JPS6043412B2 - Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web - Google Patents

Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web

Info

Publication number
JPS6043412B2
JPS6043412B2 JP11539677A JP11539677A JPS6043412B2 JP S6043412 B2 JPS6043412 B2 JP S6043412B2 JP 11539677 A JP11539677 A JP 11539677A JP 11539677 A JP11539677 A JP 11539677A JP S6043412 B2 JPS6043412 B2 JP S6043412B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel
web
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11539677A
Other languages
Japanese (ja)
Other versions
JPS5448629A (en
Inventor
直記 江口
洋史 飛田
浩 大羽
裕三 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11539677A priority Critical patent/JPS6043412B2/en
Publication of JPS5448629A publication Critical patent/JPS5448629A/en
Publication of JPS6043412B2 publication Critical patent/JPS6043412B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は、熱間圧延後のH形鋼のフランジとウェブとの
交叉部(以下ウェブ付根部と云う)を強制冷却とその後
の復熱による自己焼戻しの効果により、付根部の低温靭
性が優れたH形鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has the effect of forced cooling of the intersection between the flange and the web (hereinafter referred to as the web root) of an H-beam steel after hot rolling and self-tempering through recuperation. The present invention relates to a method for producing an H-beam steel with excellent low-temperature toughness at the root.

H形鋼は鋼板と比較して形状が複雑であり、更にウェブ
付根部は隅肉を有しており、この為ウエニブ付根部はH
形鋼の断面内で最も厚みが大きい。
H-shaped steel has a more complicated shape than steel plates, and the web root has a fillet, so the web root has a H-shape.
The largest thickness in the cross section of the section steel.

従来のH形鋼の製造方法では厚みの大きいウェブ付根部
の仕上圧延温度は他の部分と比較して高温であり、更に
仕上圧延後の冷却速度が他の断面部位に比較して遅いこ
とより、変態組織の結晶粒冫は粗くなる。結晶粒は衝撃
試験特性値の破面遷移温度と相関関係がある。
In the conventional manufacturing method of H-section steel, the finish rolling temperature of the thick web root is higher than other parts, and the cooling rate after finish rolling is slower than other cross-sectional parts. , the crystal grain size of the transformed structure becomes coarse. The grain size has a correlation with the fracture surface transition temperature of the impact test characteristic value.

仕上圧延温度が高い程、また冷却速度が遅い程破面遷移
温度が高く低温靭性は悪くなる。
C又、従来の製造方法ては
熱間圧延後のH形鋼を空冷後、冷却中に発生した曲りを
ローラー矯正機又はブレス矯正機により真直な製品にす
るが、ローラー矯正機を用いて矯正したものはウェブ付
根部がローラー矯正機により数%前後の板厚減少を3伴
なう歪を受ける為、破面遷移温度が上昇しウェブ付根部
の低温靭性が悪くなるという欠点がある。本発明はこれ
らの問題点を解決したウェブ付根部の低温靭性が優れた
H形鋼の製造法を提供する4、ことを目的とする。
The higher the finish rolling temperature and the slower the cooling rate, the higher the fracture surface transition temperature and the worse the low temperature toughness.
In addition, in the conventional production method, after hot-rolled H-beam steel is air-cooled, the bends that occur during cooling are made into a straight product using a roller straightening machine or a press straightening machine. In such cases, the root portion of the web is subjected to distortion accompanied by a decrease in thickness of around several percent by the roller straightening machine, which increases the fracture surface transition temperature and deteriorates the low-temperature toughness of the web root portion. An object of the present invention is to provide a method for manufacturing an H-beam steel having excellent low-temperature toughness at the base of the web, which solves these problems.

すなわち本発明は、 (1)CO.O3〜0.20%、Sil.O%以下、M
nO.5〜2.2%、N≦0.020%、AlO.OO
3〜0.10%を含有し、残部が鉄および不可避元素か
らなる鋼を熱間圧延してH形鋼に形成し、該熱間圧延後
のH形鋼のウェブ付根部をArl+30℃以上の温度か
ら500℃までの温度域を冷却後のウェブ付根部の復熱
温度が500℃より高く700℃以下となるようにH形
鋼のフランジの内側またはフランジの内側および外側か
ら冷却流体を吹きつけて20〜200℃/Sの冷却速度
で冷却し、上記復熱後空冷することを特徴とするウェブ
付根部の低温靭性が優れたH形鋼の製造方法。
That is, the present invention has the following features: (1) CO. O3~0.20%, Sil. 0% or less, M
nO. 5-2.2%, N≦0.020%, AlO. OO
3 to 0.10%, with the remainder consisting of iron and unavoidable elements, is hot rolled to form an H-beam steel, and the web root of the hot-rolled H-shape steel is heated to Arl + 30°C or higher. Cooling fluid is sprayed from inside the flange of the H-section steel or from the inside and outside of the flange so that the recuperation temperature at the web root after cooling in the temperature range from 500°C to 500°C is higher than 500°C and below 700°C. A method for manufacturing an H-beam steel having excellent low-temperature toughness at the base of the web, characterized in that the web is cooled at a cooling rate of 20 to 200° C./S, and air-cooled after the recuperation.

