JP2004143556A - Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor - Google Patents

Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor Download PDF

Info

Publication number
JP2004143556A
JP2004143556A JP2002311629A JP2002311629A JP2004143556A JP 2004143556 A JP2004143556 A JP 2004143556A JP 2002311629 A JP2002311629 A JP 2002311629A JP 2002311629 A JP2002311629 A JP 2002311629A JP 2004143556 A JP2004143556 A JP 2004143556A
Authority
JP
Japan
Prior art keywords
less
weld metal
toughness
steel pipe
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002311629A
Other languages
Japanese (ja)
Other versions
JP4016800B2 (en
Inventor
Muneo Matsushita
松下 宗生
Shuichi Sakaguchi
阪口 修一
Koichi Yasuda
安田 功一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002311629A priority Critical patent/JP4016800B2/en
Publication of JP2004143556A publication Critical patent/JP2004143556A/en
Application granted granted Critical
Publication of JP4016800B2 publication Critical patent/JP4016800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick, large-sized straight UOE steel pipe which satisfies request for strict inside-outside toughness, and to provide a production method therefor, with respect to a both side one layer submerged arc welding method for a thick, high toughness UOE steel pipe having a plate thickness of ≥30 mm, by establishing an effective submerged arc welding technique for preventing the reheat embrittlement of an inside weld metal caused by outside welding. <P>SOLUTION: The composition of a base metal 1 is limited to a specified range. Further, the compositions (particularly, the contents of Mo and B) in an inside weld metal 2 subjected to reheat by outside welding and in an outside weld metal 3 subjected to no reheat, and Pcm are limited to respective specified ranges. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大径UOE鋼管、特に内外面1層盛り大入熱サブマージドアーク溶接により製造される厚肉UOE鋼管の溶接金属において厳格靭性を獲得する、厳格靭性要求を満たす厚肉大径ストレートUOE鋼管およびその製造方法に関する。
【0002】
【従来の技術】
近年の海底パイプラインは、石油・ガス開発の深海化、特に水深2000mを超える海域への敷設を反映して厚肉、厳格靭性が要求されている。サブマージドアーク溶接金属の靭性を確保するために最も効果的な方法として、Mo、TiそしてBなどを含む溶接材料を用いて溶接を行い、アシキュラーフェライト(Acicular Ferrite:以後AFと表記)と呼ばれる微細な溶接金属組織を得るという方法が知られている(例えば特許文献1,2参照)。TiはTiO として溶接金属内において、AF変態の核生成サイトとして作用し、Bは旧オーステナイト粒界に偏析し、粒界の初析フェライトの粗大化を抑制する。
【0003】
しかし、大入熱溶接においてはTi− B添加のみでは完全には粗大な粒界フェライトの生成を防止できないので、焼入性を高める元素であるMoを添加し、組織の均一微細化をはかる必要がある。そこで、Mo‐Ti‐B系サブマージドアーク溶接ワイヤが低温においても高靭性を要する鋼管のシーム溶接部に広く用いられている。
【0004】
ところが、Mo‐Ti‐B系溶接ワイヤでは両面1層溶接を行う場合、内、外面溶接金属原質部では微細AF組織により高靭性が得られるが、内面溶接金属の外面溶接により再熱される部分では靭性が劣化すること(再熱脆化)が問題となっている。このような再熱脆化の対策として、溶接金属を低酸素化したり(特許文献3)、Mn、Moの添加を抑制し、その代わりにNiを添加したり(特許文献4)、Ceqを限定した上で圧延条件を適正化する(特許文献5)技術が開示されている。
【0005】
また、再熱脆化は溶接したままの状態では固溶しているMo、Nb、V、Ti等が再熱により析出するためとし、式:PHIW=Mo+5Ti+10Nb+20V+200 B(右辺の元素記号はその元素の質量%を表す)で表されるパラメータPHIWを1.5 質量%以下、Pcmでは0.165 質量%以下とすることで再熱脆化を抑止する手法(特許文献6)や、最熱脆化は再熱時の冷却過程で靭性の劣る上部ベイナイト(Upper Bainite :以後UBと表記)が生成するためとし、UBの生成を低減するために内面溶接金属の焼入性、すなわちPcmを外面溶接金属のそれより抑える手法(特許文献7)が開示されている。
【0006】
【特許文献1】
特開昭53−63238 号公報
【特許文献2】
特開昭53−22137 号公報
【特許文献3】
特開昭59−156599号公報
【特許文献4】
特開昭62−34694 号公報
【特許文献5】
特開昭61−266126号公報
【特許文献6】
特開平5−375 号公報
【特許文献7】
特開平9−1344号公報
【0007】
【発明が解決しようとする課題】
本発明者らは、このMo‐Ti‐B系溶接金属の再熱脆化の原因を鋭意追求した。実継手(実際に施工された溶接部)においては、内面溶接金属の外面溶接による再熱は局所的であり、再熱部そのものの靭性を測定することが難しい。よって内面溶接相当の入熱条件及び溶接ワイヤ条件で片面溶接を行い、その溶接金属からシャルピー試験片を採取するに十分な寸法の試験片を切り出し、外面溶接による再熱を擬似的に再現する熱サイクルを付与した。C、Mo、Ti、Bの再熱脆化に与える影響を検討した結果、従来の合金組成のMo‐Ti‐B系溶接金属は原質部では良好な靭性が得られるものの、900 〜1200℃の温度領域を最高点として再熱された部分で靭性が著しく劣化する傾向が観察された。
【0008】
これより本発明者らは、従来のMo‐Ti‐B系組成を有する溶接金属の再熱脆化機構を次のように解釈する。原質の溶接金属は、微細なAF主体の組織であり高靭性を示すが、900 〜1200℃の温度領域へ再加熱されるとAFはオーステナイトに変態し、その冷却過程で、オーステナイト粒界より生成、成長するポリゴナルフェライト(Polygonal Ferrite :以後PFと表記)が支配的な組織となり、結果的に、PF粒間にUB及び島状マルテンサイト(Martensite‐Austenite :以後M‐Aと表記)を含む混合組織となる。UB、M‐Aは脆化を助長する組織であり、すなわち本発明者らは、これらの形成が再熱脆化の主因と考える。さらに本発明者らは、溶接金属中のC、Si、Mn、Mo、Ti、B量、特にMo、Bが再熱部のM‐A組織生成に大きな影響を与えると考える。
【0009】
本発明は、板厚30mm以上の厚肉UOE鋼管を対象としている。このような厚肉鋼管のシーム部は両面1層サブマージド溶接工程において施工されるが、溶接入熱が大きいため溶接金属の冷却速度は小さくなる。よって溶接金属原質部において微細なAF組織を得るためには、板厚30mm未満の場合の溶接金属と比べ、Mo、Bの添加量を制限する必要がある。両面1層サブマージド溶接工程において、内面の後に施される外面部の溶接金属は再熱を受けることがないので比較的容易にMo、B量を増加することができる。
【0010】
一方、外面溶接により再熱を受ける内面溶接金属においては、Mo、Bは再熱脆化に大きな影響を与えるので、その添加は原質部での微細組織を得るために十分でありつつも再熱部の脆化を抑えるために過剰とならない量を選択しなければならない。特に大入熱の外面溶接により、内面溶接金属内の再熱脆化する領域は拡大される。よって、内面溶接金属の再熱脆化部を含まざるを得ないルート、内面位置でのシャルピー衝撃試験において吸収エネルギー(vE) だけでなく延性破面率(SA)の規定も一般化しつつあり、−20 ℃でのSAを最低値で40%以上要求する需要家も現れた。これを達成するには120 〜130 J以上の吸収エネルギーが必要となる。
【0011】
このような動向に鑑みて本発明は、板厚30mm以上の厚肉高靭性UOE鋼管の両面1層サブマージドアーク溶接法において、外面溶接による内面溶接金属の最熱脆化を防止しうる効果的なサブマージドアーク溶接技術を確立して、内面、外面ともに厳格靭性要求を満たす厚肉大径ストレートUOE鋼管をその製造方法とともに提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成した本発明は、母材の板厚が30mm以上で、管周方向の1個所に内面側が先に形成された内外面1層ずつの溶接部を有する厚肉大径ストレートUOE鋼管であって、
母材の組成が質量%で、C:0.10%以下、Si:0.5 %以下、Mn:2.0 %以下、P:0.020 %以下、S:0.0020%以下を含み、さらにCu:0.5 %以下、Cr:0.5 %以下、Ni:0.5 %以下、Nb:0.07%以下、V:0.07%以下、Mo:0.05%以下、Ti:0.1 %以下、B:0.0030%以下のうちから選ばれる1種又は2種以上を含み、残部Fe及び不可避的不純物からなり、
内面側の溶接金属組成が質量%で、C:0.08%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.045 %以下、Ti:0.005 〜0.030 %、B:0.0005〜0.0015%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.120 〜0.180 %であり、
外面側の溶接金属組成が質量%で、C:0.10%以下、Si:0.5 %以下、Mn:0.8〜1.8%、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.1 〜0.4 %、Ti:0.005 〜0.050 %、B:0.0005〜0.0060%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.140 〜0.200 %であることを特徴とする厳格靭性要求を満たす厚肉大径ストレートUOE鋼管である。
【0013】

