JP2005028409A - Submerged-arc welding method - Google Patents

Submerged-arc welding method Download PDF

Info

Publication number
JP2005028409A
JP2005028409A JP2003271167A JP2003271167A JP2005028409A JP 2005028409 A JP2005028409 A JP 2005028409A JP 2003271167 A JP2003271167 A JP 2003271167A JP 2003271167 A JP2003271167 A JP 2003271167A JP 2005028409 A JP2005028409 A JP 2005028409A
Authority
JP
Japan
Prior art keywords
mass
welding
electrode
toughness
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003271167A
Other languages
Japanese (ja)
Other versions
JP4562359B2 (en
Inventor
Takayuki Honda
孝行 本多
Mikio Sawa
幹夫 澤
Yoshihito Ishizaki
圭人 石▲崎▼
Shigeki Nishiyama
繁樹 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd filed Critical JFE Steel Corp
Priority to JP2003271167A priority Critical patent/JP4562359B2/en
Publication of JP2005028409A publication Critical patent/JP2005028409A/en
Application granted granted Critical
Publication of JP4562359B2 publication Critical patent/JP4562359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a submerged-arc welding method capable of obtaining weld metal of excellent low-temperature toughness and excellent in high-speed weldability of the first layer on both sides even when the carbon equivalent of a base metal composition is lower. <P>SOLUTION: [M]<SB>AL</SB>, [M]<SB>AT1</SB>, [M]<SB>AT2</SB>, and [M]<SB>AT3</SB>denote mass % of the element M in first to fourth electrode wires, I<SB>L</SB>, I<SB>T1</SB>, I<SB>T2</SB>and I<SB>T3</SB>denote the welding current (A) in the first to fourth electrode wires. The wire composition is determined from the value obtained by the formula [M] = ([M]<SB>AL</SB>+ I<SB>T1</SB>/I<SB>L</SB>× [M]<SB>AT1</SB>+ I<SB>T2</SB>/I<SB>L</SB>× [M]<SB>AT2</SB>+ I<SB>T3</SB>/I<SB>L</SB>× [M]<SB>AT3</SB>)/(1 + I<SB>T1</SB>/I<SB>L</SB>+ I<SB>T2</SB>/I<SB>L</SB>+ I<SB>T3</SB>/I<SB>L</SB>) as a standard. The welding current ratio I<SB>T1</SB>/I<SB>L</SB>is set to be 0.60 to 0.90, I<SB>T2</SB>/I<SB>L</SB>to be 0.50-0.80, and I<SB>T3</SB>/I<SB>L</SB>to be 0.50 to 0.80. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、優れた低温靭性を有し、両面一層の高速溶接性が優れたサブマージアーク溶接方法に関する。   The present invention relates to a submerged arc welding method having excellent low-temperature toughness and excellent high-speed weldability on both sides.

天然ガス又は石油を輸送するパイプラインに使用されるUOE鋼管は、操業圧力を増加させ、輸送効率の向上を図るため、高強度化と共に、高靭性化が求められている。このため、母材は熱影響部の靭性確保及び溶接性向上を目的として、低炭素当量化が進められている。また、母材と同様に溶接金属も従来より良好な靭性が必要になっている。一般に、UOE鋼管のシーム溶接には多電極サブマージアーク溶接法による両面一層溶接が使用されているが、母材希釈が大きいため、溶接金属の靭性は母材成分の影響を受けやすい。特に、母材の炭素当量が低くなると、溶接金属の炭素当量も低くなるために、ミクロ組織が劣化し、靭性の向上がより困難になる。   UOE steel pipes used in pipelines for transporting natural gas or oil are required to have high strength and high toughness in order to increase operating pressure and improve transport efficiency. For this reason, the base material is being reduced in carbon equivalent for the purpose of ensuring the toughness of the heat-affected zone and improving the weldability. In addition, as with the base material, the weld metal is required to have better toughness than before. In general, double-sided single-layer welding by a multi-electrode submerged arc welding method is used for seam welding of UOE steel pipes. However, since the base metal dilution is large, the toughness of the weld metal is easily affected by the base material components. In particular, when the carbon equivalent of the base metal is lowered, the carbon equivalent of the weld metal is also lowered, so that the microstructure is deteriorated and it becomes more difficult to improve toughness.

低温靭性が優れた溶接材料としては、例えば、特開平10−113791号公報に開示されているが、この公報に記載の技術は両面一層高速溶接ではない。また、特開昭61−147990号公報には、ワイヤの構成元素及び含有率を厳密に規定することによって、強度、低温靭性及び耐割れ性が優れた溶接金属部を得ることができると記載されている。しかし、この公報に記載の技術は、単電極溶接であり、溶接速度も比較的低速である。   As a welding material excellent in low-temperature toughness, for example, it is disclosed in Japanese Patent Laid-Open No. 10-113791, but the technique described in this publication is not double-sided and high-speed welding. Japanese Patent Application Laid-Open No. 61-147990 describes that a weld metal part having excellent strength, low temperature toughness and crack resistance can be obtained by strictly defining the constituent elements and content of the wire. ing. However, the technique described in this publication is single electrode welding, and the welding speed is also relatively low.

一方、多電極サブマージアーク溶接法による両面一層溶接は高速度であるため、スラグ巻き込み及びオーバーラップ等の溶接欠陥が発生しやすい。そこで、これまでにもUOE鋼管の高速溶接に関しては溶接欠陥の軽減法がいくつか提案されている。例えば、特開平9−85440号公報、特開平9−277043号公報、特開平9−239536号公報、特開平10−43859号公報、特開平10−258363号公報及び特開平10−258364号公報には、多電極を使用し、溶接金属に磁気撹拌を与えることにより、溶接欠陥の軽減を図ることができるとしている。しかし、この方法は磁場を形成するような設備が必要となり、コストがかかるうえ、溶接金属の低温靭性までも改善できるものではない。また、特開平4−147770号公報には、6本以上の電極を使用した高速サブマージアーク溶接法が提案されている。しかし、この方法は、電極数を増やすことで高速化は図られるものの、それに伴い、溶接欠陥発生の危険率が増大し、設備費が増大したり、オペレーションが複雑化するために、高速化のメリットが十分に生かされたものとは必ずしも言えないものであった。更に、この公報に記載された技術は、溶接金属の低温靭性を改善できるものではない。   On the other hand, double-sided single-layer welding by the multi-electrode submerged arc welding method has a high speed, so that welding defects such as slag entrainment and overlap are likely to occur. So far, several methods for reducing welding defects have been proposed for high-speed welding of UOE steel pipes. For example, in JP-A-9-85440, JP-A-9-277043, JP-A-9-239536, JP-A-10-43859, JP-A-10-258363, and JP-A-10-258364. Uses multi-electrodes and gives magnetic agitation to the weld metal to reduce welding defects. However, this method requires equipment for forming a magnetic field, which is costly and cannot improve even the low temperature toughness of the weld metal. Japanese Laid-Open Patent Publication No. 4-147770 proposes a high-speed submerged arc welding method using six or more electrodes. However, although this method can increase the speed by increasing the number of electrodes, the risk of welding defects increases, the equipment cost increases, and the operation becomes complicated. It could not be said that the merit was fully utilized. Furthermore, the technique described in this publication cannot improve the low temperature toughness of the weld metal.