(2)CO.O3〜0.20%、Sil.O%以下、M
nO.5〜2.2%、N≦0.020%、AlO.OO
3〜0.01%を含有した鋼に、Ni,.CrNCu.
.MOの1種以上を合計で1.5%以下を単独または複
合して含有し、残部が鉄および不可避元素からなる鋼を
熱間圧延してH形鋼に形成し、該熱間圧延後のH形鋼の
ウェブ付根部をArl+30℃以上の温度から500計
Cまでの温度域を冷却後のウェブ付根部の復熱温度が5
00℃より高く700℃以下となるようにH形鋼のフラ
ンジの内側またはフランジの内側および外側から冷却流
体を吹きつけて20〜200゜C/Sの冷却速度で冷却
し、上記復熱後空冷することを特徴とするウェブ付根部
の低温靭性が優れたH形鋼の製造方法。
(2) CO. O3~0.20%, Sil. 0% or less, M
nO. 5-2.2%, N≦0.020%, AlO. OO
Steel containing 3 to 0.01% Ni, . CrNCu.
.. A steel containing 1.5% or less of one or more types of MO in a total of 1.5% or less, with the remainder consisting of iron and unavoidable elements, is hot rolled to form an H-beam steel, and after the hot rolling. The recuperation temperature of the web root after cooling the web root of H-section steel in the temperature range from Arl + 30℃ or higher to 500℃ is 5.
Cooling fluid is sprayed from the inside of the flange of the H-section steel or from the inside and outside of the flange so that the temperature is higher than 00°C and below 700°C, and cooled at a cooling rate of 20 to 200°C/S, and after the above recuperation, air cooling is performed. A method for producing an H-beam steel having excellent low-temperature toughness at the base of a web, the method comprising:

3)CO.O3〜0.20%、Sil.O%以下、Mn
O.5〜2.2%、N≦0.020%、AlO.OO3
〜0.01%を含有しこれにNbl■、Ti..Zrの
1種以上を合計で0.3%以下含有し、残部が鉄および
不可避元素からなる鋼を熱間圧延してH形鋼に形成し、
該熱間圧延後のH形鋼のウェブ付根部をArl+30℃
以上の温度から500′Cまでの温度域を冷却後のウェ
ブ付根部の復熱温度が500゜Cより高く700′C以
下となるようにH形鋼のフランジの内側またはフランジ
の内側および外側から冷却流体を吹きつけて20〜20
0℃/Sの冷却速度で冷却し、上記復熱後空冷すること
を特徴とするウェブ付根部の低温靭性か優れたH形鋼の
製造方法。
3) CO. O3~0.20%, Sil. 0% or less, Mn
O. 5-2.2%, N≦0.020%, AlO. OO3
~0.01%, in addition to Nbl■, Ti. .. A steel containing one or more types of Zr in a total of 0.3% or less and the balance consisting of iron and unavoidable elements is hot rolled to form an H-beam steel,
The web root of the H-shaped steel after hot rolling was heated to Arl + 30°C.
From the inside of the flange of the H-section steel or from the inside and outside of the flange so that the recuperation temperature at the web root after cooling is higher than 500°C and lower than 700°C in the temperature range from the above temperature to 500'C. Spray cooling fluid for 20 to 20 minutes.
A method for manufacturing an H-beam steel having excellent low-temperature toughness at the base of the web, characterized by cooling at a cooling rate of 0° C./S and air cooling after the above-mentioned recuperation.

1)CO.O3〜0.20%、Sil.O%以下、Mn
O.5〜2.2%、AlO.OO3〜0.10%、Nを
0.02%以下を含有しこれに稀土類元素を0.15%
以下含有し、残部が鉄および不可避元素からなる鋼を熱
間圧延してH形鋼に形成し、該熱間圧延後のH形鋼のウ
ェブ付根部をArl+30℃以上の温度から500℃ま
での温度域を冷却後のウェブ付根部の復熱温度が500
′Cより高く700℃以下となるようにH形鋼のフラン
ジの内側またはフランジの内側および外側から冷却流体
を吹きつけて20〜200℃/Sの冷却速度で冷却し、
上記復熱後空冷することを特徴とするウェブ付根部の低
温靭性が優れたH形鋼の製造方法。
1) CO. O3~0.20%, Sil. 0% or less, Mn
O. 5-2.2%, AlO. Contains OO3~0.10%, N 0.02% or less, and 0.15% rare earth elements.
A steel containing the following, with the remainder consisting of iron and unavoidable elements, is hot rolled to form an H-beam steel, and the web root of the hot-rolled H-shape steel is heated from a temperature of Arl + 30°C or higher to 500°C. The recuperation temperature at the base of the web after cooling the temperature range is 500
Cooling fluid is sprayed from the inside of the flange of the H-section steel or from the inside and outside of the flange to cool the steel at a cooling rate of 20 to 200°C/S so that the temperature is higher than 700°C and below 700°C.
A method for producing an H-beam steel having excellent low-temperature toughness at the base of the web, the method comprising air cooling after the reheating.

