からシャルピ
ー試験片を採取し、50%溶接熱影響部50%溶接金属に
なるようにノッチを入れた。
In the tensile test of the base material, test pieces were taken from the circumferential direction of the steel pipe. For the base metal toughness, a Charpy test piece was sampled from the circumferential direction of the steel pipe, and the notch was placed in the plate thickness direction. For the toughness of the heat-affected zone of the weld, a Charpy test piece was sampled from the outer surface of the weld, and a notch was made so that the weld metal of the heat-affected zone of the weld zone was 50%.

【0061】発明例である実施No.1〜20では母材
の強度・低温靱性バランスならびに溶接熱影響部の靱性
が良好である。
Embodiment No. which is an example of the invention. From 1 to 20, the strength / low temperature toughness balance of the base material and the toughness of the weld heat affected zone are good.

【0062】比較例No.21〜29は化学成分が本発
明範囲外であり、目標とする母材の強度・低温靱性バラ
ンスならびに溶接熱影響部の靱性が満足していない。
Comparative Example No. Nos. 21 to 29 have chemical components outside the scope of the present invention, and the target strength / low temperature toughness balance of the base metal and the toughness of the weld heat affected zone are not satisfied.

【0063】No.21,23,25はC,Mn,Cu
量がそれぞれ低いために強度が満足しておらず、No.
22,24,26はC,Mn,Cu量が高いために母材
の強度・低温靱性バランスならびに溶接熱影響部の靱性
が満足していない。
No. 21,23,25 are C, Mn, Cu
Since the amount of each is low, the strength is not satisfactory.
Since Nos. 22, 24 and 26 have a high content of C, Mn and Cu, the strength / low temperature toughness balance of the base metal and the toughness of the weld heat affected zone are not satisfied.

【0064】またNo.26については圧延後に割れが
発生している。No.27はAl量が多いために粒内ベ
イナイトが生成せず、溶接熱影響部の靱性が劣化してい
る。No.28についてはTi量が少なく粒内ベイナイ
トが生成せず、溶接熱影響部の靱性が劣化し、No.2
9はTi量が多いためにTi炭化物が多く生成し、母材
ならびに溶接熱影響部の靱性を劣化させている。
No. Regarding No. 26, cracking occurred after rolling. No. In No. 27, since the amount of Al is large, intragranular bainite is not formed, and the toughness of the weld heat affected zone is deteriorated. No. With respect to No. 28, the amount of Ti was small and intragrain bainite was not formed, and the toughness of the weld heat affected zone deteriorated. Two
Since No. 9 has a large amount of Ti, a large amount of Ti carbide is generated, and the toughness of the base material and the weld heat affected zone is deteriorated.

【0065】次に溶接金属について説明する。Next, the weld metal will be described.

【0066】表3、表4(表3のつづき)、表5(表3
のつづき)にワイヤーの化学成分、溶接金属成分、溶接
金属組織、溶接金属の強度・靱性について示している。
Tables 3 and 4 (continued from Table 3), Table 5 (Table 3)
(Continued) shows the chemical composition of the wire, the weld metal composition, the weld metal structure, and the strength / toughness of the weld metal.

【0067】発明例である実施No.1〜14では良好
なビードが得られ、かつ溶接金属の強度・低温靱性バラ
ンスも良好である。
Implementation No. which is an example of the invention. With Nos. 1 to 14, a good bead was obtained, and the weld metal had a good balance of strength and low temperature toughness.

【0068】比較例No.15〜29は化学成分が本発
明範囲外であり、目標とする溶接金属の強度・低温靱性
を満足していない。
Comparative Example No. Chemical compositions of 15 to 29 are out of the range of the present invention, and do not satisfy the target strength and low temperature toughness of the weld metal.

【0069】No.15,17はC,Mn,Cu量がそ
れぞれ低いために強度が満足しておらず、No.25は
Cu量が低いために粒内ベイナイトが生成しにくくなっ
ており、No.16,18,26はC,Mn,Cu量が
高いために強度が高すぎて粒内ベイナイトが生成せず低
温靱性が劣化している。
No. Nos. 15 and 17 did not satisfy the strength because the amounts of C, Mn, and Cu were low, respectively. In No. 25, since the amount of Cu is low, intragranular bainite is hard to be generated. Nos. 16, 18, and 26 have high contents of C, Mn, and Cu, so that the strength is too high and intragrain bainite is not formed, and the low temperature toughness is deteriorated.

