JP2008111162A - Hot-rolled steel sheet for electroseamed steel pipe having high toughness and showing low yield ratio after having been painted, and manufacturing method therefor - Google Patents

Hot-rolled steel sheet for electroseamed steel pipe having high toughness and showing low yield ratio after having been painted, and manufacturing method therefor Download PDF

Info

Publication number
JP2008111162A
JP2008111162A JP2006295302A JP2006295302A JP2008111162A JP 2008111162 A JP2008111162 A JP 2008111162A JP 2006295302 A JP2006295302 A JP 2006295302A JP 2006295302 A JP2006295302 A JP 2006295302A JP 2008111162 A JP2008111162 A JP 2008111162A
Authority
JP
Japan
Prior art keywords
less
hot
steel sheet
rolled steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006295302A
Other languages
Japanese (ja)
Other versions
JP4957185B2 (en
Inventor
Katsumi Nakajima
勝己 中島
Tsutomu Kami
力 上
Tadashi Inoue
正 井上
Hiroshi Nakada
博士 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006295302A priority Critical patent/JP4957185B2/en
Publication of JP2008111162A publication Critical patent/JP2008111162A/en
Application granted granted Critical
Publication of JP4957185B2 publication Critical patent/JP4957185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel sheet from which an electroseamed steel pipe that shows a low yield ratio after having been painted and baked, and has high toughness, can be stably obtained. <P>SOLUTION: This hot-rolled steel sheet has a component composition that includes a predetermined content range of C, Si, Mn, P, S, Al and N, and further includes Cr and Mo in amounts of less than 1.5% and less than 0.3% respectively, on a condition of satisfying the expression [-1.11×(Cr)<SP>2</SP>+0.1<Mo<-0.13×(Cr)<SP>2</SP>+0.3]; and has a dual-structure that includes mainly ferrite and one or more second phases selected from bainite, martensite and retained austenite. Ferrite particles with aspect ratios of 1 to less than 4 occupy 50% or more by number of all crystal grains in the structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に原油やガスなどのパイプライン、水道配管、建築・土木用の柱などに好適な電縫鋼管用の熱延鋼板およびその製造方法に関するものである。   The present invention relates to a hot-rolled steel sheet for an electric-resistance-welded steel pipe, which is particularly suitable for pipelines such as crude oil and gas, water pipes, columns for construction and civil engineering, and a method for producing the same.

電縫鋼管は、ラインパイプや水道配管などの輸送用配管に広く用いられているが、輸送用配管の敷設時や敷設後の座屈防止、地震発生時の地滑りに伴う変形応力対策として、近年、管長手方向の降伏比(以下“YR”という)の低い電縫鋼管に対するニーズが高まりつつある。
一般に、ラインパイプなどに用いられる電縫鋼管は、造管後、防食などの目的で重防食コーティング(塗装焼付け)が施されるが、長手方向に造管歪が残った状態で重防食コーティングが施され、その際に例えば250℃×10分程度で焼付けが行われると、鋼中に残存している固溶元素が固着されて歪時効が起こり、YRが増大してしまう。
一方で、ラインパイプは、海底や凍土地帯に敷設することが多く、溶接部を含む電縫鋼管全体に優れた靭性が要求される。
ERW steel pipes are widely used in transportation pipes such as line pipes and water pipes, but in recent years, as a countermeasure against deformation stress associated with landslides during earthquakes when laying transportation pipes, preventing buckling after laying, There is a growing need for ERW steel pipes having a low yield ratio (hereinafter referred to as “YR”) in the longitudinal direction of the pipe.
In general, ERW steel pipes used for line pipes, etc. are subjected to heavy anti-corrosion coating (paint baking) for the purpose of anti-corrosion after pipe formation. If, for example, baking is performed at about 250 ° C. × 10 minutes at that time, the solid solution element remaining in the steel is fixed, strain aging occurs, and YR increases.
On the other hand, line pipes are often laid on the sea floor or frozen land, and excellent toughness is required for the entire ERW steel pipe including welds.

しかしながら、塗装焼付け後の低YRと高靭性を両立することは容易でない。一般に高靭性を得るには微細組織が有利とされるが、例えば、微細なフェライト組織を形成させると、降伏点が上昇してYRが増加してしまう。すなわち、一般に低YRと高靭性は背反する関係にある。
低YR化を狙いとする電縫鋼管用熱延鋼板としては、例えば、Mo+Crを特定の範囲で含有し、面積率1〜20%のマルテンサイトとフェライトからなる組織を有する鋼板が、特許文献1に提案されている。
特開平10−176239号公報
However, it is not easy to achieve both low YR after paint baking and high toughness. In general, a fine structure is advantageous for obtaining high toughness. However, for example, when a fine ferrite structure is formed, the yield point increases and YR increases. That is, generally, low YR and high toughness are contradictory.
As a hot rolled steel sheet for electric resistance steel pipes aiming at low YR, for example, a steel sheet containing Mo + Cr in a specific range and having a structure composed of martensite and ferrite having an area ratio of 1 to 20% is disclosed in Patent Document 1. Has been proposed.
Japanese Patent Laid-Open No. 10-176239

しかし、特許文献1の技術は、単にマルテンサイトを活用して熱延鋼板を低YR化し、且つパイプ成形後のYS低下を抑えることを狙いとするものであるため、塗装焼付け後の低YRと高靭性を両立させることはできない。
したがって本発明の目的は、塗装焼付け後に低YRを示し、且つ高靭性を有する電縫鋼管を安定して得ることができる、電縫鋼管用熱延鋼板とその製造方法を提供することにある。
However, since the technology of Patent Document 1 aims to reduce the YR of the hot-rolled steel sheet simply by utilizing martensite and to suppress the YS decrease after pipe forming, High toughness cannot be achieved at the same time.
Accordingly, an object of the present invention is to provide a hot-rolled steel sheet for an electric-resistance-welded steel pipe and a method for producing the same, which can stably obtain an electric-welded steel pipe having a low YR after coating and baking and having high toughness.