(5)CO.O3〜0.20%、Sll.O%以下、M
nO.5〜2.2%、N≦0.020%、AlO.OO
3〜0.01%を含有した鋼に、Ni..CrlCu,
.MOの1種以上を合計で1.5%以下を単独または複
合して含有し、これにNblV.Tl.Zrの1種以上
を合計で0.3%以下含有し、残部が鉄および不可避元
素からなる鋼を熱間圧延してH形鋼に形成し、該熱間圧
延後のH形鋼のウェブ付根部をArl+30℃以上の温
度から500℃までの温度域を冷却後のウェブ付根部の
復熱温度が500′Cより高く700℃以下となるよう
にH形鋼のフランジの内側またはフランジの内側および
外側から冷却流体を吹きつけて20〜200′C/Sの
冷却速度で冷却し、上記復熱後空冷することを特徴とす
るウェブ付根部の低温靭性が優れたH形鋼の製造方法。
(5) CO. O3~0.20%, Sll. 0% or less, M
nO. 5-2.2%, N≦0.020%, AlO. OO
The steel containing 3 to 0.01% of Ni. .. CrlCu,
.. It contains one or more types of MO, singly or in combination, in a total amount of 1.5% or less, and NblV. Tl. A steel containing one or more types of Zr in a total of 0.3% or less and the balance consisting of iron and unavoidable elements is hot-rolled to form an H-beam steel, and the hot-rolled H-beam steel is attached with a web. The inside of the flange of the H-beam steel or the inside of the flange and A method for manufacturing an H-beam steel having excellent low-temperature toughness at the base of a web, characterized in that cooling is carried out at a cooling rate of 20 to 200'C/S by spraying a cooling fluid from the outside, and air cooling is performed after the above-mentioned recuperation.

である。次に本発明の詳細な説明する。It is. Next, the present invention will be explained in detail.

ます本発明に用いられる鋼の化学成分について説明する
First, the chemical composition of the steel used in the present invention will be explained.

Cは強度と靭性に対する基本的要因てあり、下限は焼入
性、強度の面から0.03%とし、上限は溶接性および
低温靭性の面より0.20%に規定した。
C is a fundamental factor for strength and toughness, and the lower limit was set at 0.03% from the viewpoint of hardenability and strength, and the upper limit was set at 0.20% from the viewpoints of weldability and low-temperature toughness.

S1は脱酸作用をなし均質の鋼の製造には必要であるが
1.O%を越ると低温靭性が低下するので1.0%以下
とした。Mnは熱間加工性を改善する元素てある上、鋼
の延性、靭性の向上に欠かせぬ元素であり、Mnの下限
は焼入性および熱間加工性、低温靭性の面から0.5%
に定め、上限は低温靭性の効果が飽和する限界の2.2
%に定めた。
S1 has a deoxidizing effect and is necessary for producing homogeneous steel; If it exceeds 0%, the low temperature toughness decreases, so the content was set to 1.0% or less. Mn is an element that improves hot workability, and is also an essential element for improving the ductility and toughness of steel.The lower limit of Mn is 0.5 from the viewpoint of hardenability, hot workability, and low-temperature toughness. %
The upper limit is 2.2, which is the limit at which the effect of low-temperature toughness is saturated.
%.

A1は強力な脱酸作用をする他に鋼中のNを固定し、オ
ーステナイト細粒化に著しい効果を示し、低温靭性の向
上に役立つ元素であり、その下限の0.003%は結晶
粒を細粒化できる最低値であり、上限は介在物の面から
0.10%に規制した。
In addition to having a strong deoxidizing effect, A1 is an element that fixes N in steel, has a remarkable effect on refining austenite grains, and is useful for improving low-temperature toughness, and its lower limit of 0.003% is an element that This is the minimum value at which grain size can be refined, and the upper limit was regulated to 0.10% in view of inclusions.

Nb..V..Tl..Zrは圧延中の鋼材の結晶粒を
微細化するための析出物粒子形成のために添加する元素
であり、その上限0.3%は靭性が劣下する限界である
。Ni..Cr..CuNMOは焼入性を高め、また、
,Ar3変態点を調節する以外に強度靭性のバランスを
向上させる効果があり、その上限は溶接性および経済性
の面で1.5%とした。
Nb. .. V. .. Tl. .. Zr is an element added to form precipitate particles to refine the crystal grains of the steel material during rolling, and its upper limit of 0.3% is the limit at which the toughness deteriorates. Ni. .. Cr. .. CuNMO increases hardenability and also
, Ar3 has the effect of improving the balance of strength and toughness in addition to adjusting the transformation point, and its upper limit was set at 1.5% in terms of weldability and economic efficiency.

稀土類元素はSの有害性を消去するために必要に応じて
添加する元素であるが、その含有量が0.15%を超え
ると酸化物が増大し、清浄度の低下を来すため0.15
%以下とした。
Rare earth elements are elements that are added as necessary to eliminate the harmful effects of S, but if their content exceeds 0.15%, oxides will increase and cleanliness will decrease. .15
% or less.

NはA1、Nbl■、Ti..Zrと窒化物を形成し、
結晶粒を微細化するために有用な元素てある。
N is A1, Nbl■, Ti. .. Forms nitride with Zr,
There are elements useful for refining crystal grains.