特開平10−113791号公報Japanese Patent Laid-Open No. 10-113791 特開昭61−147990号公報JP 61-147990 A 特開平9−85440号公報JP-A-9-85440 特開平9−277043号公報Japanese Patent Laid-Open No. 9-277043 特開平9−239536号公報JP 9-239536 A 特開平10−43859号公報JP 10-43859 A 特開平10−258363号公報JP-A-10-258363 特開平10−258364号公報JP-A-10-258364 特開平4−147770号公報JP-A-4-147770

上述の如く、低炭素当量の高張力鋼又は鋼管のシーム溶接で適用する母材希釈が大きい両面一層溶接の場合でも、優れた低温靭性と高速溶接における優れた品質が得られる最適な溶接方法については、従来存在しなかった。   As described above, the optimum welding method that provides excellent low-temperature toughness and excellent quality in high-speed welding even in the case of double-sided single-layer welding with large base metal dilution applied in seam welding of high-tensile steel or steel pipe with low carbon equivalent Did not exist in the past.

本発明はかかる問題点に鑑みてなされたものであって、母材成分系の低炭素当量化においても、優れた低温靭性の溶接金属が得られると共に、両面一層の高速溶接性が優れたサブマージアーク溶接方法を提供することを目的とする。   The present invention has been made in view of such problems, and even in the low carbon equivalent of the base material component system, it is possible to obtain a weld metal having excellent low temperature toughness, and a submerged excellent in high-speed weldability on both sides. An object is to provide an arc welding method.

本発明に係るサブマージアーク溶接方法は、2電極乃至4電極の多電極サブマージアーク溶接方法において、下記数式1で示される[M]の値が下記各元素の範囲を満足する溶接ワイヤを使用し、下記範囲の溶接電流比にてサブマージアーク溶接することを特徴とする。   The submerged arc welding method according to the present invention uses a welding wire in which the value of [M] represented by the following formula 1 satisfies the following ranges of each element in a two-electrode to four-electrode multi-merged submerged arc welding method. Submerged arc welding is performed at a welding current ratio in the following range.

但し、[M]は第1電極乃至第4電極ワイヤに含まれる元素Mにより下記数式1で計算される値を表す。但し、3電極及び2電極サブマージアーク溶接の場合は、夫々第4電極ワイヤの[M]AT3と、第4電極ワイヤの[M]AT3及び第3電極ワイヤの[M]AT2とは0である。なお、[M]の適正範囲は、電極の数によらず、同一である。 However, [M] represents a value calculated by the following formula 1 using the element M included in the first electrode to the fourth electrode wire. However, 3 in the case of the electrode and the second electrode submerged arc welding, and [M] AT3 each fourth electrode wire, and the fourth electrode wire [M] of the AT3 and the third electrode wire [M] AT2 is 0 . The appropriate range of [M] is the same regardless of the number of electrodes.

Figure 2005028409
但し、
[M]AL:第1電極ワイヤ中のM元素の質量(%)
[M]AT1:第2電極ワイヤ中のM元素の質量(%)
[M]AT2:第3電極ワイヤ中のM元素の質量(%)
[M]AT3:第4電極ワイヤ中のM元素の質量(%)
:第1電極ワイヤの溶接電流(A)
T1:第2電極ワイヤの溶接電流(A)
T2:第3電極ワイヤの溶接電流(A)
T3:第4電極ワイヤの溶接電流(A)
Figure 2005028409
However,
[M] AL : Mass of element M in the first electrode wire (%)
[M] AT1 : Mass of element M in the second electrode wire (%)
[M] AT2 : Mass of element M in the third electrode wire (%)
[M] AT3 : Mass of element M in the fourth electrode wire (%)
I L : welding current of the first electrode wire (A)
IT1 : Welding current of the second electrode wire (A)
IT2 : welding current of the third electrode wire (A)
IT3 : welding current of the fourth electrode wire (A)

M元素の[M]の値は、下記範囲を満たす。
[C]:0.07乃至0.20質量%
[Mn]:1.45乃至2.70質量%
[Si]:0.10乃至0.70質量%
[Ti]:0.10乃至0.30質量%
[Al]:0.003乃至0.030質量%
[P]:≦0.020質量%
[S]:≦0.020質量%
[V]:≦0.020質量%
[Cu]:≦0.70質量%
[B]:≦0.020質量%
[O]:≦0.010質量%
[N]:≦0.008質量%
[Mo]:≦1.0質量%
[Ni]、[Cr]、[Mo](合計量で);2.0質量%以下
残部はFe及び不可避不純物である。
The value of [M] of the M element satisfies the following range.
[C]: 0.07 to 0.20 mass%
[Mn]: 1.45 to 2.70 mass%
[Si]: 0.10 to 0.70 mass%
[Ti]: 0.10 to 0.30 mass%
[Al]: 0.003 to 0.030 mass%
[P]: ≦ 0.020 mass%
[S]: ≦ 0.020 mass%
[V]: ≦ 0.020 mass%
[Cu]: ≦ 0.70 mass%
[B]: ≦ 0.020 mass%
[O]: ≦ 0.010 mass%
[N]: ≦ 0.008 mass%
[Mo]: ≦ 1.0% by mass
[Ni], [Cr], [Mo] (in total amount); 2.0 mass% or less The balance is Fe and inevitable impurities.

溶接電流比は下記範囲を満たす。但し、3電極の場合はIT3/Iは0である。また、4電極の場合はIT2/I及びIT3/Iが0である。

T1/I:0.60乃至0.90
T2/I:0.50乃至0.80
T3/I:0.50乃至0.80
The welding current ratio satisfies the following range. However, in the case of 3 electrodes, IT3 / IL is 0. In the case of four electrodes, IT2 / IL and IT3 / IL are zero.

I T1 / I L : 0.60 to 0.90
I T2 / I L : 0.50 to 0.80
I T3 / I L : 0.50 to 0.80

以上詳述したように、本発明によれば、優れた低温靭性を有する溶接金属を得ることができ、母材成分系の低炭素等量化に際し両面一層の高速溶接性が優れたサブマージアーク溶接が可能になる。   As described above in detail, according to the present invention, it is possible to obtain a weld metal having excellent low temperature toughness, and submerged arc welding having excellent high-speed weldability on both sides in reducing the carbon equivalent of the base material component system. It becomes possible.

