JP2005262253A - Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance - Google Patents

Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance Download PDF

Info

Publication number
JP2005262253A
JP2005262253A JP2004076668A JP2004076668A JP2005262253A JP 2005262253 A JP2005262253 A JP 2005262253A JP 2004076668 A JP2004076668 A JP 2004076668A JP 2004076668 A JP2004076668 A JP 2004076668A JP 2005262253 A JP2005262253 A JP 2005262253A
Authority
JP
Japan
Prior art keywords
weld metal
seam
seam welding
welding
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004076668A
Other languages
Japanese (ja)
Other versions
JP4482355B2 (en
Inventor
Yutaka Morimoto
裕 森本
Shigeru Okita
茂 大北
Eiji Tsuru
英司 津留
Yoshio Terada
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004076668A priority Critical patent/JP4482355B2/en
Publication of JP2005262253A publication Critical patent/JP2005262253A/en
Application granted granted Critical
Publication of JP4482355B2 publication Critical patent/JP4482355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-strength UO steel pipe capable of surely preventing the occurrence of the transverse crack in weld metal of a seam weld zone without the occurrence of an increase in a welding cost and the lowering in productivity in manufacturing the high-strength UO steel pipe having tensile strength of ≥800 MPa. <P>SOLUTION: In the seam welding method of the UO steel pipe of forming a steel sheet having the tensile strength of ≥800 MPa to a tubular form, then tack welding the butt section of the steel sheet and thereafter subjecting the steel sheet to inside surface seam welding followed by outside surface seam welding, the maximum ultimate temperature (T<SB>in</SB>) on the inside surface welded metal surface formed by inside surface seam welding at the time of outside surface seam welding satisfies the relational expression of T<SB>in</SB>≥0.6x [A<SB>c1</SB>transformation temperature of the inside surface welded metal]. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、天然ガスや石油の輸送用ラインパイプとして使用される大型鋼管の製造方法に関し、特に、引張強度が800MPa以上のUO(UOEともいう。)鋼管の製造方法に関するものである。   The present invention relates to a method for producing a large steel pipe used as a line pipe for transportation of natural gas or oil, and particularly relates to a method for producing a UO (also referred to as UOE) steel pipe having a tensile strength of 800 MPa or more.

ラインパイプとして用られる大型サイズの鋼管は一般にUO鋼管と称され、鋼板をU型プレス成形後、さらにO型プレス成形することによって管状に成形し、その鋼板の突合せ端部を仮付け溶接した後、内面シーム溶接及び外面シーム溶接により接合することにより製造される。この際、仮付け溶接には、主としてMAG溶接やCO2溶接等のガスシールドアーク溶接方法が用いられ、また、最近ではレーザ溶接方等も用いられる。通常、仮付け溶接は、管状に成形された鋼板突合せ部の外面側から溶接される。また、シーム溶接は仮付け溶接後の本溶接として、一般には溶接効率と溶接品質の両面から優れる多電極のサブマージアーク溶接(以下、SAW溶接法ともいう。)が主として用いられる。通常、シーム溶接は、仮付溶接された鋼管シーム部の内面側から内面シーム溶接した後、鋼管シーム部の外面側から外面シーム溶接が行なわれる。 A large-sized steel pipe used as a line pipe is generally called a UO steel pipe, and after a steel sheet is formed into a tubular shape by U-shaped press forming and further O-shaped press forming, the butt end of the steel sheet is temporarily welded It is manufactured by joining by inner surface seam welding and outer surface seam welding. At this time, for the tack welding, a gas shield arc welding method such as MAG welding or CO 2 welding is mainly used, and recently, a laser welding method or the like is also used. Usually, tack welding is welded from the outer surface side of the steel plate butt portion formed into a tubular shape. In addition, seam welding mainly uses multi-electrode submerged arc welding (hereinafter also referred to as SAW welding method), which is superior in both welding efficiency and welding quality, as main welding after tack welding. Usually, in the seam welding, after the inner surface seam welding is performed from the inner surface side of the steel pipe seam portion that has been tack welded, the outer surface seam welding is performed from the outer surface side of the steel pipe seam portion.

近年、ラインパイプは、使用環境として天然ガスや石油の輸送効率向上及び輸送コスト低減の点から操業圧力を増加する傾向にある。また、ラインパイプの肉厚は、ラインパイプ組み立て時の施行効率向上の点から薄肉化が要求されている。これらの事情を踏まえて従来からラインパイプ用のUO鋼管の高強度化が進められてきた。   In recent years, line pipes tend to increase operating pressure from the viewpoint of improving the transportation efficiency of natural gas and oil and reducing the transportation cost as the usage environment. In addition, the thickness of the line pipe is required to be reduced from the viewpoint of improving the execution efficiency when assembling the line pipe. Based on these circumstances, the strength of UO steel pipes for line pipes has been increased.

現在、ラインパイプ用UO鋼管の高強度化の点から、従来のX65やX80グレード(米国石油協会規格、API規格)を上回る、引張強度が800MPa以上の高強度UO鋼管の開発が進められている。しかし、一方で、引張強度が800MPa以上の高強度UO鋼管を製造する場合に、シーム溶接後そのシーム溶接部の溶接金属に低温割れの一種である、横割れが発生するという問題が生じてきた。   Currently, from the point of increasing the strength of UO steel pipes for line pipes, development of high-strength UO steel pipes with a tensile strength of 800 MPa or more, which exceeds the conventional X65 and X80 grades (American Petroleum Institute standard, API standard) is in progress. . However, on the other hand, when manufacturing a high-strength UO steel pipe having a tensile strength of 800 MPa or more, there has been a problem that a transverse crack, which is a kind of cold crack, occurs in the weld metal of the seam weld after seam welding. .

一般に、溶接後にその溶接部の溶接金属で発生する横割れは、溶接金属中の拡散性水素の含有量、引張応力および組織硬さなどを要因として発生し、拡散性水素の含有量が多いほど、引張応力が高いほど、または組織硬さが硬いほど横割れは発生し易いと言われている。   In general, transverse cracks that occur in the weld metal at the weld after welding occur due to the content of diffusible hydrogen in the weld metal, tensile stress, structure hardness, etc., and the higher the content of diffusible hydrogen, the more It is said that the higher the tensile stress or the harder the structure, the easier the transverse cracks occur.

引張強度が800MPa以上の高強度UO鋼管では、強度バランスの点からシーム溶接部も母材鋼材と同等以上に高強度化する必要がある。シーム溶接部の高強度化に伴って焼き入れ性合金成分量は増加し低温割れ感受性が高まると共に、引張応力及び組織硬さも増加する傾向にあり、従来の低強度レベルのUO鋼管では見られなかった横割れの発生が顕著になるという問題が生じてきた。   In a high-strength UO steel pipe having a tensile strength of 800 MPa or more, it is necessary to increase the strength of the seam welded portion to be equal to or higher than that of the base steel material from the viewpoint of strength balance. With the increase in strength of seam welds, the hardenability alloy component amount increases, the cold cracking susceptibility increases, and the tensile stress and the structure hardness tend to increase, which is not seen in conventional low strength UO steel pipes. There has been a problem that the occurrence of lateral cracks becomes remarkable.

