JP4975304B2 - Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet - Google Patents

Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet Download PDF

Info

Publication number
JP4975304B2
JP4975304B2 JP2005342444A JP2005342444A JP4975304B2 JP 4975304 B2 JP4975304 B2 JP 4975304B2 JP 2005342444 A JP2005342444 A JP 2005342444A JP 2005342444 A JP2005342444 A JP 2005342444A JP 4975304 B2 JP4975304 B2 JP 4975304B2
Authority
JP
Japan
Prior art keywords
hydrogen
strength
steel
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005342444A
Other languages
Japanese (ja)
Other versions
JP2007146230A (en
Inventor
卓也 原
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005342444A priority Critical patent/JP4975304B2/en
Publication of JP2007146230A publication Critical patent/JP2007146230A/en
Application granted granted Critical
Publication of JP4975304B2 publication Critical patent/JP4975304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、天然ガス・原油輸送用ラインパイプ等に好適な、耐水素誘起割れ性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法に関する。   The present invention relates to a method for producing a high-strength steel plate having a tensile strength of 760 MPa or more and excellent in resistance to hydrogen-induced cracking, and a method for producing a high-strength steel pipe using the steel plate, suitable for natural gas / crude oil transportation line pipes, etc. About.

近年、原油・天然ガスのパイプラインにおいて、輸送効率の向上を目的とした高内圧化や現地施工能率の向上を目的としたラインパイプの外径、重量の低減が要求され、X100相当(引張強さ760MPa以上900MPa未満)を超える高強度鋼管の開発が進められている(例えば、特許文献1、2参照。)。   In recent years, in pipelines for crude oil and natural gas, it has been required to reduce the outer diameter and weight of the line pipe for the purpose of increasing the internal pressure for the purpose of improving transportation efficiency and improving the local construction efficiency. Development of high-strength steel pipes exceeding 760 MPa to less than 900 MPa is underway (see, for example, Patent Documents 1 and 2).

一般に、パイプラインでは、鋼管の母材に発生した延性き裂が管軸方向に100m/s以上もの高速で、100mから数kmにも及ぶ長距離を伝播する可能性があり、耐アレスト性が要求される。耐アレスト性は、き裂の伝播を停止させる特性であり、脆性き裂が母材を伝播して停止する特性、即ち耐脆性破壊特性と、延性き裂が母材を伝播して停止する特性、即ち延性破壊特性に分類される。   Generally, in pipelines, ductile cracks that occur in the base material of steel pipes can propagate over a long distance of 100 to several kilometers at a high speed of 100 m / s or more in the pipe axis direction. Required. The arrest resistance is the property that stops the propagation of cracks, the property that a brittle crack propagates through the base material and stops, that is, the property that the brittle fracture resistance and the property that the ductile crack propagates through the base material and stops. That is, it is classified as a ductile fracture characteristic.

耐脆性破壊特性は、落重破壊試験(Drop Weight Tear Test、以下、DWTT試験という。)を行い、延性破面率が85%以上になる温度(DWTT遷移温度という。)で評価される。脆性き裂は溶接部から発生することが多く、試験片の中央部に溶接ビードを形成して脆性き裂を導入し、DWTT試験を行って評価した耐脆性破壊特性に優れた鋼管が提案されている(例えば、特許文献3参照。)。   The brittle fracture resistance is evaluated by a drop weight tear test (hereinafter referred to as a DWTT test) and a temperature at which the ductile fracture surface ratio is 85% or more (referred to as a DWTT transition temperature). Brittle cracks often occur from welds, and steel pipes with excellent brittle fracture resistance evaluated by performing a DWTT test by introducing a weld bead at the center of the specimen and introducing a brittle crack have been proposed. (For example, refer to Patent Document 3).

これに対して、延性破壊特性の評価には、鋼管の表面に爆薬を装着後、爆発させて発生した延性き裂が停止するか否かを判定するフルクラックバーストテストが最適である。しかし、フルクラックバーストテストは、試験に要するコストが非常に高いため、従来、フルクラックバーストテストの結果と比較的よく一致するシャルピー吸収エネルギーまたはDWTT試験によって求められる吸収エネルギー(DWTT吸収エネルギーという。)で評価されている。このように、耐脆性破壊特性に優れ、かつ延性破壊特性に優れた高強度鋼板および高強度鋼管の開発が要望されていた。   On the other hand, for evaluation of ductile fracture characteristics, a full crack burst test for determining whether or not a ductile crack generated by an explosion after mounting an explosive on the surface of a steel pipe stops is optimal. However, since the cost required for the full crack burst test is very high, conventionally, the Charpy absorbed energy or the absorbed energy required by the DWTT test (referred to as DWTT absorbed energy) that is relatively well consistent with the result of the full crack burst test. It is evaluated by. Thus, there has been a demand for the development of a high-strength steel plate and a high-strength steel pipe that are excellent in brittle fracture resistance and excellent in ductile fracture characteristics.

一方、X100以上の高強度鋼板や高強度鋼管では、水素誘起割れと呼ばれる欠陥が発生する場合がある。水素誘起割れとは、板厚中心部に板面に平行な割れが生成するもので、水素起因のものである。高強度鋼板や高強度鋼管では、水素の感受性が高いので、時々鋼板や鋼管に水素誘起割れが存在する場合があった。水素誘起割れが存在すると延性破壊特性やき裂伝播特性を著しく劣化させるので、問題となっていた。   On the other hand, in a high-strength steel plate or a high-strength steel pipe of X100 or higher, a defect called hydrogen induced cracking may occur. The hydrogen-induced crack is a crack that is generated parallel to the plate surface at the center of the plate thickness, and is caused by hydrogen. Since high-strength steel plates and high-strength steel pipes are highly sensitive to hydrogen, sometimes hydrogen-induced cracks exist in the steel plates and steel pipes. The presence of hydrogen-induced cracking has been a problem because it significantly deteriorates ductile fracture characteristics and crack propagation characteristics.

特開平09−041074号公報JP 09-041074 A 特開平09−041080号公報Japanese Patent Application Laid-Open No. 09-041080 特開平11−036042号公報Japanese Patent Laid-Open No. 11-036042

本発明は、上記の課題を有利に解決して、延性破壊特性および耐脆性破壊特性に優れた水素誘起割れが存在しない円周方向の引張強さ760MPa級以上(API規格X100級以上)の高強度鋼管の製造に好適な、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法を提供するものである。   The present invention advantageously solves the above-mentioned problems, and has a high tensile strength in the circumferential direction of 760 MPa or higher (API standard X100 or higher) without hydrogen-induced cracking excellent in ductile fracture resistance and brittle fracture resistance. Provided is a method for producing a high-strength steel pipe having a tensile strength of 760 MPa or higher and excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and a method for producing a high-strength steel pipe using the steel sheet, suitable for producing a high-strength steel pipe. is there.

本発明者らは、円周方向の引張強さが760MPa級以上の高強度鋼板およびそれを用いた鋼管の水素誘起割れを防止する方法について検討を行うとともに、鋼板製造における水冷停止後の冷却方法について検討を行って、水素誘起割れの存在しない高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法に関する発明を成すに至った。本発明の要旨は以下のとおりである。   The present inventors have studied a high-strength steel sheet having a tensile strength in the circumferential direction of 760 MPa class or more and a method for preventing hydrogen-induced cracking of a steel pipe using the steel sheet, and a cooling method after stopping water cooling in steel sheet production As a result, an invention relating to a method for producing a high-strength steel plate free from hydrogen-induced cracking and a method for producing a high-strength steel pipe using the steel plate has been made. The gist of the present invention is as follows.

(1)質量%で、C:0.01〜0.5%、Si:0.01〜3.0%、Mn:0.1〜5.0%、P:0.03%以下、S:0.03%以下を含有し、残部が鉄および不可避的不純物からなる鋼を溶製するに際し、後工程の熱間圧延の設定開始温度をT1(℃)、設定仕上温度をT3(℃)、熱間圧延後の設定制御冷却停止温度をT4(℃)とするとき、不純物としての水素を、溶鋼中で、H:{0.65+(0.0007T4−0.03)}×1.5×exp[−1411{1/(T1+273)−1/(T3+273)}]ppm以下に制限しながら成分調整し、該溶鋼を鋳造し、さらに、1000〜1250℃のT1(℃)で熱間圧延を開始し、600〜900℃のT3(℃)で熱間圧延を終了し、その後の冷却に際し、制御冷却停止温度T4(℃)を圧延終了温度未満50℃以上として、該制御冷却停止温度T4(℃)まで鋼板中心部の平均冷却速度で0.5〜20℃/sとなる冷却速度で制御冷却し、該制御冷却停止温度T4(℃)から室温まで放冷し、鋼板の水素量を0.65ppm以下にすることを特徴とする、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。
(1) By mass%, C: 0.01 to 0.5%, Si: 0.01 to 3.0%, Mn: 0.1 to 5.0%, P: 0.03% or less, S: When melting steel containing 0.03% or less, the balance being iron and inevitable impurities, the setting start temperature of the subsequent hot rolling is T1 (° C), the set finishing temperature is T3 (° C), When the set control cooling stop temperature after hot rolling is T4 (° C.), hydrogen as an impurity is H: {0.65+ (0.0007T4-0.03)} × 1.5 × in the molten steel. exp [-1411 {1 / (T1 + 273) -1 / (T3 + 273)}] The components are adjusted while being limited to ppm or less, the molten steel is cast, and further, hot rolling is performed at 1000 to 1250 ° C T1 (° C). Start, finish hot rolling at T3 (° C.) of 600 to 900 ° C., and stop controlled cooling during subsequent cooling The temperature T4 (° C.) is set to a temperature lower than the rolling end temperature of 50 ° C. or more, and controlled cooling is performed at a cooling rate of 0.5 to 20 ° C./s at the average cooling rate at the center of the steel sheet until the controlled cooling stop temperature T4 (° C.)該制allowed to cool from your cooling stop temperature T4 (° C.) to room temperature, characterized in that the amount of hydrogen of the steel sheet below 0.65 ppm, resistance to hydrogen induced cracking resistance and tensile excellent ductile fracture characteristic strength 760MPa grade The manufacturing method of the above high strength steel plate.