以下、本発明について、詳細に説明する。前述のとおり、母材の成分系は高品質化及び溶接性を考慮して、低炭素当量化が進められている。これは、溶接による熱影響部の靭性確保のために低C、低Siとし、低炭素当量化にともなう母材強度の低下をNb、Ti、V等の微量添加及び制御圧延による組織の微細化により補い、高強度と高靭性を得るものである。しかし、両面一層溶接の場合、母材希釈が大きいために、溶接金属の化学成分は母材化学成分の影響を受けやすく、母材の低炭素当量化にともない、溶接金属の炭素当量も低くなる。そのため、溶接金属では、初析フェライト析出及び組織の粗大化が起こり、更に母材の低C及び低Si化によって、脱酸成分が不足するために、溶接金属の酸素量が増加する等、複合的な原因によって靭性が劣化してしまうという問題点がある。組織の劣化に対しては、ワイヤ及びフラックス成分の調整により、C、Mn、Ni、Cr、Mo、V、Ti及びB等の合金成分を補填する方法が考えられる。特に、組織改善に有効なC、Mo、V、Ti及びB等の添加は、2番目に溶接する側(裏面側)の溶接金属の熱影響による最初に溶接する側(表面側)の溶接金属の硬化を引き起こすことがあるため、適量に制限しなければならず、従って上記方法は溶接金属の高靭性化を達成できる有効な手段とは言えない。また、脱酸成分の不足を補うために、溶接材料に単純にC及びSiを添加しても靭性向上の効果は少ない。これは、母材の低炭素当量化にともなって添加したTi及びVがCと炭化物を形成したり、Siの酸化物が溶接金属に過剰に残留し、靭性に悪影響を及ぼすためと考えられる。また、脱酸作用のあるMnのみを更に添加しても、脱酸効果が少なく靭性の向上効果は認められなかった。   Hereinafter, the present invention will be described in detail. As described above, the component system of the base material is being reduced in carbon equivalent in consideration of high quality and weldability. In order to ensure the toughness of the heat-affected zone by welding, low C and low Si are used. The reduction in the base metal strength due to the low carbon equivalent is reduced by the addition of a small amount of Nb, Ti, V, etc., and the microstructure is refined by controlled rolling. Thus, high strength and high toughness are obtained. However, in the case of double-sided single-layer welding, since the base metal dilution is large, the chemical component of the weld metal is easily affected by the base metal chemical component, and the carbon equivalent of the weld metal also decreases as the base material has a low carbon equivalent. . Therefore, in the weld metal, precipitation of proeutectoid ferrite and coarsening of the structure occur, and further, the amount of oxygen in the weld metal increases due to insufficient deoxidation component due to low C and low Si of the base metal. There is a problem that toughness deteriorates due to various causes. For the deterioration of the structure, a method of compensating for alloy components such as C, Mn, Ni, Cr, Mo, V, Ti, and B by adjusting the wire and flux components can be considered. In particular, the addition of C, Mo, V, Ti, and B, which is effective for improving the structure, is the weld metal on the first weld side (front side) due to the thermal effect of the weld metal on the second weld side (back side). Therefore, the above method is not an effective means for achieving high toughness of the weld metal. Moreover, even if C and Si are simply added to the welding material in order to compensate for the shortage of the deoxidizing component, the effect of improving toughness is small. This is thought to be because Ti and V added as the base material has a low carbon equivalent form carbides with C, and excessively oxides of Si remain in the weld metal, adversely affecting toughness. Further, even when only Mn having a deoxidizing action was further added, the deoxidizing effect was small and the toughness improving effect was not recognized.

そこで、本発明者等が鋭意実験研究した結果、C、Si及びMnの適正添加に加えて、Ti及びAlの複合添加が最も有効であることを見出した。これは、Ti酸化物の微細分散による組織の微細化により高靭性を得るものである。この効果を得るためには溶接金属のTi及び酸素量の適正化が重要であるが、低炭素当量の母材では酸素量が過大となりやすい。そこで、Si及びAlの複合添加により溶接金属の酸素量を適正化し、前述の効果を得ている。   Therefore, as a result of intensive experiment research conducted by the present inventors, it was found that the combined addition of Ti and Al is the most effective in addition to the appropriate addition of C, Si and Mn. This is to obtain high toughness by refining the structure by fine dispersion of Ti oxide. In order to obtain this effect, it is important to optimize the amount of Ti and oxygen in the weld metal, but the amount of oxygen tends to be excessive in a base material having a low carbon equivalent. Therefore, the amount of oxygen in the weld metal is optimized by the combined addition of Si and Al, and the above-described effect is obtained.

一方、母材の低炭素当量化に伴い従来の溶接材料では溶接金属中の脱酸成分が不足することは既に述べた。UOE鋼管のシーム溶接のような多電極高速溶接の場合、アーク雰囲気の領域が大きいため大気が混入しやすく、凝固速度が速いためにガス成分の浮上時間が短く、さらには、脱酸成分が不足している溶接金属では過剰にガスが発生し、ポックマークが発生しやすくなる。このポックマークの発生を抑制するためにも、強脱酸成分であるSi及びAlの添加は有効であり、高速溶接においても優れた内部品質が得られる。   On the other hand, it has already been described that the deoxidation component in the weld metal is insufficient in the conventional welding material as the carbon equivalent of the base metal is lowered. In the case of multi-electrode high-speed welding such as seam welding of UOE steel pipe, the atmosphere of the arc is large, so air is easily mixed in, the solidification rate is fast, and the rising time of the gas component is short. In the weld metal that is being used, excessive gas is generated, and a pock mark is likely to be generated. In order to suppress the generation of the pock mark, addition of Si and Al, which are strong deoxidizing components, is effective, and excellent internal quality can be obtained even in high-speed welding.

また、多電極高速溶接性に及ぼす電流比の影響は極めて大きい。電流比のバランスが悪いと、ビード形状及び内部品質にも大きく影響を及ぼす。また、電極によってワイヤが異なる場合、ワイヤの組合せが同じであっても、電流比が大きく異なれば、[M]の値も変化し、低温靭性及び高速溶接性に影響を及ぼす。そこで、本発明者等は、鋭意実験研究を行ない、優れた低温靭性と高速溶接性が得られる電流比範囲を見出した。   In addition, the influence of the current ratio on the multi-electrode high-speed weldability is extremely large. If the current ratio is poorly balanced, the bead shape and internal quality will be greatly affected. In addition, when the wire is different depending on the electrode, even if the combination of the wires is the same, if the current ratio is greatly different, the value of [M] also changes, which affects low-temperature toughness and high-speed weldability. Accordingly, the present inventors conducted extensive experimental research and found a current ratio range in which excellent low temperature toughness and high speed weldability can be obtained.

UOE鋼管のストレートシーム溶接の場合、生産性向上の観点から一般的に多電極溶接を使用している。造管される鋼管は多種多様であり、1種類の溶接材料で全てをカバーすることは困難であるため、種々のワイヤの組合せで溶接されることが多い。本発明においては、組合せるワイヤの種類及び数には何ら制約がなく、いかなる組合せでも[M]の値が本発明の範囲内であれば同じ効果を得ることができる。また、実生産ではワイヤ交換に要する時間が生産性に大きく影響することから、1極のみワイヤ交換を行なうことであらゆる鋼管に対応できるシステムが望ましい。本発明を適用すれば、例えばT1乃至T3極を固定し、L極のみ交換することで所定のワイヤ成分系を得ることが可能であり、ワイヤ交換時間の短縮による生産性向上と、ワイヤ種類の削減によるコストダウンが可能となる。   In the case of straight seam welding of UOE steel pipe, multi-electrode welding is generally used from the viewpoint of improving productivity. There are many types of steel pipes to be formed, and it is difficult to cover all with one kind of welding material. In the present invention, there are no restrictions on the type and number of wires to be combined, and any combination can achieve the same effect as long as the value of [M] is within the scope of the present invention. Moreover, since the time required for wire replacement greatly affects productivity in actual production, it is desirable to have a system that can handle all types of steel pipes by performing wire replacement for only one pole. By applying the present invention, for example, it is possible to obtain a predetermined wire component system by fixing the T1 to T3 poles and exchanging only the L poles, improving productivity by shortening the wire exchange time, Cost reduction by reduction is possible.