従来の鋼管シーム溶接部の低温割れ低減方法としては、非特許文献1、2などに示されるように、低温割れの要因である溶接金属中の拡散性水素含有量の低減、或いは、シーム溶接部の予熱等の熱処理などの方法が検討されてきた。しかし、これらの方法は、溶接に用いる溶接材料の成分制約や加熱装置などの新規設備が必要であるなどの溶接コスト増加の原因となり、さらに、予熱等の熱処理工程の付加に伴う作業性及び生産性の低下などの問題も招くこことなる。   As a conventional method for reducing the low temperature cracking of a steel pipe seam weld, as shown in Non-Patent Documents 1 and 2, etc., the reduction of the diffusible hydrogen content in the weld metal, which is the cause of the low temperature crack, or the seam weld Methods such as heat treatment such as preheating have been studied. However, these methods cause an increase in welding costs such as restrictions on the composition of the welding material used for welding and the need for new equipment such as a heating device, and workability and production accompanying the addition of heat treatment processes such as preheating. This will also cause problems such as deterioration of sex.

また、例えば、特許文献1などでは、低温割れの要因である引張応力を低減する方法として、シーム溶接部の溶接金属の化学組成を規定することにより溶接金属のマルテンサイト変態点を低下させて溶接残留応力を低減させることにより横割れの発生を防止する方法が提案されている。この方法は、溶接金属が溶融、凝固した後、室温までの冷却過程で熱収縮された結果生じる残留引張応力を低減させるために、溶接金属の組織変態を冷却過程の低温側で生じさせ、その変態膨張による圧縮応力を利用し残留引張応力を低減させる方法である。   In addition, for example, in Patent Document 1, as a method of reducing the tensile stress that is a cause of low temperature cracking, welding is performed by lowering the martensitic transformation point of the weld metal by defining the chemical composition of the weld metal of the seam weld. A method for preventing the occurrence of transverse cracks by reducing the residual stress has been proposed. In this method, after the weld metal melts and solidifies, in order to reduce the residual tensile stress resulting from thermal shrinkage during the cooling process to room temperature, the microstructure of the weld metal is caused on the low temperature side of the cooling process. This is a method of reducing the residual tensile stress by using the compressive stress due to transformation expansion.

しかし、この方法は、溶接金属の組織変態点を低下させることにより横割れを抑制する方法であり、この効果を得るためには組織変態点の低下に必要な合金元素の含有量が必然的に増加することとなる。そのため合金元素の含有量の増加に伴う溶接金属の靱性の低下や、逆に低温割れ感受性を高めて凝固割れ発生の危険性を高めることとなり、この方法により溶接金属の横割れ発生を充分に抑制することは技術的に限界があった。   However, this method is a method of suppressing transverse cracking by lowering the structure transformation point of the weld metal, and in order to obtain this effect, the content of alloy elements necessary for lowering the structure transformation point is inevitably required. Will increase. Therefore, the toughness of the weld metal decreases with increasing alloying element content, and conversely, the sensitivity to cold cracking is increased to increase the risk of solidification cracking. This method sufficiently suppresses the occurrence of transverse cracks in the weld metal. There was a technical limit to do it.

特開2001−71176号公報JP 2001-71176 A 「溶接学会誌」第46巻(1977)第12号、875〜880頁“Journal of the Japan Welding Society” Vol. 46 (1977) No. 12, pages 875-880 「溶接学会誌」第46巻(1977)第8号、561〜566頁"Journal of the Japan Welding Society" Volume 46 (1977) No. 8, pp. 561-566

本発明はこれら従来技術の問題点に鑑みて、引張強度が800MPa以上の高強度UO鋼管を製造する際に、溶接コストの増大や生産性の低下を引き起こすことなく、シーム溶接部の溶接金属における横割れ発生を確実に防止できる高強度UO鋼管の製造方法を提供することを目的とする。   In view of these problems of the prior art, the present invention provides a weld metal for a seam welded portion without causing an increase in welding cost or a decrease in productivity when producing a high strength UO steel pipe having a tensile strength of 800 MPa or more. It aims at providing the manufacturing method of the high intensity | strength UO steel pipe which can prevent generation | occurrence | production of a lateral crack reliably.

本発明者らは、高強度UO鋼管のシーム溶接部の横割れ発生状況を詳細に検討した結果、外面シーム溶接時の内面シーム溶接金属表面の温度が横割れ発生に大きく影響することを見いだした。本発明はこの知見を基になされたものであり、その要旨とするところは、下記の通りである。   As a result of detailed examination of the occurrence of transverse cracks in the seam welds of high-strength UO steel pipes, the present inventors have found that the temperature of the inner surface seam weld metal surface during outer seam welding greatly affects the occurrence of transverse cracks. . The present invention has been made on the basis of this finding, and the gist thereof is as follows.

(1)引張強度が800MPa以上の鋼板を管状に成形した後、その鋼板の突合せ部を仮付け溶接した後、内面シーム溶接し引き続いて外面シーム溶接するUO鋼管のシーム溶接方法において、前記外面シーム溶接時に、前記内面シーム溶接によって形成された内面溶接金属表面での最高到達温度Tinが下記(1)式を満足することを特徴とする高強度UO鋼管のシーム溶接方法。
in≧0.6×内面溶接金属のAC1変態温度 ・・・ (1)
但し、Tin:外面シーム溶接時の内面溶接金属表面での最高到達温度、AC1:内面溶接金属のAC1変態温度を示す。
(1) In the seam welding method for a UO steel pipe, the steel sheet having a tensile strength of 800 MPa or more is formed into a tubular shape, the butt portion of the steel sheet is tack welded, and then the inner seam is welded and subsequently the outer seam is welded. A seam welding method for a high-strength UO steel pipe, characterized in that a maximum ultimate temperature T in on the inner surface weld metal surface formed by the inner surface seam welding satisfies the following expression (1) during welding.
T in ≧ 0.6 × A C1 transformation temperature of inner surface weld metal (1)
Where T in is the highest temperature reached on the inner surface weld metal surface during outer seam welding, and A C1 is the A C1 transformation temperature of the inner surface weld metal.

(2)前記シーム溶接はサブマージアーク溶接法を用いて行なうことを特徴とする上記(1)に記載の高強度UO鋼管のシーム溶接方法。   (2) The seam welding method according to (1), wherein the seam welding is performed using a submerged arc welding method.