(2) 質量%で、C:0.01〜0.5%、Si:0.01〜3.0%、Mn:0.1〜5.0%、P:0.03%以下、S:0.03%以下を含有し、残部が鉄および不可避的不純物からなる鋼を溶製するに際し、後工程の熱間圧延の設定加熱温度をT2(℃)、設定仕上温度をT3(℃)、熱間圧延後の設定制御冷却停止温度をT4(℃)とするとき、不純物としての水素を、溶鋼中で、H:{0.65+(0.0007T4−0.03)}×1.5×exp[−1411{1/(T2+273)−1/(T3+273)}]ppm以下に制限しながら成分調整し、該溶鋼を鋳造して得られた鋼片を、1000〜1250℃の加熱温度T2(℃)で再加熱し、さらにこれに引き続いた再結晶域圧延の後、600〜900℃のT3(℃)で熱間圧延を終了し、その後の冷却に際し、制御冷却停止温度T4(℃)を圧延終了温度未満50℃以上として、該制御冷却停止温度T4(℃)まで鋼板中心部の平均冷却速度で0.5〜20℃/sとなる冷却速度で制御冷却し、該制御冷却停止温度T4(℃)から室温まで放冷し、鋼板の水素量を0.65ppm以下にすることを特徴とする、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。 (2) By mass%, C: 0.01 to 0.5%, Si: 0.01 to 3.0%, Mn: 0.1 to 5.0%, P: 0.03% or less, S: When melting steel containing 0.03% or less, the balance being iron and inevitable impurities, the set heating temperature of the subsequent hot rolling is T2 (° C), the set finishing temperature is T3 (° C), When the set control cooling stop temperature after hot rolling is T4 (° C.), hydrogen as an impurity is H: {0.65+ (0.0007T4-0.03)} × 1.5 × in the molten steel. exp [-1411 {1 / (T2 + 273) -1 / (T3 + 273)}] The components are adjusted while being limited to ppm or less, and a steel slab obtained by casting the molten steel is heated to 1000 to 1250 ° C at a heating temperature T2 ( ℃), and after subsequent recrystallization zone rolling, at T3 (℃) of 600-900 ℃ During the subsequent cooling, the control cooling stop temperature T4 (° C.) is set to less than the rolling end temperature 50 ° C. or more, and the average cooling rate at the center of the steel sheet is 0.5 to the control cooling stop temperature T4 (° C.). controlled cooling at a cooling rate to be to 20 ° C. / s,該制allowed to cool from your cooling stop temperature T4 (° C.) to room temperature, characterized in that the amount of hydrogen of the steel sheet below 0.65 ppm, anti hydrogen induced A method for producing a high-strength steel sheet having a tensile strength of 760 MPa or more and excellent in crackability and ductile fracture characteristics.

(3) 前記鋼成分に代えて、質量%で、C:0.02〜0.10%、Si:0.01〜0.6%、Mn:1.5〜2.5%、P:0.015%以下、S:0.003%以下、Ni:0.1〜2.0%、Mo:0.15〜0.60%、Nb:0.001〜0.10%、Ti:0.005〜0.030%、Al:0.06%以下、N:0.0001〜0.006%、を含有することを特徴とする、上記(1)または(2)に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。 (3) Instead of the steel components, in mass%, C: 0.02 to 0.10%, Si: 0.01 to 0.6%, Mn: 1.5 to 2.5%, P: 0 0.015% or less, S: 0.003% or less, Ni: 0.1 to 2.0%, Mo: 0.15 to 0.60%, Nb: 0.001 to 0.10%, Ti: 0.0. 005 to 0.030%, Al: 0.06% or less, N: 0.0001 to 0.006%, characterized by containing hydrogen-resistant cracking according to (1) or (2) above For producing high-strength steel sheets having a tensile strength of 760 MPa or more and excellent in ductility and ductile fracture characteristics.

(4) さらに、質量%で、B:0.0001〜0.005%、V:0.001〜0.10%、Cu:0.01〜1.0%、Cr:0.01〜0.8%、Zr:0.0001〜0.005%、Ta:0.0001〜0.005%、Ca:0.0001〜0.01%、REM:0.0001〜0.01%、Mg:0.0001〜0.006%の1種または2種以上を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。 (4) Further, by mass%, B: 0.0001 to 0.005%, V: 0.001 to 0.10%, Cu: 0.01 to 1.0%, Cr: 0.01 to 0.00. 8%, Zr: 0.0001 to 0.005%, Ta: 0.0001 to 0.005%, Ca: 0.0001 to 0.01%, REM: 0.0001 to 0.01%, Mg: 0 It is excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to any one of the above (1) to (3), characterized by containing .0001 to 0.006% of one or more. A method for producing a high-strength steel sheet having a tensile strength of 760 MPa or higher.

(5) 前記鋼片の再加熱温度が1000〜1250℃であることを特徴とする、上記(2)ないし(4)のいずれか1項に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。 (5) The reheating temperature of the steel slab is 1000 to 1250 ° C., and is excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to any one of (2) to (4) above. A method for producing a high-strength steel sheet having a tensile strength of 760 MPa or higher.

(6) 前記制御冷却停止後、鋼板を重ね合わせて、放冷することを特徴とする、上記(1)ないし(5)のいずれか1項に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。 (6) The hydrogen-induced crack resistance and ductile fracture characteristics according to any one of (1) to (5) above, wherein the steel sheets are stacked and allowed to cool after the controlled cooling is stopped. A method for producing a high-strength steel sheet having an excellent tensile strength of 760 MPa or higher.

(7) 前記重ねた鋼板に保温カバーをかぶせて放冷することを特徴とする、上記(6)に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。 (7) The laminated steel sheet is covered with a heat insulating cover and allowed to cool, and the tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to (6) above Manufacturing method of steel sheet.

(8) 上記(1)ないし(7)のいずれか1項に記載の方法にて製造した高強度鋼板を用いて造管することを特徴とする、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。 (8) It is excellent in hydrogen-induced crack resistance and ductile fracture characteristics, characterized by being piped using a high-strength steel sheet produced by the method described in any one of (1) to (7) above. A method for producing a high strength welded steel pipe having a tensile strength of 760 MPa or higher.

(9) 前記造管工程は、前記高強度鋼板をUO工程で管状に成形し、端部同士を溶接ワイヤーおよび焼成型フラックスまたは溶融型フラックスを使用してサブマージドアーク溶接し、その後、拡管を行うことを特徴とする、上記(8)に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。
(10) 質量%で、C:0.01〜0.12%、Si:0.3%以下、Mn:1.2〜2.4%、Ni:4.0〜8.5%、Cr+Mo+V:3.0〜5.0%、Ti:0.005〜0.15%、Al:0.02%以下を含有し、残部が鉄および不可避的不純物からなる溶接ワイヤーを用いてサブマージドアーク溶接することを特徴とする、上記(9)に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。
(9) In the pipe making process, the high-strength steel sheet is formed into a tubular shape in the UO process, the ends are submerged arc welded using a welding wire and a fired flux or a molten flux, and then the pipe expansion is performed. The method for producing a high-strength welded steel pipe having a tensile strength of 760 MPa or more and excellent in hydrogen-induced crack resistance and ductile fracture characteristics as described in (8) above.
(10) By mass%, C: 0.01 to 0.12%, Si: 0.3% or less, Mn: 1.2 to 2.4%, Ni: 4.0 to 8.5%, Cr + Mo + V: Submerged arc welding is performed using a welding wire containing 3.0 to 5.0%, Ti: 0.005 to 0.15%, Al: 0.02% or less, with the balance being iron and inevitable impurities. The method for producing a high-strength welded steel pipe having a tensile strength of 760 MPa or more and excellent in hydrogen-induced cracking resistance and ductile fracture characteristics according to (9) above

(11) 前記サブマージドアーク溶接の、板厚1mmあたりの入熱量が、0.13〜0.25kJ/mm2であることを特徴とする、上記(9)または(10)に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。 (11) The hydrogen resistance according to (9) or (10) above, wherein the heat input per 1 mm thickness of the submerged arc welding is 0.13 to 0.25 kJ / mm 2. A method for producing a high-strength welded steel pipe having a tensile strength of 760 MPa or more and excellent in induced cracking and ductile fracture characteristics.

本発明により、天然ガス・原油輸送用ラインパイプ等に好適な、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上(API規格X100以上)の高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法を提供することができるため、その産業上の効果は計り知れない。   According to the present invention, a method for producing a high-strength steel sheet having a tensile strength of 760 MPa or higher (API standard X100 or higher) excellent in hydrogen-induced cracking resistance and ductile fracture characteristics, suitable for natural gas / crude oil transportation line pipes, and the like Since the manufacturing method of the high strength steel pipe using a steel plate can be provided, the industrial effect is immeasurable.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、熱間圧延後の鋼板の水冷停止温度と水冷停止温度から室温まで放冷したときに放出される水素量(以下、放冷時放出水素量と言う。)の関係を詳細に導出した。この時の水冷停止温度と放冷時放出水素量の関係を図1に示す。なお、最終的に室温で鋼中に残留する水素量(以下、残留水素量と言う。)は、熱間圧延直後の鋼中水素量(以下、圧延直後の水素量と言う。)から、放冷時放出水素量を差し引いた量と考えることができる。   The present inventors detail the relationship between the water cooling stop temperature of the steel sheet after hot rolling and the amount of hydrogen released when it is allowed to cool from the water cooling stop temperature to room temperature (hereinafter referred to as the amount of hydrogen released during cooling). Derived. FIG. 1 shows the relationship between the water cooling stop temperature and the amount of hydrogen released during cooling. The amount of hydrogen remaining in the steel at room temperature (hereinafter referred to as the residual hydrogen amount) is finally released from the amount of hydrogen in the steel immediately after hot rolling (hereinafter referred to as the hydrogen amount immediately after rolling). It can be considered as an amount obtained by subtracting the amount of hydrogen released during cold.

ここで、圧延直後の水素量、放冷時放出水素量、残留水素量の導出方法について説明する。まず、圧延直後の水素量については、鋼板圧延後直ちに水冷し、液体窒素中に鋼板を挿入する。その後、ドライアイスで冷却しながら10mm角×40mm長さの角状試験片を作製する。その試験片を昇温し、その「昇温中に放出される水素量」をガスクロマトグラフィー法(以下、昇温離脱法と言う。)にて分析する。ここで分析された水素量を「圧延直後の水素量」と定義する。次に、放冷時放出水素量について、それぞれの水冷停止温度(制御冷却停止温度)条件毎の、水冷停止温度から室温まで放冷したそれぞれの鋼板を、液体窒素中に挿入する。その後、ドライアイスで冷却しながら10mm角×40mm長さの角状試験片を作製する。その水冷停止温度条件毎の試験片について昇温脱離法にて水素量を分析する。このようにして得られた水素量を、それぞれの水冷停止温度(制御冷却停止温度)条件毎の「放冷時放出水素量」と定義する。最後に、それぞれの水冷停止温度(制御冷却停止温度)条件毎の「残留水素量」が、「圧延直後水素量」から、それぞれの「放冷時放出水素量」を差し引くことで導出される。   Here, a method for deriving the amount of hydrogen immediately after rolling, the amount of hydrogen released during cooling, and the amount of residual hydrogen will be described. First, the hydrogen amount immediately after rolling is immediately cooled with water after rolling the steel plate, and the steel plate is inserted into liquid nitrogen. Thereafter, a 10 mm square × 40 mm long square test piece is produced while cooling with dry ice. The temperature of the test piece is raised, and the “amount of hydrogen released during the temperature rise” is analyzed by a gas chromatography method (hereinafter referred to as a temperature rise desorption method). The amount of hydrogen analyzed here is defined as “the amount of hydrogen immediately after rolling”. Next, each steel plate that has been allowed to cool from the water cooling stop temperature to room temperature for each water cooling stop temperature (control cooling stop temperature) condition is inserted into liquid nitrogen with respect to the amount of hydrogen released during cooling. Thereafter, a 10 mm square × 40 mm long square test piece is produced while cooling with dry ice. The test piece for each water cooling stop temperature condition is analyzed for hydrogen content by the temperature programmed desorption method. The amount of hydrogen thus obtained is defined as “amount of released hydrogen during cooling” for each water cooling stop temperature (control cooling stop temperature) condition. Finally, the “residual hydrogen amount” for each water cooling stop temperature (control cooling stop temperature) condition is derived by subtracting each “released hydrogen amount during cooling” from the “hydrogen amount immediately after rolling”.