次に、本発明における組成の数値限定理由について説明する。前述のとおり、UOE鋼管のストレートシーム溶接の場合、生産性向上の観点から一般的に多電極溶接を使用している。本発明においては、1電極溶接の場合は高速溶接性が劣るため、2電極以上とした。一方、高速溶接化を図るためには、電極数の増加は有効であるが、電極数の増加に伴う設備費のアップに対して得られる高速化の効果を考慮し、4電極以下とした。   Next, the reason for limiting the numerical values of the composition in the present invention will be described. As described above, in the case of straight seam welding of UOE steel pipe, multi-electrode welding is generally used from the viewpoint of improving productivity. In the present invention, since the high-speed weldability is inferior in the case of one-electrode welding, two or more electrodes are used. On the other hand, an increase in the number of electrodes is effective for achieving high-speed welding, but the number of electrodes is set to 4 or less in consideration of the effect of high speed obtained for an increase in equipment cost accompanying an increase in the number of electrodes.

[C]:0.07乃至0.20質量%
Cは炭素当量式の基本成分であり、溶接金属部の強度及び靭性に大きく影響を与える。[C]が0.07質量%未満であると、溶接金属部のミクロ組織が粗大となり、靭性が劣化する。一方、[C]が多すぎると、強度が高くなり過ぎ、靭性が劣化するうえ、高温割れが発生する虞があるため、0.20質量%以下とする。
[C]: 0.07 to 0.20 mass%
C is a basic component of the carbon equivalent formula and greatly affects the strength and toughness of the weld metal part. When [C] is less than 0.07% by mass, the microstructure of the weld metal part becomes coarse and the toughness deteriorates. On the other hand, if the amount of [C] is too large, the strength becomes too high, the toughness deteriorates, and hot cracking may occur.

[Mn]:1.45乃至2.70質量%
Mnは溶融金属中の酸素と結合して、これを除去する作用を有し、優れた靭性及び強度を得るのに必要な成分である。[Mn]が1.45質量%未満であると、靭性は劣化する。一方、[Mn]が2.70質量%を超えると、過度な焼入れ組織となり、靭性が劣化する。
[Mn]: 1.45 to 2.70 mass%
Mn combines with oxygen in the molten metal to remove it, and is a component necessary for obtaining excellent toughness and strength. If [Mn] is less than 1.45% by mass, the toughness deteriorates. On the other hand, when [Mn] exceeds 2.70% by mass, an excessively quenched structure is formed and the toughness is deteriorated.

[Si]:0.10乃至0.70質量%
Siは脱酸成分として効果があり、その作用力も高い。母材の低炭素当量化に伴い、脱酸成分が不足し、溶接金属部の酸素量は高くなる傾向にあり、衝撃値も低値を示す。Siを添加することにより、低炭素当量の母材においても、脱酸成分が不足することなく、溶接金属部の酸素量が抑制されて、靭性が確保される。[Si]が0.10質量%未満であると、脱酸不足となり、靭性が劣化するうえ、ポックマークが発生する。一方、[Si]が0.70質量%を超えると、溶接金属中にSiの酸化物が過剰に残留し、靭性が劣化する。
[Si]: 0.10 to 0.70 mass%
Si is effective as a deoxidizing component, and its working force is also high. Along with the lower carbon equivalent of the base material, the deoxidizing component is insufficient, the oxygen content of the weld metal part tends to be high, and the impact value is also low. By adding Si, even in a base material having a low carbon equivalent, the amount of oxygen in the weld metal part is suppressed and toughness is ensured without the deoxidation component being insufficient. When [Si] is less than 0.10% by mass, deoxidation is insufficient, toughness is deteriorated, and a pock mark is generated. On the other hand, if [Si] exceeds 0.70% by mass, an excessive amount of Si oxide remains in the weld metal and the toughness deteriorates.

[Ti]:0.10乃至0.30質量%
Tiも非常に強い脱酸作用を示す。その酸化物は溶接金属中に微細分散し、ミクロ組織を微細化するため靭性を向上させる。[Ti]が0.10質量%未満であると、その効果が得られず、靭性が劣化する。また、両面一層溶接のように、2番目に溶接する側の溶接熱により、最初に溶接する側の溶接金属が熱影響を受ける場合、熱影響部は析出硬化し、衝撃性能が劣化する虞がある。[Ti]が0.30質量%を超えると、前述のとおり、最初に溶接する側の熱影響部が析出硬化し、靭性が劣化する。
[Ti]: 0.10 to 0.30 mass%
Ti also exhibits a very strong deoxidizing action. The oxide is finely dispersed in the weld metal and refines the microstructure to improve toughness. If [Ti] is less than 0.10% by mass, the effect cannot be obtained and the toughness deteriorates. In addition, as in the case of double-sided single-layer welding, when the weld metal on the first welding side is thermally affected by the welding heat on the second welding side, the heat-affected zone may precipitate and harden and impact performance may deteriorate. is there. When [Ti] exceeds 0.30% by mass, as described above, the heat-affected zone on the side to be welded first is precipitated and hardened, and the toughness deteriorates.

[Al]:0.003乃至0.030質量%
Alも極めて強い脱酸作用を示し、溶接金属酸素量の低減により、靭性を向上させる。しかし、酸素との親和力はTiよりも大きく、適正量を超えると、Ti酸化物の生成が抑制されて靭性が劣化する。即ち、靭性確保のためには、Ti酸化物の微細分散による組織の微細化を妨げないようなAlの微量添加が最も有効である。[Al]が0.003質量%未満であると、脱酸不足になり、靭性が劣化するうえ、ポックマークが発生する。[Al]が0.030質量%を超えると、Ti酸化物の生成が抑制され、組織が粗大化して靭性が劣化する。
[Al]: 0.003 to 0.030 mass%
Al also exhibits a very strong deoxidation action and improves toughness by reducing the amount of weld metal oxygen. However, the affinity with oxygen is greater than that of Ti, and if it exceeds an appropriate amount, the formation of Ti oxide is suppressed and the toughness deteriorates. That is, in order to ensure toughness, it is most effective to add a small amount of Al that does not hinder the refinement of the structure due to the fine dispersion of Ti oxide. When [Al] is less than 0.003 mass%, deoxidation is insufficient, toughness is deteriorated, and a pock mark is generated. When [Al] exceeds 0.030% by mass, the generation of Ti oxide is suppressed, the structure becomes coarse and the toughness deteriorates.

[P]:≦0.020質量%、[S]:≦0.020質量%
P及びSは、高温割れ、靭性又は曲げ性能等、溶接金属部の品質に悪影響を及ぼすので、[P]及び[S]は0.020質量%以下に規制する。
[P]: ≦ 0.020 mass%, [S]: ≦ 0.020 mass%
Since P and S adversely affect the quality of the weld metal part such as hot cracking, toughness or bending performance, [P] and [S] are regulated to 0.020% by mass or less.