Pcm=C+Si/30 +(Mn+Cu+Cr)/20 +Ni/60 +Mo/15 +V/10 +5B
ただし、式中C、Si、Mn、Cu、Cr、Ni、Mo、V、Bはそれぞれの元素の質量%を表す。
また、本発明は、板厚30mm以上のUO加工鋼材の周端突合せ部を内面側先行の内外面1層ずつのサブマージドアーク溶接により接合して造管する工程を有する厚肉大径UOE鋼管の製造方法において、
前記UO加工鋼材(前記本発明のUOE鋼管の母材に相当する。)として、質量%で、C:0.10%以下、Si:0.5 %以下、Mn:2.0 %以下、P:0.020 %以下、S:0.0020%以下を含み、さらにCu:0.5 %以下、Cr:0.5 %以下、Ni:0.5 %以下、Nb:0.07%以下、V:0.07%以下、Mo:0.05%以下、Ti:0.1 %以下、B:0.0030%以下のうちから選ばれる1種又は2種以上を含み、残部Fe及び不可避的不純物からなる組成のものを用い、
内面側には質量%で、C:0.08%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.045 %以下、Ti:0.005 〜0.030 %、B:0.0005〜0.0015%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.120 〜0.180 %になる組成の溶接金属が形成され、
外面側には質量%で、C:0.10%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.1 〜0.4 %、Ti:0.005 〜0.050 %、B:0.0005〜0.0060%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.140 〜0.200 %になる組成の溶接金属が形成されるように選定した溶接材料を用いて前記サブマージドアーク溶接を施工することを特徴とする厳格靭性要求を満たす厚肉大径ストレートUOE鋼管の製造方法である。
【0014】

Pcm=C+Si/30 +(Mn+Cu+Cr)/20 +Ni/60 +Mo/15 +V/10 +5B
ただし、式中C、Si、Mn、Cu、Cr、Ni、Mo、V、Bはそれぞれの元素の質量%を表す。
【0015】
【発明の実施の形態】
まず、本発明に係るUOE鋼管における母材の化学成分の限定理由を説明する。
C:母材の強度と靭性に非常に大きな影響を及ぼす元素であり、0.10%を超えると靭性や延性に悪影響を及ぼすため、0.10%以下とした。なお、好ましくは、0.03〜0.08%である。
【0016】
Si:Siは、鋼の脱酸過程で必然的に含まれる元素であるが、鋼中に過剰に存在するとHAZ(Heat Affected Zone)部の靭性を劣化するため、0.5 %以下にすべきである。なお、好ましくは、0.1 〜0.4 %である。
Mn:母材の強度と靭性を同時に向上する極めて重要な元素であるが、2.0 %を超えると偏析等により鋼材に悪影響を及ぼすために上限を2.0 %とした。なお、好ましくは、1.0 〜2.0 %である。
【0017】
P、S:P、Sは中心偏析を助長する元素であり低いことが望ましく、それぞれ0.020 %、0.0020%を上限とした。
Cu:母材の強度を確保するために必要な元素であるが、0.5 %を超えて含有すると母材およびHAZ部が硬化するため0.5 %を上限とした。
Cr:母材の強度を確保するために必要な元素であるが、0.5 %を超えて含有するとHAZ部の靭性を劣化させるため0.5 %を上限とした。
【0018】
Ni:母材の強度と靭性を向上させる元素であるが、0.5 %を超えて含有するとHAZ部が硬化するため0.5 %を上限とした。
Nb、V:母材およびHAZ部の強度と靭性を確保するために添加されているが、Nb、V共に0.07%を超えると靭性に悪影響を及ぼすため、Nbを0.07%以下、Vを0.07%以下とした。なお、好ましくは、Nb:0.02〜0.06%、V:0.06%以下である。
【0019】
Mo:は、母材の強度を確保するために必要な元素であるが、0.05%を超えて含有するとHAZ部が硬化するために0.05%を上限とした。
Ti:Tiは、母材の靭性確保に必要な元素であるが、0.1 %を超えて含有すると、逆に母材の靭性を劣化させるために、0.1 %を上限とした。なお、好ましくは、0.005 〜0.03%である。
【0020】
B:Bは、圧延中にオーステナイト粒界に偏析して焼入性を上げる作用があるが、0.0030%を超えるとHAZ部の靭性を劣化させるために、上限を0.0030%とした。なお、好ましくは、0.0005%以下である。
そして、溶接金属の成分組成を限定した理由は次の通りである。
C:Cは高焼入性成分であり、その増加により炭化物やマルテンサイトが生成し、靭性は低下するので、内面では0.08%以下、外面では0.10%以下にする必要がある。なお、好ましくは、内面で0.03〜0.07%、外面で0.03〜0.08%である。
【0021】
Si:Siは脱酸剤として添加されるが、同時に焼入性成分であるため過剰に添加されるとUBが生成し靭性を低下させるので、内面、外面ともに0.5 %以下とする。なお、好ましくは、内面、外面ともに0.1 〜0.4 %である。
Mn:Mnは脱酸剤および焼入性成分として必要であるが、内面、外面共に、0.8 %未満ではその効果に乏しく、一方、1.8 %を超えるとUBが生成し、靭性が低下するので、0.8 〜1.8 %とした。
【0022】
Cu:Cuは焼入性成分であり、母材希釈およびワイヤのメッキから混入する成分であるが、内面、外面共に0.50%を超えて含有すると焼入性が過剰となり靭性を害するので、0.50%を上限とした。
Cr:Crは焼入性成分であり、母材希釈により含有されるが、内面、外面共に0.50%を超えて含有すると焼入性が過剰となり靭性を害するので、0.50%を上限とした。
【0023】
Ni:Niは焼入性成分であり、母材希釈により含有されるが、内面、外面共に0.50%を超えて含有すると焼入性が過剰となり靭性を害するので、0.50%を上限とした。
Nb、V:Nb、Vは焼入性成分であり、母材希釈により含有されるが、内面、外面共に0.07%を超えて含有すると焼入性が過剰となり靭性を害するので、Nb、V共に0.07%を上限とした。なお、好ましくは、内面、外面ともに、Nb:0.02〜0.06%、V:0.06%以下である。
【0024】
Mo:Moは焼入性成分であり、溶接金属原質部では組織を微細化し靭性を向上させるが、再熱部ではUB、M‐Aの生成を助長し靭性を低下させる。よって内面では0.045 %以下に抑える必要がある。一方、外面では組織微細化による靭性改善のために最低0.1 %は必要であるが、0.4 %を超えて添加すると焼入性が過剰となってマルテンサイト組織となり、靭性を害するので0.1 〜0.4 %とする。
【0025】
Ti:Tiは微細なフェライトを形成させて靭性を向上させるが、内面、外面共に0.005 %未満ではこの効果に乏しいので最低限0.005 %必要である。一方、内面では0.030 %、外面では0.050 %を超えると固溶Tiが増加して炭化物、窒化物の析出により靭性が低下する。よって、内面では0.005 〜0.030 %、外面では0.005 〜0.050 %とした。
【0026】
B:Bは高焼入性成分であり、Tiとの相乗効果によって溶接金属原質部では微細なAFを形成させ靭性を向上させるが、内面、外面共に0.0005%未満ではこの効果に乏しい。一方、再熱部ではUB、M‐Aの生成を助長し靭性を低下させる。よって内面では0.0015%以下に抑える必要がある。一方、外面では0.0060%を超えると原質部にマルテンサイトが生成し靭性が低下するため、上限を0.0060%とした。
【0027】
N:Nは溶接金属中に不可避的に含まれる成分であるが、Bを窒化して粒界フェライトの生成を促進し、靭性を低下させるので、内面、外面共に0.0080%以下とする必要がある。
O:Oは溶接金属中に不可避的に含まれる成分であるが、内面、外面共に0.035 %を超えると溶接金属中の介在物の増加により靭性は低下するので、0.035 %を上限とした。
【0028】
Pcm:Pcmは溶接金属の組成全体としての焼入性を示すものであり、焼入性が不足すると初析フェライトが析出して靭性が劣化する。再熱脆化を考慮せずに原質部の靭性を獲得するためには、0.140 %以上必要である。このため、外面での下限を0.140 %とした。それに対し内面は、外面溶接により再熱される部分とのバランスを考慮する必要があるので、0.120 %以上とした。また、0.200 %を超えて過大となると焼入性が過剰となるので原質部でも靭性が劣化する。よって外面の上限を0.200 %とした。さらに、0.180 %超では再熱部にてUB、M‐Aが析出して靭性が劣化する。そこで内面では上限を0.180 %とした。
【0029】
本発明のUOE鋼管を製造するには、内外面1層サブマージドアーク溶接により接合される母材である板厚30mm以上のUO加工鋼材として、本発明の母材組成になるのものを用い、内面側と外面側の溶接金属組成がそれぞれ本発明範囲に収まるように、前記サブマージドアーク溶接に用いる内面側と外面側の溶接材料(ワイヤおよび/またはフラックス)を選定すればよい。
【0030】
【実施例】
表1に示す化学組成及び板厚を有するAPI規格X65クラスUOパイプ状鋼板PA、PBを、内面側先行の内外面1 層ずつのサブマージドアーク溶接により周端突合せ接合して溶接造管するに際し、内面、外面に用いる溶接材料を種々変え、同一溶接条件で溶接を行って、本発明例相当鋼管と本発明を外れる比較例相当鋼管を製造し、それらの靭性を比較した。この比較試験では、表2に示す化学組成の溶融型フラックスと表3に示す化学組成のワイヤとを組み合わせて4電極両面1層盛りサブマージドアーク溶接を行った。この場合の板厚別の溶接条件は表4に示すとおりであり、その開先形状は図1に示すとおりである。また、実施例と比較例の母材と各電極のワイヤの組合せは表5に示すとおりである。
【0031】
【表1】