また、鋼の溶製時における水素量の測定方法は、燃焼法で測定される。すなわち、溶鋼から分析用試料を採取し、3mm×3mm×10mmの寸法にドライアイス中にて加工し、直ちに2000℃まで加熱する。この時、ガスとして出てきた水素量を、質量分析法にて測定し、この測定値を「溶鋼中の水素量」とする。   Moreover, the measuring method of the amount of hydrogen at the time of melting of steel is measured by a combustion method. That is, a sample for analysis is taken from molten steel, processed in dry ice to a size of 3 mm × 3 mm × 10 mm, and immediately heated to 2000 ° C. At this time, the amount of hydrogen that has come out as gas is measured by mass spectrometry, and this measured value is referred to as “amount of hydrogen in molten steel”.

図1に示すように、水冷停止温度(制御冷却停止温度)が高くなると、放冷時放出水素量が増加し、逆に、残留水素量が減少する。この時、放冷時放出水素量(E)と制御冷却停止温度(T4)との関係は(1)式で表される。   As shown in FIG. 1, when the water cooling stop temperature (control cooling stop temperature) increases, the amount of hydrogen released during cooling increases, and conversely, the amount of residual hydrogen decreases. At this time, the relationship between the amount of hydrogen released during cooling (E) and the controlled cooling stop temperature (T4) is expressed by equation (1).

E=0.0007T4−0.03 ・・・・・(1)
ここで、Eの単位はppm、Tの単位は℃である。
E = 0.007T4-0.03 (1)
Here, the unit of E is ppm, and the unit of T is ° C.

次に、室温まで0.5〜20℃/sの加速冷却をした様々なX100ラインパイプ用鋼板を用いて割れ限界水素量を導出した。図2に残留水素量と水素誘起割れ面積率の関係を示す。水素誘起割れ面積率とは、鋼板の300mm幅×300mm長さの面積中に存在する水素誘起割れの面積率で表している。この水素誘起割れ面積率は、超音波探傷機にて板表面から探傷した欠陥の面積として画像解析によって表される。ただし、超音波探傷機の検出限界長さは1mmである。図2より、X100ラインパイプ用鋼板の割れ限界水素量は0.65ppmであることが判明した。   Next, the crack limit hydrogen amount was derived using various steel plates for X100 line pipe that were accelerated to 0.5 to 20 ° C./s to room temperature. FIG. 2 shows the relationship between the residual hydrogen amount and the hydrogen-induced crack area ratio. The hydrogen-induced crack area ratio is represented by the area ratio of hydrogen-induced cracks existing in an area of 300 mm width × 300 mm length of the steel sheet. This hydrogen-induced crack area ratio is represented by image analysis as the area of a defect detected from the plate surface with an ultrasonic flaw detector. However, the detection limit length of the ultrasonic flaw detector is 1 mm. From FIG. 2, it was found that the crack limit hydrogen content of the steel plate for X100 line pipe was 0.65 ppm.

割れ限界水素量は0.65ppmであったので、式(1)で示した圧延後の放冷中に放出される放冷時放出水素量を加味すると制御冷却停止温度(T4)℃にて制御冷却を終了した直後での鋼板の水素割れ限界水素量(C1)は(2)式のように表される。   Since the crack limit hydrogen amount was 0.65 ppm, the controlled cooling stop temperature (T4) was controlled at a temperature of C4 when taking into account the amount of hydrogen released during cooling as it was released during the cooling after rolling shown in Equation (1). The hydrogen cracking limit hydrogen amount (C1) of the steel sheet immediately after the cooling is finished is expressed by the equation (2).

C1=0.65+(0.0007T4−0.03) ・・・・・(2)
ここで、C1の単位はppm、T4の単位は℃である。
C1 = 0.65 + (0.0007T4-0.03) (2)
Here, the unit of C1 is ppm, and the unit of T4 is ° C.

例えば、(2)式によると、制御冷却停止温度が高くなればなるほど、制御冷却停止直後での鋼板の割れ限界水素量は多くなる。例えば、制御冷却停止温度が500℃とすると、500℃での鋼板の水素割れ限界水素量は1.0ppmとなる。   For example, according to equation (2), the higher the control cooling stop temperature, the greater the crack limit hydrogen amount of the steel sheet immediately after the control cooling stop. For example, if the controlled cooling stop temperature is 500 ° C., the hydrogen cracking limit hydrogen amount of the steel plate at 500 ° C. is 1.0 ppm.

次に、加熱温度ないし熱間圧延開始温度域での鋼中水素量の導出方法について説明する。加熱温度T2(℃)ないし熱間圧延開始温度T1(℃)の温度域から仕上げ圧延終了T3(℃)までは、鋼中に存在している水素量は、圧延温度と平衡関係に従うと考えられる。加熱温度T2(℃)ないし熱間圧延開始温度T1(℃)の温度域から熱間圧延仕上(終了)温度T3(℃)までのそれぞれの温度T(℃)での鋼中水素量は(3)式のように表される。   Next, a method for deriving the amount of hydrogen in steel in the heating temperature or the hot rolling start temperature range will be described. From the temperature range of the heating temperature T2 (° C.) to the hot rolling start temperature T1 (° C.) to the finish rolling end T3 (° C.), it is considered that the amount of hydrogen present in the steel follows an equilibrium relationship with the rolling temperature. . The amount of hydrogen in the steel at each temperature T (° C.) from the temperature range of the heating temperature T 2 (° C.) to the hot rolling start temperature T 1 (° C.) to the hot rolling finish (end) temperature T 3 (° C.) is (3 ) Expression.

log(H)=−1411{1/(T+273)}−0.468 ・・・・・(3)
例えば、加熱温度がT2(℃)で、仕上げ圧延温度がT3(℃)とすると、T2(℃)にて鋼中に存在する水素量とT3(℃)に存在する水素量の比は、(4)式のように表される。
log (H) = − 1411 {1 / (T + 273)} − 0.468 (3)
For example, if the heating temperature is T2 (° C.) and the finish rolling temperature is T3 (° C.), the ratio of the amount of hydrogen present in the steel at T2 (° C.) to the amount of hydrogen present in T3 (° C.) is ( 4) It is expressed as shown below.

T2/HT3=exp[−1411{1/(T2+273)−1/(T3+273)}]
・・・・・(4)
(2)式と(4)式を組み合わせると、加熱温度域での割れ限界水素量(C2)は(5)式のように表される。
H T2 / H T3 = exp [-1411 {1 / (T2 + 273) −1 / (T3 + 273)}]
(4)
When the formulas (2) and (4) are combined, the cracking limit hydrogen amount (C2) in the heating temperature range is expressed as the formula (5).

C2={0.65+(0.0007T4−0.03)}×1.5×exp[−1411{1/(T2+273)−1/(T3+273)}] ・・・・・(5)
ここで、補正係数1.5はγ→α変態時に鋼中水素量が減少する量を考慮に入れた補正値である。熱間圧延仕上(終了)温度(T3)が800℃および制御冷却停止温度(T4)が500℃の場合での加熱時の割れ限界水素量と加熱温度(T2)の関係を図3に示す。図3に示すように、例えば1200℃の加熱温度の場合での割れ限界水素量は2.2ppm、1000℃の加熱温度では、1.9ppmとなる。
C2 = {0.65+ (0.0007T4-0.03)} × 1.5 × exp [−1411 {1 / (T2 + 273) −1 / (T3 + 273)}] (5)
Here, the correction coefficient 1.5 is a correction value that takes into account the amount by which the amount of hydrogen in the steel decreases during the γ → α transformation. FIG. 3 shows the relationship between the cracking limit hydrogen amount during heating and the heating temperature (T2) when the hot rolling finish (end) temperature (T3) is 800 ° C. and the controlled cooling stop temperature (T4) is 500 ° C. As shown in FIG. 3, for example, the crack limit hydrogen amount at a heating temperature of 1200 ° C. is 2.2 ppm, and at a heating temperature of 1000 ° C., it is 1.9 ppm.

ここで、鋼を溶製後、鋳造し、その後直接圧延する場合、割れ限界水素量(C3)は、(5)式において、再加熱温度T2(℃)の代わりに圧延開始温度T1(℃)で代替して、(6)式のように書き換えられる。   Here, when the steel is melted, cast, and then directly rolled, the crack limit hydrogen amount (C3) is the rolling start temperature T1 (° C.) instead of the reheating temperature T2 (° C.) in the equation (5). Instead, it can be rewritten as in equation (6).

C3={0.65+(0.0007T4−0.03)}×1.5×exp[−1411{1/(T1+273)−1/(T3+273)}] ・・・・・(6)
従って、鋼の溶製時では、上述したように、後工程の熱間圧延での加熱温度ないし熱間圧延開始温度域で、割れ限界水素量以下となるような水素量に制御すればよいことになる。
C3 = {0.65+ (0.0007T4-0.03)} × 1.5 × exp [−1411 {1 / (T1 + 273) −1 / (T3 + 273)}] (6)
Therefore, at the time of melting the steel, as described above, it is sufficient to control the amount of hydrogen so that it is not more than the crack limit hydrogen amount in the heating temperature in the subsequent hot rolling or the hot rolling start temperature range. become.

次に、熱間圧延が終了した後、制御冷却停止以後に放出される水素量を増加させるための方法を記載する。(1)式で得られた値以上に圧延後の放冷中に多くの水素量を放出させるために様々な方法を検討した結果、鋼板どうしを積み重ねると室温までの冷却時間が長くなり、圧延後の放冷時放出水素量が増加することが判明した。さらに、鋼板どうしを積み重ねた後、これら鋼板に保温カバーをかぶせると室温まで冷却する時間が長くなるので、この場合も、放冷時放出水素量が増加することが判明した。   Next, a method for increasing the amount of hydrogen released after the controlled cooling is stopped after the hot rolling is completed will be described. As a result of examining various methods for releasing a large amount of hydrogen during cooling after rolling more than the value obtained by the formula (1), when steel plates are stacked, the cooling time to room temperature becomes longer, and rolling It was found that the amount of hydrogen released during subsequent cooling increases. Furthermore, after stacking the steel plates, it is found that if these steel plates are covered with a heat insulating cover, the time for cooling to room temperature becomes longer, and in this case also, the amount of hydrogen released during cooling is increased.

次に、母材の化学成分の限定理由について説明する。   Next, the reason for limiting the chemical component of the base material will be described.