【0070】またNo.26についてはCu割れが称し
ている。No.19〜23はAll量が多いために粒内
ベイナイト生成しにくく、粒内ベイナイトが生成せず、
No.24については溶接後に高温割れを生じており、
No.27はTi量が少なく粒内ベイナイトが生成せ
ず、低温靱性が劣化し、No.28はTi量が多いため
にTi炭化物が多く生成し、低温靱性を劣化させてい
る。No.29はAl量が過剰に多いために酸化物のサ
イズが大きいために粒内ベイナイトが生成せず、低温靱
性が劣化している。
No. Regarding No. 26, Cu cracking is called. No. In Nos. 19 to 23, since the amount of All is large, intragranular bainite is difficult to be generated, and intragranular bainite is not generated,
No. For No. 24, hot cracking occurred after welding,
No. No. 27 has a small amount of Ti and does not generate intragranular bainite, which deteriorates the low temperature toughness. Since No. 28 has a large amount of Ti, a large amount of Ti carbide is generated, which deteriorates the low temperature toughness. No. In No. 29, since the amount of Al was excessively large and the size of the oxide was large, intragranular bainite was not formed and the low temperature toughness was deteriorated.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】[0073]

【表3】 [Table 3]

【0074】[0074]

【表4】 [Table 4]

【0075】[0075]

【表5】 [Table 5]

【0076】[0076]

【発明の効果】本発明は、化学成分を特定範囲の量に限
定し、Tiを主成分とする酸化物とMnおよびCuを主
成分とする硫化物を微細分散させ、この介在物を核とし
た粒内ベイナイトを生成させる。この効果により溶接熱
影響部および溶接金属の低温靱性を向上させることが可
能である。その結果、高強度溶接鋼構造物に対するコス
トと作業性が大幅に向上する。
INDUSTRIAL APPLICABILITY According to the present invention, the chemical composition is limited to a specific range, and the oxide containing Ti as the main component and the sulfide containing Mn and Cu as the main components are finely dispersed. To generate the intragranular bainite. Due to this effect, it is possible to improve the low temperature toughness of the weld heat affected zone and the weld metal. As a result, the cost and workability for high strength welded steel structures are significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術と本発明の超高強度鋼管の溶接金属の
強度と靭性(−20℃でのシャルピー吸収エネルギー)
との関係を示す図である。
FIG. 1 Strength and toughness (charpy absorbed energy at −20 ° C.) of weld metal of conventional high-strength steel pipe of the present invention
It is a figure which shows the relationship with.

【図2】粒内ベイナイトが生成している組織を有する本
発明による溶接金属組織を示す図である。
FIG. 2 is a diagram showing a weld metal structure according to the present invention having a structure in which intragranular bainite is formed.