しかしながらその量が多すぎると固溶Nが増加し、鋼の
靭性を低下させるため、上限を0.02%と規定した。
本発明法は上記に規定した成分の鋼をオーステナイト域
の適当な温度に加熱後、所定の寸法形状のH形鋼にオー
ステナイト域で熱間圧延し熱間圧延されたH形鋼のウェ
ブ付根部をArl+30℃の温度から500℃までを冷
却後のウェブ付根部4の復熱温度が500℃より高く7
00℃以下となるようにたとえば第1図に示すように、
H形鋼のフランジ2の内側又はフランジ2の内側および
外側からウェブ付根部4に冷却流体である冷却水を吹き
つけて、20〜2000C/Secの冷却速度で冷却し
、ウェブ付根部4が上記500℃より高く700′C以
下に復熱後空冷する。ウェブ付根部4に冷却水を吹きつ
けて冷却する場合は、ウェブ付根部4の肉厚が厚くなる
と肉厚方向の組織むらを小さくするためにこの場合は断
続冷却することが好ましい。
However, if the amount is too large, solid solution N increases and the toughness of the steel decreases, so the upper limit was set at 0.02%.
The method of the present invention involves heating the steel having the above-specified composition to an appropriate temperature in the austenitic region, and then hot rolling it into an H-beam of a predetermined size and shape in the austenitic region. The recuperation temperature of the web root 4 after cooling from the temperature of Arl + 30°C to 500°C is higher than 500°C 7
For example, as shown in Fig. 1, the temperature is below 00°C.
Cooling water, which is a cooling fluid, is sprayed onto the web root portion 4 from the inside of the flange 2 of the H-section steel or the inside and outside of the flange 2, and the web root portion 4 is cooled at a cooling rate of 20 to 2000 C/Sec. After reheating to a temperature higher than 500°C and lower than 700'C, air cooling is performed. When cooling the web base 4 by spraying cooling water, intermittent cooling is preferably performed in this case to reduce tissue unevenness in the thickness direction when the web base 4 becomes thick.

ウェブ付根部4を冷却する方法は第1図に示す様に、フ
ランジ2の内側下方に設けた冷却ノズル5から冷却水を
吹きつけて冷却するか、またはノズル5およびフランジ
2の外側中央部に設けた冷却ノズル6の両ノズルから冷
却水を吹きつけて冷、却するか、またはノズル5および
フランジ2の外側中央部に設けた冷却ノズル6の両ノズ
ルから冷却水を吹きつけて冷却するか、楊合によつては
フランジ2の内側上方に冷却ノズル7を設けて、該冷却
ノズル7と冷却ノズル5および冷却ノズル6ノとをそれ
ぞれ組合せて冷却することも可能であるが、冷却ノズル
7からの冷却はウェブ上面に冷却水が溜りやすく、ウェ
ブを過冷することになるのであまり好ましくない。
As shown in FIG. 1, the web root portion 4 can be cooled by spraying cooling water from a cooling nozzle 5 provided at the lower inside of the flange 2, or by spraying cooling water onto the nozzle 5 and the center outside of the flange 2. Cooling is performed by spraying cooling water from both nozzles of the provided cooling nozzle 6, or cooling water is sprayed from both nozzles of the cooling nozzle 6 provided at the center outside of the nozzle 5 and flange 2. Depending on the arrangement, the cooling nozzle 7 may be provided above the inside of the flange 2, and cooling may be performed by combining the cooling nozzle 7 with the cooling nozzle 5 and the cooling nozzle 6, respectively. Cooling from the web is not very preferable because cooling water tends to accumulate on the upper surface of the web, resulting in overcooling of the web.

本発明法において、冷却流体(冷却水)による温度範囲
をArl+30℃以上から500℃までとしたのは、ウ
ェブ付根部を充分に焼入れするためには冷却開始温度は
オーステナイト域から冷却することが必要であり、Ar
l+30℃と決めたのは実験的に求めたものてある。
In the method of the present invention, the temperature range of the cooling fluid (cooling water) is set from Arl + 30°C or higher to 500°C, because in order to sufficiently harden the web root, the cooling start temperature must be from the austenite region. and Ar
The temperature l+30°C was determined experimentally.

冷却温度の下限を500℃としたのはArl+30〜5
00℃までを徐冷するとフェライト及びパーライト変態
組織が生ずる。本発明の狙いは焼入戻組織を得ることを
目的としており5000Cまでを急冷しフェライト、パ
ーライト変態を阻止することが必要である。従つて50
0℃を下限とした。又、その冷却速度は20〜2000
C/Sで冷却することが必要である。またこの冷却温度
範囲Ar″1+30℃以上〜500℃、冷却速度20〜
200℃/Sの冷却条件は冷却後のウェブ付根部を空冷
して、500〜700後Cに復熱させるためにも必要な
条件である。上記冷却速度を20〜200゜C/Sとし
たのは、前述した焼入性向上元素を上限近く添加した鋼
の組織的な臨界冷却速度が20゜C/Sであり、焼入性
勾上元素を含ます、かつC..Mn成分が下限の鋼の組
織的な臨界冷却速度が200℃/Sであるためてある。
また、復熱温度を500゜Cより高く700℃以下とし
たのは短時間に充分な自己焼戻しが可能な範囲であるた
めである。復熱温度および時間と衝撃特性の破面遷移温
度とは良い相関関係がみられ、自己焼戻しは下記の(1
)式で定義される焼戻しパラメーターで表現される。
The lower limit of cooling temperature was set to 500℃ for Arl+30~5
Slow cooling to 00°C produces ferrite and pearlite transformed structures. The aim of the present invention is to obtain a hardened structure, and it is necessary to rapidly cool the steel to 5000C to prevent ferrite and pearlite transformation. Therefore 50
The lower limit was 0°C. Also, the cooling rate is 20 to 2000
It is necessary to cool with C/S. In addition, this cooling temperature range Ar''1+30℃ or more ~ 500℃, cooling rate 20~
The cooling condition of 200° C./S is also necessary for air cooling the web root portion after cooling and reheating it to 500 to 700° C. The reason why the above cooling rate was set to 20 to 200°C/S is because the structural critical cooling rate of steel to which the above-mentioned hardenability improving elements are added close to the upper limit is 20°C/S, and the hardenability gradient is contains the elements and C. .. This is because the structural critical cooling rate of steel with a lower Mn content is 200° C./S.
Further, the reason why the reheating temperature is set higher than 500°C and lower than 700°C is that this is within a range where sufficient self-tempering can be achieved in a short time. There is a good correlation between the recuperation temperature and time and the fracture surface transition temperature of impact properties.
) is expressed by the tempering parameter defined by the formula.