Cは、鋼の強度向上に極めて有効な元素であり、本発明の強度を得るためには0.01%以上含有させる必要がある。更に0.02%以上のCを含有することが好ましい。0.02%以上にすると強度を確保しやすくなるからである。しかし、C含有量が0.5%よりも多すぎると母材および溶接熱影響部(HAZという。)の低温靱性がやや劣化し、現地溶接性を損なうことがあるため、その上限を0.5%以下とする。さらに、C含有量の上限を0.1%以下とすることが好ましい。0.1%を超えると溶接性が劣化しやすくなるからである。   C is an extremely effective element for improving the strength of steel, and in order to obtain the strength of the present invention, it is necessary to contain 0.01% or more. Furthermore, it is preferable to contain 0.02% or more of C. This is because when the content is 0.02% or more, it is easy to ensure the strength. However, if the C content is more than 0.5%, the low temperature toughness of the base metal and the weld heat-affected zone (referred to as HAZ) may be slightly deteriorated, which may impair the on-site weldability. 5% or less. Furthermore, it is preferable that the upper limit of the C content is 0.1% or less. This is because if it exceeds 0.1%, the weldability tends to deteriorate.

Siは、脱酸に有効な元素であり、その効果を得るためには0.01%以上を含有させる必要がある。一方、3.0%よりも多く含有させるとHAZの低温靱性がやや劣化し、現地溶接性を損なうことがあるため、Si含有量の上限を3.0%とする。さらに、0.6%以下とすることが好ましい。0.6%を超えるとHAZ靭性が劣化しやすくなるからである。   Si is an element effective for deoxidation, and in order to obtain the effect, it is necessary to contain 0.01% or more. On the other hand, if the content is more than 3.0%, the low temperature toughness of the HAZ is slightly deteriorated and the on-site weldability may be impaired, so the upper limit of the Si content is set to 3.0%. Furthermore, it is preferable to set it as 0.6% or less. This is because if it exceeds 0.6%, the HAZ toughness tends to deteriorate.

Mnは、鋼の強度と低温靱性とのバランスを良好にするために有効な元素であり、その効果を得るためにはMn含有量の下限を0.1%以上とする必要がある。しかし、Mnを5.0%よりも過剰に含有させると鋼の焼き入れ性が増してHAZの低温靱性を劣化させ、また、現地溶接性を損なうことがあるので、その上限を5.0%とする。さらに、Mn含有量の上限を2.5%以下とすることが好ましい。2.5%を超えると低温靭性およびHAZ靭性が劣化しやすくなるからである。   Mn is an element effective for improving the balance between the strength and low temperature toughness of steel, and in order to obtain the effect, the lower limit of the Mn content needs to be 0.1% or more. However, if Mn is contained in excess of 5.0%, the hardenability of the steel is increased and the low temperature toughness of the HAZ is deteriorated, and the field weldability may be impaired. And Furthermore, it is preferable that the upper limit of the Mn content is 2.5% or less. This is because if it exceeds 2.5%, the low temperature toughness and the HAZ toughness tend to deteriorate.

P、Sは、不純物元素であり、母材およびHAZの低温靱性をより一層向上させるために、Pの含有量およびSの含有量の上限をそれぞれ0.03%以下および0.03%以下とする必要がある。さらに、それぞれ0.015%以下および0.003%以下にすることが望ましい。0.015%および0.003%を超えると、低温靭性、HAZ靭性の低下ならびに水素誘起割れが起きやすくなるからである。Pの含有量およびSの含有量の下限は低いほど好ましいため規定しないが、通常、製鋼能力上、それぞれ0.001%以上および0.0001%以上を含有する。   P and S are impurity elements, and in order to further improve the low temperature toughness of the base material and the HAZ, the upper limits of the P content and the S content are 0.03% or less and 0.03% or less, respectively. There is a need to. Furthermore, it is desirable to make it 0.015% or less and 0.003% or less, respectively. This is because when it exceeds 0.015% and 0.003%, low temperature toughness, HAZ toughness and hydrogen-induced cracking are likely to occur. Although the lower limit of the P content and the S content is preferably as low as possible, it is not specified, but usually contains 0.001% or more and 0.0001% or more, respectively, in terms of steelmaking capacity.

Niは、低温靱性および強度を向上させる元素であり、その効果を得るには、Ni含有量の下限を0.1%以上とすることが好ましい。一方、Niの含有量が2.0%を超えると、溶接性を損なうことがあるため、Ni含有量の上限を2.0%とすることが好ましい。   Ni is an element that improves low-temperature toughness and strength, and in order to obtain the effect, the lower limit of the Ni content is preferably set to 0.1% or more. On the other hand, if the Ni content exceeds 2.0%, weldability may be impaired, so the upper limit of the Ni content is preferably 2.0%.

Moは、鋼の焼き入れ性を向上させ、炭窒化物を形成して強度を向上させる元素であり、その効果を得るには、Mo含有量を0.15%以上とすることが好ましい。一方、Moを0.60%超含有すると、強度が高くなり過ぎてHAZの低温靱性を損なうことがあるため、Mo含有量の上限を0.60%とすることが好ましい。   Mo is an element that improves the hardenability of steel and forms carbonitride to improve strength. To obtain the effect, Mo content is preferably 0.15% or more. On the other hand, if the Mo content exceeds 0.60%, the strength becomes too high and the low temperature toughness of the HAZ may be impaired, so the upper limit of the Mo content is preferably 0.60%.

Nbは、炭化物、窒化物を形成し、鋼の強度を向上させる元素であり、この効果を得るには、Nb含有量を0.001%以上とすることが好ましい。一方、Nb含有量が0.10%よりも多すぎると、母材およびHAZの低温靱性を損なうことがあるため、Nb含有量の上限を0.10%とすることが好ましい。   Nb is an element that forms carbides and nitrides and improves the strength of steel. To obtain this effect, the Nb content is preferably 0.001% or more. On the other hand, if the Nb content is more than 0.10%, the low temperature toughness of the base material and the HAZ may be impaired, so the upper limit of the Nb content is preferably 0.10%.

Tiは、脱酸に有効であり、窒化物を形成して結晶粒径の微細化に寄与する元素であり、その効果を得るには、0.005%以上を添加することが好ましい。一方、Ti含有量が0.030%よりも多すぎると、粗大な炭化物を生じて、低温靱性を劣化させることがあるため、Ti含有量の上限を0.030%以下とすることが好ましい。   Ti is an element that is effective for deoxidation and contributes to the refinement of the crystal grain size by forming a nitride. To obtain the effect, it is preferable to add 0.005% or more. On the other hand, if the Ti content is more than 0.030%, coarse carbides may be produced and the low temperature toughness may be deteriorated. Therefore, the upper limit of the Ti content is preferably 0.030% or less.

Alは、脱酸剤として有効な元素であるが、Al含有量が0.06%を超えるとAl系非金属介在物が増加して鋼の清浄度を阻害することがあるため、Al含有量の上限を0.06%以下とした。なお、脱酸はTiおよび/またはSiでも可能であり、Alを必ずしも含有する必要はないため、下限は特に規定しない。   Al is an effective element as a deoxidizer, but if the Al content exceeds 0.06%, Al-based non-metallic inclusions may increase and inhibit the cleanliness of the steel. The upper limit of 0.06% or less. In addition, since deoxidation is possible also with Ti and / or Si, it is not necessary to contain Al, Therefore A minimum in particular is not prescribed | regulated.

Nは、Ti、Al等と窒化物を形成し、溶接熱影響部のオーステナイト粒の粗大化を防止する。この効果は、0.0001%以上の添加で顕著になるが、0.006%よりも過剰の添加は、靱性の低下を招くことがある。したがって、Nの添加量を0.0001〜0.006%の範囲とすることが好ましい。   N forms nitrides with Ti, Al, etc., and prevents the austenite grains in the weld heat affected zone from becoming coarse. This effect becomes prominent with addition of 0.0001% or more, but addition exceeding 0.006% may lead to a decrease in toughness. Therefore, it is preferable that the addition amount of N is in the range of 0.0001 to 0.006%.

さらに、本発明においては、強度および靱性を改善する元素として、B、V、Cu、Cr、Zr、Ta、Ca、REM、Mgの1種または2種以上の元素を添加することができる。   Furthermore, in the present invention, one or more elements of B, V, Cu, Cr, Zr, Ta, Ca, REM, and Mg can be added as elements for improving strength and toughness.

Bは、焼入れ性を高め、溶接熱影響部の靱性を向上させる元素である。この効果は、0.0001%以上の添加で顕著になるが、0.005%よりも過剰の添加は、靱性の低下を招くことがある。したがって、Bの添加量を0.0001〜0.005%の範囲とすることが好ましい。   B is an element that enhances hardenability and improves the toughness of the weld heat affected zone. This effect becomes prominent with addition of 0.0001% or more, but addition exceeding 0.005% may lead to a decrease in toughness. Therefore, it is preferable that the addition amount of B is in the range of 0.0001 to 0.005%.

Vは、Nbと同様に炭化物、窒化物を形成し、鋼の強度を向上させる元素であるが、顕著な効果を得るには0.001%以上の添加が好ましい。一方、Vを0.10%超添加すると、靱性の低下を招くことがあるため、上限を0.10%以下とすることが好ましい。   V is an element that forms carbides and nitrides in the same manner as Nb and improves the strength of the steel. However, in order to obtain a remarkable effect, V is preferably added in an amount of 0.001% or more. On the other hand, if V is added in excess of 0.10%, the toughness may be lowered, so the upper limit is preferably made 0.10% or less.

Cuは、強度を上昇させる元素であり、0.01%以上添加することが好ましい。一方、1.0%超を添加すると鋼片加熱時や溶接時に割れを生じやすくするため、上限を1.0%以下とすることが好ましい。   Cu is an element that increases the strength, and is preferably added in an amount of 0.01% or more. On the other hand, if more than 1.0% is added, cracking is likely to occur during heating of the steel slab or during welding, so the upper limit is preferably made 1.0% or less.

Crは、析出強化によって鋼の強度を向上させる元素であり、0.01%以上の添加が有効である。一方、0.8%よりも多量に添加すると、鋼の焼入れ性を上昇させて、靱性を低下させることがあるため、上限を0.8%以下とすることが好ましい。   Cr is an element that improves the strength of steel by precipitation strengthening, and the addition of 0.01% or more is effective. On the other hand, if added in a larger amount than 0.8%, the hardenability of the steel is increased and the toughness may be lowered, so the upper limit is preferably made 0.8% or less.

ZrおよびTaは、Nbと同様に炭化物、窒化物を形成し、鋼の強度を向上させる元素であり、それぞれ、0.0001%以上の添加が好ましい。一方、ZrおよびTaを、それぞれ、0.005%超添加すると、靱性の低下を招くことがある。そのため、ZrおよびTaの添加量の上限をそれぞれ、0.005%以下とすることが好ましい。   Zr and Ta are elements that form carbides and nitrides as in Nb and improve the strength of the steel, and are each preferably added in an amount of 0.0001% or more. On the other hand, when Zr and Ta are added in excess of 0.005%, toughness may be reduced. Therefore, it is preferable that the upper limit of the addition amount of Zr and Ta is 0.005% or less, respectively.

CaおよびREMは硫化物を生成することにより、伸長したMnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラティアー性を改善する。この効果を得るには、CaおよびREMを、それぞれ、0.0001%以上添加することが好ましい。一方、CaおよびREMを、それぞれ、0.01%超添加すると、CaおよびREMの酸化物が増加する。そのため、CaおよびREMの添加量の上限を、それぞれ、0.01%以下とすることが好ましい。   Ca and REM suppress the production | generation of the extended | stretched MnS by producing | generating a sulfide, and improve the characteristic of the plate | board thickness direction of steel materials, especially lamella tear resistance. In order to obtain this effect, it is preferable to add 0.0001% or more of Ca and REM, respectively. On the other hand, when Ca and REM are added in excess of 0.01%, Ca and REM oxides increase. Therefore, it is preferable that the upper limit of the addition amount of Ca and REM is 0.01% or less, respectively.