本発明者らは、管長手方向が低YR化するとともに、塗装焼付け後にもその低YRが維持され、しかも高靭性を有する電縫鋼管を得るために、電縫鋼管用熱延鋼板が備えるべき化学成分・組織と製造条件について検討を行った。その結果、目的とする熱延鋼板を得るためには、(1)Cr,Moを最適なバランスで添加する必要があること、(2)仕上圧延終了後の冷却過程で積極的に二相分離を進める必要があり、そのためにはポリゴナル状のフェライトの生成が重要であること、(3)ベイナイト変態を積極的に活用し、第二相(ベイナイト、マルテンサイト、残留オーステナイトの1種以上)を生成させる必要があること、という知見を得た。   The present inventors should provide a hot-rolled steel sheet for electric-resistance-welded steel pipes in order to obtain an electric-welded steel pipe having a low YR in the longitudinal direction of the pipe and maintaining the low-YR even after paint baking and having high toughness. The chemical composition / structure and manufacturing conditions were examined. As a result, in order to obtain the desired hot-rolled steel sheet, (1) it is necessary to add Cr and Mo in an optimal balance, and (2) two-phase separation actively during the cooling process after finishing rolling. Therefore, the formation of polygonal ferrite is important, and (3) the bainite transformation is actively used, and the second phase (one or more of bainite, martensite, and retained austenite) is used. We have learned that it is necessary to generate them.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]質量%で、C:0.01〜0.1%、Si:1.0%以下、Mn:2.0%以下、P:0.05%以下、S:0.05%以下、Al:0.01〜0.10%、N:0.01%以下を含有し、さらに、CrおよびMoを、Cr:1.5%未満、Mo:0.3%未満であって、且つ下記(1)式を満足する条件で含有し、残部が鉄および不可避的不純物からなる成分組成を有するとともに、
フェライトと、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上の第二相を主体とする複合組織を有し、アスペクト比1以上4未満のフェライト粒の個数が組織中の全結晶粒の50%超であることを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。
−1.11×(Cr)+0.1<Mo<−0.13×(Cr)+0.3 …(1)
但し Cr:Cr含有量(質量%)
Mo:Mo含有量(質量%)
The present invention has been made on the basis of such knowledge and has the following gist.
[1] By mass%, C: 0.01 to 0.1%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.05% or less, S: 0.05% or less, Al: 0.01 to 0.10%, N: 0.01% or less, and Cr and Mo, Cr: less than 1.5%, Mo: less than 0.3%, and (1) It contains under the conditions that satisfy the formula, and the balance has a component composition consisting of iron and inevitable impurities,
It has a composite structure mainly composed of ferrite and one or more second phases selected from bainite, martensite, and retained austenite, and the number of ferrite grains having an aspect ratio of 1 or more and less than 4 is all crystal grains in the structure. A hot-rolled steel sheet for high-toughness ERW steel pipes with a low yield ratio after coating, characterized by being over 50%.
−1.11 × (Cr) 2 +0.1 <Mo <−0.13 × (Cr) 2 +0.3 (1)
However, Cr: Cr content (mass%)
Mo: Mo content (% by mass)

[2]上記[1]の鋼板において、さらに、質量%で、Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下、Zr:0.5%以下の中から選ばれる1種以上を含有することを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。
[3]上記[1]又は[2]の鋼板において、さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Sn:0.5%以下、Sb:0.5%以下の中から選ばれる1種以上を含有することを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。
[4]上記[1]〜[3]のいずれかの鋼板において、さらに、質量%で、Ca:0.01%以下、REM:0.01%以下の中から選ばれる1種以上を含有することを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。
[2] In the steel sheet according to [1] above, in mass%, Nb: 0.5% or less, Ti: 0.5% or less, V: 0.5% or less, Zr: 0.5% or less A hot-rolled steel sheet for a high-toughness ERW steel pipe having a low yield ratio after coating, comprising at least one selected from the group consisting of:
[3] In the steel sheet according to [1] or [2], further, by mass, Cu: 0.5% or less, Ni: 0.5% or less, Sn: 0.5% or less, Sb: 0.5 % Hot-rolled steel sheet for high-toughness ERW steel pipe having a low yield ratio after coating, characterized by containing at least one selected from the group consisting of 1% or less.
[4] The steel sheet according to any one of [1] to [3] further includes at least one selected from Ca: 0.01% or less and REM: 0.01% or less by mass. A hot-rolled steel sheet for high-toughness ERW steel pipes with a low yield ratio after coating.

