JP6665525B2 - H-shaped steel for low temperature and method for producing the same - Google Patents

H-shaped steel for low temperature and method for producing the same Download PDF

Info

Publication number
JP6665525B2
JP6665525B2 JP2015251117A JP2015251117A JP6665525B2 JP 6665525 B2 JP6665525 B2 JP 6665525B2 JP 2015251117 A JP2015251117 A JP 2015251117A JP 2015251117 A JP2015251117 A JP 2015251117A JP 6665525 B2 JP6665525 B2 JP 6665525B2
Authority
JP
Japan
Prior art keywords
less
temperature
flange
low
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015251117A
Other languages
Japanese (ja)
Other versions
JP2017115200A (en
Inventor
栄利 伊藤
栄利 伊藤
市川 和利
和利 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015251117A priority Critical patent/JP6665525B2/en
Publication of JP2017115200A publication Critical patent/JP2017115200A/en
Application granted granted Critical
Publication of JP6665525B2 publication Critical patent/JP6665525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、低温環境で使用される建造物の構造部材などに用いられる、低温用H形鋼及びその製造方法に関するものである。   The present invention relates to a low-temperature H-section steel used for a structural member of a building used in a low-temperature environment and a method for producing the same.

H形鋼は、従来から建築構造物などに使用されており、靭性に優れたH形鋼が提案されている(例えば、特許文献1、参照)。H形鋼の靱性を高めるには、金属組織の微細化が有利であり、熱間圧延後に加速冷却を施す方法が提案されている(例えば、特許文献2、3、参照)。一般的な建築構造物で要求される靭性は、0℃か、−10℃程度でのシャルピー吸収エネルギーである。   H-shaped steels have been conventionally used for building structures and the like, and H-shaped steels having excellent toughness have been proposed (for example, see Patent Document 1). In order to increase the toughness of the H-section steel, it is advantageous to refine the metal structure, and a method of performing accelerated cooling after hot rolling has been proposed (for example, see Patent Documents 2 and 3). The toughness required for a general building structure is the Charpy absorbed energy at about 0 ° C. or about −10 ° C.

一方、近年、寒冷地における資源開発に伴う関連設備の建造が増加している。このような寒冷地に建造される構造物には、低温靭性に優れたH形鋼を使用する必要があり、−40℃でのシャルピー吸収エネルギーが27J以上のH形鋼が提案されている(例えば、特許文献4、参照)。特許文献4では、Nb、Vなどを添加せず、C量や、鋼中に固溶する窒素量(固溶N量)を低減し、加速冷却を適用してH形鋼の低温靭性を向上させている。   On the other hand, in recent years, construction of facilities related to resource development in cold regions has been increasing. It is necessary to use an H-section steel excellent in low-temperature toughness for a structure built in such a cold region, and an H-section steel having a Charpy absorbed energy at −40 ° C. of 27 J or more has been proposed ( For example, see Patent Document 4). In Patent Document 4, the amount of C and the amount of nitrogen dissolved in steel (the amount of solute N) are reduced without adding Nb and V, and the low-temperature toughness of the H-section steel is improved by applying accelerated cooling. Let me.

特開平10−68016号公報JP-A-10-68016 特開平10−147834号公報JP-A-10-147834 特開平10−147835号公報JP-A-10-147835 特開2006−249475号公報JP 2006-249475 A

特許文献4では、TiによってNを固定し、TiNを生成させて、固溶N量を低減させている。しかし、通常、H形鋼には溶接が施されるため、溶接によって1400℃以上に加熱されると、TiNは鋼中に固溶してしまう。したがって、TiNを形成させて固溶N量を低減させた場合は、溶接熱影響部の低温靭性の低下が懸念される。本発明は、このような実情に鑑み、母材だけでなく、溶接熱影響部の低温靭性をも向上させた、低温用H形鋼及びその製造方法の提供を課題とするものである。   In Patent Document 4, N is fixed by Ti, TiN is generated, and the amount of solute N is reduced. However, since the H-section steel is usually welded, when heated to 1400 ° C. or more by welding, TiN is dissolved in the steel. Therefore, when TiN is formed to reduce the amount of solute N, there is a concern that the low-temperature toughness of the heat affected zone is reduced. In view of such circumstances, an object of the present invention is to provide a low-temperature H-section steel in which not only the base material but also the low-temperature toughness of the weld heat-affected zone has been improved, and a method for producing the same.

Nbは、炭化物や窒化物などの析出物を生成する元素であり、特許文献4では含有が制限されているように、一般には靱性に悪影響を及ぼす元素である。しかし、Nbは再結晶を抑制して、結晶粒の微細化に寄与し、強度の上昇にも有用な元素である。そこで、本発明者らは、Nbを含有させ、加速冷却を適用し、H形鋼の強度及び靱性の確保を試みた。   Nb is an element that generates precipitates such as carbides and nitrides, and generally has an adverse effect on toughness, as the content is restricted in Patent Document 4. However, Nb is an element that suppresses recrystallization, contributes to refinement of crystal grains, and is also useful for increasing strength. Then, the present inventors tried to ensure the strength and toughness of the H-section steel by adding Nb and applying accelerated cooling.

そして、本発明者らの検討の結果、Nbを含有させた場合、加速冷却の冷却速度を高めて組織の微細化を促進させると、低温靱性を確保できるという知見が得られた。また、加速冷却によって、焼入れ性を高める合金元素の含有量を低減することが可能になり、硬質相の生成が抑制され、母材だけでなく溶接熱影響部の低温靭性をも確保できることがわかった。   As a result of the study by the present inventors, it has been found that, when Nb is contained, the low-temperature toughness can be ensured by increasing the cooling rate of accelerated cooling to promote the refinement of the structure. In addition, accelerated cooling makes it possible to reduce the content of alloying elements that enhance hardenability, suppress the formation of hard phases, and ensure low-temperature toughness not only in the base metal but also in the weld heat affected zone. Was.

本発明はこのような知見に基づいてなされたものであり、その要旨は以下のとおりである。   The present invention has been made based on such findings, and the gist is as follows.

[1] 質量%で、
C:0.03〜0.13%、
Mn:0.80〜2.00%、
Nb:0.005〜0.060%
を含有し、
Si:0.50%以下、
Ti:0.025%以下、
Al:0.060%以下、
N:0.0120%以下、
O:0.0035%以下
に制限し、残部がFe及び不可避不純物からなり、
下記式(1)によって求められるCEVが0.40以下であり、
フランジの板厚の外側から1/4の位置かつフランジ幅の外側から1/6の位置でのフェライト、ベイナイトの一方又は両方の面積率の合計が90%以上、硬質相の面積率が10%以下であり、
有効結晶粒径が20μm以下、かつ、硬質相の粒径が10μm以下であり、
フランジの板厚が12〜50mmである
ことを特徴とする低温用H形鋼。
CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(1)
ここで、C、Mn、Cr、Mo、V、Ni、Cuは、各元素の含有量[質量%]である。
[2] 更に、質量%で
V:0.08%以下、
Cu:0.40%以下、
Ni:0.70%以下、
Mo:0.10%以下、
Cr:0.20%以下
の1種又は2種以上を含有することを特徴とする上記[1]に記載の低温用H形鋼。
[3] 更に、質量%で、
REM:0.010%以下、
Ca:0.0050%以下
の一方又は両方を含有することを特徴とする上記[1]又は[2]に記載の低温用H形鋼。
[4] 上記[1]〜[3]の何れか1項に記載の低温用H形鋼の製造方法であって、上記[1]〜[3]の何れか1項に記載の成分からなる鋼片を1100〜1350℃に加熱して熱間圧延を施し、(Ar3−30)℃以上900℃以下の範囲内で前記熱間圧延を終了し、そのまま、フランジの内外面に、冷却速度が10℃/s超である加速冷却を施し、復熱による、フランジ幅の外側から1/6の位置での表面の最高到達温度が350〜700℃になるように前記加速冷却を停止することを特徴とする低温用H形鋼の製造方法。
[1] In mass%,
C: 0.03 to 0.13%,
Mn: 0.80-2.00%,
Nb: 0.005 to 0.060%
Containing
Si: 0.50% or less,
Ti: 0.025% or less,
Al: 0.060% or less,
N: 0.0120% or less,
O: limited to 0.0035% or less, the balance being Fe and unavoidable impurities,
CEV obtained by the following equation (1) is 0.40 or less;
The total area ratio of one or both of ferrite and bainite at a position 1/4 from the outside of the thickness of the flange and 1/6 from the outside of the flange width is 90% or more, and the area ratio of the hard phase is 10%. Is the following,
The effective crystal grain size is 20 μm or less, and the grain size of the hard phase is 10 μm or less,
An H-shaped steel for low temperature, wherein the thickness of the flange is 12 to 50 mm.
CEV = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (1)
Here, C, Mn, Cr, Mo, V, Ni, and Cu are the contents [% by mass] of each element.
[2] Furthermore, V: 0.08% or less by mass%,
Cu: 0.40% or less,
Ni: 0.70% or less,
Mo: 0.10% or less,
The low-temperature H-section steel according to the above [1], wherein one or more of Cr: 0.20% or less is contained.
[3] Furthermore, in mass%,
REM: 0.010% or less,
The low-temperature H-section steel according to the above [1] or [2], wherein one or both of Ca and 0.0050% or less are contained.
[4] The method for producing a low-temperature H-section steel according to any one of [1] to [3], comprising the component according to any one of [1] to [3]. The slab is heated to 1100 to 1350 ° C and subjected to hot rolling. The hot rolling is completed within the range of (Ar 3 −30) ° C or more and 900 ° C or less, and the cooling rate is directly applied to the inner and outer surfaces of the flange. Performing accelerated cooling of more than 10 ° C./s, and stopping the accelerated cooling such that the maximum temperature of the surface at a position 1/6 from the outside of the flange width due to recuperation becomes 350 to 700 ° C. A method for producing a low-temperature H-section steel, comprising:

本発明によれば、高価な元素を多量に添加することなく、−40℃以下という低温における母材及び溶接熱影響部の靱性に優れたH形鋼を得ることが可能になる。したがって、本発明によれば、経済性を損なうことなく、寒冷地に建造される建造物等の信頼性が向上するなど、本発明は、産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the H-section steel excellent in toughness of a base material and a welding heat affected zone at low temperature of -40 degreeC or less, without adding a large amount of expensive elements. Therefore, according to the present invention, the industrial contribution is extremely remarkable, for example, the reliability of a building or the like built in a cold region is improved without impairing economic efficiency.

圧延後の冷却装置を示す図である。It is a figure showing a cooling device after rolling. 復熱温度とH形鋼のシャルピー吸収エネルギーとの関係を説明する図である。It is a figure explaining the relation between recuperation temperature and Charpy absorption energy of H-section steel. H形鋼の試験片採取位置を説明する図である。It is a figure explaining the test piece collection position of H section steel. H形鋼の製造工程の一例を説明する図である。It is a figure explaining an example of a manufacturing process of H section steel. 溶接部のシャルピー衝撃試験片を採取する際のノッチ位置を説明する図である。It is a figure explaining the notch position at the time of extracting the Charpy impact test piece of a welding part. 溶接部のCTOD試験片を採取する際のノッチ位置を説明する図である。It is a figure explaining the notch position at the time of taking the CTOD test piece of a welding part.

本発明者らは、熱間圧延後、図1に示す冷却装置により、H形鋼のフランジに冷却速度が10℃/s超の加速冷却を施し、組織の微細化を図ることで、0.010%以上のNbを含有させても、低温靭性を確保できるという知見を得た。また、C量、Si量の制限による硬質相の低減は、母材だけでなく、溶接熱影響部の低温靭性の確保にも重要であることがわかった。そして、C量、Si量を低減させた場合、Nbの含有は強度の確保にも有効であるという知見も得られた。   After the hot rolling, the inventors performed accelerated cooling at a cooling rate of more than 10 ° C./s on the flange of the H-beam by the cooling device shown in FIG. It has been found that low-temperature toughness can be ensured even when 010% or more of Nb is contained. In addition, it was found that the reduction of the hard phase due to the limitation of the amounts of C and Si is important not only for the base metal but also for ensuring the low-temperature toughness of the weld heat affected zone. Further, it has been found that when the amounts of C and Si are reduced, the content of Nb is also effective for securing the strength.

また、加速冷却の冷却速度を10℃/s超にした場合、加速冷却の停止後、復熱によって到達する最高温度(復熱温度)が低温靱性に影響を及ぼすことがわかった。図2は、本発明者らの検討の結果の一例を示すものである。図2に示すように、加速冷却後の復熱温度が350〜700℃の間でH形鋼(母材)の低温靭性が向上しており、目標である60J以上になる。これは、加速冷却後の復熱温度が700℃を超えると有効結晶粒径の粗大化や硬質相の生成、350℃未満になると硬質相の生成や強度の上昇によって靱性が低下するためであると考えられる。   Also, when the cooling rate of the accelerated cooling was set to more than 10 ° C./s, it was found that the maximum temperature (recovered temperature) reached by the reheating after stopping the accelerated cooling had an effect on the low-temperature toughness. FIG. 2 shows an example of the result of the study by the present inventors. As shown in FIG. 2, the low-temperature toughness of the H-section steel (base material) is improved when the recuperation temperature after accelerated cooling is in the range of 350 to 700 ° C., and reaches the target of 60 J or more. This is because if the recuperation temperature after accelerated cooling exceeds 700 ° C., the effective crystal grain size becomes coarse and a hard phase is generated, and if it is lower than 350 ° C., the hard phase is generated and the toughness is reduced due to an increase in strength. it is conceivable that.

以下、本発明について説明する。   Hereinafter, the present invention will be described.

まず、本発明のH形鋼の成分組成について説明する。   First, the component composition of the H-section steel of the present invention will be described.

(C:0.03〜0.13%)
Cは、鋼の強化に有効な元素であり、C量の下限値を0.03%以上とする。C含有量は、0.04%以上であることが好ましく、より好ましくは0.05%以上とする。一方、C量が0.13%を超えると硬質相である島状マルテンサイト(MA)や疑似パーライトが増加し、母材や溶接熱影響部の靱性が低下する。したがって、C量の上限を0.13%以下とする。好ましくはC量を0.10%以下、より好ましくは0.08%未満とする。
(C: 0.03-0.13%)
C is an element effective for strengthening steel, and the lower limit of the amount of C is set to 0.03% or more. The C content is preferably 0.04% or more, and more preferably 0.05% or more. On the other hand, if the C content exceeds 0.13%, the amount of hard martensite (MA) and pseudo-pearlite, which are hard phases, increases, and the toughness of the base metal and the weld heat affected zone decreases. Therefore, the upper limit of the amount of C is set to 0.13% or less. Preferably, the C content is 0.10% or less, more preferably less than 0.08%.

(Si:0.50%以下)
Siは、脱酸元素であり、強度の向上にも寄与するが、Cと同様、硬質相を生成させる元素である。Si量が0.50%を超えると、硬質相の生成によって母材及び溶接熱影響部の靭性が低下するため、上限を0.50%とする。Si量は、0.30%以下が好ましく、より好ましくは0.20%以下、更に好ましくは0.10%以下とする。Si量の下限は規定せず、0%でもよいが、Siは有用な脱酸元素であり、0.01%以上であってもよい。
(Si: 0.50% or less)
Si is a deoxidizing element and also contributes to improvement in strength, but is an element that forms a hard phase, like C. If the Si content exceeds 0.50%, the toughness of the base material and the weld heat affected zone is reduced by the formation of a hard phase, so the upper limit is made 0.50%. The Si content is preferably 0.30% or less, more preferably 0.20% or less, and still more preferably 0.10% or less. The lower limit of the amount of Si is not specified and may be 0%, but Si is a useful deoxidizing element and may be 0.01% or more.

(Mn:0.80〜2.00%)
Mnは、強度を確保し、有効結晶粒径を微細化させるために、0.80%以上を添加する。Mn量は好ましくは、1.00%以上、より好ましくは1.20%以上、更に好ましくは、1.30%以上とする。一方、2.00%を超えるMnを添加すると、介在物の増加等によって、母材及び溶接熱影響部の靱性を損なう。したがって、Mn量の上限を2.00%以下とする。Mn量は好ましくは、1.80%以下とする。
(Mn: 0.80-2.00%)
Mn is added in an amount of 0.80% or more in order to secure strength and reduce the effective crystal grain size. The Mn content is preferably 1.00% or more, more preferably 1.20% or more, and still more preferably 1.30% or more. On the other hand, if Mn exceeding 2.00% is added, the toughness of the base metal and the weld heat affected zone is impaired due to an increase in inclusions and the like. Therefore, the upper limit of the amount of Mn is set to 2.00% or less. The Mn content is preferably set to 1.80% or less.

(Nb:0.005〜0.060%)
Nbはフェライトを微細化させ、強度及び靭性を向上させる元素であり、0.005%以上を添加する。Nb含有量は好ましくは0.010%以上を添加する。一方、0.060%を超えるNbを添加すると、焼入れ性の向上に伴い硬質相の増加、硬さの上昇を引き起こし、特に靭性を低下させる。したがって、Nb量の上限を0.060%とする。より好ましくは0.050%以下とする。
(Nb: 0.005 to 0.060%)
Nb is an element that refines ferrite and improves strength and toughness, and 0.005% or more is added. The Nb content is preferably 0.010% or more. On the other hand, when Nb exceeding 0.060% is added, an increase in hard phase and an increase in hardness are caused with the improvement of hardenability, and particularly, toughness is reduced. Therefore, the upper limit of the Nb amount is set to 0.060%. More preferably, it is set to 0.050% or less.