Mgは、MgO、MgS等の微細なMg含有酸化物または硫化物を生成し、オーステナイト粒の粗大化を抑制し、HAZ靱性を向上させる元素である。この効果を得るには、Mgを0.0001%以上添加することが好ましい。一方、Mgを0.006%超添加するとMg含有酸化物、硫化物が粗大化するため、その上限を0.006%以下とすることが好ましい。   Mg is an element that generates fine Mg-containing oxides or sulfides such as MgO and MgS, suppresses coarsening of austenite grains, and improves HAZ toughness. In order to acquire this effect, it is preferable to add 0.0001% or more of Mg. On the other hand, if Mg is added in excess of 0.006%, the Mg-containing oxide and sulfide are coarsened, so the upper limit is preferably made 0.006% or less.

次に鋼板の製造方法について説明する。上記に示した成分を含有する鋼を製鋼工程で溶製後、連続鋳造し、その後、加熱し、熱間圧延を施す。ここで、連続鋳造後、鋼片を冷却、再加熱することなく、そのまま直接圧延してもかまわない。直接圧延を行っても水素放出量に影響しないからである。   Next, the manufacturing method of a steel plate is demonstrated. The steel containing the components shown above is melted in the steel making process, continuously cast, then heated, and hot rolled. Here, after continuous casting, the steel slab may be directly rolled without being cooled and reheated. This is because even if direct rolling is performed, the hydrogen release amount is not affected.

熱間圧延の設定開始温度(T1)は、1000〜1250℃とする。1000℃未満であると十分な再結晶圧延ができない場合があり、また、1250℃を超えると圧延中に粗大粒が残存する場合があるからである。設定加熱温度(T2)についても熱間圧延の設定開始温度(T1)と同様、1000〜1250℃とする。1000℃未満であると十分な再結晶圧延ができない場合があり、また、1250℃を超えると圧延中に粗大粒が残存する場合があるからである。   The setting start temperature (T1) of hot rolling is 1000 to 1250 ° C. If the temperature is lower than 1000 ° C., sufficient recrystallization rolling may not be performed, and if it exceeds 1250 ° C., coarse grains may remain during rolling. The set heating temperature (T2) is set to 1000 to 1250 ° C. similarly to the set start temperature (T1) of hot rolling. If the temperature is lower than 1000 ° C., sufficient recrystallization rolling may not be performed, and if it exceeds 1250 ° C., coarse grains may remain during rolling.

一方、熱間圧延の設定仕上(終了)温度(T3)は600〜900℃にする。600℃未満であると高強度であるために圧延負荷が大きすぎるため圧延後の形状が制御できないので、600℃以上とした。また、900℃を超えるとγ粒が細粒化しないので900℃以下とした。   On the other hand, the set finishing (end) temperature (T3) of hot rolling is set to 600 to 900 ° C. If the temperature is lower than 600 ° C., the strength is high and the rolling load is too large, so the shape after rolling cannot be controlled. Further, if the temperature exceeds 900 ° C., the γ grains do not become fine, so the temperature is set to 900 ° C. or less.

また、熱間圧延の終了後の冷却に際し、制御冷却停止温度T4(℃)を圧延終了温度未満50℃以上として、該制御冷却停止温度T4(℃)まで鋼板中心部の平均冷却速度で0.5〜20℃/sとなる冷却速度で制御冷却する。制御冷却の冷却速度は、0.5℃/s未満では、強度が760MPaを容易に満足することができず、また、20℃/s超では鋼板の強度が高すぎて、鋼管に成形することができない場合があるため、0.5〜20℃/sとする。制御冷却停止温度T4(℃)は、50℃未満では制御冷却停止後に放出する水素量がなくなるので、その下限を50℃とした。また、この制御冷却は、制御しやすい水冷が望ましいが、例えば、板厚20mm以下の鋼板では、水冷以外の放冷等でも0.5〜20℃/sの冷却速度を確保できる場合があるので、水冷に限定されないことは言うまでもない。   Further, when cooling after the end of hot rolling, the control cooling stop temperature T4 (° C.) is set to 50 ° C. or more below the rolling end temperature, and the average cooling rate at the center of the steel sheet is set to 0. 0 to the control cooling stop temperature T4 (° C.). Control cooling is performed at a cooling rate of 5 to 20 ° C./s. If the cooling rate of the controlled cooling is less than 0.5 ° C./s, the strength cannot easily satisfy 760 MPa, and if it exceeds 20 ° C./s, the strength of the steel sheet is too high and the steel pipe is formed into a steel pipe. Since it may not be possible, it is set to 0.5 to 20 ° C./s. If the controlled cooling stop temperature T4 (° C.) is less than 50 ° C., the amount of hydrogen released after the controlled cooling stop is eliminated, so the lower limit is set to 50 ° C. In addition, the controlled cooling is preferably water cooling that is easy to control. For example, in a steel sheet having a thickness of 20 mm or less, a cooling rate of 0.5 to 20 ° C./s may be ensured even by cooling other than water cooling. Needless to say, it is not limited to water cooling.

次に、上記の鋼板を鋼管とする場合の、シーム溶接金属の成分の好ましい範囲について述べる。   Next, the preferable range of the seam weld metal component when the steel plate is a steel pipe will be described.

Cは、鋼の強度向上に極めて有効であり、マルテンサイト組織において目標とする強度を得るためには、C含有量を0.04%以上とすることが好ましい。一方、C含有量が0.14%を超えると溶接低温割れが発生しやすくなり、現地溶接部とシーム溶接が交わる、いわゆるTクロス部のHAZ最高硬さの上昇を招くので、C含有量の上限を0.14%以下とすることが好ましい。さらに好ましいC含有量の上限値は0.10%以下である。0.1%を超えると靭性が劣化しやすくなるからである。   C is extremely effective for improving the strength of the steel, and in order to obtain the target strength in the martensite structure, the C content is preferably 0.04% or more. On the other hand, if the C content exceeds 0.14%, welding low temperature cracking is likely to occur, and the on-site welded part and seam welding intersect, leading to an increase in the HAZ maximum hardness of the so-called T-cross part. The upper limit is preferably 0.14% or less. Furthermore, the upper limit of preferable C content is 0.10% or less. This is because if it exceeds 0.1%, the toughness tends to deteriorate.

Siは、ブローホールの発生を防止するために、0.05%以上含有させることが好ましい。一方、Si含有量が0.4%よりも多いと、低温靱性を劣化させることがあり、特に、内外面溶接や多層溶接を行う場合、再熱部の低温靱性を劣化させることがあるため、上限を0.4%以下とすることが好ましい。   In order to prevent the occurrence of blow holes, Si is preferably contained in an amount of 0.05% or more. On the other hand, when the Si content is more than 0.4%, the low temperature toughness may be deteriorated, and particularly when performing inner and outer surface welding or multilayer welding, the low temperature toughness of the reheated portion may be deteriorated. The upper limit is preferably 0.4% or less.

Mnは、強度、低温靱性のバランスを良好にし、粒内ベイナイトの生成核となる介在物を形成する元素である。この効果を得るには、Mn含有量を1.2%以上にすることが好ましい。一方、Mn含有量が2.2%よりも多すぎると偏析が助長され、低温靱性が劣化することがあり、溶接材料の製造が困難になるので、Mn含有量の上限を2.2%以下とすることが好ましい。   Mn is an element that improves the balance between strength and low-temperature toughness and forms inclusions that form nuclei for intragranular bainite. In order to obtain this effect, the Mn content is preferably 1.2% or more. On the other hand, if the Mn content is more than 2.2%, segregation is promoted and the low temperature toughness may be deteriorated, making it difficult to produce a welding material. Therefore, the upper limit of the Mn content is 2.2% or less. It is preferable that

P、Sは不可避的不純物であり、低温靱性の劣化を抑制し、低温割れ感受性を低減するためには、少ないほど好ましく、P、Sの含有量を、それぞれ、0.01%以下、0.01%以下とすることが好ましい。   P and S are inevitable impurities, and in order to suppress deterioration of low temperature toughness and reduce low temperature cracking susceptibility, the smaller the amount, the smaller the content of P and S, 0.01% or less, respectively. It is preferable to set it to 01% or less.

Niは、焼き入れ性を高めて強度を向上させ、低温靱性を向上させる元素であり、この効果を得るためには、1.3%以上のNiを含有させることが好ましい。一方、Ni含有量が3.2%よりも多すぎると高温割れを生じることがあるため、Ni含有量の上限を3.2%以下とすることが好ましい。   Ni is an element that enhances hardenability and improves strength and improves low-temperature toughness. In order to obtain this effect, it is preferable to contain 1.3% or more of Ni. On the other hand, if the Ni content is more than 3.2%, hot cracking may occur, so the upper limit of the Ni content is preferably 3.2% or less.

Cr、Mo、Vは、何れも焼き入れ性を高め、強度を向上させる元素であり、効果を得るには、Cr+Mo+Vを1.0%以上とすることが好ましい。一方、Cr+Mo+Vを2.5%よりも多量に添加すると低温割れを生じることがあるため、Cr+Mo+V含有量の上限を2.5%以下とすることが好ましい。   Cr, Mo, and V are all elements that increase the hardenability and improve the strength. To obtain the effect, Cr + Mo + V is preferably set to 1.0% or more. On the other hand, if Cr + Mo + V is added in a larger amount than 2.5%, low temperature cracking may occur, so the upper limit of the Cr + Mo + V content is preferably 2.5% or less.

Tiは、粒内ベイナイトの生成核となるTiの窒化物および酸化物等を形成する元素であり、0.003%以上を含有させることが好ましい。一方、Ti含有量が0.05%よりも多すぎると、Tiの炭化物が多く生成し、低温靱性を劣化させることがあるため、Ti含有量の上限を0.05%とすることが好ましい。   Ti is an element that forms a nitride, oxide, or the like of Ti that serves as a nucleus for formation of intragranular bainite, and is preferably contained in an amount of 0.003% or more. On the other hand, when the Ti content is more than 0.05%, a large amount of Ti carbide is generated and the low temperature toughness may be deteriorated. Therefore, the upper limit of the Ti content is preferably 0.05%.

Alは、粒内ベイナイトの生成核となるTiの酸化物の生成を阻害することがあるため、Al含有量は少ない方が好ましい。そのAl含有量の好ましい上限は0.02%以下であり、さらに好ましくは0.015%以下が良い。0.02%および0.015%を超えると靭性が劣化しやすくなり、かつ低温割れも起りやすくなるからである。   Since Al sometimes inhibits the formation of Ti oxides that form nuclei of intragranular bainite, it is preferable that the Al content is low. The upper limit with preferable Al content is 0.02% or less, More preferably, 0.015% or less is good. This is because if it exceeds 0.02% and 0.015%, the toughness tends to deteriorate and low temperature cracking tends to occur.