注1、注2復熱温度は第3図で示される復熱 温度
のピーク値であり、復熱時間は (ピーク値−20
)℃以上の温度に保た れる時間である。
Note 1, Note 2 The recuperation temperature is the peak value of the recuperation temperature shown in Figure 3, and the recuperation time is (peak value - 20
)℃ or higher temperature.

焼戻しパラメーターと破面遷移温度とは第4図で示すよ
うな相関関係にあり、Pの値が、14000〜1850
0であれば破面遷移温度は良好である。
There is a correlation between the tempering parameters and the fracture surface transition temperature as shown in Figure 4, and the value of P is 14,000 to 1,850.
If it is 0, the fracture surface transition temperature is good.

自己焼戻しにおける復熱温度と復熱時間の影響度合は復
熱温度が大きい。復熱温度と低温靭性を示す破面遷移温
度(VTrS)との関係は第5図に示すごとく、復熱温
度が500〜700℃の範囲内で破面遷移温度は良好な
値を示す。次に本発明法の実施例について説明する。
The degree of influence of recuperation temperature and reheating time in self-tempering is large. The relationship between the recuperation temperature and the fracture surface transition temperature (VTrS), which indicates low-temperature toughness, is as shown in FIG. 5, and the fracture surface transition temperature exhibits a good value when the recuperation temperature is in the range of 500 to 700°C. Next, examples of the method of the present invention will be described.

供試鋼の化学成分を第1表に示す。The chemical composition of the test steel is shown in Table 1.

また第1表に示す鋼を用いて本発明法と従来方法とによ
り、製造したH形鋼の機械的性質を第2表に示す。第2
表から明らかなように、A−M鋼のいずれも本発明法を
適用したものは従来法に比ベウエブ付根部の低温靭性を
示す破面遷移温度(VTrS)の改善効果が著しいこと
がわかる。つぎにA鋼を例にとつて述べると従来の製造
方法によるH形鋼の矯正後の断面内において、ウェブ付
根部の破面遷移温度が最も悪い値であり、このウェブ付
根部に本発明法を適用することによりウェブ付根部の破
面遷移温度を大幅に改善することができる。
Furthermore, Table 2 shows the mechanical properties of H-beam steels manufactured by the method of the present invention and the conventional method using the steels shown in Table 1. Second
As is clear from the table, all of the A-M steels to which the method of the present invention is applied have a significant improvement effect on the fracture surface transition temperature (VTrS), which indicates the low-temperature toughness of the web root, compared to the conventional method. Next, using A steel as an example, the fracture surface transition temperature at the web root is the worst value in the cross section after straightening of H section steel by the conventional manufacturing method. By applying this, the fracture surface transition temperature at the web root can be significantly improved.

また本発明法を適用したH形鋼のウェブ付根は、矯正に
よる衝撃特性の低下も少ない。
In addition, the web root of the H-beam steel to which the method of the present invention is applied has less deterioration in impact properties due to straightening.

この傾向はB−M鋼の全ての鋼種についても同様な結果
となつている。A鋼内でテストNO.A−2、A−3の
ものおよびB−M鋼は、第1図に示す冷却ノズル5のみ
を使用して水冷したものであり、また復熱後の冷却は空
冷を行なつたものである。
This tendency is the same for all types of B-M steel. Test No. in A steel. A-2, A-3 and B-M steel were water cooled using only the cooling nozzle 5 shown in Figure 1, and air cooling was performed after recuperation. .

テストNO.A−1、A−2、A−3のウェブ付根部の
冷却曲線を第3図に示す。
Test No. FIG. 3 shows the cooling curves of the web bases of A-1, A-2, and A-3.

A−1は従来法による製造例であり、熱間圧延後のH形
鋼を空冷(ウェブ付根部も空冷)したものてあり、A−
2、A−3は熱間圧延後のH形鋼のウェブ付根部温度が
860℃よりウェブ付根部を冷却ノズル5を用いて水冷
したもので、その冷却水の水量はH形鋼の片側の付根部
で1メートル当り5eおよび15eでありこの時の冷却
開始温度(860℃)〜5000Cの温度までの冷却速
度はA−2、A−3でそれぞれ70゜c/Secl8O
℃/Secであり、またそれぞれの放冷後の復熱温度は
700℃、640たCてある。
A-1 is an example of production using the conventional method, in which hot-rolled H-beam steel is air-cooled (the base of the web is also air-cooled).
2, A-3 is a hot-rolled H-beam whose web root temperature is 860°C, and the web root is water-cooled using a cooling nozzle 5, and the amount of cooling water is on one side of the H-beam. The cooling rate is 5e and 15e per meter at the base, and the cooling rate from the cooling start temperature (860℃) to the temperature of 5000C is 70℃/Sec18O for A-2 and A-3, respectively.
°C/Sec, and the reheating temperature after cooling was 700 °C and 640 °C.

A−1の矯正前のH形鋼ウェブ付根部の破面遷移温度が
−15゜Cてあるのに対してA−2、A−3のものはそ
れぞれ−35るC1−55℃と矯正後の破面遷移温度も
良好な値を示している。
The fracture surface transition temperature at the root of the H-section steel web in A-1 before straightening is -15°C, while that in A-2 and A-3 is -35C1-55°C after straightening, respectively. The fracture surface transition temperature also shows good values.