(3)前記外面シーム溶接は前記内面溶接金属表面を保温することを特徴とする上記(1)または(2)に記載の高強度UO鋼管のシーム溶接方法。   (3) The seam welding method for a high-strength UO steel pipe according to (1) or (2) above, wherein the outer surface seam welding keeps the inner surface weld metal surface warm.

(4)前記外面シーム溶接と同時に内面溶接金属表面を加熱することを特徴とする上記(1)〜(3)の何れかに記載の高強度UO鋼管のシーム溶接方法。   (4) The seam welding method for a high-strength UO steel pipe according to any one of (1) to (3), wherein the inner surface weld metal surface is heated simultaneously with the outer surface seam welding.

(5)前記外面シーム溶接の直前に前記内面シーム溶接金属表面を加熱温度が50℃以上となるように加熱することを特徴とする上記(1)〜(3)の何れかに記載の高強度UO鋼管のシーム溶接方法。   (5) The high strength according to any one of (1) to (3) above, wherein the inner surface seam weld metal surface is heated immediately before the outer surface seam welding so that the heating temperature is 50 ° C. or higher. Seam welding method for UO steel pipe.

本発明によれば、引張強度が800MPa以上の高強度UO鋼管を製造する際に、溶接コストの増大や生産性の低下を引き起こすことなく、シーム溶接部の溶接金属における横割れの発生を確実に防止できる。よって、高生産性を維持しつつ高品質の溶接部を有するラインパイプなどに用いられる高強度UO鋼管の製造方法を提供することができ、産業上貢献するところが大きい。   According to the present invention, when producing a high-strength UO steel pipe having a tensile strength of 800 MPa or more, it is possible to reliably generate transverse cracks in the weld metal of the seam welded part without causing an increase in welding cost or a decrease in productivity. Can be prevented. Therefore, the manufacturing method of the high intensity | strength UO steel pipe used for the line pipe etc. which have a high quality weld part, maintaining high productivity can be provided, and the place which contributes industrially is large.

以下に本発明の詳細について説明する。   Details of the present invention will be described below.

前述の通り、比較的強度の高いUO鋼管を製造する際にシーム溶接部の溶接金属で発生する低温割れの一種である、横割れは、鋼板を管状に成形しその突合せ部を仮付け溶接した後のシーム溶接後に発生することは従来から知られている。   As described above, a transverse crack, which is a kind of cold cracking that occurs in the weld metal of the seam weld when producing a UO steel pipe having a relatively high strength, is formed by forming a steel plate into a tubular shape and tack-welding the butt portion. It has been known in the art to occur after subsequent seam welding.

しかし、この横割れの発生機構や発生条件については必ずしも明確にされていない。そこで、本発明者らは、先ず、引張強度が800MPa以上の高強度UO鋼管のシーム溶接部での横割れの発生状況と溶接条件を詳細調査し、次に、調査結果を基に横割れの発生を抑制するための溶接方法の検討をおこなった。   However, the generation mechanism and conditions of the transverse crack are not necessarily clarified. Therefore, the present inventors first investigated in detail the occurrence and welding conditions of transverse cracks in the seam welded portion of a high-strength UO steel pipe having a tensile strength of 800 MPa or more, and then, based on the investigation results, We examined the welding method to suppress the occurrence.

図1に高強度UO鋼管のシーム溶接部の溶接金属において発生する横割れの一例を示す。なお、シーム溶接部は、仮付溶接後の鋼管シーム部を内面側からシーム溶接(以下、内面シーム溶接という。)した後、引き続いて、その外面側からシーム溶接(以下、外面シーム溶接という。)して形成されたものである。また、内面溶接金属は内面シーム溶接により形成された溶接金属部、外面溶接金属は外面シーム溶接により形成された溶接金属部をそれぞれ示し、これらの溶接金属を合わせてシーム溶接金属とする(以下、同様とする)。   FIG. 1 shows an example of transverse cracks that occur in the weld metal of a seam welded portion of a high-strength UO steel pipe. In addition, a seam welded part is called seam welding (henceforth outer surface seam welding) from the outer surface side after seam welding (henceforth inner surface seam welding) the steel pipe seam part after tack welding from the inner surface side. ). Further, the inner surface weld metal indicates a weld metal portion formed by inner surface seam welding, and the outer surface weld metal indicates a weld metal portion formed by outer surface seam welding, respectively. The same shall apply).

本発明者らの調査結果によれば、高強度UO鋼管のシーム溶接部の溶接金属における横割れは、図1に示すように外面溶接金属1と内面溶接金属2の溶融線3から内面側方向に約1〜3mm離れた内面溶接金属内で多く横割れ4が発生し、その発生時期は外面シーム溶接の終了後から数時間後〜数日後と広範囲であることを確認している。   According to the investigation results of the present inventors, transverse cracks in the weld metal of the seam welded portion of the high-strength UO steel pipe are in the direction toward the inner surface from the fusion line 3 of the outer surface weld metal 1 and the inner surface weld metal 2 as shown in FIG. It has been confirmed that a large number of transverse cracks 4 occur in the inner surface weld metal separated by about 1 to 3 mm, and that the generation time is in a wide range from several hours to several days after the end of the outer surface seam welding.

本発明者らは、内面溶接金属内の特定領域でのみ横割れが多く発生する原因を外面シーム溶接によって内面溶接金属が加熱され、(a)内面溶接金属内の拡散性水素が拡散、移動し、特定領域に集積されて割れの起点が生じる、(b)加熱後、内面溶接金属が冷却する過程で熱収縮により特定領域に残留引張応力が生じる、ことであると考えた。   The inventors of the present invention heated the inner surface weld metal by outer surface seam welding to cause a large number of transverse cracks only in a specific region in the inner surface weld metal, and (a) diffusible hydrogen in the inner surface weld metal diffused and moved. It was considered that the starting point of the crack was generated by accumulating in the specific region, and (b) the residual tensile stress was generated in the specific region due to thermal contraction in the process of cooling the inner surface weld metal after heating.

図3は、高強度UO鋼管の仮付溶接したシーム部を内面シーム溶接した後、引き続き外面シーム溶接した時の外面溶接金属表面からの板厚方向距離とシーム溶接金属の温度との関係を示す。また、図4は、同じシーム溶接時の外面溶接金属表面からの板厚方向距離と、溶接線方向の残留応力及び外面溶接時の内面溶接金属表面での最高到達温度(Tin)との関係を示す。 FIG. 3 shows the relationship between the thickness direction distance from the outer surface weld metal surface and the temperature of the seam weld metal when the seam welded seam portion of the high-strength UO steel pipe is welded to the inner surface and then continuously welded to the outer surface. . FIG. 4 shows the relationship between the distance in the plate thickness direction from the outer surface weld metal surface during the same seam welding, the residual stress in the weld line direction, and the maximum temperature reached (T in ) at the inner surface weld metal surface during the outer surface welding. Indicates.