Bは、焼き入れ性を高め、溶接金属の低温靱性を向上させる元素であり、0.0003%以上を含有することが好ましいが、B含有量が0.005%よりも多すぎると低温靱性を劣化させることがあるため、B含有量を0.005%以下とすることが好ましい。   B is an element that enhances the hardenability and improves the low temperature toughness of the weld metal, and preferably contains 0.0003% or more, but if the B content is more than 0.005%, the low temperature toughness is reduced. Since it may deteriorate, the B content is preferably 0.005% or less.

Oは、焼入れ性を下げ、溶接金属の低温靭性を劣化させる元素であり、O量が0.06%を超えると低温靭性を著しく劣化させる。一方、O量が低いと低温割れが発生しやすくなると同時に現地溶接性が悪くなるので0.010%以上とするのが好ましい。   O is an element that lowers the hardenability and degrades the low temperature toughness of the weld metal. When the amount of O exceeds 0.06%, the low temperature toughness is remarkably deteriorated. On the other hand, if the amount of O is low, cold cracking is likely to occur, and at the same time, the on-site weldability deteriorates, so 0.010% or more is preferable.

溶接金属には、その他に溶接時の精錬・凝固を良好に行わせるために添加させたZr、Nb、Mg等の元素を含有する場合がある。   In addition, the weld metal may contain elements such as Zr, Nb, and Mg that are added to improve the refining and solidification during welding.

溶接金属の組織は、主にベイナイト・マルテンサイト、粒内ベイナイトからなり、残部はフェライトおよび/または残留オーステナイトである。引張強度を760MPa以上にするために、ベイナイト・マルテンサイトの面積率を50%以上にすることが好ましい。   The structure of the weld metal is mainly composed of bainite / martensite and intragranular bainite, and the balance is ferrite and / or retained austenite. In order to set the tensile strength to 760 MPa or more, it is preferable to set the area ratio of bainite / martensite to 50% or more.

さらに、溶接金属の低温靱性を良好にするには粒内ベイナイトの面積率が多ければ多い方が好ましく、10%以上にした方がよい。ベイナイト・マルテンサイトと粒内ベイナイトは、光学顕微鏡または走査型電子顕微鏡による組織観察によって判別することができ、ベイナイト・マルテンサイト、粒内ベイナイトの面積率は、光学顕微鏡または走査型電子顕微鏡によって撮影した組織写真を用いて画像解析によって測定することができる。   Further, in order to improve the low temperature toughness of the weld metal, it is preferable that the area ratio of intragranular bainite is large, and it is preferable to set it to 10% or more. Bainitic martensite and intragranular bainite can be distinguished by structural observation with an optical microscope or scanning electron microscope, and the area ratio of bainite martensite and intragranular bainite was photographed with an optical microscope or scanning electron microscope. It can be measured by image analysis using tissue photographs.

さらに、鋼板を筒状にプレス成形し、端部同士をサブマージアーク溶接して鋼管とする。   Furthermore, the steel plate is press-formed into a cylindrical shape, and the ends are submerged arc welded to form a steel pipe.

サブマージアーク溶接は母材の希釈が大きい溶接であり、所望の特性すなわち溶接金属組成を得るためには、母材の希釈を考慮した溶接材料の選択が必要である。以下、溶接ワイヤーの化学組成の限定理由を述べるが、基本的には引張強さ760MPa級以上の高強度ラインパイプを実現できる製造方法である。   Submerged arc welding is a welding with a large dilution of the base metal, and in order to obtain a desired characteristic, that is, a weld metal composition, it is necessary to select a welding material in consideration of the dilution of the base metal. Hereinafter, although the reason for limiting the chemical composition of the welding wire will be described, it is basically a production method capable of realizing a high-strength line pipe having a tensile strength of 760 MPa or higher.

Cは、溶接金属で必要とされる範囲のC含有量を得るために、母材成分による希釈および雰囲気からCの混入を考慮して0.01〜0.12%とした。   In order to obtain the C content in the range required for the weld metal, C is set to 0.01 to 0.12% in consideration of dilution with the base material component and mixing of C from the atmosphere.

Si、Mn、Ni、Cr+Mo+Vは、好ましい溶接金属の成分範囲のSi、Mn、Ni、Cr+Mo+Vの含有量を得るために、母材成分による希釈を考慮して、それぞれ、0.3%以下、1.2〜2.4%、4.0〜8.5%、3.0〜5.0%とした。   Si, Mn, Ni, Cr + Mo + V are each 0.3% or less in consideration of dilution by the base material component in order to obtain the content of Si, Mn, Ni, Cr + Mo + V in the preferred weld metal component range. 2 to 2.4%, 4.0 to 8.5%, and 3.0 to 5.0%.

Tiは、粒内ベイナイトの生成核となるTiの窒化物および酸化物等を形成する元素であり、0.005%以上を含有させることが好ましい。一方、Ti含有量が0.15%よりも多すぎると、Tiの炭化物が多く生成し、低温靱性を劣化させることがあるため、Ti含有量の上限を0.15%とすることが好ましい。   Ti is an element that forms a nitride, oxide, or the like of Ti that forms nuclei for intragranular bainite, and it is preferable to contain 0.005% or more. On the other hand, if the Ti content is more than 0.15%, a large amount of Ti carbide is generated and the low temperature toughness may be deteriorated. Therefore, the upper limit of the Ti content is preferably set to 0.15%.

Alは、粒内ベイナイトの生成核となるTiの酸化物の生成を阻害することがあるため、Al含有量は少ない方が好ましい。Al含有量の好ましい上限は0.02%以下である。   Since Al sometimes inhibits the formation of Ti oxides that form nuclei of intragranular bainite, it is preferable that the Al content is low. The upper limit with preferable Al content is 0.02% or less.

その他P、Sの不純物は極力少ない方が望ましく、Bは強度確保のために添加することも可能である。また、Zr、Nb、Mg等が脱酸を目的として使用される場合があり、これらのうち少なくとも1つ以上の元素が添加される場合がある。   In addition, it is desirable that impurities of P and S are as small as possible, and B can be added to ensure strength. Moreover, Zr, Nb, Mg, etc. may be used for the purpose of deoxidation, and at least one or more of these elements may be added.

なお、溶接は単極だけでなく、複数電極での溶接も可能である。複数電極での溶接の場合は各種ワイヤーの組み合わせが可能であり、個々のワイヤーが上記成分範囲にある必要はなく、それぞれのワイヤー成分と消費量からの平均組成が上記成分範囲にあれば良い。   In addition, welding can be performed with a plurality of electrodes as well as a single electrode. In the case of welding with a plurality of electrodes, it is possible to combine various wires, and it is not necessary for each wire to be in the above component range, and it is sufficient that the average composition from each wire component and consumption is in the above component range.

サブマージドアーク溶接に使用されるフラックスは大別すると焼成型フラックスと溶融型フラックスがある。焼成型フラックスは合金材添加が可能で拡散性水素量が低い利点があるが、粉化しやすく繰り返し使用が難しい欠点がある。一方、溶融型フラックスはガラス粉状で、粒強度が高く、吸湿しにくい利点があり、拡散性水素がやや高い欠点がある。本発明の高強度鋼管を製造する場合には、溶接低温割れが起こりやすく、この点からは焼成型が望ましいが、一方、回収して繰り返し使用が可能な溶融型は大量生産に向きコストが低い利点がある。焼成型ではコストが高いことが、溶融型では厳密な品質管理の必要性が問題であるが、工業的に対処可能な範囲であり、どちらでも本質的には使用可能である。   Flux used for submerged arc welding can be broadly classified into fired flux and molten flux. Firing-type fluxes have the advantage that alloy materials can be added and the amount of diffusible hydrogen is low, but they have the disadvantage of being easily pulverized and difficult to use repeatedly. On the other hand, the melt-type flux is in the form of glass powder, has the advantages of high grain strength and is difficult to absorb moisture, and has the disadvantage that diffusible hydrogen is slightly high. When producing the high-strength steel pipe of the present invention, welding cold cracking is likely to occur. From this point, a firing mold is desirable, but a molten mold that can be recovered and used repeatedly is suitable for mass production and has a low cost. There are advantages. The cost is high in the baking mold, and the necessity of strict quality control is a problem in the melting mold, but it is within a range that can be handled industrially, and either can be used essentially.

次に、溶接条件について以下に説明する。   Next, welding conditions will be described below.

最初に行う仮付け溶接は、MAGアーク溶接、MIGアーク溶接、TIGアーク溶接の何れでもよい。通常はMAGアーク溶接である。次に内外面の溶接を、サブマージドアーク溶接とすることが好ましいが、TIGアーク溶接、MIGアーク溶接、MAGアーク溶接でも良い。内外面の溶接はそれぞれ1パスづつでも良いが、複数パス行っても良い。   The initial tack welding performed may be any of MAG arc welding, MIG arc welding, and TIG arc welding. Usually, MAG arc welding. Next, the inner and outer surfaces are preferably submerged arc welding, but may be TIG arc welding, MIG arc welding, or MAG arc welding. The inner and outer surfaces may be welded one by one, but a plurality of passes may be performed.

内外面をサブマージドアーク溶接する場合、溶接速度を1m/分未満とするとラインパイプのシーム溶接としては非効率であり、3m/分を超えるとビード形状が不安定になることがある。したがって、サブマージドアーク溶接の溶接速度は、1〜3m/分の範囲内であることが好ましい。   When submerged arc welding is performed on the inner and outer surfaces, if the welding speed is less than 1 m / min, seam welding of the line pipe is inefficient, and if it exceeds 3 m / min, the bead shape may become unstable. Therefore, the welding speed of submerged arc welding is preferably in the range of 1 to 3 m / min.

なお、仮付け溶接と内外面の溶接の溶接部が重複する場合には、溶接入熱は出来る限り低い方が好ましい。また、溶接入熱は板厚によって異なるが、入熱が小さすぎると溶け込みが不十分になり、溶接回数が多くなり、作業効率が悪くなる。一方、溶接入熱が大きすぎると熱影響部の軟化が大きく、溶接部の靭性も低下する。そこで、板厚1mmあたりの内外面の比入熱を0.13〜0.25kJ/mm2とするのが好ましい。たとえば、板厚が15mm厚の内外面の溶接入熱は1.9〜3.8kJ/mmになる。 In addition, when the welding part of tack welding and inner and outer surface welding overlaps, the one where welding heat input is as low as possible is preferable. In addition, although the welding heat input varies depending on the plate thickness, if the heat input is too small, the penetration becomes insufficient, the number of times of welding increases, and the working efficiency deteriorates. On the other hand, if the welding heat input is too large, the heat-affected zone is greatly softened and the toughness of the weld zone is also reduced. Therefore, the specific heat of the inner and outer surfaces per 1 mm of plate thickness is preferably 0.13 to 0.25 kJ / mm 2 . For example, the welding heat input of the inner and outer surfaces with a plate thickness of 15 mm is 1.9 to 3.8 kJ / mm.