更に矯正前後の破面遷移温度上昇量は、A−1が15゜
Cてあるのに対し、A−2、A−3のものはそれぞれ5
℃、10℃と従来法に比較して本発明法を適用したもの
は破面遷移温度上昇量も小さいことがわかる。A−4は
第1図に示す冷却ノズル5と冷却ノズル7を併用し、各
々のノズルから7.5e/M(片側の付根部1メートル
当り7.5e)の冷却水を吹きつけて冷却したもので、
冷却開始温度86(代)から500℃の温度までの冷却
速度はA−3よりやや早く、また復熱温度510′C以
降の冷却は500℃より水冷を行なつている。この為ウ
ェブ付根部の組織がA−2、A−3に比較して板厚方向
の組織が均一化している。
Furthermore, the amount of increase in fracture surface transition temperature before and after straightening is 15°C for A-1, while it is 5°C for A-2 and A-3, respectively.
It can be seen that the amount of increase in fracture surface transition temperature is also smaller in the case where the method of the present invention is applied, which is 10°C and 10°C. A-4 was cooled by using cooling nozzle 5 and cooling nozzle 7 shown in Figure 1 in combination, and spraying cooling water of 7.5e/M (7.5e per meter of base on one side) from each nozzle. Something,
The cooling rate from the cooling start temperature of 86 (range) to a temperature of 500°C is slightly faster than that of A-3, and the cooling after the recuperation temperature of 510'C is performed by water cooling from 500°C. For this reason, the structure of the web root portion is more uniform in the thickness direction than in A-2 and A-3.

A−5は第1図に示す冷却ノズル5と冷却ノズル6を併
用し、各々のノズルから7.5e/Mの冷却水を吹きつ
けて冷却したものである。このものは、A−3のものど
比較してウェブ付根部への水量が少なく焼入効果はやや
少ないが、復熱温度は良い温度域である。以上の様に本
発明法によれば従来法で製造するH形鋼の断面内の衝撃
特性のうち特にウェブ付根部の破面遷移温度を安価でか
つ簡便な方法で改善する事が出来る。
A-5 uses both the cooling nozzle 5 and the cooling nozzle 6 shown in FIG. 1, and cools by spraying cooling water of 7.5e/M from each nozzle. This product has a smaller amount of water at the base of the web than A-3 and has a slightly less quenching effect, but the recuperation temperature is in a good temperature range. As described above, according to the method of the present invention, among the impact characteristics within the cross section of H-beam steel produced by the conventional method, the fracture surface transition temperature, particularly at the web root portion, can be improved at a low cost and in a simple manner.

また本発明にかかる熱処理方法を用いてH形鋼のフラン
ジ中央部をフランジの外側より調整冷却すればフランジ
中央部の衝撃特性の改善も可能となり、更に他の形鋼に
も応用して、例えば肉厚の大なる部位のみをArl+3
0゜C以上の温度から500℃の温度まで急冷して、そ
の後他の部位からの熱伝導等により復熱させて焼戻し効
果を作用させることにより、断面内の靭性バランスが優
れた形鋼を製造する事も可能である。
Furthermore, if the heat treatment method according to the present invention is used to control and cool the central part of the flange of an H-shaped steel from the outside of the flange, it is possible to improve the impact characteristics of the central part of the flange. Arl+3 only on thick parts
By rapidly cooling from a temperature of 0°C or higher to a temperature of 500°C, and then reheating through heat conduction from other parts to create a tempering effect, we manufacture a section steel with an excellent balance of toughness within the cross section. It is also possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

ノ 第1図は本発明法にかかるH形鋼のウェブ付根部を
水冷するノズル配置の例を示す図、第2図は衝撃試験片
を採取したH形鋼内の部位を示す図、第3図はウェブ付
根部の冷却曲線の1例を示す図、第4図は破面遷移温度
のおよぼす焼戻しバラ7メーターの影響を示す図、第5
図は破面遷移温度におよぼす復熱温度の影響を示す図で
ある。 1・・・・・H形鋼、2・・・・・・フランジ、3・・
・・・・ウェブ、4・・・・・・ウェブ付根部、5,6
,7・・・・・・冷却ノズル。
Fig. 1 is a diagram showing an example of the nozzle arrangement for water cooling the web base of an H-beam according to the method of the present invention, Fig. 2 is a diagram showing the parts in the H-beam from which impact test pieces were taken, and Fig. 3 The figure shows an example of the cooling curve at the base of the web, Figure 4 shows the influence of the fracture surface transition temperature on tempering of 7 meters, and Figure 5
The figure shows the influence of recuperation temperature on fracture surface transition temperature. 1...H-shaped steel, 2...flange, 3...
... Web, 4 ... Web base, 5, 6
, 7... Cooling nozzle.