UO鋼管の肉厚(製造に用いた鋼板板厚)は16mmであり、外面シーム溶接時の入熱は2.2kJ/mmである。シーム溶接金属は、C:0.07質量%、Si:0.2質量%、Mn:1.8質量%、Ni:2質量%、Cr:1質量%、Mo:1質量%を含有し、AC1変態点は約640℃であった。また、図4に示す外面シーム溶接時の内面溶接金属表面での最高到達温度(Tin)はシーム溶接金属のAC1変態点に対する相対値(Tin/AC1)で示し、溶接線方向の残留応力は、残留引張応力を正(+)、残留圧縮応力を負(−)として示した。 The wall thickness of the UO steel pipe (steel plate thickness used for production) is 16 mm, and the heat input during outer seam welding is 2.2 kJ / mm. The seam weld metal contains C: 0.07 mass%, Si: 0.2 mass%, Mn: 1.8 mass%, Ni: 2 mass%, Cr: 1 mass%, Mo: 1 mass%, The AC1 transformation point was about 640 ° C. The maximum temperature (T in ) at the inner surface weld metal surface during outer seam welding shown in FIG. 4 is indicated by the relative value (T in / A C1 ) to the A C1 transformation point of the seam weld metal. Residual stress was expressed as positive (+) residual tensile stress and negative (-) residual compressive stress.

図3から外面シーム溶接時には、その溶接入熱により内面溶接金属の一部は外面溶接金属と同じ1600℃程度に加熱、溶融され、その熱伝導により内面溶接金属表面5(外面溶接金属表面6からの板厚方向距離:10mm、外面溶接金属との融合線に相当)から板厚方向に約1/3の領域(外面溶接金属表面からの板厚方向距離:10〜12mm)がシーム溶接金属のAC1変態点である640℃以上の温度に加熱される。この際、外面溶接金属を通じて拡散性水素が内面溶接金属表面から進入するが、拡散、移動するが、加熱温度が低い板厚方向内部ではその拡散、移動速度が遅くなるため、拡散性水素は内面溶接金属表面近傍に集積し割れの起点となると考えられる。 As shown in FIG. 3, at the time of outer surface seam welding, a part of the inner surface weld metal is heated and melted to about 1600 ° C. by the welding heat input, and the inner surface weld metal surface 5 (from the outer surface weld metal surface 6 by the heat conduction). The thickness direction distance of 10 mm is equivalent to the fusion line with the outer surface weld metal) to about 1/3 of the thickness direction (the thickness direction distance from the outer surface weld metal surface: 10 to 12 mm) of the seam weld metal. It is heated to a temperature of 640 ° C. or higher, which is the A C1 transformation point. At this time, diffusible hydrogen enters from the inner surface weld metal surface through the outer surface weld metal, but diffuses and moves, but the diffusion and movement speed becomes slower inside the plate thickness direction where the heating temperature is low. It is thought that it accumulates in the vicinity of the weld metal surface and becomes the starting point of cracking.

また、図4から外面シーム溶接入熱によりシーム溶接金属のAC1変態点(640℃)以上の温度に加熱された内面溶接金属表面5から板厚方向に約1/3の領域(外面溶接金属表面6からの板厚方向距離:10〜12mm)は、冷却過程の約400℃付近で一旦相変態による体積膨張をした後、室温まで熱収縮される。この際、外面シーム溶接時の内面溶接金属表面での最高到達温度(Tin)が高い(Tin/AC1=0.6、0.7)場合は、それが低い場合(Tin/AC1=0.55、0.50)に比べ、内面溶接金属のAC1変態点以上の領域が増加し、冷却過程での相変態の体積膨張による圧縮応力の発生が増大するため、その後の熱収縮による引張応力の導入があっても、最終的に、室温時の溶接金属の残留応力状態を残留圧縮応力とすることが可能となる。 Also, A C1 transformation point of the seam weld metal by the outer surface seam welding heat input from FIG. 4 (640 ° C.) over about from the inner surface weld metal surface 5 which is heated to a temperature in the thickness direction 1/3 of the area (the outer surface weld metal The plate thickness direction distance from the surface 6: 10 to 12 mm) is thermally contracted to room temperature after having undergone volume expansion by phase transformation at around 400 ° C. in the cooling process. At this time, if the maximum temperature (T in ) at the inner surface weld metal surface during outer seam welding is high (T in / A C1 = 0.6, 0.7), if it is low (T in / A Compared with C1 = 0.55, 0.50), the area above the A C1 transformation point of the weld metal on the inner surface increases, and the generation of compressive stress due to the volume expansion of the phase transformation during the cooling process increases. Even if tensile stress is introduced due to shrinkage, the residual stress state of the weld metal at room temperature can finally be made the residual compressive stress.

図2は、14〜30mmの板厚の異なる鋼板を用いて高強度UO鋼管を製造した場合のシーム溶接金属のAC1変態点に対する外面溶接時の内面溶接金属表面での最高到達温度の比(Tin/AC1)と、シーム溶接部の横割れ発生状況との関係を示す。なお、シーム溶接部の横割れの評価は、全長10〜12mのUO鋼管におけるシーム溶接部の全長にわたり、超音波探傷試験およびX線非破壊試験を実施し横割れの有無を判定し、1個でも発生した場合には横割れ発生と判断した。 2, the ratio of the maximum temperature of the inner surface weld metal surface during the outer surface welding for A C1 transformation point of the seam weld metal in the case of producing a high strength UO pipe using different steel sheet thickness of 14~30Mm ( The relationship between T in / A C1 ) and the occurrence of transverse cracks in the seam weld is shown. In addition, the evaluation of the transverse crack of the seam welded portion is carried out over the entire length of the seam welded portion of the UO steel pipe having a total length of 10 to 12 m by performing an ultrasonic flaw detection test and an X-ray nondestructive test to determine the presence or absence of the transverse crack. However, if it occurred, it was judged that transverse cracks occurred.

図2から板厚(鋼管肉厚)が30mm以下では、鋼板板厚及びシーム溶接金属のAC1変態点にかかわらず、高強度UO鋼管のシーム溶接部の横割れ発生は、内面溶接金属のAC1変態点に対する外面溶接時の内面溶接金属表面での最高到達温度(Tin)の比(Tin/AC1)が0.6以上を満足する条件で低減できる。つまり、内面溶接金属表面での最高到達温度(Tin)をシーム溶接金属の成分組成で決まるAC1変態点の0.6倍以上となるように外面シーム溶接を行うことにより高強度鋼管のシーム溶接部の横割れ発生を確実に防止できる。 In 30mm below the thickness (steel pipe wall thickness) is from 2, regardless of the A C1 transformation point of the steel sheet thickness and seam welding metal, transverse cracks occur in the seam weld zone of the high-strength UO steel pipes, the inner surface weld metal A It can be reduced under the condition that the ratio (T in / A C1 ) of the maximum temperature (T in ) at the inner surface weld metal surface during outer surface welding to the C1 transformation point satisfies 0.6 or more. In other words, by performing the highest temperature (T in) the outer surface seam welding so that 0.6 times the A C1 transformation point determined by the chemical composition of the seam weld metal of the inner surface weld metal surface of high strength steel pipe seam The occurrence of transverse cracks in the weld can be reliably prevented.