【図3】粒内ベイナイトが生成しない組織を有する従来
の溶接金属組織を示す図である。
FIG. 3 is a diagram showing a conventional weld metal structure having a structure in which intragranular bainite is not formed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 // B23K 101:06 B23K 101:06 Fターム(参考) 4E001 AA03 BB05 CC03 EA05 4E081 BA05 BA19 BB01 BB13 CA05 FA03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/58 C22C 38/58 // B23K 101: 06 B23K 101: 06 F term (reference) 4E001 AA03 BB05 CC03 EA05 4E081 BA05 BA19 BB01 BB13 CA05 FA03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 溶接金属部もしくは溶接熱影響部におい
て複合介在物を核にして粒内ベイナイト分率が50%以
上生成し、その複合介在物が酸化物、および酸化物の周
辺に析出したMn主体の硫化物とCu主体の硫化物の2
相よりなる複合硫化物であることを特徴とする溶接部靱
性に優れた超高強度鋼管。
1. An intragranular bainite fraction of 50% or more is formed in the weld metal part or the heat-affected zone of a weld with a core of the composite inclusions, and the composite inclusions are oxides and Mn precipitated around the oxides. Main sulfide and Cu-based sulfide 2
Ultra high strength steel pipe with excellent weld toughness, which is a composite sulfide consisting of phases.
【請求項2】 溶接金属部もしくは溶接熱影響部におい
て複合介在物を核にして粒内ベイナイト分率が50%以
上生成し、その複合介在物が酸化物、および酸化物の周
辺に析出したMn主体の硫化物とCu主体の硫化物の2
相よりなる複合硫化物およびこの複合硫化物に窒化物が
析出した複合介在物であることを特徴とする溶接部靱性
に優れた超高強度鋼管。
2. An intragranular bainite fraction of 50% or more is formed in the weld metal part or the heat-affected zone by the inclusion of nuclei, and the compound inclusions precipitate in the oxide and Mn precipitated around the oxide. Main sulfide and Cu-based sulfide 2
An ultrahigh-strength steel pipe having excellent weld toughness, which is a composite sulfide consisting of phases and a composite inclusion in which nitride is precipitated on the composite sulfide.
【請求項3】 前記酸化物がTi含有酸化物であること
を特徴とする請求項1または2記載の溶接部靭性に優れ
た超高強度鋼管。
3. The ultra-high-strength steel pipe excellent in weld zone toughness according to claim 1, wherein the oxide is a Ti-containing oxide.
【請求項4】 前記酸化物、硫化物からなる複合硫化
物、または前記酸化物、硫化物および窒化物からなる複
合介在物のサイズが、平均円相当径で0.01〜5μm
であり、かつ平均密度が1×103 個/mm2 以上で溶
接金属中に存在することを特徴とする請求項1〜3の何
れかの項に記載の溶接部靱性に優れた超高強度鋼管。
4. The average sphere-equivalent diameter of the composite sulfide consisting of the oxide or sulfide or the composite inclusion consisting of the oxide, sulfide and nitride is 0.01 to 5 μm.
And has an average density of 1 × 10 3 pieces / mm 2 or more and is present in the weld metal. Ultra-high strength excellent in weld zone toughness according to any one of claims 1 to 3. Steel pipe.
【請求項5】 母材の引張強度が900MPa以上を有
することを特徴とする請求項1〜4の何れかの項に記載
の溶接部靭性に優れた超高強度鋼管。
5. The ultrahigh strength steel pipe excellent in weld toughness according to any one of claims 1 to 4, wherein the base material has a tensile strength of 900 MPa or more.
【請求項6】 前記溶接金属のベイナイト・マルテンサ
イト分率が50%以上であることを特徴とする請求項1
〜5の何れかの項に記載の溶接部靭性に優れた超高強度
鋼管。
6. The bainite / martensite fraction of the weld metal is 50% or more.
An ultrahigh-strength steel pipe having excellent weld zone toughness according to any one of items 1 to 5.
【請求項7】 溶接金属の化学成分が、質量%で、C:
0.04〜0.14%、Si:0.05〜0.40%、
Mn:1.2〜2.2%、P:≦0.01%、S:≦
0.010%、Ni:1.3〜3.2%、Cu:0.1
〜1.0%、Cr+Mo+V:1.0〜2.5%、T
i: 0.003〜0.050%、Al:≦0.02
%、B:≦0.005%を含み、残部Feおよび不可避