[V]:≦0.020質量%
Vは2番目に溶接する側の溶接により、最初に溶接する側の熱影響部が硬化し、靭性を劣化させる傾向がある。従って、[V]は0.020質量%以下に規制する。
[V]: ≦ 0.020 mass%
V tends to harden the heat-affected zone on the side to be welded first and deteriorate toughness by welding on the side to be welded second. Therefore, [V] is regulated to 0.020 mass% or less.

[Cu]:≦0.70質量%
[Cu]が0.70質量%以下であれば、靭性に影響を及ぼさない。また、Cuは高温割れに悪影響を及ぼす成分であり、低く抑えるのが望ましい。[Cu]が0.70質量%を超えると、高温割れが発生しやすくなる。
[Cu]: ≦ 0.70 mass%
If [Cu] is 0.70 mass% or less, the toughness is not affected. Further, Cu is a component that adversely affects hot cracking, and is desirably kept low. When [Cu] exceeds 0.70% by mass, hot cracking tends to occur.

[B]:≦0.020質量%
Bは2番目に溶接する側の溶接熱により、最初に溶接する側の熱影響部が硬化し、靭性を著しく劣化させる。従って、[B]は0.020質量%以下に規制する。
[B]: ≦ 0.020 mass%
In B, the heat-affected zone on the first welding side is hardened by the welding heat on the second welding side, and the toughness is remarkably deteriorated. Therefore, [B] is regulated to 0.020 mass% or less.

[O]:≦0.010質量%
Oは溶接金属の靭性に悪影響を及ぼす成分であり、このため、[O]は0.010質量%以下に規制する。
[O]: ≦ 0.010 mass%
O is a component that adversely affects the toughness of the weld metal. For this reason, [O] is regulated to 0.010% by mass or less.

[N]:≦0.008質量%
Nは溶接金属の靭性に悪影響を及ぼす成分であり、このため、[N]は0.008質量%以下に規制する。
[N]: ≦ 0.008 mass%
N is a component that adversely affects the toughness of the weld metal. For this reason, [N] is regulated to 0.008% by mass or less.

[Mo]:≦1.0質量%
Moは強度を高める効果が大きいうえ、2番目に溶接する側の溶接熱により最初に溶接する側の熱影響部が硬化し、靭性を劣化させる虞があるため、[Mo]は必要最低限にとどめる必要がある。従って[Mo]は1.0質量%以下に規制する。
[Mo]: ≦ 1.0% by mass
Mo has a great effect of increasing strength, and the heat-affected zone on the first welding side is hardened by the welding heat on the second welding side, which may deteriorate toughness. It is necessary to stay. Therefore, [Mo] is regulated to 1.0% by mass or less.

[Ni]、[Cr]、[Mo]の合計量:≦2.0質量%
Mo同様、Ni及びCrは強度を高める効果が大きく、これらを過度に添加すると、強度が高くなり過ぎ、靭性を劣化させる虞がある。従って、[Ni]、[Cr]及び[Mo]の合計量は2.0質量%以下に規制する必要がある。
Total amount of [Ni], [Cr] and [Mo]: ≦ 2.0% by mass
Like Mo, Ni and Cr have a large effect of increasing the strength. If these are added excessively, the strength becomes too high and the toughness may be deteriorated. Therefore, the total amount of [Ni], [Cr] and [Mo] needs to be regulated to 2.0% by mass or less.

次に、溶接電流比の規制理由について説明する。多電極サブマージアーク溶接において、ビード形状及び溶接金属部の内部品質を考慮した場合に、溶接電流比が本発明の電流比範囲外で溶接を行うと、溶込み不良、余盛過大、スラグ巻込み又はオーバーラップが発生する虞がある。   Next, the reason for regulating the welding current ratio will be described. In multi-electrode submerged arc welding, when considering the bead shape and the internal quality of the weld metal part, if welding is performed with a welding current ratio outside the current ratio range of the present invention, poor penetration, excessive surplus, slag entrainment Or there is a possibility that overlap occurs.

T1/I:0.60乃至0.90
第1及び第2電極の電流は溶込みに大きく影響を及ぼす。IT1/Iの電流比が0.60未満であると、溶込みが不足する。IT1/Iの電流比が0.90を超えると、溶け込みは深くなるものの、ビード幅が狭くなりやすく、余盛過大となる。
I T1 / I L : 0.60 to 0.90
The currents of the first and second electrodes greatly affect the penetration. When the current ratio of I T1 / I L is less than 0.60, insufficient penetration. When the current ratio of I T1 / I L exceeds 0.90, penetration although deeper, bead width tends narrowed, the excess metal excessively.

T2/I:0.50乃至0.80又はIT3/I:0.50乃至0.80
第3及び第4電極の電流は、溶込みよりも、ビード幅に大きく影響を及ぼす。IT2/I又はIT3/Iの電流比が0.50未満であると、溶融池が十分に撹拌されず、スラグ巻き込みが発生する。IT2/I又はIT3/Iの電流比が0.80を超えると、溶融金属量が過大となり、ビードが広がりすぎてオーバーラップとなる。
I T2 / I L : 0.50 to 0.80 or I T3 / I L : 0.50 to 0.80
The currents of the third and fourth electrodes have a greater influence on the bead width than the penetration. When the current ratio of I T2 / I L or I T3 / I L is less than 0.50, the melt pool is not stirred sufficiently, slag inclusion occurs. When the current ratio of I T2 / I L or I T3 / I L exceeds 0.80, the amount of the molten metal becomes excessive, the overlap with the bead too wide.

以下、本発明の範囲に入る実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。供試鋼板の化学成分組成を下記表1に示す。この供試鋼板を、下記表2に示す組成のフラックスと、表6及び表7に示す種々のワイヤを使用して両面一層溶接を行った。表3及び図1は、4電極の場合の溶接条件、電極配置及び開先形状を示し、表4及び図2は、3電極の場合の溶接条件及び電極配置を示し、表5及び図3は、2電極の場合の溶接条件及び電極配置を示す。   Hereinafter, the effects of the examples that fall within the scope of the present invention will be described in comparison with comparative examples that deviate from the scope of the present invention. The chemical composition of the test steel sheet is shown in Table 1 below. This test steel plate was subjected to double-sided single layer welding using a flux having the composition shown in Table 2 below and various wires shown in Tables 6 and 7. Table 3 and FIG. 1 show the welding conditions, electrode arrangement, and groove shape in the case of four electrodes, Tables 4 and 2 show the welding conditions and electrode arrangement in the case of three electrodes, and Tables 5 and 3 The welding conditions and electrode arrangement in the case of two electrodes are shown.

表8乃至表13は、本発明の実施例及び比較例の[M]の値を示す。図4は得られた溶接継手の形状を模式的に示す。この図4に示す位置より試験片を採取し、衝撃試験を実施した。この衝撃値を表9、表11及び表13に併せて示す。なお、衝撃値の判断基準として、−20℃で評価し、3本の平均値が80J以上を良好とした。   Table 8 thru | or Table 13 shows the value of [M] of the Example and comparative example of this invention. FIG. 4 schematically shows the shape of the obtained welded joint. A test piece was taken from the position shown in FIG. 4 and subjected to an impact test. The impact values are also shown in Table 9, Table 11, and Table 13. In addition, it evaluated at -20 degreeC as a judgment standard of an impact value, and the average value of three was set to 80J or more as favorable.