以上の知見から本発明では、引張強度が800MPa以上の鋼板を管状に成形した後、その鋼板の突合せ部を仮付け溶接した後、内面シーム溶接し引き続いて外面シーム溶接するUO鋼管のシーム溶接方法において、前記外面シーム溶接時に、前記内面シーム溶接によって形成された内面溶接金属表面での最高到達温度Tinを下記(1)式を満足させるようにする。
in≧0.6×内面溶接金属のAC1変態温度 ・・・ (1)
但し、Tin:外面シーム溶接時の内面溶接金属表面での最高到達温度、AC1:内面溶接金属のAC1変態温度を示す。
From the above knowledge, in the present invention, after forming a steel plate having a tensile strength of 800 MPa or more into a tubular shape, the butt portion of the steel plate is tack welded, and then seam welding is performed on the inner surface, followed by seam welding on the outer surface. In the outer seam welding, the maximum attainable temperature T in on the inner surface weld metal surface formed by the inner surface seam welding is made to satisfy the following expression (1).
T in ≧ 0.6 × A C1 transformation temperature of inner surface weld metal (1)
Where T in is the highest temperature reached on the inner surface weld metal surface during outer seam welding, and A C1 is the A C1 transformation temperature of the inner surface weld metal.

上記本発明の構成により、高強度鋼管の外面シーム溶接時に、外面溶接金属を通じて進入した拡散性水素が内面溶接金属表面近傍に拡散、移動し集積(割れの起点)したとしても、内面溶接金属のAC1変態点以上の領域が増加し、冷却過程での相変態の体積膨張による圧縮応力の発生を増大することにより、室温での溶接金属の残留応力状態を残留圧縮応力とすることが可能となり、シーム溶接部の横割れ発生を防止できる。 With the configuration of the present invention, even when diffusible hydrogen that has entered through the outer surface weld metal diffuses, moves and accumulates near the inner surface weld metal surface during the seam welding of the outer surface of the high-strength steel pipe, By increasing the area above the A C1 transformation point and increasing the generation of compressive stress due to volume expansion of the phase transformation during the cooling process, it becomes possible to make the residual stress state of the weld metal at room temperature the residual compressive stress. The occurrence of transverse cracks in the seam weld can be prevented.

本発明では、従来法に比べて、シーム溶接部の熱処理などの溶接施工方法の変更やUO鋼管のサイズ、シーム溶接金属の成分組成などの制約がなく、生産性を良好に維持しつつ、シーム溶接部の横割れを防止した溶接品質の優れた高強度UO鋼管の製造が可能となる。   In the present invention, compared to the conventional method, there is no restriction on the welding method such as heat treatment of the seam welded part, the size of the UO steel pipe, the composition of the seam weld metal, etc., and the seam is maintained while maintaining good productivity. It is possible to manufacture a high-strength UO steel pipe with excellent welding quality that prevents transverse cracks in the welded portion.

また、本発明において、上記シーム溶接部の横割れ抑制の効果を得るためには、シーム溶接方法は特に限定する必要はないが、溶接効率と溶接品質の両面から多電極のサブマージアーク溶接を用いるのが好ましい。   Further, in the present invention, in order to obtain the effect of suppressing the transverse crack of the seam welded portion, the seam welding method is not particularly limited, but multi-electrode submerged arc welding is used in terms of both welding efficiency and welding quality. Is preferred.

また、本発明において、上記外面シーム溶接時の内面溶接金属表面での最高到達温度(Tin)を上記(1)式を満足する温度に調整する方法も、特に限定する必要はない。例えば、外面シーム溶接の入熱量及び溶接速度の何れか、または両方を調整することにより、外面シーム溶接時の内面溶接金属表面での最高到達温度(Tin)を高めに調整することで行うことができる。また、多電極のサブマージアーク溶接の場合には、第1電極あるいは第1、第2電極の電流などを高くすると外面溶接金属の溶け込み深さは深くなり、その結果、内面溶接金属表面の温度も高くすることができる。これ以外にも、細径の溶接ワイヤを使用して電流密度を高くして溶け込みを深くする方法等も考えられる。これらの溶接条件を調整することにより外面シーム溶接時の内面溶接金属表面での最高到達温度(Tin)を調整する方法は、生産性や溶接品質を低下することなく実現可能であるため好ましい。 In the present invention, the method for adjusting the maximum temperature (T in ) at the inner surface weld metal surface during the outer surface seam welding to a temperature that satisfies the above expression (1) is not particularly limited. For example, by adjusting either or both of the heat input and welding speed of outer surface seam welding, the maximum ultimate temperature (T in ) on the inner surface weld metal surface during outer seam welding is adjusted to be higher. Can do. In addition, in the case of multi-electrode submerged arc welding, if the current of the first electrode or the first and second electrodes is increased, the penetration depth of the outer surface weld metal becomes deeper. As a result, the temperature of the inner surface weld metal surface also increases. Can be high. In addition to this, a method of increasing the current density by using a small-diameter welding wire to deepen the penetration is also conceivable. A method of adjusting the maximum temperature (T in ) at the inner surface weld metal surface during outer surface seam welding by adjusting these welding conditions is preferable because it can be realized without lowering productivity and welding quality.

また、本発明では、上記溶接条件の調整に加えて、外面シーム溶接時に内面溶接金属表面を保温材などを用いて覆うなどして保温することにより、内面溶接金属表面からの熱放散を防ぐ方法を併用することも、生産性や溶接品質を低下させることなく外面シ−ム溶接時の内面溶接金属表面での最高到達温度を(Tin)を調整するために好ましい。 Further, in the present invention, in addition to the adjustment of the above welding conditions, a method of preventing heat dissipation from the inner surface weld metal surface by covering the inner surface weld metal surface with a heat insulating material or the like during outer surface seam welding. Is also preferable for adjusting (T in ) the maximum temperature achieved on the inner surface weld metal surface during outer surface seam welding without lowering productivity and welding quality.

また、外面シーム溶接と同時に、例えば、ガスバーナーやプラズマトーチなどにより内面溶接金属表面を加熱することも有効である。内面シーム溶接後に形成された内面溶接金属表面を外面シーム溶接と同時にガスバーナーやプラズマトーチなどで加熱を行うことにより、生産性や溶接品質を低下させることなく外面シ−ム溶接時の内面溶接金属表面での最高到達温度を(Tin)を調整することができる。 It is also effective to heat the inner surface weld metal surface simultaneously with the outer surface seam welding, for example, with a gas burner or a plasma torch. By heating the inner surface weld metal surface formed after inner surface seam welding with a gas burner or plasma torch at the same time as outer surface seam welding, the inner surface weld metal at the time of outer surface seam welding without reducing productivity or weld quality (T in ) can be adjusted to the maximum temperature reached on the surface.