的不純物からなることを特徴とする請有する請求項1〜
6の何れかの項に記載の溶接部靱性に優れた超高強度鋼
管。
7. The chemical composition of the weld metal, in mass%, is C:
0.04 to 0.14%, Si: 0.05 to 0.40%,
Mn: 1.2 to 2.2%, P: ≤ 0.01%, S: ≤
0.010%, Ni: 1.3 to 3.2%, Cu: 0.1
~ 1.0%, Cr + Mo + V: 1.0-2.5%, T
i: 0.003 to 0.050%, Al: ≤ 0.02
%, B: ≤ 0.005%, and the balance Fe and unavoidable impurities.
An ultrahigh-strength steel pipe having excellent weld toughness according to any one of 6 above.
【請求項8】 母材の化学成分が、質量%で、C:0.
03〜0.10%、Si:≦0.6%、Mn:1.7〜
2.5%、P:≦0.015%、S:≦0.003%、
Ni:0.1〜2.0%、Cu:0.1〜1.0%、M
o:0.15〜2.5%、Nb:0.01〜0.10
%、Ti:0.005〜0.030%、Al:≦0.0
6%を含み、さらに選択的に、B:≦0.005%、
N:0.001〜0.006%、V:≦0.10%、C
r:≦0.8%、Ca:≦0.01%、REM:≦0.
02%、Mg:≦0.006%の1種または2種以上を
含有し、残部Feおよび不可避的不純物からなることを
特徴とする請求項1〜7の何れかの項に記載の溶接部靱
性に優れた超高強度鋼管。
8. The chemical composition of the base material is C: 0.
03-0.10%, Si: ≤ 0.6%, Mn: 1.7-
2.5%, P: ≤ 0.015%, S: ≤ 0.003%,
Ni: 0.1-2.0%, Cu: 0.1-1.0%, M
o: 0.15 to 2.5%, Nb: 0.01 to 0.10.
%, Ti: 0.005 to 0.030%, Al: ≤0.0
6%, and optionally, B: ≤ 0.005%,
N: 0.001 to 0.006%, V: ≤ 0.10%, C
r: ≦ 0.8%, Ca: ≦ 0.01%, REM: ≦ 0.
The weld toughness according to any one of claims 1 to 7, which contains one or two or more of 02% and Mg: 0.006%, and the balance Fe and unavoidable impurities. Excellent super high strength steel pipe.
【請求項9】 質量%で、C:0.03〜0.10%、
Si:≦0.6%、Mn:1.7〜2.5%、P:≦
0.015%、S:≦0.003%、Ni:0.1〜
2.0%、Cu:0.1〜1.0%、Mo:0.15〜
2.5%、Nb:0.01〜0.10%、Ti:0.0
05〜0.030%、Al:≦0.06%を含み、さら
に選択的に、B:≦0.005%、N:0.001〜
0.006%、V:≦0.10%、Cr:≦0.8%、
Ca:≦0.01%、REM:≦0.02%、Mg:≦
0.006%の1種または2種以上を含有し、残部Fe
および不可避的不純物からなる鋼板をUO工程で管状に
成形し、その鋼板の突合せ部の内外面から、質量%で、
C:0.01〜0.12%、Si:≦0.3%、Mn:
1.2〜2.4%、Ni:4.0〜8.5%、Cu:
0.1〜2.0%、Cr+Mo+V:3.0〜5.0
%、Ti:0.005〜0.150%、Al:≦0.0
2%、残部Feを主成分とする溶接ワイヤと焼成型もし
くは溶融型フラックスを使用してサブマージアーク溶接
を行い、その後、拡管することを特徴とする溶接部靭性
に優れた超高強度鋼管の製造方法。
9. C: 0.03 to 0.10% by mass%,
Si: ≦ 0.6%, Mn: 1.7 to 2.5%, P: ≦
0.015%, S: ≤ 0.003%, Ni: 0.1
2.0%, Cu: 0.1-1.0%, Mo: 0.15-
2.5%, Nb: 0.01 to 0.10%, Ti: 0.0
05: 0.030%, Al: ≤ 0.06%, and optionally, B: ≤ 0.005%, N: 0.001%
0.006%, V: ≤0.10%, Cr: ≤0.8%,
Ca: ≤ 0.01%, REM: ≤ 0.02%, Mg: ≤
0.006% of 1 type or 2 types or more, and the balance Fe
And a steel sheet consisting of unavoidable impurities into a tubular shape in the UO process, and from the inner and outer surfaces of the butt portion of the steel sheet, in mass%,
C: 0.01 to 0.12%, Si: ≤ 0.3%, Mn:
1.2-2.4%, Ni: 4.0-8.5%, Cu:
0.1-2.0%, Cr + Mo + V: 3.0-5.0
%, Ti: 0.005 to 0.150%, Al: ≤0.0
Manufacture of ultra-high strength steel pipe with excellent weld toughness, characterized by performing submerged arc welding using a welding wire containing 2% of balance Fe as the main component and a firing type or melting type flux, and then expanding the pipe. Method.
JP2001335174A 2001-10-31 2001-10-31 Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method Withdrawn JP2003138340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335174A JP2003138340A (en) 2001-10-31 2001-10-31 Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335174A JP2003138340A (en) 2001-10-31 2001-10-31 Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003138340A true JP2003138340A (en) 2003-05-14