Figure 2004143556
【0032】
【表2】
Figure 2004143556
【0033】
【表3】
Figure 2004143556
【0034】
【表4】
Figure 2004143556
【0035】
【表5】
Figure 2004143556
【0036】
溶接終了後、図2に示すように溶接継手の外面位置(a:母材1外面から2mm深さの位置)、内面位置(b:母材1内面から2mm深さの位置)、ルート位置(c:試験片中心線6が会合部7を通る位置)よりそれぞれ、10mm×10mmサイズのシャルピー衝撃試験片4を採取し、JIS Z 2242に従いシャルピー衝撃試験を行った。表6に溶接金属の化学組成を示す。外面、内面、ルートの各位置から採取した試料に基づく衝撃試験結果は表7に示したとおりである。
【0037】
【表6】
Figure 2004143556
【0038】
【表7】
Figure 2004143556
【0039】
表7より明らかなように、本発明例相当鋼管の溶接金属では、外面により再熱を受ける内面とどこからも再熱されない外面の両方とも高い靭性を示す。なお、内面と外面の溶接金属の組成及びPcmを変えるにあたり、本実施例においては、それぞれ組成の異なる溶接ワイヤを様々な組合せで1、2、3、4電極に使用することで対処した(表5)。
【0040】
【発明の効果】
本発明によれば、低温用高靭性UOE鋼管の母材の化学成分ならびに両面1層サブマージドアーク溶接により形成される内面および外面溶接金属の化学成分をそれぞれ区別して限定したので、内外面ともに優れた低温靭性を有する厳格靭性要求を満たす厚肉大径ストレートUOE鋼管を得ることができる。
【図面の簡単な説明】
【図1】実施例における開先形状(a:板厚31.4mm、b:板厚31.8mm)を示す断面図である。
【図2】実施例におけるシャルピー衝撃試験片採取位置を示す断面図である。
【符号の説明】
1 母材
2 内面溶接金属
3 外面溶接金属
4 シャルピー衝撃試験片
5 ノッチ
6 試験片中心線
7 会合部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is intended to obtain a strict toughness in a weld metal of a large-diameter UOE steel pipe, particularly a thick-wall UOE steel pipe manufactured by a large heat input submerged arc welding on the inner and outer surfaces, and a thick large-diameter straight pipe satisfying a strict toughness requirement. The present invention relates to a UOE steel pipe and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, undersea pipelines have been required to have a thick wall and strict toughness, reflecting the deepening of oil and gas development, particularly in laying in sea areas exceeding a depth of 2000 m. As the most effective method for securing the toughness of a submerged arc weld metal, welding is performed using a welding material containing Mo, Ti, B, and the like, and is called an acicular ferrite (hereinafter, abbreviated as AF). A method of obtaining a fine weld metal structure is known (for example, see Patent Documents 1 and 2). Ti acts as a nucleation site for AF transformation in the weld metal as TiO 2, and B segregates at the former austenite grain boundary, thereby suppressing the coarsening of the proeutectoid ferrite at the grain boundary.
[0003]
However, in large heat input welding, the addition of Ti-B alone cannot completely prevent the formation of coarse grain boundary ferrite, so it is necessary to add Mo, an element that enhances hardenability, to achieve a uniform and fine structure. There is. Therefore, Mo-Ti-B-based submerged arc welding wires are widely used in seam welds of steel pipes requiring high toughness even at low temperatures.
[0004]
However, when performing single-sided welding on both sides with a Mo-Ti-B welding wire, high toughness is obtained by the fine AF structure in the inner and outer surface weld metal original portions, but the portion reheated by the outer surface welding of the inner surface weld metal. However, there is a problem that toughness deteriorates (reheat embrittlement). As measures against such reheat embrittlement, the weld metal is reduced in oxygen (Patent Document 3), the addition of Mn and Mo is suppressed, and Ni is added instead (Patent Document 4), and the Ceq is limited. Then, a technique of optimizing the rolling conditions (Patent Document 5) is disclosed.
[0005]
Reheat embrittlement is based on the fact that Mo, Nb, V, Ti, etc., which are in solid solution in the as-welded state, are precipitated by reheating, and the formula: PHIW = Mo + 5Ti + 10Nb + 20V + 200 B A method for suppressing reheat embrittlement by setting a parameter PHIW represented by (mass%) to 1.5% by mass or less and 0.165% by mass or less for Pcm (Patent Document 6), Is to generate upper bainite (hereinafter referred to as UB), which is inferior in toughness in the cooling process at the time of reheating, and to reduce the generation of UB, the hardenability of the inner surface weld metal, that is, Pcm is set to the outer surface weld metal. (Patent Document 7) is disclosed.
[0006]
[Patent Document 1]
JP-A-53-63238 [Patent Document 2]
JP-A-53-22137 [Patent Document 3]
JP-A-59-156599 [Patent Document 4]
JP-A-62-34694 [Patent Document 5]
JP-A-61-266126 [Patent Document 6]
JP-A-5-375 [Patent Document 7]
JP-A-9-1344
[Problems to be solved by the invention]
The present inventors have diligently pursued the cause of the reheat embrittlement of the Mo-Ti-B-based weld metal. In an actual joint (welded portion actually constructed), reheating of the inner surface welding metal by outer surface welding is local, and it is difficult to measure the toughness of the reheated portion itself. Therefore, single-sided welding is performed under the heat input conditions and welding wire conditions equivalent to inner surface welding, a test piece of sufficient size to extract a Charpy test piece from the weld metal is cut out, and heat that simulates reheating by outer surface welding is simulated. Cycle was given. As a result of examining the effect of C, Mo, Ti, and B on reheat embrittlement, a conventional alloy composition of Mo-Ti-B-based weld metal can obtain good toughness in the original part, but has a temperature of 900 to 1200 ° C. It was observed that the toughness was remarkably deteriorated in the reheated portion with the temperature range as the highest point.
[0008]
From this, the present inventors interpret the reheat embrittlement mechanism of the conventional weld metal having the Mo-Ti-B composition as follows. The original weld metal has a fine structure mainly composed of AF and exhibits high toughness. However, when reheated to a temperature range of 900 to 1200 ° C., AF transforms to austenite, and during the cooling process, the austenite grain boundary Polygonal ferrite (Polygonal Ferrite: hereinafter referred to as PF) which forms and grows becomes a dominant structure, and as a result, UB and island-like martensite (Martensite-Austenite: hereinafter referred to as MA) are formed between PF grains. It becomes a mixed tissue containing. UB and MA are structures that promote embrittlement, that is, the present inventors consider that their formation is the main cause of reheat embrittlement. Furthermore, the present inventors believe that the amounts of C, Si, Mn, Mo, Ti, and B in the weld metal, particularly Mo and B, have a great influence on the formation of the MA structure in the reheat portion.
[0009]
The present invention is directed to a thick UOE steel pipe having a thickness of 30 mm or more. The seam portion of such a thick steel pipe is constructed in a double-sided, one-layer submerged welding process, but the welding metal has a large heat input, so that the cooling rate of the weld metal is reduced. Therefore, in order to obtain a fine AF structure in the weld metal original portion, it is necessary to limit the amounts of Mo and B to be added, as compared with a weld metal having a plate thickness of less than 30 mm. In the double-sided, single-layer submerged welding process, the amount of Mo and B can be increased relatively easily because the weld metal on the outer surface applied after the inner surface is not reheated.
[0010]
On the other hand, in the inner surface weld metal which is reheated by outer surface welding, Mo and B have a great effect on reheat embrittlement. An amount that does not become excessive must be selected in order to suppress embrittlement of the hot part. In particular, the reheat embrittlement region in the inner surface weld metal is enlarged by the outer surface welding with a large heat input. Therefore, the route that must include the reheat embrittlement portion of the inner surface weld metal, the definition of not only the absorbed energy (vE) but also the ductile fracture surface area (SA) in the Charpy impact test at the inner surface position is being generalized. Some consumers have demanded a minimum of 40% SA at -20 ° C. In order to achieve this, an absorption energy of 120 to 130 J or more is required.
[0011]