また、外面シーム溶接の直前に、例えば、ガスバーナーやプラズマトーチなどにより内面シーム溶接金属表面を加熱することも有効である。この場合は、内面シーム溶接金属表面の加熱効果を充分に得るために、内面シーム溶接金属表面の加熱温度を50℃以上とし、この加熱後、直ちに外面シーム溶接することが好ましい。   It is also effective to heat the inner surface seam weld metal surface with, for example, a gas burner or a plasma torch immediately before the outer surface seam welding. In this case, in order to sufficiently obtain the heating effect on the inner surface seam weld metal surface, it is preferable to set the heating temperature of the inner surface seam weld metal surface to 50 ° C. or more, and immediately after this heating, the outer surface seam welding is performed.

本発明は、引張強度が800MPa以上の強度で、かつ靭性が良好なラインパイプ用の高強度UO鋼管を対象とし、このような高強度UO鋼管のシーム溶接部の横割れ発生を抑制するために特に効果を発揮する。
ラインパイプ用の高強度UO鋼管では、母材とシーム溶接部との強度、靭性バランスの点からシーム溶接部の溶接金属の強度及び靭性は、母材と同等以上の特性が要求される。このような理由から本発明における溶接金属の引張強度は母材鋼板と同等の800MPa以上とするのが好ましい。引張強度の上限は特に規定する必要はないが、良好な靭性を確保するためにはその上限を1200MPa程度とすることが好ましい。このような引張強度800〜1200MPaの溶接金属を得るためには常温での溶接金属の組織は、主に、ベイナイト組織あるいはマルテンサイト組織とするのが好ましい。
本発明において溶接金属の化学成分組成および各成分含有量については特に限定する必要はないが、引張強度800以上で靭性に優れた高強度鋼管としては以下のような成分組成が望ましい。
The present invention is intended for high-strength UO steel pipes for line pipes having a tensile strength of 800 MPa or more and good toughness, and to suppress the occurrence of transverse cracks in seam welds of such high-strength UO steel pipes. Especially effective.
In the high-strength UO steel pipe for line pipes, the strength and toughness of the weld metal in the seam welded portion are required to be equal to or better than the base metal from the viewpoint of balance between strength and toughness between the base metal and the seam welded portion. For these reasons, the tensile strength of the weld metal in the present invention is preferably 800 MPa or more, which is equivalent to that of the base steel plate. The upper limit of the tensile strength is not particularly required, but the upper limit is preferably set to about 1200 MPa in order to ensure good toughness. In order to obtain such a weld metal having a tensile strength of 800 to 1200 MPa, the weld metal structure at room temperature is preferably mainly a bainite structure or a martensite structure.
In the present invention, the chemical component composition and each component content of the weld metal are not particularly limited, but the following component composition is desirable for a high-strength steel pipe having a tensile strength of 800 or more and excellent toughness.

Cは、溶接金属の強度を確保するためにその含有量を0.02質量%以上とすることが好ましい。また、その含有量が0.1質量%以上となると溶接金属が脆化し靭性が低下するため、その含有量の上限を0.1質量%未満とするのが好ましい。   The content of C is preferably 0.02% by mass or more in order to ensure the strength of the weld metal. Further, when the content is 0.1% by mass or more, the weld metal becomes brittle and the toughness is lowered, so the upper limit of the content is preferably less than 0.1% by mass.

Siは、溶接金属中で脱酸作用を有しその効果を得るためにはその含有量を0.05質量%以上とするのが好ましい。また、その含有量が0.35質量%を超えると溶接金属の靭性に悪影響を及ぼすため、その含有量の上限を0.35質量%とするのが好ましい。   Si has a deoxidizing action in the weld metal, and its content is preferably 0.05 mass% or more in order to obtain the effect. Further, if its content exceeds 0.35% by mass, the toughness of the weld metal is adversely affected, so the upper limit of its content is preferably 0.35% by mass.

Mnは、溶接金属の焼き入れ性を向上させ、その強度を確保するためには、その含有量を0.3質量%以上とするのが好ましい。また、その含有量が2.0質量%以上となると靭性が低下するため、その含有量の上限を2.0質量%未満とするのが好ましい。   In order to improve the hardenability of the weld metal and ensure its strength, the content of Mn is preferably 0.3% by mass or more. Moreover, since toughness will fall when the content will be 2.0 mass% or more, it is preferable that the upper limit of the content shall be less than 2.0 mass%.

Niは、溶接金属の焼き入れ性を向上させ、その強度を確保するためには、その含有量を0.5質量%以上とするのが好ましい。また、その含有量が3.0質量%以上となると高温割れが発生しやすくなるため、その含有量の上限を3.0質量%未満とするのが好ましい。   Ni is preferably 0.5% by mass or more in order to improve the hardenability of the weld metal and ensure its strength. Moreover, since it becomes easy to generate | occur | produce a hot crack when the content will be 3.0 mass% or more, it is preferable to make the upper limit of the content less than 3.0 mass%.

Crは、焼き入れ性を向上させ、その強度を確保するためには、その含有量を0.3質量%以上とするのが好ましい。また、その含有量が3.0質量%以上となると靱性低下を招くため、その含有量の上限を3.0質量%以下とするのが好ましい。
Moは、焼き入れ性を向上させ、その強度を確保するためには、その含有量を0.3%重量以上とするのが好ましい。また、その含有量が3.0質量%以上となると靱性低下を招くため、その含有量の上限を3.0質量%以下とするのが好ましい。
In order to improve the hardenability and ensure the strength, Cr is preferably contained in an amount of 0.3% by mass or more. Moreover, since the toughness fall will be caused when the content will be 3.0 mass% or more, it is preferable to make the upper limit of the content into 3.0 mass% or less.
In order to improve the hardenability and to secure the strength, the Mo content is preferably 0.3% by weight or more. Moreover, since the toughness fall will be caused when the content will be 3.0 mass% or more, it is preferable to make the upper limit of the content into 3.0 mass% or less.