Claims (1)

【特許請求の範囲】 1 C0.03〜0.20%、Si1.0%以下、Mn
0.5〜2.2%、N≦0.020%、Al≦0.00
3〜0.10%を含有し、残部が鉄および不可避元素か
らなる鋼を熱間圧延してH形鋼に形成し、該熱間圧延後
のH形鋼のウェブ付根部をMr_1+30℃以上の温度
から500℃までの温度域を冷却後のウェブ付根部の復
熱温度が500℃より高く700℃以下となるようにH
形鋼のフランジの内側またはフランジの内側および外側
から冷却流体を吹きつけて20〜200℃/Sの冷却速
度で冷却し、上記復熱後空冷することを特徴とするウェ
ブ付根部の低温靭性が優れたH形鋼の製造方法。 2 C0.03〜0.20%、Si1.0%以下、Mn
0.5〜2.2%、N≦0.020℃、Al0.003
〜0.10%を含有した鋼に、Ni、Cr、Cu、Mo
の1種以上を合計で1.5%以下を単独または複合して
含有し、残部が鉄および不可避元素からなる鋼を熱間圧
延してH形鋼に形成し、該熱間圧延のH形鋼のウェブ付
根部をAr_1+30℃以上の温度から500℃までの
温度域を冷却後のウェブ付根部の復熱温度が500℃よ
り高く700℃以下となるようにH形鋼のフランジの内
側またはフランジの内側および外側から冷却流体を吹き
つけて20〜200℃/Sの冷却温度で冷却し、上記復
熱後空冷することを特徴とするウェブ付根部の低温靭性
が優れたH形鋼の製造方法。 3 C0.03〜0.20%、Si1.0%以下、Mn
0.5〜2.2%、N≦0.020%、Al0.003
〜0.10%を含有しこれにNb、V、Ti、Zrの1
種以上を合計で0.3%以下含有し、残部が鉄および不
可避元素からなる鋼を熱間圧延してH形鋼に形成し、該
熱間圧延後のH形鋼のウェブ付根部をAr_1+30℃
以上の温度から500℃までの温度域を冷却後のウェブ
付根部の復熱温度が500℃より高く700℃以下とな
るようにH形鋼のフランジの内側またはフランジの内側
および外側から冷却流体を吹きつけて20〜200℃/
Sの冷却速度で冷却し、上記復熱後空冷することを特徴
とするウェブ付根部の低温靭性が優れたH形鋼の製造方
法。 4 C0.03〜0.20%、Si1.0%以下、Mn
0.5〜2.2%、Al0.003〜0.10%、Nを
0.02%以下を含有しこれに稀土類元素を0.15%
以下含有し、残部が鉄および不可避元素からなる鋼を熱
間圧延してH形鋼に形成し、該熱間圧延後のH形鋼のウ
ェブ付根部をAr_1+30℃以上の温度から500℃
までの温度域を冷却後のウェブ付根部の復熱温度が50
0℃より高く700℃以下となるようにH形鋼のフラン
ジの内側またはフランジの内側および外側から冷却流体
を吹きつけて20〜200℃/Sの冷却速度で冷却し、
上記復熱後空冷することを特徴とするウェブ付根部の低
温靭性が優れたH形鋼の製造方法。 5 C0.03〜0.20%、Si1.0%以下、Mn
0.5〜2.2%、N≦0.020%、Al0.003
〜0.10%を含有した鋼に、Ni、Cr、Cu、Mo
の1種以上を合計で1.5%以下を単独または複合して
含有し、これにNb、V、Ti、Zi、Zrの1種以上
を合計で0.3%以下含有し、残部が鉄および不可避元
素からなる鋼を熱間圧延してH形鋼に形成し、該熱間圧
延後のH形鋼のウェブ付根部をAr_1+30℃以上の
温度から500℃までの温度域を冷却後のウェブ付根部
の復熱温度が500℃より高く700℃以下となるよう
にH形鋼のフランジの内側またはフランジの内側および
外側から冷却流体を吹きつけて20〜200℃/Sの冷
却速度で冷却し、上記復熱後空冷することを特徴とする
ウェブ付根部の低温靭性が優れたH形鋼の製造方法。
[Claims] 1 C0.03 to 0.20%, Si 1.0% or less, Mn
0.5-2.2%, N≦0.020%, Al≦0.00
3 to 0.10%, with the remainder consisting of iron and unavoidable elements, is hot-rolled to form an H-beam steel, and the web root of the hot-rolled H-shape steel is heated to a temperature of Mr_1+30°C or higher. H so that the recuperation temperature at the base of the web after cooling in the temperature range from 500°C to 500°C is higher than 500°C and below 700°C.
The low-temperature toughness of the web root is improved by spraying a cooling fluid from the inside of the flange of the section steel or from the inside and outside of the flange to cool it at a cooling rate of 20 to 200°C/S, and air cooling after the recuperation. Excellent method for manufacturing H-beam steel. 2 C0.03-0.20%, Si1.0% or less, Mn
0.5-2.2%, N≦0.020°C, Al0.003
~0.10% Ni, Cr, Cu, Mo
A steel containing 1.5% or less of one or more of The inner side of the flange of the H-beam steel or the flange so that the recuperation temperature at the web root after cooling the steel web root in the temperature range from Ar_1+30℃ to 500℃ is higher than 500℃ and lower than 700℃. A method for producing an H-beam steel with excellent low-temperature toughness at the base of the web, characterized in that cooling is performed at a cooling temperature of 20 to 200°C/S by spraying a cooling fluid from the inside and outside of the web, and air cooling is performed after the recuperation. . 3 C0.03-0.20%, Si1.0% or less, Mn
0.5-2.2%, N≦0.020%, Al0.003
~0.10%, plus 1 of Nb, V, Ti, and Zr
A steel containing 0.3% or less in total of 0.3% or more and the balance consisting of iron and unavoidable elements is hot-rolled to form an H-beam steel, and the web root of the hot-rolled H-shape steel is Ar_1+30. ℃
Cooling fluid is supplied from inside the flange of the H-section steel or from the inside and outside of the flange so that the recuperation temperature at the web root after cooling is higher than 500°C and lower than 700°C in the temperature range from above to 500°C. Spray at 20-200℃/
A method for producing an H-beam steel having excellent low-temperature toughness at the web root, the method comprising cooling at a cooling rate of S, and air cooling after the recuperation. 4 C0.03~0.20%, Si1.0% or less, Mn
Contains 0.5-2.2%, Al 0.003-0.10%, N 0.02% or less, and 0.15% rare earth elements.
A steel containing the following, with the remainder consisting of iron and unavoidable elements, is hot rolled to form an H-beam steel, and the web root of the hot-rolled H-shape steel is heated from a temperature of Ar_1+30°C or higher to 500°C.
The recuperation temperature at the base of the web after cooling the temperature range up to 50
Cooling is performed at a cooling rate of 20 to 200 °C/S by spraying cooling fluid from the inside of the flange of the H-section steel or from the inside and outside of the flange so that the temperature is higher than 0 °C and lower than 700 °C,
A method for producing an H-beam steel having excellent low-temperature toughness at the base of the web, the method comprising air cooling after the reheating. 5 C0.03-0.20%, Si1.0% or less, Mn
0.5-2.2%, N≦0.020%, Al0.003
~0.10% Ni, Cr, Cu, Mo
Contains 1.5% or less of one or more of the following in total, singly or in combination, contains 0.3% or less of one or more of Nb, V, Ti, Zi, and Zr in total, and the balance is iron. A steel consisting of unavoidable elements is hot-rolled to form an H-beam, and the web root of the hot-rolled H-beam is cooled in a temperature range from Ar_1+30°C to 500°C. Cooling fluid is sprayed from inside the flange of the H-section steel or from the inside and outside of the flange to cool it at a cooling rate of 20 to 200°C/S so that the recuperation temperature at the root is higher than 500°C and lower than 700°C. . A method for manufacturing an H-beam steel having excellent low-temperature toughness at the base of the web, characterized by air cooling after the reheating.
JP11539677A 1977-09-26 1977-09-26 Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web Expired JPS6043412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11539677A JPS6043412B2 (en) 1977-09-26 1977-09-26 Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11539677A JPS6043412B2 (en) 1977-09-26 1977-09-26 Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web

Publications (2)

Publication Number Publication Date
JPS5448629A JPS5448629A (en) 1979-04-17
JPS6043412B2 true JPS6043412B2 (en) 1985-09-27

Family

ID=14661512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11539677A Expired JPS6043412B2 (en) 1977-09-26 1977-09-26 Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web

Country Status (1)

Country Link
JP (1) JPS6043412B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018073A (en) * 2014-06-19 2014-09-03 马钢(集团)控股有限公司 Low-temperature toughness resistant H-shaped steel and production process thereof
JP2017115200A (en) * 2015-12-24 2017-06-29 新日鐵住金株式会社 H-shaped steel for low temperature and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199817A (en) * 1982-05-19 1983-11-21 Nippon Kokan Kk <Nkk> Production of high tensile shape steel having excellent toughness
CN103938079B (en) * 2014-05-16 2016-05-11 莱芜钢铁集团有限公司 Hot rolled H-shaped and the production method of the super thick specification low-temperature type of low compression ratio
CN111945064A (en) * 2020-07-31 2020-11-17 山东钢铁股份有限公司 355 MPa-level low-temperature-resistant hot-rolled H-shaped steel for ocean engineering and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018073A (en) * 2014-06-19 2014-09-03 马钢(集团)控股有限公司 Low-temperature toughness resistant H-shaped steel and production process thereof
CN104018073B (en) * 2014-06-19 2015-11-18 马钢(集团)控股有限公司 A kind of low temperature resistant toughness H profile steel and production technique thereof
JP2017115200A (en) * 2015-12-24 2017-06-29 新日鐵住金株式会社 H-shaped steel for low temperature and production method therefor

Also Published As

Publication number Publication date
JPS5448629A (en) 1979-04-17

Similar Documents

Publication Publication Date Title
KR20000069212A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
JPS6155572B2 (en)
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS5983719A (en) Preparation of unnormalized high strength steel
CN106995905B (en) The excellent building structural steel material of flatness and its manufacturing method
JPS6043412B2 (en) Method for manufacturing H-beam steel with excellent low-temperature toughness at the base of the web
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JP3337246B2 (en) Method for producing thick H-section steel having a thickness of 40 mm or more with small difference in mechanical properties in the thickness direction
JPS6057490B2 (en) Manufacturing method of high-strength steel plate with low yield ratio
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPS62970B2 (en)
JP2661768B2 (en) Manufacturing method of high strength steel sheet with high fatigue limit by thin cast strip
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPH01159316A (en) Production of low yielding ratio high tensile steel having softened surface layer
JP2905306B2 (en) Method of manufacturing thick steel plate with small difference in mechanical properties in the thickness direction
JPH0368715A (en) Production of structural steel plate excellent in strength and toughness
JPH0366367B2 (en)
JPH0344418A (en) Production of steel stock excellent in strength and toughness
JP2708540B2 (en) Method for producing high-strength steel sheet mainly composed of ferrite structure
JPS5896819A (en) Production of low ni alloy steel plate having excellent low-temperature toughness
JPS63128117A (en) Production of unnormalized high tensile steel
JPS6318024A (en) Manufacture of steel plate with high tensile strength and high toughness
JPH0353020A (en) Manufacture of steel having excellent low temperature toughness
JPH0353019A (en) Manufacture of steel having excellent strength and toughness