In view of such a trend, the present invention can effectively prevent the hottest embrittlement of the inner surface weld metal by outer surface welding in a double-sided, single-layer submerged arc welding method for a thick-walled high toughness UOE steel pipe having a thickness of 30 mm or more. It is an object of the present invention to provide a thick-walled large-diameter straight UOE steel pipe that satisfies strict toughness requirements on both the inner surface and the outer surface together with a manufacturing method thereof by establishing a suitable submerged arc welding technique.
[0012]
[Means for Solving the Problems]
The present invention that has achieved the above object is a thick-walled large-diameter straight UOE steel pipe having a base material having a thickness of 30 mm or more and having a welded portion on each of an inner surface and an outer surface having an inner surface formed first at one location in the circumferential direction of the tube. And
The composition of the base material is% by mass, including C: 0.10% or less, Si: 0.5% or less, Mn: 2.0% or less, P: 0.020% or less, and S: 0.0020% or less. Further, Cu: 0.5% or less, Cr: 0.5% or less, Ni: 0.5% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.05% or less, Ti: 0.1% or less, B: One or more kinds selected from 0.0030% or less, the balance being Fe and unavoidable impurities,
The composition of the weld metal on the inner surface side is% by mass, C: 0.08% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0.5% or less. 50% or less, Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.045% or less, Ti: 0.005 to 0.030%, B: 0 0.0005 to 0.0015%, N: 0.0080% or less, O: 0.035% or less, the balance being Fe and unavoidable impurities, and Pcm represented by the following formula being 0.120 to 0. 180%,
The composition of the weld metal on the outer surface side is% by mass, C: 0.10% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0. 50% or less, Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.1 to 0.4%, Ti: 0.005 to 0.050%, B: 0.0005% to 0.0060%, N: 0.0080% or less, O: 0.035% or less, the balance being Fe and inevitable impurities, and Pcm represented by the following formula is 0.140. It is a thick, large-diameter straight UOE steel pipe satisfying strict toughness requirements, characterized by being 0.200% or less.
[0013]
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B
In the formula, C, Si, Mn, Cu, Cr, Ni, Mo, V, and B represent mass% of each element.
Further, the present invention provides a thick-walled large-diameter UOE steel pipe comprising a step of joining a peripheral end butted portion of a UO-processed steel material having a plate thickness of 30 mm or more by submerged arc welding of inner and outer inner layers one by one by submerged arc welding. In the manufacturing method of
As the UO processed steel material (corresponding to the base material of the UOE steel pipe of the present invention), in mass%, C: 0.10% or less, Si: 0.5% or less, Mn: 2.0% or less, P : Not more than 0.020%, S: not more than 0.0020%, Cu: not more than 0.5%, Cr: not more than 0.5%, Ni: not more than 0.5%, Nb: not more than 0.07%, V: 0.07% or less, Mo: 0.05% or less, Ti: 0.1% or less, B: One or more kinds selected from 0.0030% or less, with the balance Fe and inevitable Using a composition consisting of impurities,
On the inner surface side, in mass%, C: 0.08% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0.50% or less , Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.045% or less, Ti: 0.005 to 0.030%, B: 0.0005 to 0.0005% 0.0015%, N: 0.0080% or less, O: 0.035% or less, the balance being Fe and unavoidable impurities, and the Pcm represented by the following formula is reduced to 0.120 to 0.180%. A weld metal of the composition
On the outer surface side, in mass%, C: 0.10% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0.50% or less , Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.1 to 0.4%, Ti: 0.005 to 0.050%, B: 0 0.0005% to 0.0060%, N: 0.0080% or less, O: 0.035% or less, the balance is composed of Fe and inevitable impurities, and Pcm represented by the following formula is 0.140 to 0. The above-mentioned submerged arc welding is performed using a welding material selected so as to form a weld metal having a composition of 200%. A method for manufacturing a thick-wall large-diameter straight UOE steel pipe satisfying strict toughness requirements. is there.
[0014]
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B
In the formula, C, Si, Mn, Cu, Cr, Ni, Mo, V, and B represent mass% of each element.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the chemical components of the base material in the UOE steel pipe according to the present invention will be described.
C: An element that has a very large effect on the strength and toughness of the base material. If it exceeds 0.10%, the toughness and ductility are adversely affected. In addition, Preferably, it is 0.03-0.08%.
[0016]
Si: Si is an element that is inevitably included in the process of deoxidizing steel, but if present in excessive steel, the toughness of the HAZ (heat affected zone) is deteriorated. It is. Preferably, the content is 0.1 to 0.4%.
Mn: a very important element that simultaneously improves the strength and toughness of the base material, but if it exceeds 2.0%, the segregation or the like adversely affects the steel material, so the upper limit was made 2.0%. Incidentally, the content is preferably 1.0 to 2.0%.
[0017]
P, S: P and S are elements that promote center segregation and are desirably low. The upper limits are 0.020% and 0.0020%, respectively.
Cu: an element necessary for securing the strength of the base material, but if the content exceeds 0.5%, the base material and the HAZ portion are hardened, so the upper limit is 0.5%.
Cr: an element necessary for securing the strength of the base material, but if contained in excess of 0.5%, the toughness of the HAZ portion is deteriorated, so 0.5% was made the upper limit.
[0018]
Ni: an element for improving the strength and toughness of the base material. However, if the content exceeds 0.5%, the HAZ portion is hardened, so the upper limit is 0.5%.
Nb, V: Nb and V are added to secure the strength and toughness of the base material and the HAZ portion. However, if both Nb and V exceed 0.07%, the toughness is adversely affected. V was set to 0.07% or less. Preferably, Nb: 0.02 to 0.06% and V: 0.06% or less.
[0019]
Mo: is an element necessary for securing the strength of the base material, but if contained in excess of 0.05%, the HAZ portion is hardened, so the upper limit was 0.05%.
Ti: Ti is an element necessary for ensuring the toughness of the base material. However, if contained in excess of 0.1%, the toughness of the base material is adversely deteriorated, so the upper limit is set to 0.1%. Incidentally, the content is preferably 0.005 to 0.03%.
[0020]
B: B has the effect of segregating at austenite grain boundaries during rolling to increase hardenability, but if it exceeds 0.0030%, the toughness of the HAZ portion is deteriorated, so the upper limit was made 0.0030%. . Preferably, it is 0.0005% or less.
The reasons for limiting the component composition of the weld metal are as follows.
C: C is a high quench hardening component, and an increase in the content causes carbides and martensite to be generated, resulting in a decrease in toughness. Therefore, the content needs to be 0.08% or less on the inner surface and 0.10% or less on the outer surface. Preferably, it is 0.03-0.07% on the inner surface and 0.03-0.08% on the outer surface.
[0021]
Si: Si is added as a deoxidizing agent, but at the same time, since it is a hardenable component, if it is added excessively, UB is formed and the toughness is reduced. Preferably, both the inner and outer surfaces are 0.1 to 0.4%.
Mn: Mn is necessary as a deoxidizing agent and a hardenable component, but the effect is poor when the content is less than 0.8% on both the inner surface and the outer surface. On the other hand, when the content exceeds 1.8%, UB is formed and the toughness is reduced. Therefore, the content was set to 0.8 to 1.8%.
[0022]
Cu: Cu is a hardenable component and is a component mixed from the base metal dilution and the plating of the wire. However, if the content exceeds 0.50% on both the inner surface and the outer surface, the hardenability becomes excessive and the toughness is impaired. The upper limit was 0.50%.