[5]上記[1]〜[4]のいずれかの鋼板において、複合組織は、パーライトの体積率が3%以下(但し、0%を含む)であり、残部が、フェライトと、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上の第二相からなることを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。
[6]上記[1]〜[4]に記載のいずれかの成分組成を有する鋼を加熱して熱間圧延し、該熱間圧延ではAr変態点〜Ar変態点+100℃の温度域での圧下率を50%以上とする仕上圧延を行い、圧延を終了して少なくとも0.5秒を経過してから冷媒を用いた冷却を開始するとともに、該冷却の開始から巻取りまでの平均冷却速度を3〜40℃/sとし、400〜600℃で巻取ることを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板の製造方法。
[7]上記[1]〜[5]のいずれかの熱延鋼板を造管して得られたことを特徴とする、塗装後降伏比の低い高靱性電縫鋼管。
[5] In the steel sheet of any one of [1] to [4], the composite structure has a pearlite volume fraction of 3% or less (including 0%), and the balance is ferrite, bainite, martensite. A hot-rolled steel sheet for a high-toughness ERW steel pipe having a low post-painting yield ratio, comprising at least one second phase selected from sites and retained austenite.
[6] The steel having any of the component compositions described in [1] to [4] is heated and hot-rolled, and in the hot rolling, a temperature range of Ar 3 transformation point to Ar 3 transformation point + 100 ° C. Finish rolling with a reduction ratio of 50% or more at the end, and after cooling has been started at least 0.5 seconds, cooling using a refrigerant is started, and the average from the start of cooling to winding A method for producing a hot-rolled steel sheet for a high toughness ERW steel pipe having a low post-painting yield ratio, wherein the cooling rate is 3 to 40 ° C / s and winding is performed at 400 to 600 ° C.
[7] A high-toughness electric resistance welded steel pipe having a low yield ratio after coating, obtained by pipe-making the hot-rolled steel sheet according to any one of [1] to [5].

本発明の電縫鋼管用熱延鋼板によれば、塗装焼付け後の降伏比が低く、且つ高靭性を有する電縫鋼管を安定して得ることができる。このため、例えば、輸送用配管の敷設時や敷設後の座屈防止、地震発生時の地滑りに伴う変形応力による破損などを効果的に防ぐことができる。   According to the hot rolled steel sheet for electric resistance welded steel pipe of the present invention, an electric resistance welded steel pipe having a low yield ratio after baking and having high toughness can be obtained stably. For this reason, it is possible to effectively prevent, for example, buckling prevention at the time of laying or after laying of the transportation piping, and damage due to deformation stress accompanying landslide at the time of earthquake occurrence.

以下、本発明の熱延鋼板の成分組成について説明する。以下の説明において、各元素の含有量は全て“質量%”である。
C量が0.01%未満では、所望の強度が得られないことに加え、結晶粒の粗大化により靭性の劣化を招く。一方、0.1%を超えるとパーライトが生成しやすくなり、靭性が劣化する。このためC量は0.01〜0.1%とする。
Siは、二相分離を促進し、フェライトをポリゴナル状にすること、およびベイナイト変態の安定化に極めて有用である。しかし、Si量が1.0%を超えると電縫溶接時に酸化物が生成しやすくなり、溶接部靭性が劣化する。このためSi量は1.0%以下、好ましくは0.5%以下、さらに好ましくは0.3%以下とする。なお、二相分離を効果的に促進するには、Si量は0.01%以上とすることが望ましい。
Hereinafter, the component composition of the hot-rolled steel sheet of the present invention will be described. In the following description, the content of each element is “mass%”.
If the C content is less than 0.01%, the desired strength cannot be obtained, and the toughness is deteriorated due to the coarsening of the crystal grains. On the other hand, when it exceeds 0.1%, pearlite is easily generated, and the toughness is deteriorated. Therefore, the C amount is set to 0.01 to 0.1%.
Si is very useful for promoting two-phase separation, making ferrite polygonal, and stabilizing the bainite transformation. However, if the amount of Si exceeds 1.0%, oxides are likely to be generated during ERW welding, and the weld toughness deteriorates. Therefore, the Si content is 1.0% or less, preferably 0.5% or less, and more preferably 0.3% or less. In order to effectively promote the two-phase separation, the Si amount is desirably 0.01% or more.

Mnは鋼の強度確保に有効な元素であるが、2.0%を超えて添加すると、固溶強化により降伏比(以下、“YR”という)の増加をもたらすだけでなく、溶接部の靭性を劣化させる。このためMn量は2.0%以下とする。
Pも強度確保に有効であり、且つ第二相の形成にも寄与する。しかし、Pは非常に粒界に偏析しやすい元素であり、このためP量が0.05%を超えるとYRが増加するとともに、靭性も劣化するので好ましくない。このためP量は0.05%以下、好ましくは0.03%以下とする。
Mn is an element effective for securing the strength of steel, but if added over 2.0%, not only does the yield ratio (hereinafter referred to as “YR”) increase due to solid solution strengthening, but also the toughness of the weld zone. Deteriorate. For this reason, the amount of Mn is made 2.0% or less.
P is also effective in securing the strength and contributes to the formation of the second phase. However, P is an element that is very easily segregated at the grain boundary. Therefore, if the amount of P exceeds 0.05%, YR increases and toughness deteriorates, which is not preferable. Therefore, the P content is 0.05% or less, preferably 0.03% or less.