母材鋼板として引張強度が約960MPaの高張力鋼を用い、直径750〜900mmのUO鋼管に造管し、造管後72時間経過した後に、シーム溶接部の全長について超音波探傷試験およびX線非破壊検査により横割れの有無を検査した。板厚は4種類準備した。造管時の内面シーム溶接及び外面シーム溶接は3電極のサブマージアーク溶接法を用いた。シーム溶接金属は約1000MPa級と1100MPa級の2種類を用意した。これらの溶接金属のAC1点は各々640℃および620℃である。サブマージアーク溶接時のフラックスは溶融型のフラックスを用いた。フラックスの拡散性水素量はJIS Z3118 高溶接部の水素量測定方法に準じて、2号試験片を使用して測定した結果、拡散性水素量で約10ml/100gであった。フラックスは通常の溶接では乾燥するが、本実施例では、意図的に最悪の吸湿条件を想定し使用前に乾燥しないでそのまま使用した。表1に本願発明の実施例および比較例を示す。 A high strength steel having a tensile strength of about 960 MPa is used as a base steel plate, and a UO steel pipe having a diameter of 750 to 900 mm is formed. After 72 hours from the pipe forming, an ultrasonic flaw test and an X-ray test are performed on the entire length of the seam weld. The presence or absence of transverse cracks was inspected by nondestructive inspection. Four types of plate thickness were prepared. Three-electrode submerged arc welding was used for inner seam welding and outer seam welding during pipe making. Two types of seam weld metal of about 1000 MPa class and 1100 MPa class were prepared. The A C1 points of these weld metals are 640 ° C. and 620 ° C., respectively. The flux at the time of submerged arc welding was a melt type flux. The amount of diffusible hydrogen in the flux was measured using a No. 2 test piece in accordance with the method for measuring the amount of hydrogen in the high weld zone of JIS Z3118. As a result, the amount of diffusible hydrogen was about 10 ml / 100 g. The flux dries in normal welding, but in this example, the worst moisture absorption condition was intentionally assumed and used as it was without drying before use. Table 1 shows examples of the present invention and comparative examples.

Figure 2005262253
Figure 2005262253

発明例1〜3は板厚が14mm、発明例4及び5は板厚が16mm、発明例6〜9は板厚が20mm、実施例10及び11は板厚が30mmの場合であるが、外面シーム溶接時の内面溶接金属表面での最高到達温度Tinとシーム溶接金属のAC1変態点との比(Tin/AC1)が何れも0.6以上の条件を満足しているため、シーム溶接部の横割れは全く発生しなかった。なお、発明例6〜9では、AC1変態点が異なるシーム溶接金属を2種類使用しているが、何れの場合もシーム溶接部の横割れは全く発生しなかった。 Invention Examples 1 to 3 have a plate thickness of 14 mm, Invention Examples 4 and 5 have a plate thickness of 16 mm, Invention Examples 6 to 9 have a plate thickness of 20 mm, and Examples 10 and 11 have a plate thickness of 30 mm. Since the ratio (T in / A C1 ) between the maximum temperature T in at the inner surface weld metal surface during seam welding and the A C1 transformation point of the seam weld metal satisfies the condition of 0.6 or more, No transverse cracks occurred in the seam weld. In Invention Examples 6-9, but A C1 transformation point is two using different seam weld metal, transverse cracks in the seam weld both cases did not occur at all.

発明例12〜14は、外面シーム溶接時に内面溶接金属表面の最高到達温度を高くするための補熱処理を行った例である。発明例12は、セラミックスで内面溶接金属表面を覆うことにより保温した場合、発明例13は、外面シーム溶接中に内面溶接金属表面をガスバーナーにより加熱した場合である。また、発明例14は外面溶接直前に内面溶接金属の加熱温度が50℃になるようにガスバーナーにより加熱した場合である。発明例12〜14は、外面シーム溶接時の内面溶接金属表面での最高到達温度Tinとシーム溶接金属のAC1変態点との比(Tin/AC1)が何れも0.6以上の条件を満足しているため、シーム溶接部の横割れは全く発生しなかった。 Invention Examples 12 to 14 are examples in which a supplementary heat treatment is performed to increase the maximum temperature reached on the inner surface weld metal surface during outer surface seam welding. Invention Example 12 is a case where heat is maintained by covering the inner surface weld metal surface with ceramics, and Invention Example 13 is a case where the inner surface weld metal surface is heated by a gas burner during outer surface seam welding. In addition, Invention Example 14 is a case where the inner surface weld metal is heated by a gas burner so that the heating temperature of the inner surface weld metal becomes 50 ° C. immediately before the outer surface welding. In Invention Examples 12 to 14, the ratio (T in / A C1 ) between the maximum temperature T in at the inner surface weld metal surface and the A C1 transformation point of the seam weld metal during outer seam welding is 0.6 or more. Since the conditions were satisfied, no transverse cracks occurred in the seam weld.

一方、比較例1〜5は、溶接入熱などのシーム溶接条件が不適切のために、外面シーム溶接時の内面溶接金属表面での最高到達温度Tinとシーム溶接金属のAC1変態点との比(Tin/AC1)が何れも0.6未満となり本発明が規定する条件を満足しなかったために、シーム溶接部の横割れが発生し、溶接部品質に劣る結果となった。 On the other hand, Comparative Examples 1 to 5, welded to the seam welding conditions such as the heat input is incorrect, the A C1 transformation point maximum temperature T in the seam weld metal of the inner surface weld metal surface during the outer surface seam welding The ratios (T in / A C1 ) were both less than 0.6 and did not satisfy the conditions specified by the present invention, resulting in transverse cracks in the seam welds, resulting in poor weld quality.

高強度UO鋼管のシーム溶接金属と横割れ発生領域を示す模式図である。It is a schematic diagram which shows the seam weld metal and transverse crack generation | occurrence | production area | region of a high intensity | strength UO steel pipe. 高強度UO鋼管の外面シーム溶接時のTin/AC1と横割れ発生状況との関係を示す図である。It is a diagram showing the relationship between T in / A C1 and transverse cracks occurrence at the outer surface seam welding of high-strength UO pipe. 高強度UO鋼管の外面シーム溶接時のシーム溶接金属板厚方向距離と温度との関係を示す図である。It is a figure which shows the relationship between the seam weld metal plate thickness direction distance and temperature at the time of the outer surface seam welding of a high intensity | strength UO steel pipe. 高強度UO鋼管の外面シーム溶接時のシーム溶接金属板厚方向距離と溶接線方向残留応力との関係を示す図である。It is a figure which shows the relationship between the seam welding metal plate thickness direction distance at the time of the outer surface seam welding of a high intensity | strength UO steel pipe, and a welding line direction residual stress.