(Ti:0.025%以下)
Tiは、TiNを形成する元素であり、Ti量が0.025%を超えるとTiNが粗大化し、脆性破壊の起点となるため、上限を0.025%に制限する。好ましくはTi量を0.020%以下とする。Ti量の下限は0%でもよいが、微細なTiNは組織の微細化に寄与するため、0.005%以上であってもよい。
(Ti: 0.025% or less)
Ti is an element that forms TiN. If the amount of Ti exceeds 0.025%, TiN coarsens and becomes a starting point of brittle fracture, so the upper limit is limited to 0.025%. Preferably, the Ti content is 0.020% or less. The lower limit of the Ti content may be 0%, but fine TiN may be 0.005% or more because fine TiN contributes to the refinement of the structure.

(Al:0.060%以下)
Alは、脱酸元素であるが、Al量が0.060%を超えると、介在物によって母材及び溶接熱影響部の靭性が低下するため、上限を0.060%とする。Al量は、0.050%以下が好ましく、より好ましくは0.040%以下、更に好ましくは0.030%以下とする。Al量の下限は規定せず、0%でもよいが、Alは有用な脱酸元素であり、0.010%以上であってもよい。
(Al: 0.060% or less)
Al is a deoxidizing element, but if the Al content exceeds 0.060%, the toughness of the base metal and the weld heat affected zone is reduced by inclusions, so the upper limit is made 0.060%. The Al content is preferably 0.050% or less, more preferably 0.040% or less, and still more preferably 0.030% or less. The lower limit of the amount of Al is not specified and may be 0%, but Al is a useful deoxidizing element and may be 0.010% or more.

(N:0.0120%以下)
Nは、母材及び溶接熱影響部の靭性を低下させる元素である。N量が0.0120%を超えると、固溶Nや粗大な析出物の形成によって低温靭性を損なうため、上限を0.0120%以下とする。N量は好ましくは0.0100%以下、より好ましくは0.0070%以下とする。一方、N量を0.0020%未満に低減しようとすると製鋼コストが高くなるため、N量の下限は0.0020%以上であってもよい。コストの観点からN量は0.0030%以上であってもよい。
(N: 0.0120% or less)
N is an element that lowers the toughness of the base metal and the weld heat affected zone. If the N content exceeds 0.0120%, low-temperature toughness is impaired by the formation of solid solution N and coarse precipitates, so the upper limit is made 0.0120% or less. The N content is preferably 0.0100% or less, more preferably 0.0070% or less. On the other hand, if an attempt is made to reduce the N content to less than 0.0020%, steelmaking costs will increase, so the lower limit of the N content may be 0.0020% or more. From the viewpoint of cost, the amount of N may be 0.0030% or more.

(O:0.0035%以下)
Oは、不純物であり、酸化物の生成を抑制して靭性を確保するため、O量の上限を0.0035%以下に制限する。好ましくはO量を0.0030%以下とし、より好ましくは、HAZ靭性を向上させるために0.0025%以下とする。O量を0.0005%未満にしようとすると、製造コストが高くなるため、O量は0.0005%以上であってもよい。
(O: 0.0035% or less)
O is an impurity, and the upper limit of the amount of O is limited to 0.0035% or less in order to suppress generation of an oxide and secure toughness. The O content is preferably set to 0.0030% or less, and more preferably 0.0025% or less to improve HAZ toughness. If the amount of O is set to be less than 0.0005%, the production cost is increased. Therefore, the amount of O may be 0.0005% or more.

(CEV:0.40以下)
CEVは、焼入れ性の指標であり、強度を確保するために高めることが好ましい。しかし、CEVが0.40を超えると、特に溶接部の靱性が低下するため、0.40以下とする。一方、低減させると焼入れ性が低下し、組織が粗大化するため、0.20以上とすることが好ましい。CEVは、下記式(1)で求めることができる。下記式(1)において、C、Mn、Cr、Mo、V、Ni、Cuは、各元素の含有量[質量%]であり、選択的に添加されるCr、Moを含有しない場合は、これらの含有量を0としてCEVを求める。
(CEV: 0.40 or less)
CEV is an index of hardenability, and is preferably increased to secure strength. However, if the CEV exceeds 0.40, the toughness of the weld particularly decreases, so that the CEV is set to 0.40 or less. On the other hand, if the content is reduced, the hardenability decreases and the structure becomes coarse. Therefore, the content is preferably set to 0.20 or more. CEV can be obtained by the following equation (1). In the following formula (1), C, Mn, Cr, Mo, V, Ni, and Cu are the contents [% by mass] of each element. Is determined assuming that the content of is 0.

CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(1) CEV = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (1)

更に、強度及び靱性の向上を目的として、V、Cu、Ni、Mo、Crのうちの1種又は2種以上を含有させてもよい。   Further, for the purpose of improving strength and toughness, one or more of V, Cu, Ni, Mo, and Cr may be contained.

(V:0.08%以下)
Vは、窒化物(VN)を形成する元素であり、母材の強度を高めるために0.01%以上を含有させてもよい。好ましくはV量を0.02%以上、より好ましくは0.03%以上とする。一方、Vは高価な元素であるため、V量の上限は0.08%が好ましい。
(V: 0.08% or less)
V is an element that forms nitride (VN), and may be contained at 0.01% or more to increase the strength of the base material. Preferably, the V content is 0.02% or more, more preferably 0.03% or more. On the other hand, since V is an expensive element, the upper limit of the amount of V is preferably 0.08%.

(Cu:0.40%以下)
Cuは、強度の向上に寄与する元素である。しかし、Cu量が0.40%を超えると強度が過剰に上昇し、低温靭性が低下するため、上限を0.40%以下とする。Cu量は好ましくは0.30%以下とし、より好ましくは0.20%以下とする。Cu量の下限は0.01%以上が好ましく、より好ましくは0.10%以上とする。
(Cu: 0.40% or less)
Cu is an element that contributes to improvement in strength. However, if the Cu content exceeds 0.40%, the strength is excessively increased and the low-temperature toughness is reduced, so the upper limit is made 0.40% or less. The Cu content is preferably set to 0.30% or less, and more preferably set to 0.20% or less. The lower limit of the amount of Cu is preferably 0.01% or more, more preferably 0.10% or more.

(Ni:0.70%以下)
Niは、強度及び靭性を高めるために、極めて有効な元素である。しかし、Niは高価な元素であり、合金コストの上昇を抑制するため、Ni量の上限を0.70%以下とする。Ni量は好ましくは0.50%以下とする。Ni量の下限は0.01%以上が好ましく、より好ましくは0.10%以上、更に好ましくは0.20%以上とする。
(Ni: 0.70% or less)
Ni is an extremely effective element for increasing strength and toughness. However, Ni is an expensive element, and the upper limit of the amount of Ni is set to 0.70% or less in order to suppress an increase in alloy cost. The Ni content is preferably set to 0.50% or less. The lower limit of the Ni content is preferably 0.01% or more, more preferably 0.10% or more, and still more preferably 0.20% or more.

(Mo:0.10%以下)
Moは、強度の向上に寄与する元素である。しかし、0.10%を超えてMoを添加すると、Mo炭化物(Mo2C)の析出や硬質相の生成を促進し、特に溶接熱影響部の靱性を劣化させることがあるため、0.10%以下に制限することが好ましい。Mo量の上限は、0.05%以下がより好ましい。Mo量の下限は、0.01%以上が好ましい。
(Mo: 0.10% or less)
Mo is an element that contributes to improvement in strength. However, if Mo is added in excess of 0.10%, the precipitation of Mo carbide (Mo 2 C) and the formation of a hard phase are promoted, and in particular, the toughness of the weld heat affected zone may be deteriorated. % Is preferred. The upper limit of the Mo amount is more preferably 0.05% or less. The lower limit of the Mo amount is preferably 0.01% or more.

(Cr:0.20%以下)
Crも強度の向上に寄与する元素である。しかし、0.20%を超えてCrを添加すると炭化物を生成し、靭性を損なうことがあるため、Cr量の上限を0.20%以下に制限することが好ましい。Cr量の好ましい上限は0.10%以下である。Cr量の下限は0.01%以上が好ましい。
(Cr: 0.20% or less)
Cr is also an element that contributes to improvement in strength. However, if Cr is added in excess of 0.20%, carbides may be formed and the toughness may be impaired. Therefore, it is preferable to limit the upper limit of the amount of Cr to 0.20% or less. The preferable upper limit of the amount of Cr is 0.10% or less. The lower limit of the Cr content is preferably 0.01% or more.

更に、介在物の形態の制御を目的として、REM、Caのうちの1種又は2種を含有させてもよい。   Further, for the purpose of controlling the form of inclusions, one or two of REM and Ca may be contained.