Family

ID=19150191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335174A Withdrawn JP2003138340A (en) 2001-10-31 2001-10-31 Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003138340A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028409A (en) * 2003-07-04 2005-02-03 Jfe Steel Kk Submerged-arc welding method
JP2005105322A (en) * 2003-09-29 2005-04-21 Kobe Steel Ltd Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP2005262253A (en) * 2004-03-17 2005-09-29 Nippon Steel Corp Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance
JP2005324239A (en) * 2004-05-17 2005-11-24 Nippon Steel & Sumikin Welding Co Ltd Wire for electro-slag welding
JP2006299398A (en) * 2005-03-22 2006-11-02 Nippon Steel Corp Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
JP2007224404A (en) * 2006-02-27 2007-09-06 Nippon Steel Corp High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JP2007229759A (en) * 2006-02-28 2007-09-13 Sumitomo Metal Ind Ltd High-tensile welded joint having excellent joint toughness, and method for manufacturing the same
CN100392135C (en) * 2005-06-30 2008-06-04 宝山钢铁股份有限公司 Ultra-high strength strip steel and its production process
WO2008069335A1 (en) 2006-12-04 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
WO2008069289A1 (en) 2006-11-30 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
US7485196B2 (en) 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
JP2009195990A (en) * 2009-06-08 2009-09-03 Nippon Steel Corp Seam welding method of high-strength uo steel pipe excellent in resistance to lateral crack
US7588649B2 (en) 2001-09-14 2009-09-15 Nucor Corporation Casting steel strip
US7690417B2 (en) 2001-09-14 2010-04-06 Nucor Corporation Thin cast strip with controlled manganese and low oxygen levels and method for making same
WO2011096510A1 (en) 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
US8016021B2 (en) 2003-01-24 2011-09-13 Nucor Corporation Casting steel strip with low surface roughness and low porosity
US8039118B2 (en) 2006-11-30 2011-10-18 Nippon Steel Corporation Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same
WO2013100106A1 (en) 2011-12-28 2013-07-04 新日鐵住金株式会社 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
KR101351267B1 (en) 2011-10-21 2014-02-13 한양대학교 산학협력단 1GPa HIGH STRENGTH WELDING JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
CN105414799A (en) * 2015-12-23 2016-03-23 宜昌猴王焊丝有限公司 Solid cored welding wire of low-alloy and high-strength steel and application of solid cored welding wire
JP2016164289A (en) * 2015-03-06 2016-09-08 新日鐵住金株式会社 High tensile steel for weldment
JP2017523046A (en) * 2014-06-11 2017-08-17 江▲蘇▼省沙▲鋼鋼鉄▼研究院有限公司Institute Of Research Of Iron And Steel, Jiangsu Province/Sha−Steel, Co.Ltd Submerged arc welding wire and welding method
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
CN109023045A (en) * 2018-08-02 2018-12-18 邯郸钢铁集团有限责任公司 A kind of highly resistance H2The production method of S corrosion oil well casing J55
CN110358971A (en) * 2019-06-20 2019-10-22 天津大学 A kind of yield strength 1300MPa grades low-carbon super-high strength steel and preparation method thereof
CN113025915A (en) * 2021-03-04 2021-06-25 东北大学 High-strength and high-toughness vanadium-nitrogen microalloyed hot-rolled steel pipe and manufacturing method thereof
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002908B2 (en) 2001-09-14 2011-08-23 Nucor Corporation Steel product with a high austenite grain coarsening temperature
US7690417B2 (en) 2001-09-14 2010-04-06 Nucor Corporation Thin cast strip with controlled manganese and low oxygen levels and method for making same
US7588649B2 (en) 2001-09-14 2009-09-15 Nucor Corporation Casting steel strip
US7485196B2 (en) 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
US8016021B2 (en) 2003-01-24 2011-09-13 Nucor Corporation Casting steel strip with low surface roughness and low porosity
JP2005028409A (en) * 2003-07-04 2005-02-03 Jfe Steel Kk Submerged-arc welding method
JP4562359B2 (en) * 2003-07-04 2010-10-13 Jfeスチール株式会社 Submerged arc welding method
JP2005105322A (en) * 2003-09-29 2005-04-21 Kobe Steel Ltd Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP2005262253A (en) * 2004-03-17 2005-09-29 Nippon Steel Corp Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance
JP4482355B2 (en) * 2004-03-17 2010-06-16 新日本製鐵株式会社 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance
JP2005324239A (en) * 2004-05-17 2005-11-24 Nippon Steel & Sumikin Welding Co Ltd Wire for electro-slag welding
JP2006299398A (en) * 2005-03-22 2006-11-02 Nippon Steel Corp Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
CN100392135C (en) * 2005-06-30 2008-06-04 宝山钢铁股份有限公司 Ultra-high strength strip steel and its production process
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
JP2007224404A (en) * 2006-02-27 2007-09-06 Nippon Steel Corp High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JP2007229759A (en) * 2006-02-28 2007-09-13 Sumitomo Metal Ind Ltd High-tensile welded joint having excellent joint toughness, and method for manufacturing the same
JP4566146B2 (en) * 2006-02-28 2010-10-20 住友金属工業株式会社 High tensile welded joint with excellent joint toughness and method for producing the same
EP2093302A4 (en) * 2006-11-30 2011-07-27 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
WO2008069289A1 (en) 2006-11-30 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
US8039118B2 (en) 2006-11-30 2011-10-18 Nippon Steel Corporation Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same
EP2093302A1 (en) * 2006-11-30 2009-08-26 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
US8084144B2 (en) 2006-12-04 2011-12-27 Nippon Steel Corporation High strength thick welded steel pipe for line pipe superior in low temperature toughness and method of production of the same
WO2008069335A1 (en) 2006-12-04 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby
JP2009195990A (en) * 2009-06-08 2009-09-03 Nippon Steel Corp Seam welding method of high-strength uo steel pipe excellent in resistance to lateral crack
WO2011096510A1 (en) 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
US8974610B2 (en) 2010-02-04 2015-03-10 Nippon Steel & Sumitomo Metal Corporation High-strength welded steel pipe and method for producing the same
KR101351267B1 (en) 2011-10-21 2014-02-13 한양대학교 산학협력단 1GPa HIGH STRENGTH WELDING JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS
WO2013100106A1 (en) 2011-12-28 2013-07-04 新日鐵住金株式会社 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
KR20140095103A (en) 2011-12-28 2014-07-31 신닛테츠스미킨 카부시키카이샤 High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
JP2017523046A (en) * 2014-06-11 2017-08-17 江▲蘇▼省沙▲鋼鋼鉄▼研究院有限公司Institute Of Research Of Iron And Steel, Jiangsu Province/Sha−Steel, Co.Ltd Submerged arc welding wire and welding method
EP3156168A4 (en) * 2014-06-11 2017-11-22 Institute Of Research Of Iron And Steel Jiangsu Province Submerged arc welding wire and welding method
JP2016164289A (en) * 2015-03-06 2016-09-08 新日鐵住金株式会社 High tensile steel for weldment
CN105414799A (en) * 2015-12-23 2016-03-23 宜昌猴王焊丝有限公司 Solid cored welding wire of low-alloy and high-strength steel and application of solid cored welding wire
CN109023045A (en) * 2018-08-02 2018-12-18 邯郸钢铁集团有限责任公司 A kind of highly resistance H2The production method of S corrosion oil well casing J55
CN110358971A (en) * 2019-06-20 2019-10-22 天津大学 A kind of yield strength 1300MPa grades low-carbon super-high strength steel and preparation method thereof
CN113025915A (en) * 2021-03-04 2021-06-25 东北大学 High-strength and high-toughness vanadium-nitrogen microalloyed hot-rolled steel pipe and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2003138340A (en) Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP3519966B2 (en) Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
EP0867520B1 (en) Welded high-strength steel structures and methods of manufacturing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP4268317B2 (en) Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
JP2010202976A (en) High-strength steel tube for low temperature use having superior buckling resistance and toughness in weld heat-affected area, and manufacturing method for same
JP2007314828A (en) High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them
WO2018185851A1 (en) Vertical-seam-welded steel pipe
JP2009091653A (en) High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP4171169B2 (en) Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP3814112B2 (en) Super high strength steel pipe excellent in low temperature toughness of seam welded portion and manufacturing method thereof
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JPH09194991A (en) Welded steel tube excellent in sour resistance and carbon dioxide gas corrosion resistance
JP2004143556A (en) Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104