S量が0.05%を超えると粗大な硫化物が生成しやすく、溶接部の靭性が劣化する。このためS量は0.05%以下、好ましくは0.01%以下とする。
Alは製鋼段階での脱酸剤として用いられ、0.01%以上含有するように添加する必要がある。しかし、Al量が0.10%を超えると、鋼中酸化物を増加させ、母材および溶接部の靭性を低下させるので好ましくない。このためAl量は0.01〜0.10%、好ましくは0.01〜0.05%とする。
N量が0.01%を超えると、粗大な窒化物形成による靭性の劣化に加え、固溶Nが塗装焼付け後に歪時効を起こし、YRを劣化させる。このためN量は0.01%以下とする。
If the amount of S exceeds 0.05%, coarse sulfides are easily generated, and the toughness of the welded portion is deteriorated. Therefore, the S content is 0.05% or less, preferably 0.01% or less.
Al is used as a deoxidizing agent in the steelmaking stage and needs to be added so as to contain 0.01% or more. However, if the Al content exceeds 0.10%, the oxide in the steel is increased, and the toughness of the base metal and the welded portion is lowered, which is not preferable. For this reason, the Al content is 0.01 to 0.10%, preferably 0.01 to 0.05%.
If the amount of N exceeds 0.01%, in addition to the deterioration of toughness due to the formation of coarse nitrides, the solid solution N causes strain aging after coating baking and deteriorates YR. Therefore, the N content is 0.01% or less.

CrとMoを最適なバランスで添加することは、塗装焼付け後の低YR化と高靭性を確保する上で最も重要な要件の1つである。後述するような本発明の熱延板組織、すなわち、アスペクト比1以上4未満のフェライト粒(ポリゴナル状フェライト粒)の個数が組織中の全結晶粒の50%超を占め、且つ第二相としてベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上を有する複合組織を得るには、Cr,Mo量が下記(1)式を満たす必要がある。後述する熱延条件とも関係するが、上記のようなCr,Mn添加量のバランスは、熱延冷却(ランナウト冷却)過程においてフェライトノーズを最適な位置で通過し、ポリゴナル状フェライトを形成させるのに必須の要件であることが判った。
−1.11×(Cr)+0.1<Mo<−0.13×(Cr)+0.3 …(1)
但し Cr:Cr含有量(質量%)
Mo:Mo含有量(質量%)
Addition of Cr and Mo in an optimal balance is one of the most important requirements for ensuring low YR and high toughness after baking. The hot-rolled sheet structure of the present invention as described later, that is, the number of ferrite grains (polygonal ferrite grains) having an aspect ratio of 1 or more and less than 4 occupies more than 50% of the total crystal grains in the structure, and as the second phase In order to obtain a composite structure having one or more selected from bainite, martensite, and retained austenite, the amount of Cr and Mo needs to satisfy the following formula (1). Although related to the hot rolling conditions described later, the balance of the amount of Cr and Mn as described above is to pass the ferrite nose at the optimum position in the hot rolling cooling (runout cooling) process to form polygonal ferrite. It turned out to be an essential requirement.
−1.11 × (Cr) 2 +0.1 <Mo <−0.13 × (Cr) 2 +0.3 (1)
However, Cr: Cr content (mass%)
Mo: Mo content (% by mass)

図1は、熱延鋼板のCr,Moの各含有量と、鋼板を造管して得られた電縫鋼管の塗装後降伏比および溶接シーム部靱性との関係を示したものである。この熱延鋼板は、C:0.03〜0.07%、Si:0.01〜0.5%、Mn:0.9〜1.7%、P:0.005〜0.03%、S:0.001〜0.03%、Al:0.01〜0.07%、N:0.001〜0.006%を含有する鋼スラブを熱間圧延して、Ar点〜Ar点+100℃の温度域での圧下率を50%以上とする仕上圧延を行った後、圧延を終了して少なくとも0.5秒を経過してから冷媒を用いた冷却を開始するとともに、この冷却の開始から巻取りまでの平均冷却速度を3〜40℃/sとし、400〜600℃で巻き取ることにより得られたものである。なお、造管条件や塗装後降伏比および溶接シーム部靱性の評価方法は、後述する実施例と同様とした。 FIG. 1 shows the relationship between the Cr and Mo contents of a hot-rolled steel sheet and the post-painting yield ratio and weld seam toughness of an ERW steel pipe obtained by pipe-making the steel sheet. This hot-rolled steel sheet has C: 0.03-0.07%, Si: 0.01-0.5%, Mn: 0.9-1.7%, P: 0.005-0.03%, A steel slab containing S: 0.001 to 0.03%, Al: 0.01 to 0.07%, N: 0.001 to 0.006% is hot-rolled, and Ar 3 points to Ar 3 After finishing rolling at a reduction rate of 50% or more in the temperature range of the point + 100 ° C., cooling is started using a refrigerant after at least 0.5 second has elapsed after the rolling is finished, and this cooling The average cooling rate from the start of winding to winding is 3 to 40 ° C./s, and winding is performed at 400 to 600 ° C. In addition, the pipe making conditions, the yield ratio after coating, and the evaluation method of the weld seam toughness were the same as those in Examples described later.