(REM:0.010%以下、Ca:0.0050%以下)
REM及びCaは、脱酸元素であり、硫化物の形態の制御にも寄与するため、添加してもよい。しかし、REM、Caの酸化物は溶鋼中で容易に浮上するため、鋼中に含有されるREMの上限は0.010%以下、Caの上限は0.0050%以下である。好ましくは、REM及びCaの含有量の下限は、それぞれ0.0005%以上とする。
(REM: 0.010% or less, Ca: 0.0050% or less)
REM and Ca are deoxidizing elements and contribute to control of the form of sulfide, and may be added. However, since the oxides of REM and Ca easily float in molten steel, the upper limit of REM contained in steel is 0.010% or less, and the upper limit of Ca is 0.0050% or less. Preferably, the lower limits of the contents of REM and Ca are each 0.0005% or more.

(P、S)
不可避不純物として含有するP、Sについては、含有量を特に限定しない。なお、P、Sは、凝固偏析による溶接割れ、靱性低下の原因となるので、極力低減すべきである。P量は0.02%以下に制限することが好ましく、更に好ましい上限は0.002%以下である。また、S量の含有量は、0.002%以下に制限することが好ましい。
(P, S)
The contents of P and S contained as inevitable impurities are not particularly limited. Since P and S cause welding cracks and decrease in toughness due to solidification segregation, P and S should be reduced as much as possible. The P content is preferably limited to 0.02% or less, and more preferably the upper limit is 0.002% or less. Further, the content of the S amount is preferably limited to 0.002% or less.

次に、本発明の低温用H形鋼の金属組織、フランジの板厚(フランジ及びウェブの厚みを板厚と称する。)及び特性について説明する。   Next, the metallographic structure, the thickness of the flange (the thickness of the flange and the web is referred to as the thickness) and the characteristics of the H-shaped steel for low temperature of the present invention will be described.

本発明のH形鋼の場合、フランジの特性が重要である。このため、H形鋼の金属組織の観察及び機械特性(強度及びシャルピー吸収エネルギー)の測定は、図3に示すH形鋼の幅方向断面におけるフランジの板厚(tf)の外側から1/4の位置((1/4)tf)かつフランジ幅(F)の外側から1/6の位置((1/6)F)から、試料片を採取して行う。(3/4)tfかつ(1/6)Fの組織及び機械特性は、(1/4)tfかつ(1/6)Fと同等である。 In the case of the H-section steel of the present invention, the characteristics of the flange are important. For this reason, the observation of the metal structure of the H-section steel and the measurement of the mechanical properties (strength and Charpy absorbed energy) are performed by measuring 1 / from the outside of the flange thickness (t f ) in the cross section in the width direction of the H-section steel shown in FIG. from the position of the 4 ((1/4) t f) and outwardly from the 1/6 position of the flange width (F) ((1/6) F ), performed by taking a sample piece. (3/4) t f and (1/6) tissue and mechanical properties of F is equivalent to (1/4) t f and (1/6) F.

図3の(1/4)tfかつ(1/6)Fの位置は、熱間圧延時に温度が低下し易いフランジの端部と、温度が低下し難い中央部との中間である。したがって、温度分布から、図3の(1/4)tfかつ(1/6)Fの位置は、H形鋼の平均的な機械特性を示すと考えられる。 Position of (1/4) t f and (1/6) F in FIG. 3, the end portion of the prone flange temperature decreases during hot rolling, which is intermediate between the central portion where the temperature is less likely to decrease. Therefore, the temperature distribution, the position of (1/4) t f and (1/6) F in FIG. 3 is considered to indicate an average mechanical properties of H-section steel.

低温用H形鋼の金属組織の評価は、H形鋼の幅方向断面の図3に示す(1/4)tf、かつ、(1/6)Fの位置から試料を採取し、光学顕微鏡及び電子線後方散乱回折法(EBSD)によって行う。光学顕微鏡によって、500μm(長手方向)×400μm(フランジ厚方向)の長方形内の領域を観察し、フェライト、ベイナイトの一方又は両方の面積率の合計、硬質相の面積率を測定する。このとき、硬質相の粒径の測定も行う。また、有効結晶粒径は、EBSDによって、15°以上の方位差からなる大角粒界で囲まれる領域を有効結晶粒とし、円相当径として求める。 Evaluation of metal structure of the low temperature for H-shaped steel is shown in Figure 3 in the width direction cross-section of H-section steel (1/4) t f and, samples were taken from the position of (1/6) F, an optical microscope And electron beam backscatter diffraction (EBSD). An area within a rectangle of 500 μm (longitudinal direction) × 400 μm (flange thickness direction) is observed with an optical microscope, and the total area ratio of one or both of ferrite and bainite and the area ratio of the hard phase are measured. At this time, the particle size of the hard phase is also measured. The effective crystal grain size is determined by EBSD as a circle equivalent diameter, with a region surrounded by a large angle grain boundary having an orientation difference of 15 ° or more as an effective crystal grain.

(フェライト、ベイナイトの一方又は両方の面積率の合計:90%以上)
(硬質相の面積率:10%以下)
本発明の低温用H形鋼の金属組織は、フェライト、ベイナイトの一方又は両方の面積率の合計が90%以上である。上限は特に制限せず、100%でもよい。一方、低温靭性を低下させるMA、疑似パーライトの一方又は両方からなる硬質相の面積率は10%以下に制限する。下限は特に制限せず、0%でもよい。フェライト、ベイナイト、硬質相の残部として、パーライトが含まれる場合がある。硬質相のうち、疑似パーライトは、ラメラ状のセメンタイトが分断されていたり、板状のセメンタイトの長手方向が粒内で揃っていない相である。疑似パーライトは、パーライトに比べて硬質であるため、低温靭性を低下させる。
(Sum of one or both of ferrite and bainite: 90% or more)
(Area ratio of hard phase: 10% or less)
The metal structure of the low-temperature H-section steel of the present invention has a total area ratio of one or both of ferrite and bainite of 90% or more. The upper limit is not particularly limited, and may be 100%. On the other hand, the area ratio of the hard phase composed of one or both of MA and pseudo-pearlite which lowers the low-temperature toughness is limited to 10% or less. The lower limit is not particularly limited, and may be 0%. In some cases, pearlite is included as a balance of ferrite, bainite, and a hard phase. Among the hard phases, pseudo pearlite is a phase in which lamellar cementite is divided or the longitudinal direction of plate-like cementite is not uniform within the grains. Since pseudo pearlite is harder than pearlite, it lowers low-temperature toughness.

(有効結晶粒径:20μm以下)
(硬質相の粒径:10μm以下)
有効結晶粒径は、フェライト、ベイナイト、擬似パーライト、MA、パーライトなどが混在する金属組織の靱性と相関があり、靱性を確保するために、有効結晶粒径を20μm以下とする。有効結晶粒径は、15°以上の方位差からなる大角粒界で囲まれる領域の円相当径である。有効結晶粒径は、フェライト、ベイナイト、硬質相(擬似パーライト、MA)、残部(パーライト)を判別せず、EBSDによって測定する。更に破壊の起点となる硬質相は、有効結晶粒径よりも微細にすることが必要であり、硬質相の粒径を10μm以下とする。硬質相は、光学顕微鏡によってフェライト、ベイナイト、パーライトと判別して粒径を測定する。
(Effective crystal grain size: 20 μm or less)
(Particle size of hard phase: 10 μm or less)
The effective crystal grain size has a correlation with the toughness of a metal structure in which ferrite, bainite, pseudo pearlite, MA, pearlite, and the like are mixed, and the effective crystal grain size is set to 20 μm or less in order to secure toughness. The effective crystal grain size is a circle-equivalent diameter of a region surrounded by a large-angle grain boundary having a misorientation of 15 ° or more. The effective crystal grain size is measured by EBSD without distinguishing ferrite, bainite, hard phase (pseudo pearlite, MA), and the remainder (pearlite). Further, it is necessary that the hard phase serving as a starting point of the fracture needs to be finer than the effective crystal grain size, and the hard phase has a grain size of 10 μm or less. The hard phase is discriminated from ferrite, bainite, and pearlite by an optical microscope, and the particle size is measured.

(フランジの板厚:12〜50mm)
本発明のH形鋼のフランジの板厚は、12〜50mmとする。これは、低温用構造物に用いられるH形鋼には、板厚が12〜50mmのサイズのH形鋼が多用されるためである。低温用構造物に用いられるH形鋼のフランジの板厚は、16mm以上であることが好ましい。また、フランジの板厚が50mmを超えると、圧下量が不足するために組織が粗大化し、脆性破壊を引き起こす可能性がある。フランジの板厚は、40mm以下であることが好ましい。
(Flange thickness: 12 to 50 mm)
The thickness of the flange of the H-section steel of the present invention is 12 to 50 mm. This is because H-shaped steels having a plate thickness of 12 to 50 mm are frequently used as H-shaped steels used for low-temperature structures. The thickness of the flange of the H-section steel used for the low-temperature structure is preferably 16 mm or more. Further, when the thickness of the flange exceeds 50 mm, the structure is coarsened due to insufficient rolling reduction, which may cause brittle fracture. The thickness of the flange is preferably 40 mm or less.