シーム溶接後、拡管により真円度を向上させる。真円にするためには塑性域まで変形させる必要がある。本発明の高強度鋼管の場合は、拡管後円周と拡管前円周の差を拡管前円周で除した値を百分率で表した拡管率が、0.5%以上であることが好ましい。一方、拡管率が2.0%を超えると、母材、溶接部とも塑性変形により靭性が劣化することがある。したがって、拡管率は0.5〜2.0%の範囲とすることが好ましい。   After seam welding, roundness is improved by pipe expansion. In order to make a perfect circle, it is necessary to deform to the plastic region. In the case of the high-strength steel pipe of the present invention, it is preferable that the pipe expansion ratio expressed as a percentage obtained by dividing the difference between the circumference after pipe expansion and the circumference before pipe expansion by the circumference before pipe expansion is 0.5% or more. On the other hand, if the expansion ratio exceeds 2.0%, the toughness may deteriorate due to plastic deformation of both the base material and the welded portion. Therefore, the tube expansion rate is preferably in the range of 0.5 to 2.0%.

表1の化学成分からなる鋼を溶製して鋳造し、鋼片とした。これら鋼片を種々の温度T1にて熱間圧延を開始し、種々の温度T3にて熱間圧延を終了後、平均冷却速度が5℃/sで、550℃以下の種々の制御冷却停止温度T4まで水冷した。これら20mm厚鋼板にて、鋼中水素量と水素誘起割れの有無を調査した。表2に示すように鋼板の鋼中水素量が1.0ppm未満のものは水素誘起割れが発生しておらず、プリクラックDWTT吸収エネルギーが3000J以上と良好な延性破壊特性を示した。さらに、DWTT延性破面率も85%以上と良好なアレスト性を呈した。   Steels composed of the chemical components shown in Table 1 were melted and cast into steel pieces. These steel slabs were hot rolled at various temperatures T1, and after the hot rolling was completed at various temperatures T3, the average cooling rate was 5 ° C / s, and various controlled cooling stop temperatures of 550 ° C or lower. Water-cooled to T4. With these 20 mm thick steel plates, the amount of hydrogen in the steel and the presence or absence of hydrogen-induced cracking were investigated. As shown in Table 2, when the amount of hydrogen in the steel sheet was less than 1.0 ppm, hydrogen-induced cracking did not occur, and the precrack DWTT absorbed energy was 3000 J or more, indicating good ductile fracture characteristics. Furthermore, the DWTT ductile fracture area ratio was 85% or more, and good arrestability was exhibited.

Figure 0004975304
Figure 0004975304

Figure 0004975304
Figure 0004975304

表3の化学成分からなる鋼を溶製して鋳造し、厚みが240mmの鋼片とした。これらの鋼片を種々の加熱温度T2に加熱し、900℃以上で59〜80mm厚さまで再結晶温度域で熱間圧延し、そのまま14〜25mm厚さまで未再結晶域の熱間圧延を、880℃から種々の温度の熱間圧延終了温度T3まで行った。なお、900℃以上は再結晶温度域であり、880℃以下は未再結晶温度域である。熱間圧延後、平均冷却速度で1℃/s以上10℃/s以下で450℃以下の種々の制御冷却停止温度T4まで水冷した。得られた鋼板を筒状にプレス成形し、仮付け溶接を行った後、溶接入熱を2.5〜3.5kJ/mmとして内外面をサブマージドアーク溶接し、拡管して、36インチ(913mm径)、16mm厚の鋼管とした。表6、表7(表6のつづき)にはこのときの製造条件、母材の特性、試験結果等を示しておく。   Steel made of the chemical components shown in Table 3 was melted and cast into steel pieces having a thickness of 240 mm. These steel slabs are heated to various heating temperatures T2 and hot-rolled at 900 ° C. or higher to a thickness of 59 to 80 mm in a recrystallization temperature region, and then hot-rolled in an unrecrystallized region to a thickness of 14 to 25 mm. It carried out from 0 degreeC to hot rolling completion temperature T3 of various temperatures. In addition, 900 degreeC or more is a recrystallization temperature range, and 880 degrees C or less is a non-recrystallization temperature range. After hot rolling, it was water cooled to various controlled cooling stop temperatures T4 of 1 ° C./s or more and 10 ° C./s or less and 450 ° C. or less at an average cooling rate. The obtained steel sheet was press-formed into a cylindrical shape and tack welded. Then, the inner and outer surfaces were submerged arc welded with a welding heat input of 2.5 to 3.5 kJ / mm, expanded, and 36 inches ( 913 mm diameter) and 16 mm thick steel pipe. Tables 6 and 7 (continued in Table 6) show manufacturing conditions, characteristics of the base material, test results, and the like at this time.

得られた鋼管の1/2t部の母材から10mm×10mm×40mmの水素量分析試験片を採取し、昇温脱離法にて鋼中の水素分析を行った。また、鋼管の水素誘起割れは超音波探傷機からその有無を測定した。   A hydrogen content analysis test piece of 10 mm × 10 mm × 40 mm was taken from a base material of 1/2 t part of the obtained steel pipe, and hydrogen analysis in the steel was performed by a temperature programmed desorption method. The presence or absence of hydrogen-induced cracking in the steel pipe was measured using an ultrasonic flaw detector.

実施No.11〜21は本発明の例を示す。表6、表7(表6のつづき)から明らかなように、これらの鋼板は鋼中水素量が0.65ppm以下で、何れも水素誘起割れは発生していなかった。その結果、プリクラックDWTT吸収エネルギーが3000J以上と良好な延性破壊特性を示した。さらに、DWTT延性破面率も85%以上と良好なアレスト性を呈した。一方、実施No.22〜30は本発明方法から逸脱した比較例を示す。すなわち、実施No.22〜30は鋼板の水素量が0.65ppmを超えており、水素誘起割れが発生している。その結果、プリクラックDWTTエネルギーが3000J未満、破面率も85%未満であった。   Implementation No. 11 to 21 show examples of the present invention. As is clear from Tables 6 and 7 (continued in Table 6), these steel sheets had a hydrogen content in steel of 0.65 ppm or less, and no hydrogen-induced cracking occurred. As a result, the precrack DWTT absorption energy was 3000 J or more, indicating good ductile fracture characteristics. Furthermore, the DWTT ductile fracture area ratio was 85% or more, and good arrestability was exhibited. On the other hand, the implementation No. Reference numerals 22 to 30 show comparative examples deviating from the method of the present invention. That is, the implementation No. In Nos. 22 to 30, the amount of hydrogen in the steel sheet exceeds 0.65 ppm, and hydrogen-induced cracking occurs. As a result, the precrack DWTT energy was less than 3000 J, and the fracture surface ratio was also less than 85%.

表4、表5(表4のつづき)には参考に本発明および比較例の溶接金属および溶接ワイヤーの成分を示した。   Tables 4 and 5 (continued in Table 4) show the components of the weld metal and the weld wire of the present invention and the comparative example for reference.

Figure 0004975304
Figure 0004975304

Figure 0004975304
Figure 0004975304

Figure 0004975304
Figure 0004975304

Figure 0004975304
Figure 0004975304

Figure 0004975304
Figure 0004975304

本発明による高強度鋼板の製造方法における、圧延後の水冷停止温度(制御冷却停止温度)とその後の放冷時放出水素量との関係を示す図である。It is a figure which shows the relationship between the water cooling stop temperature after rolling (control cooling stop temperature) in the manufacturing method of the high strength steel plate by this invention, and the amount of hydrogen discharge at the time of cooling after that. 本発明による高強度鋼板における、残留水素量と水素誘起割れ面積率との関係を示す図である。It is a figure which shows the relationship between the residual hydrogen amount and the hydrogen induced crack area ratio in the high strength steel plate by this invention. 本発明による高強度鋼板における、加熱温度域での割れ限界水素量と加熱温度との関係を示す図である。It is a figure which shows the relationship between the crack limit hydrogen amount in a heating temperature range, and heating temperature in the high strength steel plate by this invention.

Claims (11)