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

塩基度=(CaF+CaO+MgO+NaO+KO+MnO/2+FeO/2)/(SiO+Al/2+ZrO/2+TiO/2) Basicity = (CaF 2 + CaO + MgO + Na 2 O + K 2 O + MnO / 2 + FeO / 2) / (SiO 2 + Al 2 O 3/2 + ZrO 2/2 + TiO 2/2)

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

これらの表3乃至表5において、最初に溶接する側(1st側)の溶接ワイヤ径は4.0mmである。また、2番目に溶接する側の仮付け溶接のワイヤ径は1.2mmであり、ワイヤ種類はJIS Z3312 YGW11である。この2番目に溶接する側の仮付け溶接の溶接条件は260A−32V−50cm/分、シールドガスはCOである。 In Tables 3 to 5, the welding wire diameter on the first welding side (1st side) is 4.0 mm. The wire diameter of the tack welding on the second welding side is 1.2 mm, and the wire type is JIS Z3312 YGW11. Welding conditions for tack welding the side to be welded to the second is 260A-32V-50cm / min, shield gas is CO 2.

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

表8乃至表11中の実施例1乃至40では衝撃値は80J以上であった。一方、比較例41及び59では、[C]が0.07質量%未満であり、靭性が劣化した。比較例No.42では[C]が0.20質量%を超えており靭性が劣化するうえ、高温割れが発生した。比較例43及び61では、[Si]が0.10質量%未満であり、靭性が劣化するうえ、ポックマークが発生した。比較例44では、[Si]が0.70質量%を超えており、靭性が劣化した。比較例45及び63では、[Mn]が1.45質量%未満であり、靭性が劣化した。比較例46では、[Mn]が2.70質量%を超えており、靭性が劣化した。比較例47では、[Cu]が0.70質量%を超えており、高温割れが発生した。比較例48及び62では、[Ti]が0.10質量%未満であり靭性が劣化した。比較例49では、[Ti]が0.30質量%を超えており、靭性が劣化した。比較例50では、[V]が0.020質量%を超えており、靭性が劣化した。比較例51では、[Al]が0.003質量%未満であり、靭性が劣化するうえ、ポックマークが発生した。比較例52では、[Al]が0.030質量%を超えており、靭性が劣化した。比較例53では、[B]が0.020質量%を超えており、靭性が劣化した。比較例54では、[O]が0.010質量%を超えており、靭性が劣化した。比較例55では、[N]が0.008質量%を超えており、靭性が劣化した。比較例56、57及び60では、[Ni]、[Cr]及び[Mo]の合計量が2.0質量%を超えており、靭性が劣化した。比較例58では、[Mo]が1.0質量%を超えており、靭性が劣化した。なお、実施例19乃至38に示すとおり、複数種類のワイヤを用いても[M]が本発明の範囲内であれば、衝撃値は良好な値を示す。   In Examples 1 to 40 in Tables 8 to 11, the impact value was 80 J or more. On the other hand, in Comparative Examples 41 and 59, [C] was less than 0.07% by mass, and toughness deteriorated. Comparative Example No. In No. 42, [C] exceeded 0.20% by mass, and the toughness deteriorated and hot cracking occurred. In Comparative Examples 43 and 61, [Si] was less than 0.10% by mass, toughness was deteriorated, and a pock mark was generated. In Comparative Example 44, [Si] exceeded 0.70 mass%, and the toughness was deteriorated. In Comparative Examples 45 and 63, [Mn] was less than 1.45% by mass, and toughness deteriorated. In Comparative Example 46, [Mn] exceeded 2.70 mass%, and toughness deteriorated. In Comparative Example 47, [Cu] exceeded 0.70% by mass, and hot cracking occurred. In Comparative Examples 48 and 62, [Ti] was less than 0.10% by mass and the toughness deteriorated. In Comparative Example 49, [Ti] exceeded 0.30 mass%, and the toughness was deteriorated. In Comparative Example 50, [V] exceeded 0.020 mass%, and the toughness deteriorated. In Comparative Example 51, [Al] was less than 0.003% by mass, toughness was deteriorated, and pock marks were generated. In Comparative Example 52, [Al] exceeded 0.030 mass%, and the toughness deteriorated. In comparative example 53, [B] exceeded 0.020 mass%, and toughness deteriorated. In Comparative Example 54, [O] exceeded 0.010 mass%, and the toughness deteriorated. In comparative example 55, [N] exceeded 0.008 mass% and toughness deteriorated. In Comparative Examples 56, 57, and 60, the total amount of [Ni], [Cr], and [Mo] exceeded 2.0 mass%, and the toughness deteriorated. In comparative example 58, [Mo] exceeded 1.0 mass% and toughness deteriorated. As shown in Examples 19 to 38, even if a plurality of types of wires are used, the impact value is a good value as long as [M] is within the range of the present invention.

次に、溶接作業性を評価した。ワイヤはW1を用い、表3乃至表5に示す溶接条件において、2nd側(2番目に溶接される側)の溶接を下記表14及び表15に示すように変化させて溶接作業性を確認した。1st側(最初に溶接する側)の溶接は、表3乃至表5に示すとおりである。なお、溶接作業性の評価は試験片長さ1500mmを溶接し、中央部750mm長さで評価した。溶接作業性は、余盛高さが3mm以下の場合を○、3mmを超える場合を×とした。オーバーラップは2mm以下の場合を○、2mmを超える場合を×とした。溶け込み不良は1st側と2nd側の溶接金属が重なっているものを○、ルート部が溶け残っているものを×とした。これらの全ての評価項目が○の場合を溶接作業性が○、いずれかが×の場合を溶接作業性が×であるとした。図5は、余盛高さ、オーバーラップ及び溶け込み不良を示す。表14中のテストNo.Y1乃至No.Y4が本発明実施例で、表15中のテストNo.Y5乃至No.Y10が比較例である。本発明実施例テストNo.Y1乃至No.Y4では溶接作業性は良好で、衝撃値も80J以上であった。テストNo.Y5では第2電極の電流比が0.60未満であり、溶込み不良が発生した。テストNo.Y6では第2電極の電流比が0.90を超えており、余盛過大となった。テストNo.Y7では第3電極の電流比が0.50未満でありスラグ巻き込みが発生した。テストNo.Y8では第3電極の電流比が0.80を超えており、オーバーラップとなった。テストNo.Y9では第4電極の電流比が0.50未満であり、スラグ巻き込みが発生した。テストNo.Y10では第4電極の電流比が0.80を超えており、オーバーラップとなった。   Next, welding workability was evaluated. The wire was W1, and welding workability was confirmed by changing the welding on the 2nd side (the second welded side) as shown in Table 14 and Table 15 below under the welding conditions shown in Tables 3 to 5. . The welding on the first side (the side to be welded first) is as shown in Tables 3 to 5. The weld workability was evaluated by welding a test piece length of 1500 mm and a length of 750 mm at the center. As for the welding workability, the case where the extra height was 3 mm or less was evaluated as ◯, and the case where the height exceeded 3 mm was evaluated as x. The overlap was evaluated as ◯ when the length was 2 mm or less, and x when the length exceeded 2 mm. For the poor penetration, the case where the weld metal on the 1st side and the 2nd side overlapped was marked with ○, and the case where the root portion remained undissolved was marked with ×. When all these evaluation items were ○, the welding workability was ○, and when either one was ×, the welding workability was ×. FIG. 5 shows extra height, overlap and poor penetration. Test No. in Table 14 Y1-No. Y4 is an example of the present invention. Y5 to No. Y10 is a comparative example. Inventive Example Test No. Y1-No. In Y4, the welding workability was good, and the impact value was 80 J or more. Test No. In Y5, the current ratio of the second electrode was less than 0.60, and poor penetration occurred. Test No. In Y6, the current ratio of the second electrode exceeded 0.90, which was excessive. Test No. In Y7, the current ratio of the third electrode was less than 0.50, and slag entrainment occurred. Test No. In Y8, the current ratio of the third electrode exceeded 0.80 and overlapped. Test No. In Y9, the current ratio of the fourth electrode was less than 0.50, and slag entrainment occurred. Test No. In Y10, the current ratio of the fourth electrode exceeded 0.80 and overlapped.

Figure 2005028409
Figure 2005028409

Figure 2005028409
Figure 2005028409

(a)、(b)は4電極の場合の溶接条件を示す図である。(A), (b) is a figure which shows the welding conditions in the case of 4 electrodes. 3電極の場合の溶接条件を示す図である。It is a figure which shows the welding conditions in the case of 3 electrodes. 2電極の場合の条件を示す図である。It is a figure which shows the conditions in the case of 2 electrodes. 試験片採取位置を示す図である。It is a figure which shows a test piece collection position. 余盛高さ、オーバーラップ及び溶け込み不良を示す図である。It is a figure which shows extra height, overlap, and a penetration defect.

Claims (3)

4電極サブマージアーク溶接方法において、元素の種類をMとし、[M]を第1電極乃至第4電極の溶接ワイヤに含まれる元素Mにより下記数式で計算される値として、
[C]:0.07乃至0.20質量%
[Mn]:1.45乃至2.70質量%
[Si]:0.10乃至0.70質量%
[Ti]:0.10乃至0.30質量%
[Al]:0.003乃至0.030質量%
[P]:≦0.020質量%
[S]:≦0.020質量%
[V]:≦0.020質量%
[Cu]:≦0.70質量%
[B]:≦0.020質量%
[O]:≦0.010質量%
[N]:≦0.008質量%
[Mo]:≦1.0質量%
[Ni]、[Cr]、[Mo]の合計量:2.0質量%以下
であり、
上記各元素の他は、Fe及び不可避不純物である組成の溶接ワイヤを使用し、
を第1電極ワイヤの溶接電流(A)、IT1を第2電極ワイヤの溶接電流(A)、IT2を第3電極ワイヤの溶接電流(A)、IT3を第4電極ワイヤの溶接電流(A)とした場合に、溶接電流比を、IT1/I:0.60乃至0.90、IT2/I:0.50乃至0.80、IT3/I:0.50乃至0.80としてサブマージアーク溶接することを特徴とするサブマージアーク溶接方法。
[M]=([M]AL+(IT1/I)×[M]AT1+(IT2/I)×[M]AT2+(IT3/I)×[M]AT3)/(1+(IT1/I)+(IT2/I)+(IT3/I))
[M]AL:第1電極ワイヤ中のM元素の質量(%)
[M]AT1:第2電極ワイヤ中のM元素の質量(%)
[M]AT2:第3電極ワイヤ中のM元素の質量(%)
[M]AT3:第4電極ワイヤ中のM元素の質量(%)
In the four-electrode submerged arc welding method, the element type is M, and [M] is a value calculated by the following formula using the element M included in the welding wires of the first electrode to the fourth electrode.
[C]: 0.07 to 0.20 mass%
[Mn]: 1.45 to 2.70 mass%
[Si]: 0.10 to 0.70 mass%
[Ti]: 0.10 to 0.30 mass%
[Al]: 0.003 to 0.030 mass%
[P]: ≦ 0.020 mass%
[S]: ≦ 0.020 mass%
[V]: ≦ 0.020 mass%
[Cu]: ≦ 0.70 mass%
[B]: ≦ 0.020 mass%
[O]: ≦ 0.010 mass%
[N]: ≦ 0.008 mass%
[Mo]: ≦ 1.0% by mass
[Ni], [Cr], [Mo] total amount: 2.0 mass% or less,
In addition to the above elements, use a welding wire having a composition that is Fe and inevitable impurities,
Welding current of the first electrode wire and I L (A), the welding current of the second electrode wires I T1 (A), the welding current of the third electrode wires I T2 (A), the I T3 of the fourth electrode wire when the welding current (a), the welding current ratio, I T1 / I L: 0.60 to 0.90, I T2 / I L: 0.50 to 0.80, I T3 / I L: 0 Submerged arc welding method, characterized in that submerged arc welding is performed at 50 to 0.80.
[M] = ([M] AL + (I T1 / I L) × [M] AT1 + (I T2 / I L) × [M] AT2 + (I T3 / I L) × [M] AT3) / (1+ (I T1 / I L ) + (I T2 / I L ) + (I T3 / I L ))
[M] AL : Mass of element M in the first electrode wire (%)
[M] AT1 : Mass of element M in the second electrode wire (%)
[M] AT2 : Mass of element M in the third electrode wire (%)
[M] AT3 : Mass of element M in the fourth electrode wire (%)
3電極サブマージアーク溶接方法において、元素の種類をMとし、[M]を第1電極乃至第3電極の溶接ワイヤに含まれる元素Mにより下記数式で計算される値として、
[C]:0.07乃至0.20質量%
[Mn]:1.45乃至2.70質量%
[Si]:0.10乃至0.70質量%
[Ti]:0.10乃至0.30質量%
[Al]:0.003乃至0.030質量%
[P]:≦0.020質量%
[S]:≦0.020質量%
[V]:≦0.020質量%
[Cu]:≦0.70質量%
[B]:≦0.020質量%
[O]:≦0.010質量%
[N]:≦0.008質量%
[Mo]:≦1.0質量%
[Ni]、[Cr]、[Mo]の合計量:2.0質量%以下
であり、
上記各元素の他は、Fe及び不可避不純物である組成の溶接ワイヤを使用し、
を第1電極ワイヤの溶接電流(A)、IT1を第2電極ワイヤの溶接電流(A)、IT2を第3電極ワイヤの溶接電流(A)とした場合に、溶接電流比を、IT1/I:0.60乃至0.90、IT2/I:0.50乃至0.80としてサブマージアーク溶接することを特徴とするサブマージアーク溶接方法。
[M]=([M]AL+(IT1/I)×[M]AT1+(IT2/I)×[M]AT2)/(1+(IT1/I)+(IT2/I))
[M]AL:第1電極ワイヤ中のM元素の質量(%)
[M]AT1:第2電極ワイヤ中のM元素の質量(%)
[M]AT2:第3電極ワイヤ中のM元素の質量(%)
In the three-electrode submerged arc welding method, the element type is M, and [M] is a value calculated by the following formula using the element M included in the welding wires of the first electrode to the third electrode,
[C]: 0.07 to 0.20 mass%
[Mn]: 1.45 to 2.70 mass%
[Si]: 0.10 to 0.70 mass%
[Ti]: 0.10 to 0.30 mass%
[Al]: 0.003 to 0.030 mass%
[P]: ≦ 0.020 mass%
[S]: ≦ 0.020 mass%
[V]: ≦ 0.020 mass%
[Cu]: ≦ 0.70 mass%
[B]: ≦ 0.020 mass%
[O]: ≦ 0.010 mass%
[N]: ≦ 0.008 mass%
[Mo]: ≦ 1.0% by mass
[Ni], [Cr], [Mo] total amount: 2.0 mass% or less,
In addition to the above elements, use a welding wire having a composition that is Fe and inevitable impurities,
Welding current of the first electrode wire and I L (A), the welding current of the second electrode wires I T1 (A), when the welding current of the third electrode wires I T2 (A), the welding current ratio , I T1 / I L : 0.60 to 0.90, I T2 / I L : 0.50 to 0.80, submerged arc welding,
[M] = ([M] AL + (I T1 / I L) × [M] AT1 + (I T2 / I L) × [M] AT2) / (1+ (I T1 / I L) + (I T2 / I L ))
[M] AL : Mass of element M in the first electrode wire (%)
[M] AT1 : Mass of element M in the second electrode wire (%)
[M] AT2 : Mass of element M in third electrode wire (%)
2電極サブマージアーク溶接方法において、元素の種類をMとし、[M]を第1電極及び第2電極の溶接ワイヤに含まれる元素Mにより下記数式で計算される値として、
[C]:0.07乃至0.20質量%
[Mn]:1.45乃至2.70質量%
[Si]:0.10乃至0.70質量%
[Ti]:0.10乃至0.30質量%
[Al]:0.003乃至0.030質量%
[P]:≦0.020質量%
[S]:≦0.020質量%
[V]:≦0.020質量%
[Cu]:≦0.70質量%
[B]:≦0.020質量%
[O]:≦0.010質量%
[N]:≦0.008質量%
[Mo]:≦1.0質量%
[Ni]、[Cr]、[Mo]の合計量:2.0質量%以下
であり、
上記各元素の他は、Fe及び不可避不純物である組成の溶接ワイヤを使用し、
を第1電極ワイヤの溶接電流(A)、IT1を第2電極ワイヤの溶接電流(A)とした場合に、溶接電流比を、IT1/I:0.60乃至0.90としてサブマージアーク溶接することを特徴とするサブマージアーク溶接方法。
[M]=([M]AL+(IT1/I)×[M]AT1)/(1+(IT1/I))
[M]AL:第1電極ワイヤ中のM元素の質量(%)
[M]AT1:第2電極ワイヤ中のM元素の質量(%)
In the two-electrode submerged arc welding method, the element type is M, and [M] is a value calculated by the following formula using the element M included in the welding wires of the first electrode and the second electrode,
[C]: 0.07 to 0.20 mass%
[Mn]: 1.45 to 2.70 mass%
[Si]: 0.10 to 0.70 mass%
[Ti]: 0.10 to 0.30 mass%
[Al]: 0.003 to 0.030 mass%
[P]: ≦ 0.020 mass%
[S]: ≦ 0.020 mass%
[V]: ≦ 0.020 mass%
[Cu]: ≦ 0.70 mass%
[B]: ≦ 0.020 mass%
[O]: ≦ 0.010 mass%
[N]: ≦ 0.008 mass%
[Mo]: ≦ 1.0% by mass
[Ni], [Cr], [Mo] total amount: 2.0 mass% or less,
In addition to the above elements, use a welding wire having a composition that is Fe and inevitable impurities,
When I L is the welding current (A) of the first electrode wire and I T1 is the welding current (A) of the second electrode wire, the welding current ratio is I T1 / I L : 0.60 to 0.90 A submerged arc welding method characterized by submerged arc welding.
[M] = ([M] AL + (I T1 / I L) × [M] AT1) / (1+ (I T1 / I L))
[M] AL : Mass of element M in the first electrode wire (%)
[M] AT1 : Mass of element M in the second electrode wire (%)
JP2003271167A 2003-07-04 2003-07-04 Submerged arc welding method Expired - Lifetime JP4562359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271167A JP4562359B2 (en) 2003-07-04 2003-07-04 Submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271167A JP4562359B2 (en) 2003-07-04 2003-07-04 Submerged arc welding method

Publications (2)

Publication Number Publication Date
JP2005028409A true JP2005028409A (en) 2005-02-03
JP4562359B2 JP4562359B2 (en) 2010-10-13

Family

ID=34209126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271167A Expired - Lifetime JP4562359B2 (en) 2003-07-04 2003-07-04 Submerged arc welding method

Country Status (1)

Country Link
JP (1) JP4562359B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225682A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Submerged arc welding for fire resistant steel
JPH09308987A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Submerged arc welding wire excellent in low temperature toughness
JP2003138340A (en) * 2001-10-31 2003-05-14 Nippon Steel Corp Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2004337863A (en) * 2003-05-13 2004-12-02 Jfe Steel Kk Wire for submerged arc welding of high-tensile steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225682A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Submerged arc welding for fire resistant steel
JPH09308987A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Submerged arc welding wire excellent in low temperature toughness
JP2003138340A (en) * 2001-10-31 2003-05-14 Nippon Steel Corp Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2004337863A (en) * 2003-05-13 2004-12-02 Jfe Steel Kk Wire for submerged arc welding of high-tensile steel

Also Published As

Publication number Publication date
JP4562359B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4834191B2 (en) Flux-cored wire for gas shielded arc welding that can be welded in all positions
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP6290024B2 (en) Tandem submerged arc welding method for high Cr system CSEF steel
JP2008221292A (en) Flux cored wire for welding duplex stainless steel
CN105414799A (en) Solid cored welding wire of low-alloy and high-strength steel and application of solid cored welding wire
JP6209135B2 (en) Narrow groove tandem submerged arc welding method
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP3871655B2 (en) Double-sided single layer submerged arc welding wire for high strength steel
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP2007083292A (en) Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
CN107949455A (en) Welding wire for hidden arc welding
JP5457920B2 (en) Weld metal with excellent low temperature toughness and drop characteristics
WO2016009903A1 (en) Single submerged arc welding method for high chromium csef steel
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JPH0566238B2 (en)
JP4562359B2 (en) Submerged arc welding method
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP2019104020A (en) Flux-cored wire for vertical electrogas arc welding, and method for producing weld joint
JP2004114053A (en) Large heat input electroslag welding method
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP6071797B2 (en) Flux for single-sided submerged arc welding
CN109128585B (en) Large-heat-input electro-gas welding gas-shielded flux-cored wire based on organization homogenization mechanism
JP5235008B2 (en) Solid wire for welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term