図1によれば、本発明が狙いとする塗装焼付け後の低YR(YP<90%)、と高靭性(vTrs≦−30℃)を両立させるには、Cr,Moの添加量を上記(1)式の範囲とする必要があり、この範囲を外れると、塗装焼付け後のYRまたは靭性若しくはその両方が十分でなくなることが判る。
一方、Cr量が1.5%以上では溶接時に酸化物を生成し、靭性が劣化するので、Cr量は1.5%未満、より望ましくは1.0%以下、特に望ましくは0.8%以下とする。一方、所望の組織を得るという観点から、Crの下限は0.01%とすることが好ましい。また、Mo量が0.3%以上では、大幅なコスト増に繋がるだけでなく、熱延冷却過程において所望の組織を得ることができず、低YRを達成できないので、Mo量は0.3%未満とする。一方、所望の組織を得るという観点から、Mo量は0.05%以上、望ましくは0.10%以上、特に望ましくは0.15%以上とすることが好ましい。但し、コストの面からは、Mo量は0.20%程度を上限とすることが好ましい。
以上の理由から、Cr量は1.5%未満(望ましくは1.0%以下、特に望ましくは0.8%以下)、Mo量は0.3%未満(望ましくは0.05%以上、より望ましくは0.10%以上、特に望ましくは0.15%以上)とし、かつ上記(1)式を満足する範囲とする。
According to FIG. 1, in order to achieve both low YR after paint baking (YP <90%) and high toughness (vTrs ≦ −30 ° C.) aimed by the present invention, the addition amounts of Cr and Mo are the above ( 1) It is necessary to be within the range of the formula, and if it is outside this range, it can be seen that YR and / or toughness after paint baking are not sufficient.
On the other hand, if the Cr content is 1.5% or more, an oxide is generated during welding and the toughness deteriorates, so the Cr content is less than 1.5%, more preferably 1.0% or less, and particularly preferably 0.8%. The following. On the other hand, from the viewpoint of obtaining a desired structure, the lower limit of Cr is preferably 0.01%. Further, if the Mo amount is 0.3% or more, not only will the cost increase significantly, but a desired structure cannot be obtained in the hot rolling cooling process, and a low YR cannot be achieved. %. On the other hand, from the viewpoint of obtaining a desired structure, the Mo amount is 0.05% or more, desirably 0.10% or more, and particularly desirably 0.15% or more. However, from the viewpoint of cost, the upper limit of the Mo amount is preferably about 0.20%.
For these reasons, the Cr content is less than 1.5% (desirably 1.0% or less, particularly preferably 0.8% or less), and the Mo content is less than 0.3% (desirably 0.05% or more, more Desirably, 0.10% or more, particularly desirably 0.15% or more), and a range satisfying the above formula (1).

本発明では、さらに、目標とする鋼管の強度や靭性などに応じて、以下のような元素を含有させてもよい。
まず、Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下、Zr:0.5%以下の中から選ばれる1種以上を添加することができる。これらの元素は、主に熱延冷却過程において炭化物を析出する元素であり、強度確保に有用であるばかりでなく、フェライト中の固溶Cを減少させるので、本発明が狙いとする塗装焼付け後の低YR化に寄与する。また、一部は熱延仕上圧延中に析出することでオーステナイト粒の微細化に寄与し、所望のポリゴナル状フェライト+第二相の組織形成に有効に作用する。しかし、いずれも0.5%を超えて添加すると、過剰な析出強化によりYRが高くなる。
In the present invention, the following elements may be further contained according to the strength and toughness of the target steel pipe.
First, one or more selected from Nb: 0.5% or less, Ti: 0.5% or less, V: 0.5% or less, and Zr: 0.5% or less can be added. These elements are elements that precipitate carbides mainly during the hot rolling cooling process, and are useful not only for ensuring strength but also for reducing solid solution C in ferrite. Contributes to lower YR. Moreover, a part contributes to refinement | miniaturization of an austenite grain by precipitating during hot rolling finish rolling, and it acts effectively on structure formation of desired polygonal ferrite + second phase. However, if both are added in excess of 0.5%, YR increases due to excessive precipitation strengthening.

また、Cu:0.5%以下、Ni:0.5%以下、Sn:0.5%以下、Sb:0.5%以下の中から選ばれる1種以上を添加することができる。これらの元素の添加は強度上昇に有効である。また、これらの元素は、熱延加熱段階で鋼板表層に濃化する性質を有する。しかし、いずれも0.5%を超えて添加すると、特に粒界に沿ったこれら元素の濃化により、熱間加工性が低下する恐れがある。
さらに、Ca:0.01%以下、REM:0.01%以下の中から選ばれる1種以上を添加することができる。これらの元素を適量添加することで、硫化物の形態制御が可能となる。それにより靭性向上が期待できる。しかし、いずれも0.01%を超えて添加すると、鋼中に酸化物を多く残存させ、逆に靭性を劣化させる。
Moreover, 1 or more types chosen from Cu: 0.5% or less, Ni: 0.5% or less, Sn: 0.5% or less, and Sb: 0.5% or less can be added. The addition of these elements is effective for increasing the strength. Moreover, these elements have the property of concentrating on the steel sheet surface layer in the hot rolling heating stage. However, when adding over 0.5%, hot workability may be deteriorated due to the concentration of these elements along the grain boundary.
Furthermore, 1 or more types chosen from Ca: 0.01% or less and REM: 0.01% or less can be added. By adding appropriate amounts of these elements, it is possible to control the form of the sulfide. Thereby, improvement in toughness can be expected. However, if both are added in excess of 0.01%, a large amount of oxide remains in the steel, and on the contrary, the toughness is deteriorated.

次に、本発明の熱延鋼板の組織について説明する。
本発明の熱延鋼板は、第一相であるフェライトと、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上の第二相とを主体とする複合組織を有し、且つアスペクト比1以上4未満のフェライト粒の個数が組織中の全結晶粒の50%超を占めるものである。
ここで、アスペクト比1以上4未満のフェライト粒とは、いわゆるポリゴナル状フェライトのことであり、本発明者らは、塗装焼付け後の低YRと高靭性を確保するには、鋼板の組織を構成する全結晶粒のうち50%超をポリゴナル状のフェライトにすることが必要であることを見出した。
なお、本発明では、フェライト粒のアスペクト比は、各粒に内接する最大の楕円を求め、この楕円の長辺と短辺の比(=長辺/短辺)と定義する。
Next, the structure of the hot rolled steel sheet of the present invention will be described.
The hot-rolled steel sheet of the present invention has a composite structure mainly composed of ferrite as a first phase and one or more second phases selected from bainite, martensite, and retained austenite, and an aspect ratio of 1 The number of ferrite grains less than 4 occupies more than 50% of all crystal grains in the structure.
Here, the ferrite grains having an aspect ratio of 1 or more and less than 4 are so-called polygonal ferrites, and the present inventors configure the structure of a steel sheet to ensure low YR and high toughness after paint baking. It has been found that more than 50% of all crystal grains to be converted into polygonal ferrite.
In the present invention, the aspect ratio of the ferrite grain is defined as the ratio between the long side and the short side (= long side / short side) of the ellipse obtained by obtaining the maximum ellipse inscribed in each grain.

一般に、高靭性を得るには、フェライトをできるだけ微細にすることが好ましいとされている。しかしながら、塗装焼付け後の低YRと高靭性を同時に得ようとする場合、フェライト粒を微細にし過ぎることは適切でなく、変態したフェライト粒をある程度成長させて二相分離を進め、フェライトからオーステナイトに成分元素を吐き出すことが重要であることが判った。したがって、フェライト粒を微細にしすぎてはならず、しかも、γ/α界面での成分元素の分配が起こりやすいように、アスペクト比1以上4未満のポリゴナル状のフェライトを主体とする(すなわち、全結晶粒のうち50%超とする)ことが重要である。また、以上のような観点から、ポリゴナル状フェライトの平均粒径は1μm以上であることが望ましい。また、ポリゴナル状フェライトとしては、アスペクト比1以上3.5未満、望ましくはアスペクト比1以上3未満のフェライト粒の個数が組織中の全結晶粒の50%超を占めることがより好ましい。   Generally, in order to obtain high toughness, it is preferable to make ferrite as fine as possible. However, when trying to simultaneously obtain low YR and high toughness after baking, it is not appropriate to make the ferrite grains too fine, and the transformed ferrite grains are grown to some extent to promote two-phase separation, from ferrite to austenite. It was found that it is important to exhale the constituent elements. Therefore, the ferrite grains should not be made too fine, and the main component is polygonal ferrite having an aspect ratio of 1 or more and less than 4 so that distribution of component elements at the γ / α interface is likely to occur (that is, all It is important that more than 50% of the crystal grains). From the above viewpoint, the average particle size of the polygonal ferrite is preferably 1 μm or more. Further, as the polygonal ferrite, it is more preferable that the number of ferrite grains having an aspect ratio of 1 or more and less than 3.5, and desirably an aspect ratio of 1 or more and less than 3 occupy more than 50% of all crystal grains in the structure.

本発明の熱延鋼板は、第二相として、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上を有するものであり、パーライトは原則として含まないことが望ましいが、不可避的に含まれる場合でも体積率で3%程度を上限とすべきである。これら第二相は、結晶粒が微細であるほど靭性を嵩上げする効果がある。第二相全体の体積率は15%未満が望ましい。
したがって、本発明の熱延鋼板の好ましい複合組織は、パーライトの体積率が3%以下(但し、0%を含む)であり、残部が、フェライト(但し、アスペクト比1以上4未満のフェライト粒の個数が組織中の全結晶粒の50%超)と、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上の第二相からなり、且つこの第二相の体積率が15%未満の複合組織である。
なお、本発明において、各組織の粒数や体積率は、鋼板の圧延方向断面のミクロ組織を走査型電子顕微鏡にて観察することにより測定することができる。例えば、走査型電子顕微鏡で得られた倍率3000倍の断面組織写真を用い、画像解析により任意に設定した100mm四方の正方形領域内に存在する各組織の粒数を数える。また、第二相全体の体積率の測定は、上記の写真を用いて画像処理により第二相占有面積率を求め、それを第二相の体積率とする。また、フェライト粒のアスペクト比は、同写真を用いて各粒に内接する最大の楕円を求め、その楕円の長辺/短辺として求める。
The hot-rolled steel sheet of the present invention has at least one selected from bainite, martensite, and retained austenite as the second phase, and it is desirable that pearlite is not included in principle, but is inevitably included. Even in this case, the upper limit should be about 3% by volume. These second phases have an effect of increasing the toughness as the crystal grains become finer. The volume ratio of the entire second phase is preferably less than 15%.
Therefore, a preferable composite structure of the hot-rolled steel sheet of the present invention has a pearlite volume ratio of 3% or less (including 0%), and the balance is ferrite (however, ferrite grains having an aspect ratio of 1 to less than 4). The number of which is more than 50% of the total crystal grains in the structure) and one or more second phases selected from bainite, martensite, and retained austenite, and the volume fraction of the second phase is less than 15% It is a complex organization.
In the present invention, the number of grains and the volume ratio of each structure can be measured by observing the microstructure of the cross section in the rolling direction of the steel sheet with a scanning electron microscope. For example, the number of grains of each structure existing in a 100 mm square area set arbitrarily by image analysis is counted using a cross-sectional structure photograph with a magnification of 3000 times obtained with a scanning electron microscope. Moreover, the measurement of the volume ratio of the whole 2nd phase calculates | requires the 2nd phase occupation area rate by image processing using said photograph, and makes it the volume ratio of a 2nd phase. Further, the aspect ratio of the ferrite grain is obtained as the longest / shortest side of the ellipse by obtaining the maximum ellipse inscribed in each grain using the same photograph.