質量%で、
C :0.01〜0.5%、
Si:0.01〜3.0%、
Mn:0.1〜5.0%、
P :0.03%以下、
S :0.03%以下
を含有し、残部が鉄および不可避的不純物からなる鋼を溶製するに際し、後工程の熱間圧延の設定開始温度をT1(℃)、設定仕上温度をT3(℃)、熱間圧延後の設定制御冷却停止温度をT4(℃)とするとき、不純物としての水素を、溶鋼中で、
H :{0.65+(0.0007T4−0.03)}×1.5×exp[−1411{1/(T1+273)−1/(T3+273)}]ppm以下
に制限しながら成分調整し、該溶鋼を鋳造し、さらに、1000〜1250℃のT1(℃)で熱間圧延を開始し、600〜900℃のT3(℃)で熱間圧延を終了し、その後の冷却に際し、制御冷却停止温度T4(℃)を圧延終了温度未満50℃以上として、該制御冷却停止温度T4(℃)まで鋼板中心部の平均冷却速度で0.5〜20℃/sとなる冷却速度で制御冷却し、該制御冷却停止温度T4(℃)から室温まで放冷し、鋼板の水素量を0.65ppm以下にすることを特徴とする、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。
% By mass
C: 0.01-0.5%
Si: 0.01-3.0%,
Mn: 0.1 to 5.0%,
P: 0.03% or less,
S: When melting steel containing 0.03% or less, the balance being iron and inevitable impurities, the setting start temperature of hot rolling in the subsequent process is T1 (° C.), and the setting finishing temperature is T3 (° C. ), When setting control cooling stop temperature after hot rolling is T4 (° C.), hydrogen as an impurity in molten steel,
H: {0.65+ (0.0007T4-0.03)} × 1.5 × exp [-1411 {1 / (T1 + 273) −1 / (T3 + 273)}] ppm The molten steel is cast, and further hot rolling is started at 1000 to 1250 ° C. T1 (° C.), hot rolling is finished at 600 to 900 ° C. T3 (° C.), and the subsequent cooling is controlled cooling stop temperature. T4 (° C.) is set to a temperature lower than the rolling end temperature of 50 ° C. or higher, and controlled cooling is performed at a cooling rate of 0.5 to 20 ° C./s at an average cooling rate at the center of the steel sheet to the controlled cooling stop temperature T4 (° C.). allowed to cool from the control cooling stop temperature T4 (° C.) to room temperature, characterized in that the amount of hydrogen of the steel sheet below 0.65 ppm, resistance to hydrogen induced cracking resistance and ductile fracture characteristics in excellent tensile strength 760MPa grade or higher Manufacturing method of high strength steel sheet.
質量%で、
C :0.01〜0.5%、
Si:0.01〜3.0%、
Mn:0.1〜5.0%、
P :0.03%以下、
S :0.03%以下
を含有し、残部が鉄および不可避的不純物からなる鋼を溶製するに際し、後工程の熱間圧延の設定加熱温度をT2(℃)、設定仕上温度をT3(℃)、熱間圧延後の設定制御冷却停止温度をT4(℃)とするとき、不純物としての水素を、溶鋼中で、
H :{0.65+(0.0007T4−0.03)}×1.5×exp[−1411{1/(T2+273)−1/(T3+273)}]ppm以下
に制限しながら成分調整し、該溶鋼を鋳造して得られた鋼片を、1000〜1250℃の加熱温度T2(℃)で再加熱し、さらにこれに引き続いた再結晶域圧延の後、600〜900℃のT3(℃)で熱間圧延を終了し、その後の冷却に際し、制御冷却停止温度T4(℃)を圧延終了温度未満50℃以上として、該制御冷却停止温度T4(℃)まで鋼板中心部の平均冷却速度で0.5〜20℃/sとなる冷却速度で制御冷却し、該制御冷却停止温度T4(℃)から室温まで放冷し、鋼板の水素量を0.65ppm以下にすることを特徴とする、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。
% By mass
C: 0.01-0.5%
Si: 0.01-3.0%,
Mn: 0.1 to 5.0%,
P: 0.03% or less,
S: When melting steel containing 0.03% or less, the balance being iron and inevitable impurities, the set heating temperature of the hot rolling in the subsequent step is T2 (° C.), and the set finishing temperature is T 3 (° C. ), When setting control cooling stop temperature after hot rolling is T4 (° C.), hydrogen as an impurity in molten steel,
H: {0.65+ (0.0007T4-0.03)} × 1.5 × exp [-1411 {1 / (T2 + 273) −1 / (T3 + 273)}] ppm The steel slab obtained by casting the molten steel is reheated at a heating temperature T2 (° C.) of 1000 to 1250 ° C., and after subsequent recrystallization zone rolling, at T3 (° C.) of 600 to 900 ° C. When the hot rolling is finished and the subsequent cooling is performed, the controlled cooling stop temperature T4 (° C.) is set to 50 ° C. or less below the rolling finish temperature, and the average cooling rate of the steel sheet center portion is reduced to 0. controlled cooling at a cooling rate to be 5 to 20 ° C. / s,該制allowed to cool from your cooling stop temperature T4 (° C.) to room temperature, characterized in that the amount of hydrogen of the steel sheet below 0.65 ppm, resistance hydrogen Pulling with excellent induced cracking and ductile fracture characteristics Strength 760MPa grade above manufacturing method of the high strength steel sheet.
前記鋼成分に代えて、質量%で、
C :0.02〜0.10%、
Si:0.01〜0.6%、
Mn:1.5〜2.5%、
P :0.015%以下、
S :0.003%以下、Ni:0.1〜2.0%、
Mo:0.15〜0.60%、
Nb:0.001〜0.10%、
Ti:0.005〜0.030%、
Al:0.06%以下、
N :0.0001〜0.006%、
を含有することを特徴とする、請求項1または2に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。
In place of the steel component,
C: 0.02-0.10%,
Si: 0.01 to 0.6%,
Mn: 1.5 to 2.5%
P: 0.015% or less,
S: 0.003% or less, Ni: 0.1-2.0%,
Mo: 0.15-0.60%,
Nb: 0.001 to 0.10%,
Ti: 0.005 to 0.030%,
Al: 0.06% or less,
N: 0.0001 to 0.006%,
The method for producing a high-strength steel sheet having a tensile strength of 760 MPa or more and excellent in hydrogen-induced cracking resistance and ductile fracture characteristics according to claim 1, comprising:
さらに、質量%で、
B :0.0001〜0.005%、
V :0.001〜0.10%、
Cu:0.01〜1.0%、
Cr:0.01〜0.8%、
Zr:0.0001〜0.005%、
Ta:0.0001〜0.005%、
Ca:0.0001〜0.01%、
REM:0.0001〜0.01%、
Mg:0.0001〜0.006%
の1種または2種以上を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。
Furthermore, in mass%,
B: 0.0001 to 0.005%,
V: 0.001 to 0.10%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 0.8%
Zr: 0.0001 to 0.005%,
Ta: 0.0001 to 0.005%,
Ca: 0.0001 to 0.01%,
REM: 0.0001 to 0.01%,
Mg: 0.0001 to 0.006%
High tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to any one of claims 1 to 3, characterized by containing at least one of A method of manufacturing a steel sheet.
前記鋼片の再加熱温度が1000〜1250℃であることを特徴とする、請求項2ないし4のいずれか1項に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。   The reheating temperature of the steel slab is 1000 to 1250 ° C, and the tensile strength of 760 MPa class excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to any one of claims 2 to 4. The manufacturing method of the above high strength steel plate. 前記制御冷却停止後、鋼板を重ね合わせて、放冷することを特徴とする、請求項1ないし5のいずれか1項に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。   6. The tensile strength of 760 MPa excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to claim 1, wherein after the controlled cooling is stopped, the steel plates are superposed and allowed to cool. A manufacturing method for high-strength steel sheets of grades or better. 前記重ねた鋼板に保温カバーをかぶせて放冷することを特徴とする、請求項6に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法。   The method for producing a high-strength steel sheet having a tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to claim 6, wherein the laminated steel sheet is covered with a heat insulating cover and allowed to cool. . 請求項1ないし7のいずれか1項に記載の方法にて製造した高強度鋼板を用いて造管することを特徴とする、耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。   A tensile strength of 760 MPa class excellent in hydrogen-induced crack resistance and ductile fracture characteristics, characterized by being piped using the high-strength steel sheet produced by the method according to any one of claims 1 to 7. The manufacturing method of the above high strength welded steel pipe. 前記造管工程は、前記高強度鋼板をUO工程で管状に成形し、端部同士を溶接ワイヤ−および焼成型フラックスまたは溶融型フラックスを使用してサブマージドアーク溶接し、その後、拡管を行うことを特徴とする、請求項8に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。   In the pipe forming process, the high-strength steel sheet is formed into a tubular shape in the UO process, the ends are submerged arc welded using a welding wire and a firing type flux or a melt type flux, and then the pipe is expanded. The method for producing a high-strength welded steel pipe having a tensile strength of 760 MPa or more and excellent in hydrogen-induced crack resistance and ductile fracture characteristics according to claim 8. 質量%で、
C :0.01〜0.12%、
Si:0.3%以下、
Mn:1.2〜2.4%、
Ni:4.0〜8.5%、
Cr+Mo+V:3.0〜5.0%、
Ti:0.005〜0.15%、
Al:0.02%以下
を含有し、残部が鉄および不可避的不純物からなる溶接ワイヤーを用いてサブマージドアーク溶接することを特徴とする、請求項9に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。
% By mass
C: 0.01 to 0.12%,
Si: 0.3% or less,
Mn: 1.2-2.4%
Ni: 4.0 to 8.5%,
Cr + Mo + V: 3.0-5.0%,
Ti: 0.005 to 0.15%,
The hydrogen-induced crack resistance and ductile fracture according to claim 9, wherein submerged arc welding is performed using a welding wire containing Al: 0.02% or less, the balance being iron and inevitable impurities. A method for producing a high-strength welded steel pipe with excellent tensile strength of 760 MPa class or higher.
前記サブマージドアーク溶接の、板厚1mmあたりの入熱量が、0.13〜0.25kJ/mm2であることを特徴とする、請求項9または10に記載の耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度溶接鋼管の製造方法。 11. The hydrogen-induced crack resistance and ductile fracture according to claim 9, wherein the heat input per 1 mm thickness of the submerged arc welding is 0.13 to 0.25 kJ / mm 2. A method for producing a high-strength welded steel pipe with excellent tensile strength of 760 MPa class or higher.
JP2005342444A 2005-11-28 2005-11-28 Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet Active JP4975304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342444A JP4975304B2 (en) 2005-11-28 2005-11-28 Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342444A JP4975304B2 (en) 2005-11-28 2005-11-28 Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet

Publications (2)

Publication Number Publication Date
JP2007146230A JP2007146230A (en) 2007-06-14
JP4975304B2 true JP4975304B2 (en) 2012-07-11

Family

ID=38207989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342444A Active JP4975304B2 (en) 2005-11-28 2005-11-28 Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet

Country Status (1)

Country Link
JP (1) JP4975304B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228099A (en) * 2008-03-25 2009-10-08 Sumitomo Metal Ind Ltd Uoe steel pipe for line pipe, and method for manufacturing the same
US8641836B2 (en) 2009-10-28 2014-02-04 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe excellent in strength and ductility and method of production of same
KR101536471B1 (en) * 2013-12-24 2015-07-13 주식회사 포스코 Ultra-high strength steel sheet for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
KR102237486B1 (en) 2019-10-01 2021-04-08 주식회사 포스코 High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
CN113106319A (en) * 2021-03-03 2021-07-13 江阴兴澄特种钢铁有限公司 Manufacturing method of high-strength long-life gear steel
CN114411058B (en) * 2022-01-06 2022-11-18 南京钢铁股份有限公司 Heat-resistant steel plate for longitudinal submerged arc welded pipe and production method thereof
WO2023145330A1 (en) * 2022-01-27 2023-08-03 日本製鉄株式会社 Arc weld metal, weld joint, and automotive member
CN116586823B (en) * 2023-07-17 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 Welding wire molten steel and welding wire for welding medium-pressure hydrogen transmission pipeline and preparation method thereof
CN116586818B (en) * 2023-07-17 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 Solid welding wire for low-pressure hydrogen-doped gas conveying pipeline and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118325A (en) * 1978-03-08 1979-09-13 Nippon Kokan Kk <Nkk> Production of hydrogen crack resistant nonrefined steel plate
JPH03281731A (en) * 1990-03-30 1991-12-12 Topy Ind Ltd Method for dehydrogenating rolled steel product
JPH07118731A (en) * 1993-10-25 1995-05-09 Nippon Steel Corp Method for vacuum-degassing molten steel under reduced pressure
JP3279219B2 (en) * 1997-05-12 2002-04-30 住友金属工業株式会社 Apparatus and method for vacuum treatment of molten steel
JP2005146407A (en) * 2003-10-20 2005-06-09 Nippon Steel Corp Ultrahigh strength steel sheet and ultrahigh strength steel tube having excellent high speed ductile fracture property, and their production method

Also Published As

Publication number Publication date
JP2007146230A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5068645B2 (en) High-strength steel plate and high-strength welded steel pipe excellent in ductile fracture characteristics, and methods for producing them
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
JP5176271B2 (en) Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP4975304B2 (en) Method for producing high-strength steel sheet having high tensile strength of 760 MPa class or more excellent in hydrogen-induced crack resistance and ductile fracture characteristics, and method for producing high-strength steel pipe using the steel sheet
JP5098235B2 (en) High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5292784B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
CA2749409C (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
JP4358900B1 (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP5293903B1 (en) Thick ERW Steel Pipe and Method for Manufacturing the Same
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5590253B2 (en) High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
WO2010090349A1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
JP6587041B1 (en) ERW steel pipe for line pipe
JPH10237583A (en) High tensile strength steel and its production
WO2017130885A1 (en) Steel sheet for high-strength/high-toughness steel tubes, and method for producing same
WO2007105752A1 (en) Steel sheet for submerged arc welding
JP5176591B2 (en) Welded steel pipe with excellent weld heat-affected zone toughness
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2005146407A (en) Ultrahigh strength steel sheet and ultrahigh strength steel tube having excellent high speed ductile fracture property, and their production method
JP4280222B2 (en) Ultra-high-strength steel sheet and ultra-high-strength steel pipe excellent in pipeline deformation characteristics and low-temperature toughness, and methods for producing them
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R151 Written notification of patent or utility model registration

Ref document number: 4975304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350