なお、ウェブの板厚は、一般的にフランジの板厚より薄くなるため、8〜40mmとすることが好ましい。フランジ/ウェブの板厚比に関してはH形鋼を熱間圧延で製造する場合を想定して、0.5〜2.5とすることが好ましい。フランジ/ウェブの板厚比が2.5を超えると、ウェブが波打ち状の形状に変形することがある。一方、フランジ/ウェブの板厚比が0.5未満の場合は、フランジが波打ち状の形状に変形することがある。   In addition, since the thickness of the web is generally smaller than the thickness of the flange, the thickness is preferably 8 to 40 mm. The thickness ratio of the flange / web is preferably set to 0.5 to 2.5 in consideration of the case where the H-section steel is manufactured by hot rolling. If the flange / web thickness ratio exceeds 2.5, the web may be deformed into a wavy shape. On the other hand, when the flange / web thickness ratio is less than 0.5, the flange may be deformed into a wavy shape.

H形鋼の強度の目標値は、常温の降伏点(YP)又は0.2%耐力が335MPa以上、引張強度(TS)が460MPa以上である。また、母材及び溶接熱影響部の−40℃及び−60℃でのシャルピー吸収エネルギーの目標値は60J以上である。母材の−40℃及び−60℃でのシャルピー吸収エネルギーは、好ましくは100J以上である。更に、母材及び溶接熱影響部の−10℃における限界CTOD値(き裂先端開口量)の目標値は0.4mm以上であり、pop−inなどの脆性破壊が生じないことがより好ましい。溶接熱影響部の靱性は、最も高温に加熱され、粗粒になる溶融線(FL)をノッチ位置として評価する。   The target values of the strength of the H-section steel are a normal temperature yield point (YP) or 0.2% proof stress of 335 MPa or more, and a tensile strength (TS) of 460 MPa or more. The target value of the Charpy absorbed energy at -40 ° C and -60 ° C of the base metal and the heat affected zone is 60 J or more. The Charpy absorbed energy at -40 ° C and -60 ° C of the base material is preferably 100 J or more. Further, the target value of the critical CTOD value (crack tip opening amount) at −10 ° C. of the base metal and the weld heat affected zone is 0.4 mm or more, and it is more preferable that brittle fracture such as pop-in does not occur. The toughness of the heat-affected zone is evaluated by setting the melting line (FL), which is heated to the highest temperature and becomes coarse, as the notch position.

次に、本発明のH形鋼の製造方法について説明する。本実施形態では、図4に示す工程で、鋼片を加熱し、粗圧延、中間圧延、仕上圧延からなる熱間圧延を行い、水冷装置によって加速冷却を行い、H形鋼を製造する。熱間圧延のうち、粗圧延は、必要に応じて行えばよい。   Next, the method for producing the H-section steel of the present invention will be described. In the present embodiment, in the step shown in FIG. 4, a steel slab is heated, hot rolling including rough rolling, intermediate rolling, and finish rolling is performed, and accelerated cooling is performed by a water cooling device to produce an H-shaped steel. Of the hot rolling, the rough rolling may be performed as needed.

製鋼工程(図示しない)では、上述のように、溶鋼の化学成分を調整した後、鋳造し、鋼片を得る。鋳造は、生産性の観点から、連続鋳造が好ましい。また、鋼片の厚みは、生産性の観点から、200mm以上とすることが好ましく、偏析の低減や、熱間圧延における加熱温度の均質性などを考慮すると、350mm以下が好ましい。   In the steel making process (not shown), as described above, after adjusting the chemical composition of the molten steel, casting is performed to obtain a steel slab. For casting, continuous casting is preferred from the viewpoint of productivity. The thickness of the slab is preferably 200 mm or more from the viewpoint of productivity, and is preferably 350 mm or less in consideration of segregation reduction and uniformity of the heating temperature in hot rolling.

次に、加熱炉を用いて鋼片を加熱し、熱間圧延を行う。続いて、粗圧延機を用いて粗圧延を行う。粗圧延は、中間圧延機を用いる中間圧延の前に、必要に応じて行う工程であり、鋼片の厚みと製品の厚みに応じて行う。その後、中間ユニバーサル圧延機(中間圧延機)と水冷装置(図示しない)とを用いて中間圧延を行ってもよい。続いて、仕上圧延機を用いて仕上げ圧延を行って熱間圧延を終了し、水冷装置によりフランジの外面及び内面を冷却する。このとき、必要に応じて、ウェブの下面を水冷してもよい。   Next, the slab is heated using a heating furnace, and hot rolling is performed. Subsequently, rough rolling is performed using a rough rolling machine. Rough rolling is a step performed as necessary before intermediate rolling using an intermediate rolling mill, and is performed according to the thickness of a billet and the thickness of a product. Thereafter, intermediate rolling may be performed using an intermediate universal rolling mill (intermediate rolling mill) and a water cooling device (not shown). Subsequently, finish rolling is performed using a finishing mill to complete hot rolling, and the outer and inner surfaces of the flange are cooled by a water cooling device. At this time, the lower surface of the web may be water-cooled if necessary.

(鋼片の加熱温度:1100〜1350℃)
鋼片の加熱温度は、1100〜1350℃とする。加熱温度が低いと変形抵抗が高くなるので、熱間圧延における造形性を確保するために1100℃以上とする。一方、鋼片の加熱温度が1350℃を超えると、素材である鋼片の表面の酸化物が溶融して加熱炉内が損傷することがある。Nbなど、析出物を形成する元素を十分に固溶させるためには、鋼片の加熱温度の下限を1150℃以上とすることが好ましい。特に、製品の板厚が薄い場合は、累積圧下率が大きくなるため、鋼片の加熱温度を1200℃以上にすることが好ましい。組織を微細にするためには、鋼片の加熱温度の上限を1300℃以下にすることが好ましい。
(Heating temperature of billet: 1100-1350 ° C)
The heating temperature of the billet is 1100-1350 ° C. If the heating temperature is low, the deformation resistance increases, so the temperature is set to 1100 ° C. or higher in order to secure the formability in hot rolling. On the other hand, when the heating temperature of the slab exceeds 1350 ° C., the oxide on the surface of the slab as a raw material may be melted and the inside of the heating furnace may be damaged. In order to sufficiently dissolve the elements that form precipitates such as Nb, the lower limit of the heating temperature of the steel slab is preferably set to 1150 ° C. or higher. In particular, when the thickness of the product is small, the cumulative rolling reduction becomes large, so that the heating temperature of the steel slab is preferably set to 1200 ° C. or higher. In order to make the structure finer, the upper limit of the heating temperature of the steel slab is preferably set to 1300 ° C. or less.

熱間圧延の中間圧延では、制御圧延を行ってもよい。制御圧延は、圧延温度及び圧下率を制御する製造方法である。熱間圧延の中間圧延では、パス間水冷圧延加工を1パス以上施すことが好ましい。パス間水冷圧延加工では、圧延パス間で水冷を行うことにより、フランジの表層部と内部とに温度差を付与し、圧延する。パス間水冷圧延加工は、例えば、圧延パス間における水冷により、700℃以下にフランジ表面温度を水冷した後、復熱過程で圧延する製造方法である。   In the intermediate rolling of hot rolling, controlled rolling may be performed. Control rolling is a manufacturing method for controlling the rolling temperature and the rolling reduction. In the intermediate rolling of hot rolling, it is preferable to perform one or more passes of water cooling rolling between passes. In the inter-pass water-cooling rolling process, by performing water cooling between rolling passes, a temperature difference is applied between the surface layer portion and the inside of the flange, and rolling is performed. The inter-pass water-cooling rolling is a manufacturing method in which, for example, the flange surface temperature is water-cooled to 700 ° C. or less by water cooling between rolling passes, followed by rolling in a recuperation process.

パス間水冷圧延加工を行う場合、中間ユニバーサル圧延機の前後に設けた水冷装置(図示しない)を用いて、圧延パス間の水冷を行うことが好ましく、水冷装置によるフランジ外側面のスプレー冷却とリバース圧延とを繰り返し行うことが好ましい。パス間水冷圧延加工では、圧下率が小さい場合でも、板厚の内部まで加工歪みを導入することができる。また、水冷により圧延温度を短時間で低下させることによって、生産性も向上する。   When performing inter-pass water-cooling rolling, it is preferable to perform water-cooling between rolling passes using a water-cooling device (not shown) provided before and after the intermediate universal rolling mill, and spray cooling and reverse of the flange outer surface by the water-cooling device. Rolling is preferably performed repeatedly. In the inter-pass water-cooling rolling process, even when the draft is small, it is possible to introduce processing strain to the inside of the plate thickness. In addition, productivity is improved by lowering the rolling temperature in a short time by water cooling.