Cr: Cr is a hardenable component and is contained by dilution of the base material. However, if the content exceeds 0.50% on both the inner and outer surfaces, the hardenability becomes excessive and the toughness is impaired, so the upper limit is 0.50%. And
[0023]
Ni: Ni is a hardenable component and is contained by dilution of the base material. However, if the content exceeds 0.50% on both the inner and outer surfaces, the hardenability becomes excessive and the toughness is impaired, so the upper limit is 0.50%. And
Nb, V: Nb and V are hardenable components and are contained by dilution of the base material. However, if the content exceeds 0.07% on both the inner surface and the outer surface, the hardenability becomes excessive and the toughness is impaired. The upper limit of V was 0.07%. Preferably, both the inner surface and the outer surface are Nb: 0.02 to 0.06% and V: 0.06% or less.
[0024]
Mo: Mo is a hardenable component, which refines the structure and improves the toughness in the original weld metal part, but promotes the formation of UB and MA in the reheated part and lowers the toughness. Therefore, it must be suppressed to 0.045% or less on the inner surface. On the other hand, at least 0.1% is required on the outer surface to improve toughness by refining the structure, but if added over 0.4%, hardenability becomes excessive and martensitic structure occurs, impairing toughness. 0.1 to 0.4%.
[0025]
Ti: Ti forms fine ferrite to improve toughness. However, if the content is less than 0.005% on both the inner surface and the outer surface, this effect is poor, so at least 0.005% is required. On the other hand, if the content exceeds 0.030% on the inner surface and more than 0.050% on the outer surface, solid solution Ti increases and the toughness decreases due to precipitation of carbides and nitrides. Therefore, the inner surface is set to 0.005 to 0.030%, and the outer surface is set to 0.005 to 0.050%.
[0026]
B: B is a high quench hardening component and forms fine AF in the original weld metal due to a synergistic effect with Ti to improve toughness. However, if both the inner and outer surfaces are less than 0.0005%, this effect is poor. . On the other hand, the reheat portion promotes the formation of UB and MA, and lowers the toughness. Therefore, on the inner surface, the content needs to be suppressed to 0.0015% or less. On the other hand, if the content exceeds 0.0060% on the outer surface, martensite is formed in the raw material part and the toughness is reduced, so the upper limit was made 0.0060%.
[0027]
N: N is a component inevitably contained in the weld metal. However, since B is nitrided to promote the formation of grain boundary ferrite and reduce the toughness, it is necessary to make the inner and outer surfaces 0.0080% or less. There is.
O: O is a component inevitably contained in the weld metal, but if both the inner surface and the outer surface exceed 0.035%, the toughness decreases due to the increase in inclusions in the weld metal, so the upper limit is 0.035%. And
[0028]
Pcm: Pcm indicates the hardenability of the entire composition of the weld metal. If the hardenability is insufficient, pro-eutectoid ferrite precipitates and the toughness deteriorates. In order to obtain the toughness of the raw material portion without considering reheat embrittlement, 0.140% or more is required. Therefore, the lower limit on the outer surface is set to 0.140%. On the other hand, it is necessary to consider the balance between the inner surface and the portion reheated by the outer surface welding. On the other hand, if it exceeds 0.200%, the hardenability becomes excessive, so that the toughness is deteriorated even in the original part. Therefore, the upper limit of the outer surface is set to 0.200%. Further, if it exceeds 0.180%, UB and MA precipitate in the reheated portion, and the toughness is deteriorated. Therefore, the upper limit is set to 0.180% on the inner surface.
[0029]
In order to manufacture the UOE steel pipe of the present invention, a UO-processed steel material having a thickness of 30 mm or more, which is a base material joined by inner and outer surface single-layer submerged arc welding, having a base material composition of the present invention, The inner and outer welding materials (wire and / or flux) used for the submerged arc welding may be selected so that the inner and outer weld metal compositions fall within the scope of the present invention, respectively.
[0030]
【Example】
When the pipes PA and PB of the API standard X65 class UO pipes PA and PB having the chemical composition and plate thickness shown in Table 1 are joined at the peripheral ends by submerged arc welding of the inner and outer surfaces one by one on the inner surface side to form a welded pipe. The welding material used for the inner surface and the outer surface was variously changed, and welding was performed under the same welding conditions to produce a steel pipe equivalent to the present invention and a steel pipe equivalent to the comparative example deviating from the present invention, and their toughness was compared. In this comparative test, a submerged arc welding was performed using a combination of a molten flux having a chemical composition shown in Table 2 and a wire having a chemical composition shown in Table 3 on one side of each of the four electrodes. The welding conditions for each plate thickness in this case are as shown in Table 4, and the groove shape is as shown in FIG. Table 5 shows the combinations of the base materials and the wires of the respective electrodes in the examples and comparative examples.
[0031]
[Table 1]
Figure 2004143556
[0032]
[Table 2]
Figure 2004143556
[0033]
[Table 3]
Figure 2004143556
[0034]
[Table 4]
Figure 2004143556
[0035]
[Table 5]
Figure 2004143556
[0036]
After the welding is completed, as shown in FIG. 2, the outer surface position of the welded joint (a: a position 2 mm deep from the outer surface of the base material 1), the inner surface position (b: a position 2 mm deep from the inner surface of the base material 1), the root position ( c: A 10 mm × 10 mm size Charpy impact test piece 4 was sampled from each of the test piece center lines 6 passing through the associated portion 7) and subjected to a Charpy impact test according to JIS Z2242. Table 6 shows the chemical composition of the weld metal. The results of the impact test based on the samples taken from the outer surface, the inner surface, and the route are shown in Table 7.
[0037]
[Table 6]
Figure 2004143556
[0038]
[Table 7]
Figure 2004143556
[0039]
As is clear from Table 7, in the weld metal of the steel pipe equivalent to the present invention, both the inner surface that is reheated by the outer surface and the outer surface that is not reheated from anywhere show high toughness. In addition, in changing the composition and Pcm of the weld metal on the inner surface and the outer surface, in the present embodiment, various combinations of welding wires having different compositions were used for the 1, 2, 3, and 4 electrodes (see Table 1). 5).
[0040]
【The invention's effect】
According to the present invention, the chemical composition of the base material of the high-toughness UOE steel pipe for low temperature and the chemical composition of the inner surface and the outer surface weld metal formed by single-sided, single-layer submerged arc welding are separately limited, so that both the inner and outer surfaces are excellent. A thick large-diameter straight UOE steel pipe satisfying strict toughness requirements having low-temperature toughness can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a groove shape (a: plate thickness: 31.4 mm, b: plate thickness: 31.8 mm) in an example.
FIG. 2 is a cross-sectional view showing a Charpy impact test piece sampling position in an example.
[Explanation of symbols]
Reference Signs List 1 base metal 2 inner surface weld metal 3 outer surface weld metal 4 Charpy impact test specimen 5 notch 6 test specimen center line 7

Claims (2)

母材の板厚が30mm以上で、管周方向の1個所に内面側が先に形成された内外面1層ずつの溶接部を有する厚肉大径ストレートUOE鋼管であって、
母材の組成が質量%で、C:0.10%以下、Si:0.5 %以下、Mn:2.0 %以下、P:0.020 %以下、S:0.0020%以下を含み、さらにCu:0.5 %以下、Cr:0.5 %以下、Ni:0.5 %以下、Nb:0.07%以下、V:0.07%以下、Mo:0.05%以下、Ti:0.1 %以下、B:0.0030%以下のうちから選ばれる1種又は2種以上を含み、残部Fe及び不可避的不純物からなり、
内面側の溶接金属組成が質量%で、C:0.08%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.045 %以下、Ti:0.005 〜0.030 %、B:0.0005〜0.0015%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.120 〜0.180 %であり、
外面側の溶接金属組成が質量%で、C:0.10%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.1 〜0.4 %、Ti:0.005 〜0.050 %、B:0.0005〜0.0060%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.140 〜0.200 %であることを特徴とする厳格靭性要求を満たす厚肉大径ストレートUOE鋼管。

Pcm=C+Si/30 +(Mn+Cu+Cr)/20 +Ni/60 +Mo/15 +V/10 +5B
ただし、式中C、Si、Mn、Cu、Cr、Ni、Mo、V、Bはそれぞれの元素の質量%を表す。
A thick large-diameter straight UOE steel pipe having a base material having a thickness of 30 mm or more and having a welded portion on each of the inner and outer surfaces each having an inner surface formed first at one location in the circumferential direction of the tube,
The composition of the base material is% by mass, including C: 0.10% or less, Si: 0.5% or less, Mn: 2.0% or less, P: 0.020% or less, and S: 0.0020% or less. Further, Cu: 0.5% or less, Cr: 0.5% or less, Ni: 0.5% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.05% or less, Ti: 0.1% or less, B: One or more kinds selected from 0.0030% or less, the balance being Fe and unavoidable impurities,
The composition of the weld metal on the inner surface side is% by mass, C: 0.08% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0.5% or less. 50% or less, Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.045% or less, Ti: 0.005 to 0.030%, B: 0 0.0005 to 0.0015%, N: 0.0080% or less, O: 0.035% or less, the balance being Fe and unavoidable impurities, and Pcm represented by the following formula being 0.120 to 0. 180%,
The composition of the weld metal on the outer surface side is% by mass, C: 0.10% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0. 50% or less, Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.1 to 0.4%, Ti: 0.005 to 0.050%, B: 0.0005% to 0.0060%, N: 0.0080% or less, O: 0.035% or less, the balance being Fe and inevitable impurities, and Pcm represented by the following formula is 0.140. Thick large-diameter straight UOE steel pipe satisfying strict toughness requirements characterized by being 0.200% or less.
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B
In the formula, C, Si, Mn, Cu, Cr, Ni, Mo, V, and B represent mass% of each element.
板厚30mm以上のUO加工鋼材の周端突合せ部を内面側先行の内外面1層ずつのサブマージドアーク溶接により接合して造管する工程を有する厚肉大径UOE鋼管の製造方法において、
前記UO加工鋼材として、質量%で、C:0.10%以下、Si:0.5 %以下、Mn:2.0 %以下、P:0.020 %以下、S:0.0020%以下を含み、さらにCu:0.5 %以下、Cr:0.5 %以下、Ni:0.5 %以下、Nb:0.07%以下、V:0.07%以下、Mo:0.05%以下、Ti:0.1 %以下、B:0.0030%以下のうちから選ばれる1 種又は2種以上を含み、残部Fe及び不可避的不純物からなる組成のものを用い、
内面側には質量%で、C:0.08%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.045 %以下、Ti:0.005 〜0.030 %、B:0.0005〜0.0015%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.120 〜0.180 %になる組成の溶接金属が形成され、
外面側には質量%で、C:0.10%以下、Si:0.5 %以下、Mn:0.8 〜1.8 %、Cu:0.50%以下、Cr:0.50%以下、Ni:0.50%以下、Nb:0.07%以下、V:0.07%以下、Mo:0.1 〜0.4 %、Ti:0.005 〜0.050 %、B:0.0005〜0.0060%、N:0.0080%以下、O:0.035 %以下を含み、残部Fe及び不可避的不純物からなり、かつ下記式で表されるPcmが0.140 〜0.200 %になる組成の溶接金属が形成されるように選定した溶接材料を用いて前記サブマージドアーク溶接を施工することを特徴とする厳格靭性要求を満たす厚肉大径ストレートUOE鋼管の製造方法。

Pcm=C+Si/30 +(Mn+Cu+Cr)/20 +Ni/60 +Mo/15 +V/10 +5B
ただし、式中C、Si、Mn、Cu、Cr、Ni、Mo、V、Bはそれぞれの元素の質量%を表す。
A method for manufacturing a thick-wall large-diameter UOE steel pipe, comprising a step of joining a peripheral end butt portion of a UO-processed steel material having a thickness of 30 mm or more by submerged arc welding of inner and outer inner layers one by one by submerged arc welding to form a pipe.
As the UO processed steel material, in mass%, C: 0.10% or less, Si: 0.5% or less, Mn: 2.0% or less, P: 0.020% or less, S: 0.0020% or less. Further, Cu: 0.5% or less, Cr: 0.5% or less, Ni: 0.5% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.05% or less , Ti: 0.1% or less, B: 0.0030% or less, the composition containing one or more kinds and the balance being Fe and unavoidable impurities,
On the inner surface side, in mass%, C: 0.08% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0.50% or less , Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.045% or less, Ti: 0.005 to 0.030%, B: 0.0005 to 0.0005% 0.0015%, N: 0.0080% or less, O: 0.035% or less, the balance being Fe and unavoidable impurities, and the Pcm represented by the following formula is reduced to 0.120 to 0.180%. A weld metal of the composition
On the outer surface side, in mass%, C: 0.10% or less, Si: 0.5% or less, Mn: 0.8 to 1.8%, Cu: 0.50% or less, Cr: 0.50% or less , Ni: 0.50% or less, Nb: 0.07% or less, V: 0.07% or less, Mo: 0.1 to 0.4%, Ti: 0.005 to 0.050%, B: 0 0.0005% to 0.0060%, N: 0.0080% or less, O: 0.035% or less, the balance is composed of Fe and inevitable impurities, and Pcm represented by the following formula is 0.140 to 0. A method for producing a thick-wall, large-diameter straight UOE steel pipe satisfying strict toughness requirements, wherein said submerged arc welding is performed using a welding material selected to form a weld metal having a composition of 200%.
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B
In the formula, C, Si, Mn, Cu, Cr, Ni, Mo, V, and B represent mass% of each element.
JP2002311629A 2002-10-25 2002-10-25 Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method Expired - Lifetime JP4016800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311629A JP4016800B2 (en) 2002-10-25 2002-10-25 Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311629A JP4016800B2 (en) 2002-10-25 2002-10-25 Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004143556A true JP2004143556A (en) 2004-05-20
JP4016800B2 JP4016800B2 (en) 2007-12-05

Family

ID=32456795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311629A Expired - Lifetime JP4016800B2 (en) 2002-10-25 2002-10-25 Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4016800B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307566A (en) * 2006-05-16 2007-11-29 Jfe Steel Kk Method for producing electric resistance welded tube for high-strength thick line pipe having excellent weld zone toughness
JP2008056961A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk HIGH STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH OF 760 MPa OR MORE AND HAVING EXCELLENT TOUGHNESS IN WELDING HEAT-AFFECTED ZONE, AND MANUFACTURING METHOD THEREFOR
JP2013049896A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone toughness and method for manufacturing the same
JP2013049895A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone low-temperature toughness and method for manufacturing the same
WO2013073565A1 (en) 2011-11-15 2013-05-23 新日鐵住金株式会社 Method for high-efficiency welding of thick steel plate
JP2013119658A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
JP2013119657A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
CN104690402A (en) * 2014-10-22 2015-06-10 江苏科技大学 Back chipping-free butt plate submerged-arc welding method
EP2264203A4 (en) * 2008-03-26 2016-06-01 Nippon Steel & Sumitomo Metal Corp High-strength uoe steel pipe excellent in earthquake-proof performance and in low-temperature toughness of weld heat-affected zone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561776B (en) * 2013-10-23 2018-01-16 明安国际企业股份有限公司 The stainless steel component alloy of glof club head

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307566A (en) * 2006-05-16 2007-11-29 Jfe Steel Kk Method for producing electric resistance welded tube for high-strength thick line pipe having excellent weld zone toughness
JP2008056961A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk HIGH STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH OF 760 MPa OR MORE AND HAVING EXCELLENT TOUGHNESS IN WELDING HEAT-AFFECTED ZONE, AND MANUFACTURING METHOD THEREFOR
EP2264203A4 (en) * 2008-03-26 2016-06-01 Nippon Steel & Sumitomo Metal Corp High-strength uoe steel pipe excellent in earthquake-proof performance and in low-temperature toughness of weld heat-affected zone
JP2013049896A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone toughness and method for manufacturing the same
JP2013049895A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone low-temperature toughness and method for manufacturing the same
WO2013073565A1 (en) 2011-11-15 2013-05-23 新日鐵住金株式会社 Method for high-efficiency welding of thick steel plate
JP2013119658A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
JP2013119657A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
CN104690402A (en) * 2014-10-22 2015-06-10 江苏科技大学 Back chipping-free butt plate submerged-arc welding method
CN104690402B (en) * 2014-10-22 2016-08-17 江苏科技大学 A kind of buttcover plate submerged-arc welding method exempting from back chipping

Also Published As

Publication number Publication date
JP4016800B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
EP0867520B1 (en) Welded high-strength steel structures and methods of manufacturing the same
JP5776860B1 (en) Steel plates and line pipes for thick-walled high-strength line pipes with excellent sour resistance, crush resistance and low temperature toughness
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
WO2010090349A1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP2004052104A (en) High-strength steel excellent in low temperature toughness and toughness at weld heat affected zone, method for producing the same and method for producing high-strength steel pipe
JP2003138340A (en) Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2009149917A (en) Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
WO2018185851A1 (en) Vertical-seam-welded steel pipe
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
WO2013051249A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP2001355039A (en) Ultrahigh strength steel tube excellent in low temperature toughness of weld zone and its production method
JP2009091653A (en) High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP2009202167A (en) Welded steel pipe having excellent weld heat-affected zone toughness
JP4016800B2 (en) Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method
JP2002115032A (en) Ultrahigh strength steel pipe having seam weld zone with excellent cold-crack resistance, and its manufacturing method
JP3814112B2 (en) Super high strength steel pipe excellent in low temperature toughness of seam welded portion and manufacturing method thereof
JP4631414B2 (en) High tough, thick welded steel pipe with excellent sour resistance
JP2004099930A (en) High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP4280222B2 (en) Ultra-high-strength steel sheet and ultra-high-strength steel pipe excellent in pipeline deformation characteristics and low-temperature toughness, and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4016800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term