次に、本発明の熱延鋼板の製造条件について説明する。
本発明では、上述した成分組成を有する鋼(スラブ)を加熱して熱間圧延するが、この熱間圧延の仕上圧延では、Ar変態点〜Ar変態点+100℃の範囲で50%以上、好ましくは60%以上の圧下率を確保する必要がある。このような特定の温度域で高い圧下率を確保するのは、変態前のオーステナイト粒径を小さくし、その後の熱延冷却過程(ランナウト冷却)でのγ→α変態の変態核を増やすためである。また、第二相も細かく分散させることができ、靭性向上にも寄与する。なお、仕上圧延においてAr変態点〜Ar変態点+100℃以外の温度域での圧下率には特に制限はない。
Next, the manufacturing conditions of the hot rolled steel sheet of the present invention will be described.
In the present invention, the steel (slab) having the above-described component composition is heated and hot-rolled. In the finish rolling of this hot rolling, 50% or more in the range of Ar 3 transformation point to Ar 3 transformation point + 100 ° C. It is necessary to ensure a reduction rate of 60% or more. The reason for securing a high rolling reduction in such a specific temperature range is to reduce the austenite grain size before transformation and increase the number of transformation nuclei in the γ → α transformation in the subsequent hot rolling cooling process (runout cooling). is there. Also, the second phase can be finely dispersed, contributing to improved toughness. In the finish rolling, there is no particular limitation on the rolling reduction in a temperature range other than Ar 3 transformation point to Ar 3 transformation point + 100 ° C.

仕上圧延後は、圧延を終了して少なくとも0.5秒を経過してから冷媒を用いた冷却(通常、冷却水を接触させる冷却)を開始するとともに、この冷却の開始から巻取りまでの平均冷却速度を3〜40℃/sの範囲に制御することが極めて重要である。また、より好ましい平均冷却速度は5〜25℃/sである。このように圧延終了後の冷却速度を制御するのは、再結晶したオーステナイト粒からポリゴナル状フェライトを生成させ、二相分離(γ→α変態)を促進させるためである。ここで、冷却速度が小さすぎる場合、フェライト粒が粗大となるとともに、パーライトが析出して靱性が劣化する。一方、冷却速度が大きすぎる場合には、上記アスペクト比を超える針状のフェライトが析出する比率が大きくなる。この場合、二相分離による成分元素の分配が十分に行われず、第二相の生成に不利になるだけでなく、歪時効のために塗装焼付け後のYRが悪化する。すなわち、フェライト中に固溶元素が残りすぎるため、塗装焼付け後に歪時効を起こし、所望の低YRが得られなくなる。   After finishing rolling, at least 0.5 seconds after rolling is finished, cooling using a refrigerant (usually cooling with cooling water in contact) is started, and the average from the start of cooling to winding It is very important to control the cooling rate in the range of 3 to 40 ° C./s. A more preferable average cooling rate is 5 to 25 ° C./s. The reason for controlling the cooling rate after rolling in this way is to generate polygonal ferrite from recrystallized austenite grains and promote two-phase separation (γ → α transformation). Here, when the cooling rate is too low, the ferrite grains become coarse and pearlite is precipitated to deteriorate toughness. On the other hand, when the cooling rate is too large, the ratio of acicular ferrite that exceeds the above aspect ratio is increased. In this case, the component elements are not sufficiently distributed by the two-phase separation, which is disadvantageous for the generation of the second phase, and YR after baking is deteriorated due to strain aging. That is, since solid solution elements remain in the ferrite, strain aging occurs after baking and the desired low YR cannot be obtained.

また、仕上圧延後の冷媒を用いた冷却(ランナウト冷却)は、圧延を終了して0.5秒以上、好ましくは1秒以上経過してから開始することが重要であり、これにより再結晶オーステナイトからフェライト変態が開始され、ポリゴナル状フェライトが形成されやすくなる。但し、圧延終了後、冷媒による冷却開始までの時間が長すぎると、パーライトが析出して靱性が劣化するため、パーライトの体積率が3%以下に抑えられるように、冷却開始までの時間を規制することが好ましい。そのために、通常、圧延が終了してから3秒以内に冷媒を用いた冷却を開始することが好ましい。なお、仕上圧延終了後、冷媒を用いた冷却を開始するまでは自然放冷である。
圧延終了後の冷却速度は、例えば、ランナウト冷却において鋼板に注水する冷却水の水量密度を調整することなどにより容易に制御することができる。
Further, it is important that the cooling (runout cooling) using the refrigerant after the finish rolling is started after 0.5 seconds or more, preferably 1 second or more has elapsed after the rolling, and thus recrystallized austenite. From this, ferrite transformation is started and polygonal ferrite is easily formed. However, if the time from the end of rolling to the start of cooling with a refrigerant is too long, pearlite will precipitate and the toughness will deteriorate, so the time until the start of cooling will be regulated so that the volume fraction of pearlite can be kept below 3%. It is preferable to do. Therefore, it is usually preferable to start cooling using a refrigerant within 3 seconds after the end of rolling. In addition, after finishing rolling, it is natural cooling until it starts the cooling using a refrigerant | coolant.
The cooling rate after the end of rolling can be easily controlled, for example, by adjusting the density of the amount of cooling water poured into the steel plate in runout cooling.