(熱間圧延の仕上温度:(Ar3−30)℃以上900℃以下)
熱間圧延の仕上温度は(Ar3−30)℃以上900℃以下とする。仕上温度が900℃を超えると圧延後に粗大なオーステナイトが残存し、冷却によってベイナイトに変態すると脆性破壊の起点となり、靱性が低下する。好ましくは850℃以下とする。熱間圧延の仕上温度は、H形鋼の形状精度等を考慮して、フェライト変態の開始温度である(Ar3−30)℃以上とする。Ar3は、下記式(2)によって求めることができる。下記式(2)おいて、C、Si、Mn、Ni、Cu、Cr、Moは、各元素の含有量[質量%]であり、選択的に添加されるNi、Cu、Cr、Moを含有しない場合は、これらの含有量を0としてAr3を求める。
(Hot rolling finish temperature: (Ar 3 -30) 900 ℃ inclusive ° C.)
The finishing temperature of the hot rolling is (Ar 3 −30) ° C. or more and 900 ° C. or less. If the finishing temperature exceeds 900 ° C., coarse austenite remains after rolling, and when transformed into bainite by cooling, it becomes a starting point of brittle fracture and the toughness is reduced. Preferably, it is 850 ° C. or lower. The finishing temperature of the hot rolling is set to (Ar 3 −30) ° C. or more, which is the starting temperature of ferrite transformation, in consideration of the shape accuracy of the H-section steel and the like. Ar 3 can be determined by the following equation (2). In the following formula (2), C, Si, Mn, Ni, Cu, Cr, and Mo are the contents [% by mass] of each element, and include Ni, Cu, Cr, and Mo that are selectively added. If not, Ar 3 is determined by setting these contents to 0.

Ar3=868−396C+24.6Si−68.1Mn−36.1Ni
−20.7Cu−24.8Cr+29.6Mo ・・・ (2)
Ar 3 = 868-396C + 24.6Si-68.1Mn -36.1Ni
-20.7Cu-24.8Cr + 29.6Mo (2)

また、熱間圧延として、鋼片を1100〜1350℃に加熱して熱間圧延(一次圧延)し、500℃以下に冷却した後、再度、1100〜1350℃に加熱し、熱間圧延(二次圧延)を行う製造プロセス、いわゆる2ヒート圧延を採用してもよい。2ヒート圧延では、熱間圧延での塑性変形量が少なく、圧延工程での温度の低下も小さくなるため、加熱温度を低めにすることができる。   In addition, as hot rolling, a slab is heated to 1100 to 1350 ° C, hot-rolled (primary rolling), cooled to 500 ° C or lower, and then heated again to 1100 to 1350 ° C and hot-rolled (secondary rolling). Next rolling), a so-called two-heat rolling process may be employed. In the two-heat rolling, the amount of plastic deformation in the hot rolling is small, and the decrease in the temperature in the rolling process is small, so that the heating temperature can be lowered.

熱間圧延の終了後は、そのまま、仕上圧延機の出側に設けた水冷装置によって、フランジの内面及び外面に加速冷却を施す。仕上圧延機から全断面水冷装置までの間は空冷されるが、加速冷却の開始温度は熱間圧延の仕上温度と同等であるか、やや低下することがあっても、特性にはほとんど影響しない。また、フランジの内面及び外面に加速冷却を施すことにより、フランジの内外面の冷却速度が均一になり、材質及び形状精度を向上させることができる。ウェブの上面はフランジの内面に噴射した冷却水によって、上面側が冷却される。ウェブの反りを抑制するため、ウェブの下面から冷却してもよい。   After the completion of the hot rolling, the inner and outer surfaces of the flange are subjected to accelerated cooling by a water cooling device provided on the exit side of the finishing mill. Air cooling is performed between the finish rolling mill and the entire cross-section water cooling device, but even if the starting temperature of accelerated cooling is equal to or slightly lower than the finishing temperature of hot rolling, it hardly affects the characteristics. . Further, by performing accelerated cooling on the inner surface and the outer surface of the flange, the cooling rate on the inner and outer surfaces of the flange becomes uniform, and the material and shape accuracy can be improved. The upper surface of the web is cooled by the cooling water sprayed on the inner surface of the flange. In order to suppress the warpage of the web, the web may be cooled from the lower surface.

(加速冷却の冷却速度:10℃/s超)
加速冷却は、例えば、図1に示す水冷装置によって、フランジの外面、内面ともに、スプレー冷却によって行う。加速冷却の冷却速度は、有効結晶粒径の粗大化や、疑似パーライト、MAからなる硬質相の生成を抑制して靭性を向上させ、焼入れの効果によって強度を高めるため、10℃/s超とする。加速冷却の冷却速度は、好ましくは11℃/s以上、より好ましくは15℃/s以上とする。加速冷却の冷却速度の上限は限定しないが、形状精度を考慮すると、50℃/s以下が好ましい。
(Cooling rate of accelerated cooling: more than 10 ° C / s)
The accelerated cooling is performed by spray cooling on both the outer surface and the inner surface of the flange, for example, by the water cooling device shown in FIG. The cooling rate of accelerated cooling is more than 10 ° C./s in order to improve the toughness by suppressing the coarsening of the effective crystal grain size and the generation of a hard phase composed of pseudo-pearlite and MA, and to increase the strength by the effect of quenching. I do. The cooling rate of the accelerated cooling is preferably at least 11 ° C./s, more preferably at least 15 ° C./s. Although the upper limit of the cooling rate of the accelerated cooling is not limited, it is preferably 50 ° C./s or less in consideration of the shape accuracy.

(復熱による最高到達温度:350〜700℃)
H形鋼の表面の温度は、加速冷却によって内部の温度に比べて低下するが、加速冷却を停止した後、内部からの熱伝導によって上昇する。本発明では、このような復熱によって到達する最高温度を一定の範囲内に制御するように加速冷却を停止する。復熱によるフランジ幅の外側から1/6の位置での表面の最高到達温度は、350〜700℃とする。復熱による最高到達温度が700℃を超えると、有効結晶粒径の粗大化や硬質相(主に疑似パーライト)の増加によって靱性が低下する。一方、最高到達温度が350℃未満になると強度の上昇や硬質相(主にMA)の増加によって低温靭性が低下する。
(Maximum temperature reached by reheating: 350-700 ° C)
Although the temperature of the surface of the H-section steel decreases as compared with the internal temperature due to accelerated cooling, it rises due to heat conduction from inside after stopping accelerated cooling. In the present invention, the accelerated cooling is stopped so that the maximum temperature reached by such reheating is controlled within a certain range. The maximum temperature of the surface at a position 1/6 from the outside of the flange width due to recuperation is 350 to 700 ° C. If the maximum temperature reached by reheating exceeds 700 ° C., the toughness decreases due to an increase in the effective crystal grain size and an increase in the hard phase (mainly pseudo-pearlite). On the other hand, when the maximum temperature is lower than 350 ° C., the low-temperature toughness decreases due to an increase in strength and an increase in the hard phase (mainly MA).

また、加速冷却の停止後、強度及び靭性を調整するために熱処理を施すことができる。この熱処理は、オーステナイトへの変態が開始する温度(Ac1)以下で行えばよいが、100〜700℃の範囲で行うことが好ましい。より好ましくは、下限を300℃、上限を650℃とする。更に好ましくは、下限を400℃、上限を600℃とする。 After stopping the accelerated cooling, a heat treatment can be performed to adjust the strength and the toughness. This heat treatment may be performed at a temperature (Ac 1 ) or lower at which transformation to austenite starts, but is preferably performed in the range of 100 to 700 ° C. More preferably, the lower limit is 300 ° C. and the upper limit is 650 ° C. More preferably, the lower limit is 400 ° C. and the upper limit is 600 ° C.

表1及び2に示す成分組成を有する鋼を溶製し、連続鋳造により、厚みが240〜300mmの鋼片を製造した。鋼の溶製は転炉で行い、一次脱酸し、合金を添加して成分を調整し、必要に応じて、真空脱ガス処理を行った。得られた鋼片を表3及び4に示す加熱温度に加熱し、熱間圧延を行い、加速冷却を施した。表3及び4の復熱温度は、加速冷却停止後の復熱による最高到達温度を意味する。熱間圧延では、粗圧延に続いて、中間ユニバーサル圧延機と、その前後に設けた水冷装置とを用いて、フランジ外側面のスプレー冷却とリバース圧延を行った。表1及び2に示した成分は、製造後のH形鋼から採取した試料を化学分析して求めた。   Steels having the component compositions shown in Tables 1 and 2 were melted and continuously cast to produce slabs having a thickness of 240 to 300 mm. Smelting of steel was performed in a converter, primary deoxidation was performed, components were adjusted by adding an alloy, and vacuum degassing was performed as necessary. The obtained steel slab was heated to the heating temperatures shown in Tables 3 and 4, subjected to hot rolling, and subjected to accelerated cooling. The recuperation temperature in Tables 3 and 4 means the maximum attained temperature due to recuperation after stopping the accelerated cooling. In the hot rolling, following the rough rolling, spray cooling and reverse rolling of the flange outer surface were performed using an intermediate universal rolling mill and water cooling devices provided before and after the intermediate rolling mill. The components shown in Tables 1 and 2 were determined by chemically analyzing a sample collected from the H-beam after the manufacture.