符号の説明Explanation of symbols

1 外面溶接金属
2 内面溶接金属
3 外面溶接金属と内面溶接金属の境界である溶接線
4 横割れ
5 内面溶接金属表面
6 外面溶接金属表面
DESCRIPTION OF SYMBOLS 1 Outer surface weld metal 2 Inner surface weld metal 3 Welding line which is a boundary of outer surface weld metal and inner surface weld metal 4 Lateral crack 5 Inner surface weld metal surface 6 Outer surface weld metal surface

Claims (5)

引張強度が800MPa以上の鋼板を管状に成形した後、その鋼板の突合せ部を仮付け溶接した後、内面シーム溶接し引き続いて外面シーム溶接するUO鋼管のシーム溶接方法において、前記外面シーム溶接時に、前記内面シーム溶接によって形成された内面溶接金属表面での最高到達温度Tinが下記(1)式を満足することを特徴とする高強度UO鋼管のシーム溶接方法。
in≧0.6×内面溶接金属のAC1変態温度 ・・・ (1)
但し、Tin:外面シーム溶接時の内面溶接金属表面での最高到達温度、AC1:内面溶接金属のAC1変態温度を示す。
In a seam welding method for a UO steel pipe, in which a steel plate having a tensile strength of 800 MPa or more is formed into a tubular shape, and then a butt portion of the steel plate is tack welded, then an inner seam weld is performed, and subsequently an outer seam weld is performed. A seam welding method for a high-strength UO steel pipe, characterized in that the maximum temperature T in the inner surface weld metal surface formed by the inner surface seam welding satisfies the following formula (1).
T in ≧ 0.6 × A C1 transformation temperature of inner surface weld metal (1)
Where T in is the highest temperature reached on the inner surface weld metal surface during outer seam welding, and A C1 is the A C1 transformation temperature of the inner surface weld metal.
前記シーム溶接はサブマージアーク溶接法を用いて行なうことを特徴とする請求項1に記載の高強度UO鋼管のシーム溶接方法。 The said seam welding is performed using the submerged arc welding method, The seam welding method of the high strength UO steel pipe of Claim 1 characterized by the above-mentioned. 前記外面シーム溶接は前記内面溶接金属表面を保温することを特徴とする請求項1または請求項2に記載の高強度UO鋼管のシーム溶接方法。 The method of seam welding of a high-strength UO steel pipe according to claim 1 or 2, wherein the outer surface seam welding retains the inner surface weld metal surface. 前記外面シーム溶接と同時に内面溶接金属表面を加熱することを特徴とする請求項1〜3の何れかに記載の高度UO鋼管のシーム溶接方法。 The seam welding method for an advanced UO steel pipe according to any one of claims 1 to 3, wherein an inner surface welded metal surface is heated simultaneously with the outer surface seam welding. 前記外面シーム溶接の直前に前記内面シーム溶接金属表面を加熱温度が50℃以上となるように加熱することを特徴とする請求項1〜3の何れかに記載の高強度UO鋼管のシーム溶接方法。 The method for seam welding a high-strength UO steel pipe according to any one of claims 1 to 3, wherein the inner surface seam weld metal surface is heated immediately before the outer surface seam welding so that the heating temperature is 50 ° C or higher. .
JP2004076668A 2004-03-17 2004-03-17 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance Expired - Fee Related JP4482355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076668A JP4482355B2 (en) 2004-03-17 2004-03-17 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076668A JP4482355B2 (en) 2004-03-17 2004-03-17 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009137171A Division JP4860722B2 (en) 2009-06-08 2009-06-08 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance

Publications (2)

Publication Number Publication Date
JP2005262253A true JP2005262253A (en) 2005-09-29
JP4482355B2 JP4482355B2 (en) 2010-06-16

Family

ID=35087332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076668A Expired - Fee Related JP4482355B2 (en) 2004-03-17 2004-03-17 Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance

Country Status (1)

Country Link
JP (1) JP4482355B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210023A (en) * 2006-02-13 2007-08-23 Nippon Steel Corp High strength welded steel pipe having excellent weld zone embrittlement crack property
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness
CN103293036A (en) * 2012-03-08 2013-09-11 上海振华重工(集团)股份有限公司 Prefabricating method of high-strength steel re-welded transverse cracks
RU2791999C1 (en) * 2022-09-15 2023-03-15 Рустем Фаилович Шарифуллин Method for manufacturing longitudinally electric-welded pipe of large diameter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175622A (en) * 2018-10-15 2019-01-11 仪征常众汽车部件有限公司 A kind of automobile decoration cover stent welding procedure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355039A (en) * 2000-06-09 2001-12-25 Nippon Steel Corp Ultrahigh strength steel tube excellent in low temperature toughness of weld zone and its production method
JP2002115032A (en) * 2000-10-11 2002-04-19 Nippon Steel Corp Ultrahigh strength steel pipe having seam weld zone with excellent cold-crack resistance, and its manufacturing method
JP2003138340A (en) * 2001-10-31 2003-05-14 Nippon Steel Corp Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2004068055A (en) * 2002-08-02 2004-03-04 Nippon Steel Corp High strength welded steel pipe having excellent weld zone toughness and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355039A (en) * 2000-06-09 2001-12-25 Nippon Steel Corp Ultrahigh strength steel tube excellent in low temperature toughness of weld zone and its production method
JP2002115032A (en) * 2000-10-11 2002-04-19 Nippon Steel Corp Ultrahigh strength steel pipe having seam weld zone with excellent cold-crack resistance, and its manufacturing method
JP2003138340A (en) * 2001-10-31 2003-05-14 Nippon Steel Corp Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2004068055A (en) * 2002-08-02 2004-03-04 Nippon Steel Corp High strength welded steel pipe having excellent weld zone toughness and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210023A (en) * 2006-02-13 2007-08-23 Nippon Steel Corp High strength welded steel pipe having excellent weld zone embrittlement crack property
JP2009202167A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Welded steel pipe having excellent weld heat-affected zone toughness
CN103293036A (en) * 2012-03-08 2013-09-11 上海振华重工(集团)股份有限公司 Prefabricating method of high-strength steel re-welded transverse cracks
RU2791999C1 (en) * 2022-09-15 2023-03-15 Рустем Фаилович Шарифуллин Method for manufacturing longitudinally electric-welded pipe of large diameter

Also Published As

Publication number Publication date
JP4482355B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP4403145B2 (en) High strength welded steel pipe with excellent resistance to hydrogen embrittlement cracking of weld metal and its manufacturing method
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JPWO2013147197A1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
JP2009052137A (en) Steel sheet for high strength sour resistant line pipe, method for producing the same, and steel pipe
WO2013051249A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
RU2679499C1 (en) Sheet steel for construction pipes or tubes, method of manufacture of sheet steel for construction pipes or tubes and construction pipes and tubes
JP2007217716A (en) Welded ferritic stainless steel pipe for spinning process, and its manufacturing method
JP4975304B2 (en) Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet
JP5176591B2 (en) Welded steel pipe with excellent weld heat-affected zone toughness
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP2001009589A (en) Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
KR20190042052A (en) METHOD FOR MANUFACTURING WELDING STRUCTURE OF FERRITE STEEL HEAVY DUTY STRIP
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP4593399B2 (en) Manufacturing method of UO steel pipe excellent in low temperature crack resistance and UO steel pipe
JP4482355B2 (en) Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance
JP4860722B2 (en) Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance
JP2008202128A (en) Oil well electric resistance welded pipe for expansion having excellent expansion performance and corrosion resistance, and method for manufacturing the same
JP2004143556A (en) Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4482355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees