JP2013119658A - HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE - Google Patents

HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE Download PDF

Info

Publication number
JP2013119658A
JP2013119658A JP2011268639A JP2011268639A JP2013119658A JP 2013119658 A JP2013119658 A JP 2013119658A JP 2011268639 A JP2011268639 A JP 2011268639A JP 2011268639 A JP2011268639 A JP 2011268639A JP 2013119658 A JP2013119658 A JP 2013119658A
Authority
JP
Japan
Prior art keywords
less
steel pipe
weld metal
welded
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011268639A
Other languages
Japanese (ja)
Other versions
JP5870665B2 (en
Inventor
Mitsuhiro Okatsu
光浩 岡津
Kimihiro Nishimura
公宏 西村
Jiro Nakamichi
治郎 仲道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011268639A priority Critical patent/JP5870665B2/en
Publication of JP2013119658A publication Critical patent/JP2013119658A/en
Application granted granted Critical
Publication of JP5870665B2 publication Critical patent/JP5870665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength welded steel pipe excellent in HIC (Hydrogen Induced Cracking) resistance and SSC (Sulfide Stress corrosion Cracking) resistance, particularly, SSC resistance not only in steel pipe but also in circumferential welded part of steel pipes with each other.SOLUTION: The high strength welded steel pipe excellent in sulfide stress corrosion cracking resistance and having a tensile strength of 600 MPa or more satisfies: a CP value, obtained from a specified formula which is a function of a chemical composition of a mother material, of ≤1.1; a Py value, obtained by another formula, of ≤0.175; and a Py value, calculated by a chemical composition of a welded metal, of ≤0.175, wherein the area of an inner surface welded metal portion is 2.5 times or more the area of an outer surface welded metal portion.

Description

本発明は、ISO15156の分類における、Region2環境下(分圧0.01MPa以下の硫化水素ガスを含む、pH4〜5程度の比較的緩やかな腐食環境下)となる天然ガスあるいは原油輸送パイプラインにおいて、鋼管そのもののみならず、鋼管同士の円周溶接部においても耐硫化物応力腐食割れ性に優れた、引張強度600MPa以上の高強度溶接鋼管に関する。   The present invention is a natural gas or crude oil transportation pipeline that is in a Region 2 environment (including hydrogen sulfide gas having a partial pressure of 0.01 MPa or less and a relatively mild corrosive environment having a pH of about 4 to 5) in the ISO 15156 classification. The present invention relates to a high-strength welded steel pipe having a tensile strength of 600 MPa or more that is excellent in resistance to sulfide stress corrosion cracking not only in the steel pipe itself but also in a circumferential welded portion between the steel pipes.

硫化水素を含む原油や天然ガスの輸送に用いられる溶接鋼管は、強度、靭性、溶接性の他に、耐水素誘起割れ性(水素誘起割れ:ydrogen nduced racking;以下、HICと略す)や、耐硫化物応力腐食割れ性(硫化物応力腐食割れ:ulfide tress Corrosion racking;以下、SSCと略す。)などのいわゆる耐サワー性が必要とされる。 Welded pipes used for transportation of crude oil and natural gas containing hydrogen sulfide, strength, toughness, in addition to weldability, resistance to hydrogen-induced cracking resistance (hydrogen induced cracking: H ydrogen I nduced C racking; hereinafter, abbreviated as HIC) and, resistance to sulfide stress corrosion cracking (sulfide stress corrosion cracking:. S ulfide S tress corrosion C racking; hereinafter abbreviated as SSC) so-called sour resistance is required, such as.

HICは、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物のまわりに拡散・集積し、その内圧により割れを生じるものとされている。HICを防止する技術としては、CaやCeをS量に対して適量添加することにより、応力集中の大きい形態(例えば針状、板状)のMnSの生成を抑制し、応力集中の小さい微細分散した球状介在物に形態を変えて割れの発生を抑制する方法(例えば特許文献1)や、偏析傾向の高い元素(C、Mn、P等)の低減、さらに偏析部の硬さ上限を規定する方法(例えば特許文献2、特許文献3)が知られている。   In HIC, hydrogen ions from the corrosion reaction are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, diffuse and accumulate around non-metallic inclusions such as MnS in the steel, and cracks are generated by the internal pressure. It is supposed to be. As a technique for preventing HIC, by adding an appropriate amount of Ca or Ce to the amount of S, generation of MnS in a form with a large stress concentration (for example, needle-like or plate-like) is suppressed, and fine dispersion with a small stress concentration is achieved. A method of suppressing the occurrence of cracks by changing the shape to the spherical inclusions (for example, Patent Document 1), reduction of elements with high tendency to segregation (C, Mn, P, etc.), and further specifying the upper limit of hardness of the segregation part Methods (for example, Patent Document 2 and Patent Document 3) are known.

一方、SSCは鋼管に内圧がかかっている状態で、腐食環境に面する側の鋼管表面でHICと同じく腐食反応による水素イオンが鋼管表面に吸着し、原子状の水素として鋼内部に侵入し水素脆化を起こしたものと考えられている。SSC感受性は、鋼の硬さと強い相関があり、ISO 15156には硫化水素腐食環境下ごとにSSCを防止するための硬さの上限が規定されている。このことから、少なくとも鋼管表面部の硬さを低減することが必要で、鋼管の要求強度レベルが上がるほど、その両立が難しい。この問題を解決するため、鋼管母材の製造工程において、高強度化のために加速冷却を行った後、直ちに誘導加熱により鋼板表層部のみを加熱・焼戻をする方法(例えば特許文献4)が知られている。   On the other hand, in the SSC, when the internal pressure is applied to the steel pipe, hydrogen ions from the corrosion reaction are adsorbed on the surface of the steel pipe facing the corrosive environment, like the HIC, and enter the steel as atomic hydrogen. It is thought that embrittlement occurred. SSC sensitivity has a strong correlation with the hardness of steel, and ISO 15156 defines an upper limit of hardness for preventing SSC in each hydrogen sulfide corrosive environment. For this reason, it is necessary to reduce at least the hardness of the surface portion of the steel pipe, and the higher the required strength level of the steel pipe, the more difficult it is to achieve both. In order to solve this problem, a method of heating and tempering only the steel sheet surface layer portion by induction heating immediately after performing accelerated cooling to increase the strength in the manufacturing process of the steel pipe base material (for example, Patent Document 4) It has been known.

しかしながら、天然ガスまたは原油輸送パイプラインは厚肉・大径のため、厚鋼板を管状に成形後、溶接して製造する溶接鋼管が一般的であり、その溶接部についてもSSCを防止するため、高強度化と硬さの低減を両立させる必要があるが、上述のいずれの技術にも溶接鋼管の溶接部の耐SSC性の改善については開示されていない。加えて、図1に示す溶接鋼管同士をつなぐ円周溶接部においては、鋼管母材の円周溶接によるHAZ、鋼管溶接金属部の円周溶接によるHAZが形成され、特に鋼管溶接金属部に形成されるHAZの硬化が著しいことが知られており、鋼管本体のみならず、円周溶接部でのSSC防止は極めて難しい。なお、HAZとは、溶接による熱影響部(eat ffected one)の略である。 However, because natural gas or crude oil transportation pipelines are thick and large in diameter, welded steel pipes that are manufactured by welding thick steel plates into tubes and then welded are common, and in order to prevent SSC also at the welds, Although it is necessary to achieve both high strength and low hardness, none of the above-described techniques disclose an improvement in the SSC resistance of the welded portion of the welded steel pipe. In addition, in the circumferential welded portion that connects the welded steel pipes shown in FIG. 1, HAZ is formed by circumferential welding of the steel pipe base material, and HAZ is produced by circumferential welding of the steel pipe welded metal part, particularly formed in the steel pipe welded metal part. It is known that the hardening of the HAZ is remarkable, and it is extremely difficult to prevent SSC not only in the steel pipe body but also in the circumferential welded portion. Note that the HAZ, is substantially of the heat-affected zone by welding (H eat A ffected Z one) .

特開昭54−110119号公報Japanese Patent Laid-Open No. 54-110119 特開昭52−111815号公報JP-A-52-111815 特開2009−133005号公報JP 2009-133005 A 特開2002−327212号公報JP 2002-327212 A

本発明は、上記事情に鑑みなされたもので、耐HICおよび耐SSC、特に鋼管のみならず鋼管同士の円周溶接部においても耐SSCに優れた高強度鋼管を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-strength steel pipe excellent in SIC resistance not only in HIC resistance and SSC resistance, particularly in a circumferential welded portion between steel pipes.

本発明者らは、まず円周溶接部の耐SSC性に影響すると考えられる、鋼管母材(以下、単に「母材」または「母材部」と称することもある。)および鋼管溶接金属(以下、単に「溶接金属」または「溶接金属部」と称することもある。)それぞれのHAZ硬さの挙動を既存の溶接鋼管(以下、単に「鋼管」と称することもある。)を用い調査した。種々の鋼管母材の化学成分、鋼管溶接金属の化学成分の異なる溶接鋼管から母材部、溶接部の試料を採取し、図2(a)、(b)に示す要領で、母材部および内面溶接金属部に対して、円周溶接を模擬した炭酸ガスアーク溶接ビードを試料表面に溶接(ead late;以下、「BOP」と略す。)し、ビード長手中央部でビードに直角に試料を切断し、切断面を鏡面研磨後、溶接部マクロ組織が見えるように腐食してから、JIS Z3101に準拠して、溶接熱影響部(HAZ)の最高硬さをビッカース硬さ試験方法(JIS Z2244)で測定した。 First, the present inventors consider a steel pipe base material (hereinafter sometimes simply referred to as “base material” or “base material part”) and a steel pipe weld metal (which may be considered to affect the SSC resistance of the circumferential welded part). Hereinafter, it may be simply referred to as “welded metal” or “welded metal part.”) The behavior of each HAZ hardness was investigated using an existing welded steel pipe (hereinafter sometimes simply referred to as “steel pipe”). . Samples of the base metal part and the welded part are collected from the welded steel pipes having different chemical components of the steel pipe base metal and the chemical composition of the steel pipe weld metal, and in the manner shown in FIGS. 2 (a) and 2 (b), the base metal part and the inner surface weld metal, weld carbonate gas arc weld bead simulating the circumferential welding on the surface of the sample (B ead O n P late; . hereinafter, abbreviated as "BOP"), and perpendicular to the bead in the bead longitudinal central portion After the sample is cut, the cut surface is mirror-polished and then corroded so that the welded portion macrostructure can be seen, and the maximum hardness of the weld heat affected zone (HAZ) is determined according to JIS Z3101 by the Vickers hardness test method. It measured by (JIS Z2244).

このようにして得られた円周溶接を模擬したBOPのHAZの硬さについて、鋼の化学成分で重回帰整理を行ったところ、式(2):Py=C+Si/30+Mn/20+(Cu+Cr)/20+Ni/60+Mo/7+V/10+5×Bで計算されるPy値で、円周溶接による母材部のHAZ硬さ、内面溶接金属部のHAZ硬さが共に精度よく整理されることを見出した。ここで、各元素記号は質量%で、含有していない場合には0とする。
図2(c)にPyと円周溶接模擬BOP部硬さHvの関係図を示す。ここで、母材部のHAZ(図中「母材HAZ」)とは、図2(b)の炭酸ガスアーク溶接ビード(BOP)によって再熱された、BOP下に位置する母材の熱影響部をいい、溶接金属部のHAZ(図中「溶接金属部HAZ」)とは、図2(a)の炭酸ガスアーク溶接ビード(BOP)によって再熱された,BOP下に位置する鋼管内面溶接金属の熱影響部をいう。
The hardness of the BOP HAZ simulating the circumferential welding thus obtained was subjected to multiple regression arrangement with the chemical components of the steel. The formula (2): Py = C + Si / 30 + Mn / 20 + (Cu + Cr) / The Py value calculated by 20 + Ni / 60 + Mo / 7 + V / 10 + 5 × B was found to accurately arrange the HAZ hardness of the base metal part and the HAZ hardness of the inner surface weld metal part by circumferential welding. Here, each element symbol is mass%, and is 0 when not contained.
FIG. 2 (c) shows a relationship diagram between Py and circumferential welding simulated BOP part hardness Hv. Here, the HAZ of the base metal part (“base metal HAZ” in the figure) is the heat-affected part of the base material located under the BOP reheated by the carbon dioxide arc welding bead (BOP) of FIG. The HAZ of the weld metal part (“weld metal part HAZ” in the figure) is the steel pipe inner surface weld metal located under the BOP reheated by the carbon dioxide arc weld bead (BOP) in FIG. Refers to the heat affected zone.

次に、発明者らは、引張強度610MPaを有する、主な化学成分が質量%で0.05%C−0.30%Si−1.30%Mn−0.045%Nb−0.01%Ti−0.002%Ca−0.19%Moの板厚20mmの厚鋼板を母材として、溶接鋼管の内外面1層サブマージアーク溶接を模擬した溶接継手を作製し、継手引張試験を行って鋼管継手部強度に及ぼす溶接金属化学成分の影響を調査した。なお、サブマージアーク溶接は、内外面とも溶接入熱量を4.2kJ/mmとし、図3(a)に示す溶接部断面マクロ写真のように溶着量がほぼ同一となるよう調整した。   Next, the inventors have a tensile strength of 610 MPa, and the main chemical component is 0.05% C-0.30% Si-1.30% Mn-0.045% Nb-0.01% in mass%. Using a steel plate with a thickness of 20 mm of Ti-0.002% Ca-0.19% Mo as a base material, a welded joint simulating inner and outer surface single-layer submerged arc welding of a welded steel pipe was prepared, and a joint tensile test was performed. The effect of weld metal chemical composition on steel pipe joint strength was investigated. In the submerged arc welding, the welding heat input amount was set to 4.2 kJ / mm on both the inner and outer surfaces, and the welding amount was adjusted to be substantially the same as shown in the macro photograph of the welded portion cross section shown in FIG.

ここで、溶接入熱量は、下記の式(3)により定義される。
溶接入熱量(kJ/mm)=60×溶接電流(A)×溶接電圧(V)÷溶接速度(mm/分)・・・式(3)
本発明では、特に言及しない場合は、溶接入熱または溶接入熱量の用語はここで定義された式による溶接入熱量を意味するものとする。
Here, the welding heat input is defined by the following equation (3).
Weld heat input (kJ / mm) = 60 × welding current (A) × welding voltage (V) ÷ welding speed (mm / min) (3)
In the present invention, unless otherwise specified, the term "welding heat input" or "welding heat input" means welding input heat according to the formula defined here.

その結果、内外面とも同一の溶接材料を用いて同じ溶接金属化学成分とした場合には、継手強度を600MPa以上とするためには溶接金属の化学組成で計算される式(2)のPy値を0.19以上とする必要があり、そのようなPy値で溶接鋼管の溶接部を設計した場合には、円周溶接部でHAZ硬さがビッカース硬さで280Hvを超え、ISO 15156の分類における、Region2環境下での耐SSC性を満足できないことが予測される。   As a result, when the same weld material is used for the inner and outer surfaces and the same weld metal chemical composition is used, the Py value of the formula (2) calculated by the chemical composition of the weld metal in order to make the joint strength 600 MPa or more. When the welded portion of the welded steel pipe is designed with such a Py value, the HAZ hardness exceeds 280 Hv in the Vickers hardness at the circumferential welded portion, and the classification of ISO 15156 It is predicted that the SSC resistance in the Region 2 environment cannot be satisfied.

ここで発明者らは実験に用いた溶接継手を鋭意調査し、特に溶接金属部の管厚方向硬さ分布を測定した結果、図4に示すように、必ず内面溶接金属の方が外面溶接金属よりも高い硬さ値を示すことを発見した。このことから、より強度が低いと考えられる外面溶接部が継手断面に占める割合を少なくしていけば、相対的に継手強度が増加するのではないかと考え、溶接の開先形状および溶接電流等の条件を検討し、溶接継手断面における、内面溶接金属部面積と外面溶接金属部面積の比を系統的に変化させた溶接継手を作製し、再度継手引張試験を行った。ここで、継手部断面における内面溶接金属と外面溶接金属の面積の計算は、図5(a)に示すように、会合部を結ぶ線と、表面近傍で余盛部除くように引いた線で囲まれる台形に近似して行った。すなわち、
外面溶接金属面積:So=(w+wo)×ho×1/2
内面溶接金属面積:Si=(w+wi)×hi×1/2
w:会合部を結ぶ線の長さ
wi:内面溶接金属余盛を除いたときの表面側の長さ
hi:wとwiの間隔
wo:外面溶接金属余盛を除いたときの表面側の長さ
ho:wとwoの間隔
また、計算したSiとSoより溶接部断面における、余盛部を除いた内面溶接金属部面積と外面溶接金属部面積の比PSw(「溶着面積比」とも呼ぶ。)は
PSw=Si/So={(w+wi)×hi}/{(w+wo)×ho}
として計算される。この結果、図5(b)に示すように、PSwが増加するに従い継手強度も上昇することが確認された。そして、ISO15156の分類における、Region2環境(分圧0.01MPa以下の硫化水素ガスを含む、pH4〜5程度の比較的緩やかな腐食環境)におけるSSC防止のための内面溶接金属上限Py値0.175未満であっても、PSwを2.5以上とすることで継手強度600MPa以上にできることを見出した。
Here, the inventors conducted extensive investigations on the welded joints used in the experiments, and in particular, as a result of measuring the pipe thickness direction hardness distribution of the weld metal part, as shown in FIG. It was found to show a higher hardness value. From this, it is thought that if the proportion of the outer surface welded portion, which is considered to be lower in strength, occupies the cross section of the joint, the joint strength will be relatively increased, and the welding groove shape, welding current, etc. The weld joints in which the ratio of the inner surface weld metal part area to the outer surface weld metal part area in the weld joint cross section was systematically changed were prepared, and the joint tensile test was performed again. Here, the calculation of the area of the inner surface weld metal and the outer surface weld metal in the joint section cross section, as shown in FIG. 5 (a), with a line connecting the meeting portion and a line drawn so as to exclude the excess portion near the surface. Approximate to the trapezoid surrounded. That is,
External weld metal area: So = (w + wo) × ho × 1/2
Internal weld metal area: Si = (w + wi) × hi × 1/2
w: the length of the line connecting the meeting part wi: the length of the surface side when the inner surface weld metal surplus is removed hi: the distance between w and wi wo: the length of the surface side when the outer surface weld metal surplus is removed The distance between ho and w and the ratio PSw (also referred to as “welding area ratio”) of the inner surface weld metal part area and the outer surface weld metal part area in the weld cross section excluding the surplus part from the calculated Si and So. ) Is PSw = Si / So = {(w + wi) × hi} / {(w + wo) × ho}
Is calculated as As a result, as shown in FIG. 5B, it was confirmed that the joint strength increased as PSw increased. And in the classification of ISO15156, the inner surface weld metal upper limit Py value 0.175 for preventing SSC in the Region 2 environment (relatively mild corrosive environment having a pH of about 4 to 5 including hydrogen sulfide gas having a partial pressure of 0.01 MPa or less). It was found that the joint strength can be increased to 600 MPa or more by setting PSw to 2.5 or more even if it is less than 2.5.

本発明は、以上の知見をもとに、さらに検討を加えたもので、
[1]厚鋼板の母材と、
突合せ部を内外面1層ずつによりサブマージアーク溶接により形成された溶接金属と
を有する溶接鋼管であって、
前記母材が、質量%で、
C:0.02〜0.06%、
Si:0.05〜0.5%、
Mn:0.8〜1.7%、
Al:0.01〜0.08%、
Nb:0.005〜0.06%、
Ti:0.005〜0.025%、
Ca:0.0010〜0.0035%を含有し、
P:0.01%以下、
S:0.001%以下、
B:0.004%以下、
N:0.008%以下で
さらに、
Cu:0.30%以下、
Ni:0.50%以下、
Cr:0.50%以下、
Mo:0.30%以下、
V:0.1%以下
の中から選ばれる1種以上を含有し、
下式(1)で表されるCP値が1.1以下であり、
下式(2)で表されるPy値が0.175以下であり、
残部がFe及び不可避的不純物からなり、
かつ、前記溶接金属が、質量%で、
C:0.04〜0.10%
Si:0.05〜0.5%
Mn:1.0〜1.8%
Nb:0.01〜0.05%
Ti:0.01〜0.04%
B:0.001〜0.004%
O:0.025〜0.045%
Al:0.02%以下
を含有し、
さらに
Cu:0.30%以下
Ni:0.50%以下
Cr:0.50%以下
Mo:0.30%以下
V:0.1%以下
の中から選ばれる1種以上を含有し、
残部Feおよび不可避的不純物からなり、かつ
溶接金属の化学組成で計算される式(2)のPy値が0.175以下であり、
溶接部断面における、余盛部を除いた内面溶接金属部面積が外面溶接金属部面積の2.5倍以上であることを特徴とする耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%)・・・式(1)
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号は含有量(質量%)を表わし、含有しない場合は0とする。
[2] 前記母材の表層部の金属組織は、島状マルテンサイトの体積分率が5%以下であり、残部がベイナイトまたはベイナイトとフェライトの混合組織であることを特徴とする、前記[1]に記載の耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
The present invention is a further study based on the above knowledge,
[1] A base material of a thick steel plate;
A welded steel pipe having a weld metal formed by submerged arc welding with a butt portion on each inner and outer surface layer,
The base material is mass%,
C: 0.02 to 0.06%,
Si: 0.05 to 0.5%,
Mn: 0.8 to 1.7%,
Al: 0.01 to 0.08%,
Nb: 0.005 to 0.06%,
Ti: 0.005 to 0.025%,
Ca: 0.0010 to 0.0035% is contained,
P: 0.01% or less,
S: 0.001% or less,
B: 0.004% or less,
N: 0.008% or less
Cu: 0.30% or less,
Ni: 0.50% or less,
Cr: 0.50% or less,
Mo: 0.30% or less,
V: contains one or more selected from 0.1% or less,
The CP value represented by the following formula (1) is 1.1 or less,
The Py value represented by the following formula (2) is 0.175 or less,
The balance consists of Fe and inevitable impurities,
And the said weld metal is the mass%,
C: 0.04 to 0.10%
Si: 0.05-0.5%
Mn: 1.0 to 1.8%
Nb: 0.01 to 0.05%
Ti: 0.01-0.04%
B: 0.001 to 0.004%
O: 0.025 to 0.045%
Al: containing 0.02% or less,
Furthermore, Cu: 0.30% or less Ni: 0.50% or less Cr: 0.50% or less Mo: 0.30% or less V: containing at least one selected from 0.1% or less,
The Py value of the formula (2) consisting of the balance Fe and inevitable impurities and calculated by the chemical composition of the weld metal is 0.175 or less,
In the welded section, the inner surface weld metal part area excluding the surplus part is 2.5 times or more the outer surface weld metal part area, and has a tensile strength of 600 MPa or more excellent in resistance to sulfide stress corrosion cracking. High strength welded steel pipe.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 7 + V (%) / 10 + 5 × B (%) · ..Formula (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.
[2] The metal structure of the surface layer of the base material has a volume fraction of island martensite of 5% or less, and the balance is bainite or a mixed structure of bainite and ferrite, [1 The high strength welded steel pipe having a tensile strength of 600 MPa or more and excellent in sulfide stress corrosion cracking resistance.

本発明によれば、ISO15156の分類における、Region2環境と規定される比較的緩やかな硫化水素腐食環境が想定される天然ガスや原油輸送パイプラインにおいてパイプ母材の耐HIC性、耐SSC性のみならず、パイプ同士をつなぐ円周溶接部においても優れた耐SSC性を有する高強度鋼管の提供が可能となり、高圧操業による天然ガス/原油輸送の効率化を図ることができる。   According to the present invention, only HIC resistance and SSC resistance of a pipe base material in a natural gas or crude oil transportation pipeline assuming a relatively mild hydrogen sulfide corrosion environment defined as a Region 2 environment in the classification of ISO 15156. In addition, it is possible to provide a high-strength steel pipe having excellent SSC resistance even in a circumferential welded portion that connects pipes, and it is possible to improve the efficiency of natural gas / crude oil transportation by high-pressure operation.

溶接鋼管同士の円周溶接部を説明する図である。It is a figure explaining the circumferential weld part of welded steel pipes. 円周溶接を模擬した溶接試験による母材・溶接金属のHAZ硬さを説明する図である。It is a figure explaining the HAZ hardness of the base material and a weld metal by the welding test which simulated circumferential welding. 溶接鋼管の溶接継手強度に及ぼす溶接金属のPy値の影響を説明する図である。It is a figure explaining the influence of the Py value of the weld metal which gives to the weld joint strength of a welded steel pipe. 溶接鋼管の溶接金属の硬さ分布を説明する図である。It is a figure explaining the hardness distribution of the weld metal of a welded steel pipe. 溶接鋼管の溶接部における内面溶接金属と外面溶接金属の面積比と、その面積比の継手強度に及ぼす影響を説明する図である。It is a figure explaining the influence which it has on the joint strength of the area ratio of the inner surface weld metal and outer surface weld metal in the welding part of a welded steel pipe, and the area ratio. 溶接鋼管母材部、溶接部、円周溶接部の硬さ測定位置を説明する図である。It is a figure explaining the hardness measurement position of a welded steel pipe base material part, a welded part, and a circumferential welded part. 4点曲げSSC試験における試験片への応力付与方法を説明する図である。It is a figure explaining the stress provision method to the test piece in a 4-point bending SSC test.

以下に発明を本発明の各構成要件の限定理由について項目を分けて説明する。   In the following, the invention will be described with respect to reasons for limiting the respective constituent requirements of the present invention.

1.鋼管母材
1.1鋼管母材の化学成分
はじめに鋼管母材の化学成分の限定理由を説明する。なお、化学成分の単位は全て質量%とする。
1. Steel Pipe Base Material 1.1 Chemical Components of Steel Pipe Base Material First, the reasons for limiting the chemical components of the steel pipe base material will be described. In addition, the unit of chemical components is all mass%.

C:0.02〜0.06%
Cは、鋼の強度を高めるために最も有効な元素である。しかし、0.02%未満では十分な強度を確保できず、0.06%を超えると焼入性が上昇し、偏析部や鋼表面部の硬さ上昇により耐サワー性を劣化させる。従って、C含有量は0.02〜0.06%の範囲とする。より好ましくは、0.03〜0.05%である。
C: 0.02 to 0.06%
C is the most effective element for increasing the strength of steel. However, if it is less than 0.02%, sufficient strength cannot be ensured, and if it exceeds 0.06%, the hardenability is increased, and the sour resistance is deteriorated due to the increased hardness of the segregated portion and the steel surface portion. Therefore, the C content is in the range of 0.02 to 0.06%. More preferably, it is 0.03 to 0.05%.

Si:0.05〜0.5%
Siは、鋼を固溶強化する効果を発揮するため、0.05%以上含有することで高強度化に有効である。しかし、0.5%を超えて含有すると靭性が著しく低下するため、Si含有量は0.05〜0.5%の範囲とする。
Si: 0.05-0.5%
Since Si exhibits the effect of solid solution strengthening of steel, it is effective for increasing the strength by containing 0.05% or more. However, if the content exceeds 0.5%, the toughness is remarkably lowered, so the Si content is in the range of 0.05 to 0.5%.

Mn:0.8〜1.7%
Mnは鋼の高強度化のため添加するが、0.8%未満ではその効果が十分ではなく、1.7%を越えると特に偏析部の硬度上昇が著しくなり、耐HIC性が劣化する。従って、Mn量は0.8〜1.7%の範囲とする。好ましくは、1.0〜1.5%である。
Mn: 0.8 to 1.7%
Mn is added to increase the strength of the steel, but if it is less than 0.8%, the effect is not sufficient, and if it exceeds 1.7%, the hardness of the segregated part is particularly increased and the HIC resistance is deteriorated. Therefore, the amount of Mn is made 0.8 to 1.7%. Preferably, it is 1.0 to 1.5%.

Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.08%を超えて添加すると鋼中の清浄度が低下し、HICの起点として母材部の耐HIC性を低下させるため、Al含有量は0.01〜0.08%の範囲とする。より好ましくは、0.02〜0.05%の範囲である。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.01% or more, but addition over 0.08% lowers the cleanliness in the steel and lowers the HIC resistance of the base metal part as the starting point of HIC. Therefore, the Al content is in the range of 0.01 to 0.08%. More preferably, it is 0.02 to 0.05% of range.

Nb:0.005〜0.06%
Nbは、鋼の焼入性向上元素であり、高強度化のために添加するが、0.005%未満ではその効果がなく、0.06%を超えると偏析部に粗大なNb炭窒化物が残存し、HICの起点として母材部の耐HIC性を低下させるため、Nb含有量は0.005〜0.06%の範囲とする。より好ましくは、0.02〜0.05%の範囲である。
Nb: 0.005 to 0.06%
Nb is an element for improving the hardenability of steel and is added to increase the strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.06%, coarse Nb carbonitride in the segregation part. Therefore, the Nb content is in the range of 0.005 to 0.06% in order to reduce the HIC resistance of the base metal part as a starting point of HIC. More preferably, it is 0.02 to 0.05% of range.

Ti:0.005〜0.025%
Tiは、鋼中で微細な炭窒化物をNbにさきがけて形成し、偏析部にHICの起点となるような粗大Nb炭窒化物の残存を抑制する目的で添加する。しかし、0.005%未満では効果がなく、0.025%を超えると逆にTi炭窒化物そのものが粗大化しHICの起点となって母材部の耐HIC性を低下させるため、Ti含有量は0.005〜0.025%の範囲とする。より好ましくは、0.007〜0.020%の範囲である。
Ti: 0.005-0.025%
Ti is added for the purpose of suppressing formation of coarse Nb carbonitride that forms a fine carbonitride in steel in advance of Nb and serves as a starting point of HIC in the segregation part. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.025%, Ti carbonitride itself is coarsened and becomes the starting point of HIC, which decreases the HIC resistance of the base metal part. Is in the range of 0.005 to 0.025%. More preferably, it is 0.007 to 0.020% of range.

Ca:0.0010〜0.0035%
CaはHICの起点となる硫化物系介在物の形態を制御し、特にMnSによるHICの発生を防止するために必要な元素であるが、0.0010%未満ではその効果がなく、0.0035%を超えて添加しても効果が飽和し、むしろ粗大なCaO・CaS介在物が生成し、これがHICの起点となり、かえって耐HIC性を劣化させる。従って、Ca含有量は0.0010〜0.0035%とする。より好ましくは、0.0015〜0.0030%の範囲である。
Ca: 0.0010 to 0.0035%
Ca is an element necessary for controlling the form of sulfide inclusions that are the starting point of HIC, and particularly for preventing the generation of HIC by MnS. However, if it is less than 0.0010%, there is no effect, and 0.0035 Even if added in excess of%, the effect is saturated, and rather coarse CaO · CaS inclusions are formed, which becomes the starting point of HIC, and rather deteriorates the HIC resistance. Therefore, the Ca content is 0.0010 to 0.0035%. More preferably, it is 0.0015 to 0.0030% of range.

P:0.01%以下
Pは不可避不純物であり、中心偏析により著しく偏析部硬さを上昇させて耐HIC性を劣化させる。この傾向は0.01%を超えると顕著となる。従って、Pは極力低減することが望ましいが、0.01%までは許容することができる。より好ましくは、0.006%以下とする。
P: 0.01% or less P is an unavoidable impurity and significantly increases the hardness of the segregated portion due to center segregation, thereby degrading the HIC resistance. This tendency becomes remarkable when it exceeds 0.01%. Therefore, it is desirable to reduce P as much as possible, but it is acceptable up to 0.01%. More preferably, it is 0.006% or less.

S:0.001%以下
Sは、鋼中においては一般にMnS系の介在物となるが、Ca添加によりMnS系からCaS系介在物に形態制御される。しかし、Sの含有量が多いとCaS系介在物の量も多くなり、高強度鋼板では割れの起点となり得る。この傾向は、S量が0.001%を超えると顕著となる。従って、Sは極力低減することが望ましいが、0.001%までは許容することができる。より好ましくは、0.0006%以下とする。
S: 0.001% or less S is generally a MnS-based inclusion in steel, but the form is controlled from MnS-based to CaS-based inclusion by addition of Ca. However, when the content of S is large, the amount of CaS inclusions increases, and a high-strength steel sheet can be a starting point of cracking. This tendency becomes remarkable when the S amount exceeds 0.001%. Therefore, it is desirable to reduce S as much as possible, but it is acceptable up to 0.001%. More preferably, it is 0.0006% or less.

B:0.0004%以下
Bは、焼入性向上元素であり鋼の高強度化に効果があるが、同時にHAZの硬さ上昇効果が著しく、鋼管同士の円周溶接部における耐SSC性を劣化させるため、鋼管母材ではできる限り低減する必要があり、その上限を0.0004%とする。
B: 0.0004% or less B is an element for improving hardenability and is effective in increasing the strength of steel, but at the same time, the effect of increasing the hardness of HAZ is remarkable, and the SSC resistance at the circumferential welds between steel tubes is improved. In order to make it deteriorate, it is necessary to reduce as much as possible with a steel pipe preform, and the upper limit is made 0.0004%.

N:0.008%以下
Nは不可避不純物元素であるが、前述の通りNbやTiの粗大炭窒化物を形成し、HICの起点として母材部の耐HIC性を低下させることから、上限を0.008%とする。
N: 0.008% or less N is an unavoidable impurity element, but as described above, it forms coarse carbonitrides of Nb and Ti, and lowers the HIC resistance of the base metal part as the starting point of HIC. 0.008%.

本発明では、さらに、鋼管母材の強度を向上させるため、以下に示すCu、Ni、Cr、Mo、Vの中から選ばれた1種以上を添加する。   In this invention, in order to improve the intensity | strength of a steel pipe base material, 1 or more types chosen from Cu, Ni, Cr, Mo, and V shown below are added.

Cu:0.30%以下
Cuは、強度の上昇に有効な元素であるとともに、鋼管母材がpH4.0〜5.0程度の緩やかな硫化水素腐食環境下にさらされた場合、緻密な腐食生成物を形成しHICの起点への水素の集積を抑制するが、0.3%を超えて添加してもその効果は飽和し、かつ、後述の鋼管溶接金属部への希釈し溶接金属部の高温割れの原因となる。従って、Cuを添加する場合は、上限を0.3%とする。
Cu: 0.30% or less Cu is an element effective for increasing the strength, and when the steel pipe base material is exposed to a mild hydrogen sulfide corrosive environment having a pH of about 4.0 to 5.0, dense corrosion is caused. It suppresses the accumulation of hydrogen at the origin of the HIC by forming a product, but the effect is saturated even if added over 0.3%, and diluted to a steel pipe weld metal part described later to be welded metal part Cause hot cracking. Therefore, when adding Cu, the upper limit is made 0.3%.

Ni:0.50%以下
Niは靭性の改善と強度の上昇に有効な元素である。しかしながら、0.50%を超えて添加した場合、硫化水素腐食環境下に曝された鋼管母材表面で毛割れが発生する。従って、Niを添加する場合には上限を0.50%とする。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength. However, when added over 0.50%, hair cracking occurs on the surface of the steel pipe base material exposed to the hydrogen sulfide corrosion environment. Therefore, when Ni is added, the upper limit is made 0.50%.

Cr:0.50%以下
Crは、焼入性を高めることで強度を得るために有効な元素である。しかしながら、0.50%を超えて添加すると溶接性を劣化させる。従って、Crを添加する場合は0.50%以下とする。
Cr: 0.50% or less Cr is an effective element for obtaining strength by improving hardenability. However, if added over 0.50%, the weldability deteriorates. Therefore, when adding Cr, it is 0.50% or less.

Mo:0.30%以下
Moは、焼入性を向上し、強度の上昇に大きく寄与する元素である。しかし、HAZの硬さ上昇効果が著しく、0.30%を超えて添加すると、鋼管同士の円周溶接部における耐SSC性を劣化させる。従って、Moを添加する場合は、0.30%以下とする。
Mo: 0.30% or less Mo is an element that improves hardenability and greatly contributes to an increase in strength. However, the effect of increasing the hardness of HAZ is remarkable, and if added over 0.30%, the SSC resistance in the circumferential welded portion between the steel pipes is deteriorated. Therefore, when adding Mo, it is 0.30% or less.

V:0.1%以下
Vは、強度を上昇させる元素である。しかし、0.1%を超えて添加するとMoと同様HAZの硬さ上昇効果が著しく、鋼管同士の円周溶接部における耐SSC性を劣化させる。従って、Vを添加する場合は0.1%以下とする。
V: 0.1% or less V is an element that increases the strength. However, if added over 0.1%, the effect of increasing the hardness of HAZ is remarkably the same as that of Mo, and the SSC resistance at the circumferential welded portion between the steel pipes is deteriorated. Therefore, when V is added, the content is made 0.1% or less.

式(1)で計算されるCP値が1.1以下
式(1):CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%)ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
CP value calculated by Formula (1) is 1.1 or less Formula (1): CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1 .74 V (%)} / 5+ {1.74 Cu (%) + 1.7 Ni (%)} / 15 + 22.36 P (%) Here, the element symbol on the right side of each formula represents the content (mass%) of each. , 0 if not contained.

CP値は、各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、CP値が高いほど、中心偏析部の濃度が高くなり、中心偏析部の硬さが上昇する、という技術的意義がある。発明者らは、鋭意検討の結果、硫化水素環境ごとに中心偏析部でHICが発生する限界硬さを明確化し、その硬さを超えないための指標としてCP値での整理を試みた。その結果、本発明で解決しようとしているISO15156よりRegion2環境においては、このCP値を1.1以下とすることで、HICを抑制することが可能となることがわかった。従って、CP値は1.1以下とする。   The CP value is an expression devised to estimate the material of the central segregation part from the content of each alloy element. The higher the CP value, the higher the concentration of the central segregation part, and the hardness of the central segregation part. There is a technical significance of rising. As a result of intensive studies, the inventors clarified the limit hardness at which HIC occurs in the central segregation part for each hydrogen sulfide environment, and attempted to arrange the CP value as an index for not exceeding the hardness. As a result, it was found from the ISO 15156 that is to be solved by the present invention that the HIC can be suppressed by setting the CP value to 1.1 or less in the Region 2 environment. Therefore, the CP value is 1.1 or less.

式(2)で計算されるPy値が0.175以下
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
図2(c)に示すようにPy値は鋼管同士の円周溶接を行った場合の鋼管母材および溶接金属部のHAZ硬さ(図中それぞれ「母材HAZ」および「溶接金属HAZ」と記載)と良い相関がある。さらに、本発明で解決しようとしているISO 15156の分類のRegion2環境でのSSC発生防止のためには鋼のビッカース硬さを280以下とする必要があることから、円周溶接部におけるHAZ硬さを280以下にするためPy値は0.175以下とする。
Py value calculated by formula (2) is 0.175 or less Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo ( %) / 7 + V (%) / 10 + 5 × B (%) (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.
As shown in FIG. 2 (c), the Py value indicates the HAZ hardness of the steel pipe base material and the weld metal part when the steel pipes are circumferentially welded ("base metal HAZ" and "welded metal HAZ" in the figure, respectively). There is a good correlation with the description. Furthermore, in order to prevent the occurrence of SSC in the Region 2 environment of ISO 15156 classification to be solved by the present invention, it is necessary to make the Vickers hardness of steel 280 or less, so the HAZ hardness at the circumferential weld is reduced. In order to make it 280 or less, the Py value is made 0.175 or less.

本発明では、上記の元素以外はFeおよび不可避不純物とする。意図的に添加しなくてもよいが、上記以外の元素及び不可避的不純物については、本発明の効果を損なわない限り含有することができる。   In the present invention, other than the above elements are Fe and inevitable impurities. Although it does not need to add intentionally, elements other than the above and unavoidable impurities can be contained as long as the effects of the present invention are not impaired.

なお、鋼管母材素材の製造方法については、材質と製造効率の点から転炉法によって溶製された鋼を連続鋳造法によりスラブとし、厚板圧延後、加速冷却を適用して600MPa以上の高強度化を得ることが望ましい。
1.2鋼管母材部の金属組織について
本発明では、鋼管母材部におけるSSC発生防止の観点から、特に鋼管表層部の金属組織を以下のように規定することが好ましい。ここで、金属組織の体積分率(%)の表記は各金属組織の面積率(%)を画像解析により測定し、体積分率(%)とみなして適用している。
In addition, about the manufacturing method of a steel pipe base material, the steel melted by the converter method was made into the slab by the continuous casting method from the point of a material and manufacturing efficiency, and after applying thick plate rolling, accelerated cooling is applied and 600 MPa or more It is desirable to obtain high strength.
1.2 Metal Structure of Steel Pipe Base Material Part In the present invention, from the viewpoint of preventing the occurrence of SSC in the steel pipe base material part, it is particularly preferable to define the metal structure of the steel pipe surface layer part as follows. Here, the notation of the volume fraction (%) of the metal structure is applied by measuring the area ratio (%) of each metal structure by image analysis and regarding the volume fraction (%).

鋼管表層部の島状マルテンサイトの体積分率:5%以下
島状マルテンサイト(以下、単に「MA」と略すこともある。)は加速冷却によって生成する組織であり、MAが生成することで硬さが大きく上昇する。上述の通りISO15156よりRegion2環境でのSSC発生防止のためには鋼のビッカース硬さを280以下とする必要があり、少なくとも硫化水素腐食環境下に直接さらされる鋼管表層部の硬さ低減が重要である。発明者らは鋭意検討の末、鋼管母材部金属組織中の島状マルテンサイト(MA)に着目し、MAの体積分率の増大に伴い鋼管表層部硬さが上昇し、少なくとも5%を超えるMA体積分率でビッカース硬さが280を超え、耐SSC性が劣化することを見出した。従って、鋼管表層部の島状マルテンサイトの体積分率を5%以下とすることが好ましい。
The volume fraction of island martensite in the steel pipe surface layer: 5% or less Island martensite (hereinafter sometimes simply referred to as “MA”) is a structure generated by accelerated cooling. Hardness increases greatly. As described above, in order to prevent SSC generation in the Region 2 environment from ISO 15156, it is necessary to reduce the Vickers hardness of the steel to 280 or less, and it is important to reduce the hardness of the steel pipe surface layer directly exposed to at least a hydrogen sulfide corrosion environment. is there. As a result of diligent study, the inventors focused on island martensite (MA) in the metal structure of the steel pipe base metal part, and the hardness of the steel pipe surface layer increased with an increase in the volume fraction of MA, and the MA exceeded at least 5%. It was found that the Vickers hardness was over 280 in volume fraction and the SSC resistance deteriorated. Therefore, it is preferable that the volume fraction of island martensite in the steel pipe surface layer portion is 5% or less.

なお、母材部引張強度600MPa以上を得るためには少なくとも母材部の金属組織はベイナイト主体である必要があり、体積分率で70%以上であることが好ましい。ただし、表層部に限っては軟質なフェライトを生成させることで硬さ低減を図っても、母材部引張強度への影響が小さいため、体積分率で20%以下のフェライトを含むフェライトとベイナイトの混合組織とすることができる。   In order to obtain a base material part tensile strength of 600 MPa or more, at least the metal structure of the base material part needs to be mainly bainite, and is preferably 70% or more in volume fraction. However, even if the hardness is reduced by generating soft ferrite only in the surface layer portion, the influence on the tensile strength of the base material portion is small, so ferrite and bainite containing ferrite with a volume fraction of 20% or less. It can be a mixed tissue.

2.溶接金属
2.1溶接金属の化学成分
次に、鋼管の溶接金属部の化学成分の限定理由を説明する。なお、化学成分の単位は全て質量%とする。また、本発明では溶接金属は、特に断らない限り、円周溶接および鋼管製造時の突合せ溶接による溶接金属(鋼管溶接金属)の両者をいうものとする。
2. Weld metal 2.1 Chemical component of weld metal Next, the reason for limiting the chemical component of the weld metal part of the steel pipe will be described. In addition, the unit of chemical components is all mass%. In the present invention, unless otherwise specified, the weld metal means both circumferential welding and weld metal (steel pipe weld metal) by butt welding at the time of steel pipe production.

C:0.04〜0.10%
Cは、母材部と同様、溶接金属の強度を高めるために最も有効な元素である。特に凝固まま組織である溶接金属において高強度を得るために0.04%以上必要である。一方、0.10%を超えると、円周溶接時、溶接金属のHAZ硬さの上昇が著しく、円周溶接部の耐SSC性を劣化させるため、上限を0.10%とする。なお、より好ましくは、0.05〜0.09%である。
C: 0.04 to 0.10%
C, like the base material, is the most effective element for increasing the strength of the weld metal. In particular, 0.04% or more is necessary to obtain high strength in a weld metal that is a solidified structure. On the other hand, if it exceeds 0.10%, the HAZ hardness of the weld metal is remarkably increased during circumferential welding, and the SSC resistance of the circumferential welded portion is deteriorated, so the upper limit is made 0.10%. In addition, More preferably, it is 0.05 to 0.09%.

Si:0.05〜0.5%
Siは溶接金属中では脱酸元素として働き、溶接金属中の酸素量を制御するために必要な元素である。溶接金属中のSiが0.05%未満の場合、脱酸が不十分となり溶接金属中の酸素量が増加し強度の低下をもたらすため0.05%以上必要である。一方、0.5%を超える添加をしても効果が飽和する。従って、Si含有量は0.05〜0.5%の範囲とする。
Si: 0.05-0.5%
Si acts as a deoxidizing element in the weld metal and is an element necessary for controlling the amount of oxygen in the weld metal. If the Si content in the weld metal is less than 0.05%, deoxidation is insufficient and the amount of oxygen in the weld metal increases, resulting in a decrease in strength. On the other hand, the effect is saturated even if the addition exceeds 0.5%. Therefore, the Si content is in the range of 0.05 to 0.5%.

Mn:1.0〜1.8%
Mnは溶接金属においても焼入性向上元素として作用する。溶接金属の高強度化のためには、少なくとも1.0%以上のMnが必要であるが、1.6%を超えると円周溶接時に溶接金属のHAZ硬さの上昇が著しく、円周溶接部の耐SSC性を劣化させるため、上限を1.8%とする。従って、Mn含有量は、1.0〜1.8%の範囲とする。好ましくは1.3〜1.7%である。
Mn: 1.0 to 1.8%
Mn also acts as a hardenability improving element in the weld metal. In order to increase the strength of the weld metal, Mn of at least 1.0% is required. However, if it exceeds 1.6%, the HAZ hardness of the weld metal is significantly increased during circumferential welding, and circumferential welding is performed. In order to degrade the SSC resistance of the part, the upper limit is set to 1.8%. Therefore, the Mn content is in the range of 1.0 to 1.8%. Preferably it is 1.3 to 1.7%.

Nb:0.01〜0.05%
Nbは溶接金属中の固溶NをBより先に窒化物形成することにより、オーステナイト粒界に固溶Bとして存在させるため、少なくとも0.01%以上必要である。一方、0.05%を超えると炭化物を形成し、溶接金属を析出硬化させ靭性の低下をもたらすため、上限を0.05%とする。より好ましくは、0.01〜0.03%の範囲である。
Nb: 0.01 to 0.05%
Nb is required to be at least 0.01% or more in order to cause solute N in the weld metal to form nitrides prior to B so as to exist as solute B at the austenite grain boundaries. On the other hand, if it exceeds 0.05%, carbides are formed, the weld metal is precipitated and hardened, and the toughness is reduced, so the upper limit is made 0.05%. More preferably, it is 0.01 to 0.03% of range.

Ti:0.01〜0.04%
Tiは溶接金属中の酸素と反応してTiOまたはTiOを形成し、溶接金属オーステナイト粒内からのアシキュラフェライト変態核として機能する。アシキュラフェライト組織の微細化による強度上昇効果を得るためには多数のTiOまたはTiOの生成が必要であり、Tiは少なくとも0.01%以上必要である。一方、0.04%を超えると溶接金属中のTiOまたはTiOが凝集・粗大化して靭性の低下をもたらすため、上限を0.04%とする。より好ましくは、0.02〜0.04%の範囲である。
Ti: 0.01-0.04%
Ti reacts with oxygen in the weld metal to form TiO or TiO 2 and functions as an acicular ferrite transformation nucleus from within the weld metal austenite grains. In order to obtain the effect of increasing the strength by refining the acicular ferrite structure, it is necessary to generate a large number of TiO or TiO 2 , and Ti must be at least 0.01% or more. On the other hand, if it exceeds 0.04%, TiO or TiO 2 in the weld metal is agglomerated and coarsened to cause a decrease in toughness, so the upper limit is made 0.04%. More preferably, it is 0.02 to 0.04% of range.

B:0.001〜0.004%
Bは溶接金属のオーステナイト粒界からのポリゴナルフェライト生成を抑制し、アシキュラフェライト主体の金属組織とする作用があり高強度化に寄与する。粒界からのポリゴナルフェライト生成を完全に抑制するためには少なくとも0.001%以上必要であるが、0.004%を超えても効果が飽和するため、上限を0.004%とする。より好ましくは、0.002〜0.003%の範囲である。
B: 0.001 to 0.004%
B suppresses the formation of polygonal ferrite from the austenite grain boundary of the weld metal, and has the effect of forming a metal structure mainly composed of acicular ferrite, contributing to high strength. In order to completely suppress the formation of polygonal ferrite from the grain boundary, at least 0.001% or more is necessary, but even if it exceeds 0.004%, the effect is saturated, so the upper limit is made 0.004%. More preferably, it is 0.002 to 0.003% of range.

O:0.025〜0.045%
Oは、上述のTiと反応してTiOまたはTiOを形成し、溶接金属オーステナイト粒内からのアシキュラフェライト変態核として機能する。微細な金属組織であるアシキュラフェライト組織とするためには多数のTiOまたはTiOの生成が必要であり、Oは少なくとも0.025%以上必要である。一方、0.045%を超えると粒界フェライトが一部生成し、溶接金属の強度低下の原因となるため、上限を0.045%とする。より好ましくは、0.030〜0.040%である。
O: 0.025 to 0.045%
O reacts with the above-mentioned Ti to form TiO or TiO 2 and functions as an acicular ferrite transformation nucleus from within the weld metal austenite grains. In order to obtain an acicular ferrite structure which is a fine metal structure, it is necessary to generate a large number of TiO or TiO 2 , and O is required to be at least 0.025% or more. On the other hand, if it exceeds 0.045%, a part of the grain boundary ferrite is generated and causes a decrease in the strength of the weld metal, so the upper limit is made 0.045%. More preferably, it is 0.030 to 0.040%.

Al: 0.02%以下
Alは母材部からの希釈で不可避不純物として溶接金属中に存在するが、0.02%を超えると上述したTiOまたはTiOの生成を阻害し、溶接金属のアシキュラフェライト組織の金属組織の微細化作用による強度上昇効果を得ることができないため、上限を0.02%とする。
Al: 0.02% or less Al is present in the weld metal as an inevitable impurity due to dilution from the base metal part. However, if it exceeds 0.02%, the above-described formation of TiO or TiO 2 is inhibited, and the weld metal is removed. Since the effect of increasing the strength due to the refinement of the metal structure of the cura ferrite structure cannot be obtained, the upper limit is made 0.02%.

本発明では、さらに、溶接金属部の強度を向上させるため、以下に示すCu、Ni、Mo、Cr、Vの中から選ばれた1種以上を添加する。なお、添加する場合は、母材に添加している元素と同じものを添加することが好ましい。   In the present invention, in order to further improve the strength of the weld metal part, at least one selected from the following Cu, Ni, Mo, Cr, and V is added. In addition, when adding, it is preferable to add the same element as the element added to the base material.

Cu:0.30%以下
Cuは、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、0.30%を超えるとCu液化割れが著しく溶接欠陥の原因となる場合がある。従って、Cuを添加する場合には上限を0.30%とする。
Cu: 0.30% or less Cu acts as a hardenability improving element and can substitute for Mn. However, if it exceeds 0.30%, Cu liquefaction cracks may significantly cause welding defects. Therefore, when adding Cu, the upper limit is made 0.30%.

Ni:0.50%以下
Niは、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、高価な元素であり、かつ0.50%を超えると強度上昇の効果が飽和する。従って、Niを添加する場合には上限を0.50%とする。
Ni: 0.50% or less Ni acts as a hardenability improving element and can substitute for Mn. However, it is an expensive element and if it exceeds 0.50%, the effect of increasing the strength is saturated. Therefore, when Ni is added, the upper limit is made 0.50%.

Cr:0.50%以下
Crもまた、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、0.50%を超えて添加しても強度上昇の効果が飽和する。従って、Crを添加する場合には上限を0.50%とする。
Cr: 0.50% or less Cr also acts as a hardenability improving element and can substitute for Mn. However, even if added over 0.50%, the effect of increasing the strength is saturated. Therefore, when adding Cr, the upper limit is made 0.50%.

Mo:0.30%以下
Moもまた、焼入性向上元素として作用し、Mn添加の代替とすることができる。しかし、鋼管母材と同様、鋼管同士の円周溶接時において溶接金属が溶接熱影響を受ける際、HAZの硬さ上昇効果が著しく、0.30%を超えて添加すると円周溶接部における耐SSC性を劣化させる場合がある。従って、Moを添加する場合には、上限を0.30%とする。
Mo: 0.30% or less Mo also acts as a hardenability improving element and can be used as an alternative to Mn addition. However, as with the steel pipe base material, when the weld metal is affected by the welding heat during the circumferential welding of the steel pipes, the effect of increasing the hardness of the HAZ is remarkable. SSC property may be deteriorated. Therefore, when Mo is added, the upper limit is made 0.30%.

V:0.1%以下
VもMoと同様、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、鋼管母材と同様、鋼管同士の円周溶接時において溶接金属が溶接熱影響を受ける際、HAZの硬さ上昇効果が著しく、0.1%を超えて添加すると円周溶接部における耐SSC性を劣化させる場合がある。従って、Vを添加する場合には、上限を0.1%とする。
V: 0.1% or less V, like Mo, acts as a hardenability improving element and can be substituted for Mn. However, as with the steel pipe base material, when the weld metal is affected by welding heat during the circumferential welding of steel pipes, the HAZ hardness increase effect is significant. SSC property may be deteriorated. Therefore, when V is added, the upper limit is made 0.1%.

本発明の鋼管溶接金属において、上記以外の成分は、Feおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分を含有することができる。
2.2溶接金属のPy値および内面溶接金属部面積と外面溶接金属部面積の比
さらに、本発明において鋼管溶接部の継手強度の高強度化と、鋼管円周溶接時に溶接金属に形成されるHAZの硬さ低減を両立させるため、さらに、鋼管の溶接金属に式(2)で計算されるPy値の範囲、および、溶接継手断面における内面溶接金属部面積と外面溶接金属部面積の比を規定する。
In the steel pipe weld metal of the present invention, components other than those described above are Fe and inevitable impurities. However, components other than those described above can be contained as long as the effects of the present invention are not impaired.
2.2 Py value of weld metal and ratio of inner surface weld metal part area to outer surface weld metal part area Furthermore, in the present invention, the strength of the joint of the steel pipe welded part is increased, and it is formed on the weld metal during circumferential welding of the steel pipe In order to achieve both HAZ hardness reduction, the range of the Py value calculated by equation (2) for the weld metal of the steel pipe, and the ratio of the inner surface weld metal part area to the outer surface weld metal part area in the weld joint cross section Stipulate.

2.2.1溶接金属のPy値(Py):0.175
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号は含有量(質量%)を表わし、含有しない場合は0とする。前述の通り円周溶接の熱影響を受けて鋼管の溶接金属は硬化しその値は図2(c)に示すように、Py値で決まる。本願では、Region2環境でのSSC発生防止のための硬さ上限280以下とするため、上限を0.175とする。なお、Py値の下限は特に規定しないが、継手強度の観点から0.165以上が好ましい。
2.3溶接継手断面における内面溶接金属部面積と外面溶接金属部面積の比:2.5倍以上
鋼管および鋼管同士の円周溶接部において問題となるSSCは、輸送する天然ガス/原油が硫化水素を含む腐食環境となっている場合に生じる。すなわち、鋼管および鋼管の円周溶接部の内面側において耐SSC性を向上させることが重要である。よって上述の通り、鋼管溶接部の溶接金属はSSC防止のためPyを下げる必要があるが、一方で、継手強度は母材と同等以上にする必要があり、同一Py値では強度が高い内面溶接金属の継手断面における割合を増やすことで継手強度を確保する。
2.2.1 Py value (Py) of weld metal: 0.175
Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 7 + V (%) / 10 + 5 × B (%) · ..Formula (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained. As described above, the weld metal of the steel pipe is hardened under the influence of circumferential welding, and its value is determined by the Py value as shown in FIG. In the present application, the upper limit is set to 0.175 in order to make the upper limit of hardness 280 or less for preventing the occurrence of SSC in the Region 2 environment. In addition, although the minimum of Py value is not prescribed | regulated in particular, 0.165 or more is preferable from a viewpoint of joint strength.
2.3 Ratio of inner weld metal area to outer weld metal area in cross section of welded joint: 2.5 times or more SSC, which is a problem in circumferential welds between steel pipes and steel pipes, is sulfided by the natural gas / crude oil being transported Occurs in a corrosive environment containing hydrogen. That is, it is important to improve the SSC resistance on the inner surface side of the steel pipe and the circumferential welded portion of the steel pipe. Therefore, as described above, the weld metal of the steel pipe welded portion needs to lower Py in order to prevent SSC. On the other hand, the joint strength needs to be equal to or higher than that of the base material, and the inner surface weld with high strength at the same Py value. The joint strength is secured by increasing the proportion of the metal cross-section.

図5(a)に溶接継手断面における内面溶接金属部面積と外面溶接金属部面積の比(溶着面積比)の求める方法を模式的に示す。前述したように、外面溶接金属溶着面積S0および内面溶接金属溶着面積S1を図5(a)に示すように台形の形状として近似して求めている。wは内面と外面溶接金属とが左右の会合した点を直線で結んだ長さとしている。この測定の対象とする溶接継手断面は溶接条件毎に事前に求めておき、溶接条件が同じ場合には同一の溶接部の断面形状であるとして計算する。余盛を測定対象から除いたのは、上記の近似式によって十分に溶着面積比を評価できるからである。断面のマクロ観察によって、余盛を含めて内外面の溶接金属の断面積を求めて計算することもできる。   FIG. 5A schematically shows a method for obtaining the ratio of the inner surface weld metal part area to the outer surface weld metal part area (deposition area ratio) in the weld joint cross section. As described above, the outer surface weld metal weld area S0 and the inner surface weld metal weld area S1 are obtained by approximation as trapezoidal shapes as shown in FIG. w is a length obtained by connecting the left and right meeting points of the inner surface and the outer surface weld metal with a straight line. The weld joint cross section to be measured is obtained in advance for each welding condition, and when the welding condition is the same, the cross section shape of the same weld is calculated. The reason why the surplus is excluded from the measurement object is that the welding area ratio can be sufficiently evaluated by the above approximate expression. It is also possible to obtain and calculate the cross-sectional area of the weld metal on the inner and outer surfaces including the surplus by macro observation of the cross section.

発明者らの鋭意検討の結果、図5(b)より継手引張強度を600MPa以上とするためには、溶接継手断面における内面溶接金属部面積と外面溶接金属部面積の比を2.5倍以上とする。なお、鋼管内面のサブマージアーク溶接は溶接条件に制約があるため、内面溶接金属部面積と外面溶接金属部面積の比は3.5倍以下とすることが好ましい。   As a result of the inventors' extensive studies, in order to make the joint tensile strength 600 MPa or more from FIG. 5B, the ratio of the inner surface weld metal part area to the outer surface weld metal part area in the weld joint cross section is 2.5 times or more. And In addition, since submerged arc welding of the steel pipe inner surface has restrictions on welding conditions, the ratio of the inner surface weld metal part area to the outer surface weld metal part area is preferably 3.5 times or less.

2.4溶接方法
なお、鋼管の溶接方法は、優れた溶接品質と製造能率の点からサブマージアーク溶接を用いる。溶接鋼管を製造する際の突合せ部の溶接は、内外面1層ずつによりサブマージアーク溶接により行う。本発明は、この方式を前提として開発された。
この場合、サブマージアーク溶接の溶接入熱量は内面溶接で、8.0kJ/mm以下、外面溶接で6.0kJ/mm〜3.0kJ/mmとすることが好ましい。溶接の順序は、内面溶接をまず行い次に外面溶接の順にすることが溶接作業効率の観点から好ましい。
2.4 Welding method The steel pipe welding method uses submerged arc welding in terms of excellent welding quality and manufacturing efficiency. The welding of the butt portion when manufacturing the welded steel pipe is performed by submerged arc welding for each of the inner and outer surfaces. The present invention was developed on the premise of this method.
In this case, the welding heat input of the submerged arc welding is preferably 8.0 kJ / mm or less for inner surface welding and 6.0 kJ / mm to 3.0 kJ / mm for outer surface welding. It is preferable from the viewpoint of welding work efficiency that the welding is performed in the order of inner surface welding and then outer surface welding.

上記溶接金属中の成分組成を上記範囲に制御するには、鋼材(母材)の成分組成および溶接条件に応じて、溶接に用いる溶接材料(溶接ワイヤ)を適宜選択するのが好ましい。例えば、各元素について、溶接金属中の成分元素の目標組成を母材希釈率で割り戻して求めた組成を有する溶接ワイヤを作製し、これを用いて溶接する方法である。   In order to control the component composition in the weld metal within the above range, it is preferable to appropriately select a welding material (welding wire) used for welding according to the component composition of the steel (base material) and welding conditions. For example, for each element, a welding wire having a composition obtained by dividing the target composition of the component element in the weld metal by the base material dilution rate is produced and welded using this.

表1に示す化学成分の鋼(鋼種A〜H)を連続鋳造法によりスラブとし、これを用いて板厚16〜31mmの鋼管素材を厚板圧延・加速冷却プロセスで製造した。   Steel of the chemical composition shown in Table 1 (steel types A to H) was made into a slab by a continuous casting method, and a steel pipe material having a plate thickness of 16 to 31 mm was produced by a thick plate rolling / accelerated cooling process.

鋼管素材に、種々の溶接ワイヤを用いて内面1層、外面1層のサブマージアーク溶接を実施し鋼管溶接部とした。溶接部の内面溶接金属および外面溶接金属より化学成分分析試料を採取し、それぞれの化学成分を分析した。また、溶接部から継手断面観察用の試料を採取し、鏡面研磨後硝酸アルコール腐食液を用いてエッチング後、継手マクロ写真を撮影し、図5の要領でそれぞれの外面溶接金属面積S(o)、内面溶接金属面積S(i)から内面溶接金属面積と外面溶接金属面積の比PSwを計算した。溶接金属成分の分析結果およびPSwの値を表2に示す。   The steel pipe material was subjected to submerged arc welding of one inner surface and one outer surface using various welding wires to form a steel pipe welded portion. Chemical component analysis samples were collected from the inner surface weld metal and the outer surface weld metal of the weld, and each chemical component was analyzed. Further, a sample for observing the joint cross section is taken from the welded portion, mirror-polished, etched using a nitrate alcoholic corrosive solution, a macro photograph of the joint is taken, and each outer surface weld metal area S (o) as shown in FIG. The ratio PSw between the inner surface weld metal area and the outer surface weld metal area was calculated from the inner surface weld metal area S (i). Table 2 shows the analysis result of the weld metal component and the value of PSw.

母材部および鋼管溶接部それぞれからAPI規格に従い全厚引張試験片を採取し、引張強度を測定した。なお、引張強度600MPa以上を本発明に必要な強度とした。また、母材部および鋼管溶接部のHIC性能を評価するため、NACE TM0284に従い、母材部および溶接部からHIC試験片を採取し、酢酸水溶液と酢酸ナトリウム水溶液を混合してpHを4.0に調整した浸漬液に圧力比で硫化水素10%、窒素90%に調整した混合ガスを飽和させ、96hr浸漬した。浸漬が終了したHIC試験片は等間隔に3断面切断し、それぞれ鏡面研磨した後、光学顕微鏡にて倍率100倍で各断面の観察を行い、NACE TM0284−2003のSection7に記載の要領で見つかった割れの試料幅方向長さをそれぞれ記録し、割れ長さ率CLR(%)を算出した。なお、CLRが15%以下を本発明における耐HIC性能が良好とした。   Full thickness tensile test pieces were sampled from the base metal part and the steel pipe welded part according to the API standard, and the tensile strength was measured. The tensile strength of 600 MPa or more was determined as the strength required for the present invention. Further, in order to evaluate the HIC performance of the base metal part and the steel pipe welded part, in accordance with NACE TM0284, HIC test specimens were collected from the base metal part and the welded part, and mixed with an acetic acid aqueous solution and a sodium acetate aqueous solution to adjust the pH to 4.0. The mixed gas adjusted to 10% hydrogen sulfide and 90% nitrogen in the pressure ratio was saturated in the immersion liquid adjusted to 1, and immersed for 96 hours. After the immersion, the HIC test piece was cut into three sections at equal intervals, each mirror-polished, and each section was observed with an optical microscope at a magnification of 100 times, and found as described in Section 7 of NACE TM0284-2003. The sample width direction length of the crack was recorded, and the crack length ratio CLR (%) was calculated. Note that when the CLR was 15% or less, the HIC resistance performance in the present invention was considered good.

次に、図4に示すように、母材部と鋼管溶接部がつき合わせとなるような円周溶接模擬多層溶接を、炭酸ガスアーク溶接法で実施した。溶接入熱の平均値は約10kJ/cmであった。そして、作製した円周溶接模擬継手の1断面を切断後鏡面研磨し、図4に示すように、母材部表面、鋼管溶接部の内面溶接金属表面、円周溶接部の母材側HAZ、円周溶接模擬部の内面溶接金属側HAZの4箇所についてそれぞれ5点ずつ、ビッカース硬さを測定し、その平均値を算出した。また、母材部表面のビッカース硬さ測定箇所の脇から金属組織観察用試験片を採取し、まずナイタールエッチングを施して、400倍の光学顕微鏡でミクロ組織の種類を調査した。次に同試験片に2段エッチングを施してMAを現出させてから、1500倍の走査型電子顕微鏡にて無作為5視野撮影し、写真中のMAの面積率を画像解析により計測・算出した。   Next, as shown in FIG. 4, circumferential welding simulated multilayer welding in which the base metal part and the steel pipe welded part were brought together was carried out by a carbon dioxide arc welding method. The average value of welding heat input was about 10 kJ / cm. Then, after cutting one section of the produced circumferential welded simulated joint, it is mirror-polished, and as shown in FIG. 4, the base metal part surface, the inner surface weld metal surface of the steel pipe welded part, the base metal side HAZ of the circumferential welded part, Vickers hardness was measured at five points for each of four locations on the inner surface weld metal side HAZ of the circumferential weld simulation portion, and the average value was calculated. In addition, a specimen for metallographic observation was taken from the side of the Vickers hardness measurement point on the surface of the base material part, first subjected to nital etching, and the type of microstructure was examined with a 400 × optical microscope. Next, two-stage etching was performed on the test piece to reveal MA, and then five random fields of view were taken with a 1500x scanning electron microscope, and the area ratio of MA in the photograph was measured and calculated by image analysis. did.

次に母材部表面、鋼管溶接部内面側表面、および円周溶接模擬部内面側表面の3箇所より、厚さ5mm、幅15mm、長さ115mmの矩形試験片を採取し、図7に示す治具をつかって4点曲げにより試験片中央に降伏強度の90%に相当する応力を付与した後、HIC試験と同様、酢酸水溶液と酢酸ナトリウム水溶液を混合してpHを4.0に調整した浸漬液に圧力比で硫化水素10%、窒素90%に調整した混合ガスを飽和させ、720hr浸漬した。浸漬が終了した試験片を治具から外し、水洗後、100倍の倍率で試験片表面でのSSC発生有無を確認した。   Next, rectangular test pieces having a thickness of 5 mm, a width of 15 mm, and a length of 115 mm were sampled from three locations of the base metal part surface, the steel pipe welded part inner surface, and the circumferential weld simulated part inner surface side, and are shown in FIG. After applying a stress corresponding to 90% of the yield strength to the center of the test piece by 4-point bending using a jig, the pH was adjusted to 4.0 by mixing an acetic acid aqueous solution and an aqueous sodium acetate solution as in the HIC test. A mixed gas adjusted to 10% hydrogen sulfide and 90% nitrogen was saturated in the immersion liquid and immersed in 720 hr. After the immersion, the test piece was removed from the jig, washed with water, and the presence or absence of SSC generation on the surface of the test piece was confirmed at a magnification of 100 times.

母材部表面のミクロ組織調査結果、母材部および溶接部の引張試験結果、硬さ測定結果、HIC試験結果、およびSSC試験結果をまとめて表3に示す。SSC試験で、○は割れが発生せず、×は割れが発生した結果である。   Table 3 summarizes the results of the microstructure investigation on the surface of the base metal part, the tensile test results of the base metal part and the welded part, the hardness measurement result, the HIC test result, and the SSC test result. In the SSC test, ◯ indicates that no cracking occurred, and x indicates the result of cracking.

表3において、本発明例であるNo.1〜5はいずれも、母材・内面溶接金属・外面溶接金属の化学成分および母材表面部のミクロ組織が本発明の範囲内であり、母材・溶接部とも引張強度600MPa以上の高強度かつHICのCLRが0.0%であり、さらに母材部、溶接部、円周溶接模擬部全ての箇所の4点曲げSSC試験で割れが発生しなかった。   In Table 3, No. which is an example of the present invention. 1 to 5 all have the chemical composition of the base metal, the inner surface weld metal, the outer surface weld metal, and the microstructure of the surface of the base material within the scope of the present invention, and both the base material and the weld have high strength of 600 MPa or higher. In addition, the CIC of the HIC was 0.0%, and further, no cracks were generated in the four-point bending SSC test at all the base metal part, the welded part, and the circumferential welded simulated part.

一方、母材のC量が本発明の上限を超えた比較例No.6は、母材表面部のミクロ組織監察においてMAの体積分率が5%を超えており、近傍の硬さが288と非常に硬くなった結果、母材部の4点曲げSSC試験で割れが発生した。また、母材部のHIC試験においても表面側で多数の割れが発生しCLRが15%を超えていた。母材のCP値が本発明の上限を超えた比較例No.7は、母材部および溶接部のHIC試験において中心偏析部で割れが多数発生し、CLRが15%を超えていた。母材のPy値が上限を超えた比較例No.8は、円周溶接模擬部の母材側HAZ硬さが非常に硬くなっており、円周溶接模擬部(表3では「円周溶接部」と表示。)の4点曲げSSC試験で割れが発生した。   On the other hand, Comparative Example No. in which the C content of the base material exceeded the upper limit of the present invention. No. 6 shows that the volume fraction of MA exceeds 5% in the microstructure inspection of the surface of the base material, and the hardness of the vicinity becomes very hard at 288. As a result, the base material is cracked in the 4-point bending SSC test. There has occurred. Also, in the HIC test of the base material part, many cracks occurred on the surface side, and the CLR exceeded 15%. Comparative Example No. in which the CP value of the base material exceeded the upper limit of the present invention. In No. 7, many cracks occurred in the central segregation part in the HIC test of the base material part and the weld part, and the CLR exceeded 15%. Comparative example No. in which the Py value of the base material exceeded the upper limit No. 8 shows that the base metal side HAZ hardness of the circumferential welding simulated portion is very hard and cracked in the 4-point bending SSC test of the circumferential welding simulated portion (shown as “circumferential welded portion” in Table 3). There has occurred.

溶接金属のC量が本発明の上限を上回った比較例No.9は、SAW溶接ままおよび円周溶接模擬部の溶接金属側HAZ硬さが非常に硬くなっており、管溶接部と円周溶接模擬部両方の4点曲げSSC試験で割れが発生した。また、溶接金属のMn量が本発明の上限を上回った、比較例No.10は、円周溶接模擬部の溶接金属側HAZ硬さが非常に硬くなっており、円周溶接模擬部の4点曲げSSC試験で割れが発生した。   Comparative example No. in which the C amount of the weld metal exceeded the upper limit of the present invention. In No. 9, the weld metal side HAZ hardness of the SAW welded and circumferential weld simulation part was very hard, and cracks occurred in the 4-point bending SSC test of both the pipe weld part and the circumferential weld simulation part. Further, the comparative example No. in which the Mn amount of the weld metal exceeded the upper limit of the present invention. In No. 10, the weld metal side HAZ hardness of the circumferential weld simulation portion was very hard, and cracks occurred in the 4-point bending SSC test of the circumferential weld simulation portion.

同様に、溶接金属のPy値が本発明の上限を上回った、比較例No.11も、円周溶接模擬部の溶接金属側HAZ硬さが非常に硬くなっており、円周溶接模擬部の4点曲げSSC試験で割れが発生した。   Similarly, comparative example No. in which the Py value of the weld metal exceeded the upper limit of the present invention. No. 11, the weld metal side HAZ hardness of the circumferential weld simulation part was very hard, and cracks occurred in the 4-point bending SSC test of the circumferential weld simulation part.

継手断面における内面溶接金属面積と外面溶接金属面積の比が、本発明の下限を下回った比較例No.12は継手強度が600MPaを下回った。   Comparative Example No. in which the ratio of the inner surface weld metal area and the outer surface weld metal area in the joint cross section was below the lower limit of the present invention. No. 12 had a joint strength of less than 600 MPa.

本発明によれば、比較的緩やかな硫化水素腐食環境が想定される天然ガスや原油輸送パイプラインにおいてパイプ母材の耐HIC性、耐SSC性のみならず、パイプ同士をつなぐ円周溶接部においても優れた耐SSC性を有する高強度鋼管の提供が可能となり、高圧操業による天然ガス/原油輸送の効率化を図ることができる。   According to the present invention, not only in the HIC resistance and SSC resistance of the pipe base material in the natural gas and crude oil transportation pipeline where a relatively mild hydrogen sulfide corrosion environment is assumed, but also in the circumferential welded portion connecting the pipes. In addition, it is possible to provide a high-strength steel pipe having excellent SSC resistance and to improve the efficiency of natural gas / crude oil transportation by high-pressure operation.

Claims (2)

厚鋼板の母材と、
突合せ部を内外面1層ずつによりサブマージアーク溶接により形成された溶接金属と
を有する溶接鋼管であって、
前記母材が、質量%で、
C:0.02〜0.06%、
Si:0.05〜0.5%、
Mn:0.8〜1.7%、
Al:0.01〜0.08%、
Nb:0.005〜0.06%、
Ti:0.005〜0.025%、
Ca:0.0010〜0.0035%を含有し、
P:0.01%以下、
S:0.001%以下、
B:0.004%以下、
N:0.008%以下で
さらに、
Cu:0.30%以下、
Ni:0.50%以下、
Cr:0.50%以下、
Mo:0.30%以下、
V:0.1%以下
の中から選ばれる1種以上を含有し、
下式(1)で表されるCP値が1.1以下であり、
下式(2)で表されるPy値が0.175以下であり、
残部がFe及び不可避的不純物からなり、
かつ、前記溶接金属が、質量%で、
C:0.04〜0.10%
Si:0.05〜0.5%
Mn:1.0〜1.8%
Nb:0.01〜0.05%
Ti:0.01〜0.04%
B:0.001〜0.004%
O:0.025〜0.045%
Al:0.02%以下
を含有し、
さらに
Cu:0.30%以下
Ni:0.50%以下
Cr:0.50%以下
Mo:0.30%以下
V:0.1%以下
の中から選ばれる1種以上を含有し、
残部Feおよび不可避的不純物からなり、かつ
溶接金属の化学組成で計算される式(2)のPy値が0.175以下であり、
溶接部断面における、余盛部を除いた内面溶接金属部面積が外面溶接金属部面積の2.5倍以上であることを特徴とする耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%)・・・式(1)
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号は含有量(質量%)を表わし、含有しない場合は0とする。
A thick steel base material,
A welded steel pipe having a weld metal formed by submerged arc welding with a butt portion on each inner and outer surface layer,
The base material is mass%,
C: 0.02 to 0.06%,
Si: 0.05 to 0.5%,
Mn: 0.8 to 1.7%,
Al: 0.01 to 0.08%,
Nb: 0.005 to 0.06%,
Ti: 0.005 to 0.025%,
Ca: 0.0010 to 0.0035% is contained,
P: 0.01% or less,
S: 0.001% or less,
B: 0.004% or less,
N: 0.008% or less
Cu: 0.30% or less,
Ni: 0.50% or less,
Cr: 0.50% or less,
Mo: 0.30% or less,
V: contains one or more selected from 0.1% or less,
The CP value represented by the following formula (1) is 1.1 or less,
The Py value represented by the following formula (2) is 0.175 or less,
The balance consists of Fe and inevitable impurities,
And the said weld metal is the mass%,
C: 0.04 to 0.10%
Si: 0.05-0.5%
Mn: 1.0 to 1.8%
Nb: 0.01 to 0.05%
Ti: 0.01-0.04%
B: 0.001 to 0.004%
O: 0.025 to 0.045%
Al: containing 0.02% or less,
Furthermore, Cu: 0.30% or less Ni: 0.50% or less Cr: 0.50% or less Mo: 0.30% or less V: containing at least one selected from 0.1% or less,
The Py value of the formula (2) consisting of the balance Fe and inevitable impurities and calculated by the chemical composition of the weld metal is 0.175 or less,
In the welded section, the inner surface weld metal part area excluding the surplus part is 2.5 times or more the outer surface weld metal part area, and has a tensile strength of 600 MPa or more excellent in resistance to sulfide stress corrosion cracking. High strength welded steel pipe.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 7 + V (%) / 10 + 5 × B (%) · ..Formula (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.
前記母材の表層部の金属組織は、島状マルテンサイトの体積分率が5%以下であり、残部がベイナイトまたはベイナイトとフェライトの混合組織であることを特徴とする、請求項1記載の耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。   The metal structure of the surface layer portion of the base material has a volume fraction of island martensite of 5% or less, and the balance is bainite or a mixed structure of bainite and ferrite. A high-strength welded steel pipe with a tensile strength of 600 MPa or more with excellent sulfide stress corrosion cracking properties.
JP2011268639A 2011-12-08 2011-12-08 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking Active JP5870665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011268639A JP5870665B2 (en) 2011-12-08 2011-12-08 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268639A JP5870665B2 (en) 2011-12-08 2011-12-08 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking

Publications (2)

Publication Number Publication Date
JP2013119658A true JP2013119658A (en) 2013-06-17
JP5870665B2 JP5870665B2 (en) 2016-03-01

Family

ID=48772455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268639A Active JP5870665B2 (en) 2011-12-08 2011-12-08 High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP5870665B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209663A (en) * 2014-09-02 2014-12-17 中冶建筑研究总院有限公司 Cosmetic overlaying material for composite overlaying remanufacturing of support roller and preparation method for cosmetic overlaying material
JP2015108588A (en) * 2013-12-05 2015-06-11 三菱日立パワーシステムズ株式会社 Stress analysis system and stress analysis method of piping system welded portion
WO2016002171A1 (en) * 2014-06-30 2016-01-07 Jfeスチール株式会社 Method for butt welding steel plates and butt welded joint of steel plates
CN105499769A (en) * 2016-02-04 2016-04-20 四川石油天然气建设工程有限责任公司 Submerged arc automatic welding process suitable for sulfur-resisting process pipeline welding
JP2016079474A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Weld joint
CN107553003A (en) * 2017-09-20 2018-01-09 中国石油天然气集团公司管材研究所 A kind of low temperature Service Environment X90 steel-grade bent pipes, pipe fitting welding wire for submerged-arc welding
CN111094608A (en) * 2017-09-19 2020-05-01 日本制铁株式会社 Steel pipe and steel plate
WO2022064982A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Welded retainer for roller bearing, rollers equipped with retainer, and method for inspecting welded retainer for roller bearing
CN114836683A (en) * 2022-03-22 2022-08-02 江阴兴澄特种钢铁有限公司 High-strength high-toughness low-yield-ratio pipeline steel plate suitable for wet hydrogen sulfide environment and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH091344A (en) * 1995-06-14 1997-01-07 Kawasaki Steel Corp Low temp. high toughness uoe steel tube
JP2004143556A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor
JP2005023429A (en) * 2004-10-20 2005-01-27 Jfe Steel Kk High toughness uoe steel pipe for use at low temperature
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP2005246403A (en) * 2004-03-02 2005-09-15 Nippon Steel Corp High strength welded steel pipe excellent in brittle fracture characteristic in weld zone
JP2005288448A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Uoe steel tube manufacturing method
JP2010189722A (en) * 2009-02-18 2010-09-02 Nippon Steel Corp Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH091344A (en) * 1995-06-14 1997-01-07 Kawasaki Steel Corp Low temp. high toughness uoe steel tube
JP2004143556A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP2005246403A (en) * 2004-03-02 2005-09-15 Nippon Steel Corp High strength welded steel pipe excellent in brittle fracture characteristic in weld zone
JP2005288448A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Uoe steel tube manufacturing method
JP2005023429A (en) * 2004-10-20 2005-01-27 Jfe Steel Kk High toughness uoe steel pipe for use at low temperature
JP2010189722A (en) * 2009-02-18 2010-09-02 Nippon Steel Corp Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108588A (en) * 2013-12-05 2015-06-11 三菱日立パワーシステムズ株式会社 Stress analysis system and stress analysis method of piping system welded portion
RU2651548C1 (en) * 2014-06-30 2018-04-20 ДжФЕ СТИЛ КОРПОРЕЙШН Welding method of steel sheet inserting welding and steel welding of steel sheets
WO2016002171A1 (en) * 2014-06-30 2016-01-07 Jfeスチール株式会社 Method for butt welding steel plates and butt welded joint of steel plates
JP6065989B2 (en) * 2014-06-30 2017-01-25 Jfeスチール株式会社 Steel plate butt welding method and steel plate butt weld joint manufacturing method
EP3162489A4 (en) * 2014-06-30 2017-06-07 JFE Steel Corporation Method of butt welding steel plates and butt weld joint of steel plates
CN104209663B (en) * 2014-09-02 2016-08-24 中冶建筑研究总院有限公司 A kind of built-up welding is combined capping resurfacing welding material remanufacturing backing roll and preparation method thereof
CN104209663A (en) * 2014-09-02 2014-12-17 中冶建筑研究总院有限公司 Cosmetic overlaying material for composite overlaying remanufacturing of support roller and preparation method for cosmetic overlaying material
JP2016079474A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Weld joint
CN105499769A (en) * 2016-02-04 2016-04-20 四川石油天然气建设工程有限责任公司 Submerged arc automatic welding process suitable for sulfur-resisting process pipeline welding
CN105499769B (en) * 2016-02-04 2018-01-30 四川石油天然气建设工程有限责任公司 A kind of welding technology of automatic submerged-arc welding suitable for the welding of sulfur resistive process pipe
CN111094608B (en) * 2017-09-19 2021-10-26 日本制铁株式会社 Steel pipe and steel plate
CN111094608A (en) * 2017-09-19 2020-05-01 日本制铁株式会社 Steel pipe and steel plate
CN107553003A (en) * 2017-09-20 2018-01-09 中国石油天然气集团公司管材研究所 A kind of low temperature Service Environment X90 steel-grade bent pipes, pipe fitting welding wire for submerged-arc welding
WO2022064982A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Welded retainer for roller bearing, rollers equipped with retainer, and method for inspecting welded retainer for roller bearing
CN114836683A (en) * 2022-03-22 2022-08-02 江阴兴澄特种钢铁有限公司 High-strength high-toughness low-yield-ratio pipeline steel plate suitable for wet hydrogen sulfide environment and manufacturing method thereof
CN114836683B (en) * 2022-03-22 2023-09-15 江阴兴澄特种钢铁有限公司 High-strength high-toughness low-yield-ratio pipeline steel plate suitable for wet hydrogen sulfide environment and manufacturing method thereof

Also Published As

Publication number Publication date
JP5870665B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5423323B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP6193206B2 (en) Steel plate and line pipe steel pipe with excellent sour resistance, HAZ toughness and HAZ hardness
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP5853456B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
WO2015001759A1 (en) Seamless steel tube for line pipe used in acidic environment
JP2008088504A (en) Electron beam welded joint having excellent resistance to occurrence of brittle fracture
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP2016216819A (en) Thick steel plate and welded joint
CN102057070B (en) Steel plate excellent in sour resistance and steel pipe for linepipes
JP5821929B2 (en) High-strength hot-rolled steel sheet with excellent material stability and weldability and method for producing the same
JP2021049572A (en) Austenitic stainless steel weld joint
JP4506933B2 (en) Steel material suitable for large heat input welding for steel frames
JP2021049570A (en) Austenitic stainless steel weld joint
KR101867111B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5870664B2 (en) High strength welded steel pipe and manufacturing method thereof
JP5870561B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5870665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250