Figure 0006665525
Figure 0006665525

Figure 0006665525
Figure 0006665525

Figure 0006665525
Figure 0006665525

Figure 0006665525
Figure 0006665525

図3に示すように、H形鋼の幅方向断面におけるフランジの板厚(tf)の外側から1/4の位置((1/4)tf)かつフランジ幅(F)の外側から1/6の位置((1/6)F)から、圧延方向を長さ方向とする試験片を採取し、機械特性を測定した。機械特性として、降伏点(YP)、引張強度(TS)、−40℃及び60℃でのシャルピー吸収エネルギー(それぞれvE-40℃、vE-60℃)を測定した。引張試験は、JIS Z 2241に準拠して行い、シャルピー衝撃試験は、JIS Z 2242に準拠して−40℃及び60℃で行った。 As shown in FIG. 3, a position ((1 /) t f ) from the outside of the thickness (t f ) of the flange in the cross section in the width direction of the H-section steel ((1/4) t f ) and 1 from the outside of the flange width (F). From position / 6 ((1/6) F), a test piece with the rolling direction in the length direction was sampled, and the mechanical properties were measured. As mechanical properties, the yield point (YP), tensile strength (TS), and Charpy absorbed energy at -40 ° C and 60 ° C (vE- 40 ° C and vE- 60 ° C , respectively) were measured. The tensile test was performed according to JIS Z 2241, and the Charpy impact test was performed at −40 ° C. and 60 ° C. according to JIS Z 2242.

また、これらの機械特性の測定に用いた試験片を採取した位置から試料を採取し、500μm(長手方向)×400μm(フランジ厚方向)の長方形内の領域について、光学顕微鏡で金属組織の観察を行って、フェライト、ベイナイトの一方又は両方の面積率の合計、硬質相の面積率及び粒径を測定した。なお、金属組織の観察により、残部がパーライトであることも確認した。有効結晶粒径はEBSDによって測定した。   In addition, a sample was taken from the position where the test piece used for measuring these mechanical properties was taken, and the metal structure was observed with an optical microscope in an area within a rectangle of 500 μm (longitudinal direction) × 400 μm (flange thickness direction). Then, the total area ratio of one or both of ferrite and bainite, the area ratio of the hard phase, and the particle size were measured. The observation of the metal structure also confirmed that the balance was pearlite. The effective grain size was measured by EBSD.

次に、CTOD試験片を作製し、H形鋼(母材)の−10℃における限界CTOD値(き裂先端開口量)を測定した。CTOD試験片は、フランジ部分全厚を切り出して平滑試験片を作製し、元のウェブ表面の延長線上をノッチ位置として作製した。試験方法はBS7448に従った。   Next, a CTOD test piece was prepared, and a critical CTOD value (crack tip opening amount) at −10 ° C. of the H-section steel (base material) was measured. The CTOD test piece was prepared by cutting out the entire thickness of the flange portion to prepare a smooth test piece, and using the extension of the original web surface as a notch position. The test method followed BS7448.

また、以下の方法により、溶接熱影響部のCTOD値及びシャルピー吸収エネルギーを測定した。試験片の採取位置はEN10225に従った。まず、H形鋼(母材)のフランジ部を切り出し、レ型開先を施し、溶接入熱35kJ/cmにて、サブマージアーク溶接を行った。そして、開先の垂直側のボンド部において、図5(a)に示すFLをノッチ位置とする試験片を採取し、シャルピー衝撃試験を行った。CTOD試験はノッチ位置が図5(b)に示すFLとなるように試験片を採取して行った。そして、母材の試験と同様にして、溶接熱影響部の−40℃及び60℃でのシャルピー吸収エネルギーと−10℃における限界CTOD値(き裂先端開口量)とを測定した。このように、最も高温に加熱されるFLをノッチ位置として、溶接熱影響による粗粒域の靱性を評価した。   The CTOD value and Charpy absorbed energy of the heat affected zone were measured by the following methods. The sampling position of the test piece was in accordance with EN10225. First, a flange portion of an H-section steel (base material) was cut out, a groove was formed, and submerged arc welding was performed at a welding heat input of 35 kJ / cm. Then, at the bond portion on the vertical side of the groove, a test piece having a notch position at FL shown in FIG. 5A was sampled and subjected to a Charpy impact test. The CTOD test was performed by collecting a test piece so that the notch position became FL shown in FIG. Then, the Charpy absorbed energy at −40 ° C. and 60 ° C. of the heat affected zone and the critical CTOD value (crack tip opening) at −10 ° C. were measured in the same manner as in the test of the base metal. As described above, the FL heated to the highest temperature was defined as the notch position, and the toughness of the coarse-grained area due to the influence of welding heat was evaluated.

結果を表5及び6に示す。H形鋼の各特性の目標値は、常温の降伏点(YP)又は0.2%耐力が335MPa以上、引張強度(TS)が460〜620MPa、−40℃及び−60℃のシャルピー吸収エネルギーが何れも60J以上であり、−10℃におけるCTOD値は0.4mm以上である。溶接熱影響部のシャルピー吸収エネルギー及びCTOD値の目標値は、母材と同じである。   The results are shown in Tables 5 and 6. The target value of each characteristic of the H-section steel is that the yield point (YP) at normal temperature or the 0.2% proof stress is 335 MPa or more, the tensile strength (TS) is 460 to 620 MPa, and the Charpy absorbed energy at -40 ° C and -60 ° C. All are 60 J or more, and the CTOD value at −10 ° C. is 0.4 mm or more. The target values of the Charpy absorbed energy and the CTOD value of the welding heat affected zone are the same as those of the base metal.

Figure 0006665525
Figure 0006665525

Figure 0006665525
Figure 0006665525

表5に示すように、本発明のNo.1〜19は、常温の0.2%耐力(YP)が高く、引張強度(TS)目標値の範囲内であり、かつ、シャルピー吸収エネルギー及び限界CTOD値も、母材、溶接熱影響部ともに目標を十分に満たしている。   As shown in Table 5, No. 1 of the present invention Nos. 1 to 19 have high 0.2% proof stress (YP) at room temperature, are within the range of the tensile strength (TS) target value, and have Charpy absorbed energy and critical CTOD value for both the base metal and the weld heat affected zone. Meet your goals well.

一方、表6に示すように、No.21はC量が少ないため強度が不足している。No.22はC量が多く、No.23はSi量が多く、硬質相の増加及び粗大化によって靱性が低下している。No.24はMn量が少なく、No.26はNb量が少ないため、有効結晶粒径が大きくなり、強度及び靱性が低下している。No.25、27、28、29及び30は、それぞれ、Mn量、Nb量、Ti量、O量及びN量が多く、介在物に起因して靱性が低下している。   On the other hand, as shown in Table 6, 21 has insufficient strength because of a small amount of carbon. No. No. 22 has a large C content. No. 23 has a large amount of Si, and the toughness is reduced due to an increase in hard phase and coarsening. No. No. 24 has a small amount of Mn. No. 26 has a small Nb content, so the effective crystal grain size is large, and the strength and toughness are low. No. 25, 27, 28, 29, and 30 have large amounts of Mn, Nb, Ti, O, and N, respectively, and have reduced toughness due to inclusions.

No.31は加速冷却の停止温度が高く、No.32は冷却速度が遅いため、有効結晶粒径が大きくなり、強度及び靱性が低下している。No.33は仕上温度が高い例であり、靭性が低下している。No.34は加速冷却の停止温度が低い例であり、硬質相が増加して靭性が低下している。   No. No. 31 has a high stop temperature for accelerated cooling. Sample No. 32 has a low cooling rate, so the effective crystal grain size is large, and the strength and toughness are low. No. 33 is an example in which the finishing temperature is high, and the toughness is lowered. No. Numeral 34 is an example in which the stop temperature of the accelerated cooling is low, and the hard phase increases and the toughness decreases.

本発明のH形鋼は、例えば、FPSO(Floating Production,Storage and Offloading System:浮体式海洋石油・ガス生産貯蔵積出設備)、即ち洋上で、石油・ガスを生産し、製品を設備内のタンクに貯蔵し、直接、輸送タンカへの積出しを行う設備等に好適である。   The H-section steel according to the present invention is, for example, an FPSO (Floating Production, Storage and Offloading System), that is, an oil and gas is produced offshore, and products are stored in tanks in the facility. It is suitable for equipment etc. that store in a tanker and directly unload to a transport tanker.

Claims (5)

質量%で、
C:0.03〜0.13%、
Mn:0.80〜2.00%、
Nb:0.005〜0.060%
を含有し
:0.0120%以下、
O:0.0035%以下
に制限し、残部がFe及び不可避不純物からなり、
下記式(1)によって求められるCEVが0.40以下であり、
フランジの板厚の外側から1/4の位置かつフランジ幅の外側から1/6の位置でのフェライト、ベイナイトの一方又は両方の面積率の合計が90%以上、硬質相の面積率が10%以下であり、
有効結晶粒径が20μm以下、かつ、硬質相の粒径が10μm以下であり、
フランジの板厚が12〜50mmである
ことを特徴とする低温用H形鋼。
CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(1)
ここで、C、Mn、Cr、Mo、V、Ni、Cuは、各元素の含有量[質量%]である。
In mass%,
C: 0.03 to 0.13%,
Mn: 0.80-2.00%,
Nb: 0.005 to 0.060%
Contain,
N : 0.0120% or less,
O: limited to 0.0035% or less, the balance being Fe and unavoidable impurities,
CEV obtained by the following equation (1) is 0.40 or less;
The total area ratio of one or both of ferrite and bainite at a position 1/4 from the outside of the thickness of the flange and 1/6 from the outside of the flange width is 90% or more, and the area ratio of the hard phase is 10%. Is the following,
The effective crystal grain size is 20 μm or less, and the grain size of the hard phase is 10 μm or less,
An H-shaped steel for low temperature, wherein the thickness of the flange is 12 to 50 mm.
CEV = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (1)
Here, C, Mn, Cr, Mo, V, Ni, and Cu are the contents [% by mass] of each element.
更に、質量%でFurthermore, in mass%
Si:0.50%以下、Si: 0.50% or less,
Ti:0.025%以下、Ti: 0.025% or less,
Al:0.060%以下Al: 0.060% or less
の1種又は2種以上を含有することを特徴とする請求項1に記載の低温用H形鋼。The low-temperature H-section steel according to claim 1, comprising one or more of the following.
更に、質量%で
V:0.08%以下、
Cu:0.40%以下、
Ni:0.70%以下、
Mo:0.10%以下、
Cr:0.20%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の低温用H形鋼。
Furthermore, V: 0.08% or less by mass%,
Cu: 0.40% or less,
Ni: 0.70% or less,
Mo: 0.10% or less,
The low-temperature H-section steel according to claim 1 or 2 , wherein one or more of Cr: 0.20% or less is contained.
更に、質量%で、
REM:0.010%以下、
Ca:0.0050%以下
の一方又は両方を含有することを特徴とする請求項1〜3の何れか1項に記載の低温用H形鋼。
Furthermore, in mass%,
REM: 0.010% or less,
The low-temperature H- section steel according to any one of claims 1 to 3 , wherein one or both of Ca and 0.0050% or less are contained.
請求項1〜の何れか1項に記載の低温用H形鋼の製造方法であって、請求項1〜の何れか1項に記載の成分からなる鋼片を1100〜1350℃に加熱して熱間圧延を施し、(Ar3−30)℃以上900℃以下の範囲内で前記熱間圧延を終了し、そのまま、フランジの内外面に、冷却速度が1℃/s以上である加速冷却を施し、復熱による、フランジ幅の外側から1/6の位置での表面の最高到達温度が350〜700℃になるように前記加速冷却を停止することを特徴とする低温用H形鋼の製造方法。 A method of manufacturing a low-temperature H-shaped steel according to any one of claims 1-4, heating a slab containing components according to any one of claim 1 to 4 1100 to 1350 ° C. Hot rolling is performed, and the hot rolling is completed within a range of (Ar 3 −30) ° C. or more and 900 ° C. or less, and the cooling rate is 11 ° C./s or more on the inner and outer surfaces of the flange as it is. H type for low temperature, wherein accelerated cooling is performed, and the accelerated cooling is stopped so that the maximum temperature of the surface at a position 1/6 from the outside of the flange width by recuperation is 350 to 700 ° C. Steel production method.
JP2015251117A 2015-12-24 2015-12-24 H-shaped steel for low temperature and method for producing the same Active JP6665525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251117A JP6665525B2 (en) 2015-12-24 2015-12-24 H-shaped steel for low temperature and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251117A JP6665525B2 (en) 2015-12-24 2015-12-24 H-shaped steel for low temperature and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017115200A JP2017115200A (en) 2017-06-29
JP6665525B2 true JP6665525B2 (en) 2020-03-13

Family

ID=59231550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251117A Active JP6665525B2 (en) 2015-12-24 2015-12-24 H-shaped steel for low temperature and method for producing the same

Country Status (1)

Country Link
JP (1) JP6665525B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019241514A1 (en) * 2018-06-13 2019-12-19 Novelis Inc. Systems and methods for quenching a metal strip after rolling
CN110257722A (en) * 2019-07-25 2019-09-20 南京钢铁股份有限公司 High-intensitive S420NL-Z35 low-temperature flexibility steel plate and manufacturing method
CN110938778A (en) * 2019-12-09 2020-03-31 山东钢铁股份有限公司 Hot-rolled H-shaped steel based on profiled blank rolling forming and preparation method thereof
CN111549297B (en) * 2020-05-22 2021-12-17 包头钢铁(集团)有限责任公司 Preparation method of high-strength anti-seismic weather-resistant fire-resistant low-temperature-resistant easily-welded H-shaped steel
CN111945064A (en) * 2020-07-31 2020-11-17 山东钢铁股份有限公司 355 MPa-level low-temperature-resistant hot-rolled H-shaped steel for ocean engineering and preparation method thereof
CN112359289B (en) * 2020-11-23 2021-12-21 马鞍山钢铁股份有限公司 Super-thick Q355-grade hot-rolled H-shaped steel with good low-temperature toughness and production method thereof
CN113399453B (en) * 2021-06-17 2022-09-02 马鞍山钢铁股份有限公司 Hot-rolled H-shaped steel and production method thereof
CN113512629B (en) * 2021-06-30 2022-12-30 湖南华菱湘潭钢铁有限公司 Production method of easily-welded and easily-formed wear-resistant steel plate
CN113604729A (en) * 2021-07-01 2021-11-05 莱芜钢铁集团银山型钢有限公司 Low-carbon equivalent easy-welding steel plate for pressure container and preparation method thereof
CN113699441B (en) * 2021-07-29 2022-10-04 马鞍山钢铁股份有限公司 Flange super-thick hot-rolled H-shaped steel with good low-temperature impact toughness and production method thereof
CN115852244A (en) * 2021-09-27 2023-03-28 上海梅山钢铁股份有限公司 Hot-rolled steel plate for welding bottle with yield strength of 355MPa and manufacturing method thereof
CN114369765B (en) * 2022-01-17 2023-04-14 马鞍山钢铁股份有限公司 Hot-rolled H-shaped steel with yield strength of 550MPa and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043412B2 (en) * 1977-09-26 1985-09-27 新日本製鐵株式会社 Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web
JPS5896818A (en) * 1981-12-07 1983-06-09 Sumitomo Metal Ind Ltd Production of hot-rolled steel material having high strength and excellent low temperature toughness
JP5574059B2 (en) * 2011-12-15 2014-08-20 新日鐵住金株式会社 High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP6400516B2 (en) * 2014-04-09 2018-10-03 Jfeスチール株式会社 High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
EP3133181B1 (en) * 2014-04-15 2020-08-12 Nippon Steel Corporation H-section steel and method of producing
CN104018073B (en) * 2014-06-19 2015-11-18 马钢(集团)控股有限公司 A kind of low temperature resistant toughness H profile steel and production technique thereof

Also Published As

Publication number Publication date
JP2017115200A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6665525B2 (en) H-shaped steel for low temperature and method for producing the same
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP6468408B2 (en) H-section steel and its manufacturing method
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP6354572B2 (en) Low-temperature H-section steel and its manufacturing method
US10081042B2 (en) Electric resistance welded steel pipe excellent in weld zone and method of production of same
JP6344191B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
US20140301889A1 (en) High-strength ultra-thick h-beam steel
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
WO2016157862A1 (en) High strength/high toughness steel sheet and method for producing same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP2008111165A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method
JP5447292B2 (en) Rolled material steel and method of manufacturing rolled steel using the same
CN111356779A (en) H-shaped steel and manufacturing method thereof
JP6421638B2 (en) Low-temperature H-section steel and its manufacturing method
JP2004099930A (en) High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP2008069380A (en) High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP6662156B2 (en) H-shaped steel for low temperature and method for producing the same
JP6589503B2 (en) H-section steel and its manufacturing method
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP2018168411A (en) Manufacturing method of high strength/high toughness steel plate
JPWO2019180957A1 (en) Rolled H-section steel and manufacturing method thereof
JP6028759B2 (en) High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151