巻取温度は400〜600℃とするが、この巻取温度はベイナイト変態を積極的に活用するために重要である。より好ましい巻取温度は450〜570℃である。ポリゴナル状フェライトから排出された炭素などの成分元素が濃化したオーステナイトからのベイナイト変態は、塗装焼付け後の低YR化に非常に有効である。すなわち、ポリゴナル状フェライトを多数形成させた上で、ベイナイト変態を開始させると、オーステナイトに成分元素が濃化しているため、マルテンサイトや残留オーステナイトが生成しやすく、これにより初めて本発明が狙いとする塗装焼付け後の低YR化を実現できる。   The coiling temperature is 400 to 600 ° C., and this coiling temperature is important for actively utilizing the bainite transformation. A more preferable winding temperature is 450 to 570 ° C. The bainite transformation from austenite enriched with component elements such as carbon discharged from polygonal ferrite is very effective for lowering YR after coating baking. That is, when a large number of polygonal ferrites are formed and then the bainite transformation is started, component elements are concentrated in austenite, so martensite and retained austenite are likely to be generated. Low YR after paint baking can be realized.

本発明の熱延鋼板を用いた電縫鋼管は、基本的に通常の造管方法で製造することができる。すなわち、例えば、熱延鋼板をケージロールフォーミングで成形し、電気抵抗溶接を行い、内外面のビード研削を施した後、ポストアニーラにて熱処理を付与し、サイジングを行う。通常、造管後に重防食のための塗装焼付けを行うが、この重防食コーティングの焼付条件は、例えば、250℃×10分程度である。
上述したような造管工程を経た場合、管長手方向に引張歪若しくは圧縮歪が残留するのが一般的であるが、いずれの歪が残留しても、本発明の効果は損なわれない。
The ERW steel pipe using the hot-rolled steel sheet of the present invention can be basically produced by a normal pipe making method. That is, for example, a hot-rolled steel sheet is formed by cage roll forming, electric resistance welding is performed, bead grinding of the inner and outer surfaces is performed, heat treatment is applied by a post-annealer, and sizing is performed. Usually, paint baking for heavy anticorrosion is performed after pipe making, and the baking condition of this heavy anticorrosion coating is, for example, about 250 ° C. × 10 minutes.
When the pipe forming process as described above is performed, tensile strain or compression strain generally remains in the longitudinal direction of the tube, but the effect of the present invention is not impaired even if any strain remains.

表1に示す成分組成の鋼スラブを1100〜1250℃に加熱した後、表2に示す条件で熱間圧延して板厚20mmの熱延鋼板を製造した。なお、No.3とNo.4以外の実施例においては、仕上圧延終了後、0.5〜1.5秒経過してから冷却水による冷却を開始した。
製造された熱延鋼板について、各組織の粒数および第二相の体積率を、次のようにして測定した。各鋼板の圧延方向断面のミクロ組織を走査型電子顕微鏡にて観察し、倍率3000倍の断面組織写真を得た。この断面組織写真を用いて、画像解析により任意に設定した100mm四方の正方形領域内に存在する各組織の粒数を数えた。また、同写真を用い画像処理により第二相占有面積率を求め、それを第二相の体積率とした。
各熱延鋼板を造管して電縫鋼管(外径20インチ)とし、その溶接シーム部靭性と塗装後YRを以下の方法で測定した。それらの結果を、熱延鋼板の製造条件、組織とともに表2に示す。
After heating the steel slab of the component composition shown in Table 1 to 1100-1250 degreeC, it hot-rolled on the conditions shown in Table 2, and manufactured the hot rolled steel plate of 20 mm in thickness. In addition, No. 3 and no. In Examples other than 4, after finishing rolling, cooling with cooling water was started after 0.5 to 1.5 seconds had elapsed.
About the manufactured hot-rolled steel sheet, the number of grains of each structure and the volume ratio of the second phase were measured as follows. The microstructure of the cross section in the rolling direction of each steel sheet was observed with a scanning electron microscope, and a cross-sectional structure photograph with a magnification of 3000 times was obtained. Using this cross-sectional structure photograph, the number of grains of each structure existing in a 100 mm square area set arbitrarily by image analysis was counted. Moreover, the second phase occupation area ratio was calculated | required by image processing using the said photograph, and it was made into the volume ratio of the second phase.
Each hot-rolled steel sheet was piped into an electric resistance steel pipe (outer diameter 20 inches), and the weld seam toughness and YR after coating were measured by the following methods. The results are shown in Table 2 together with the production conditions and structure of the hot-rolled steel sheet.

(1)溶接シーム部靭性
溶接シーム部靭性は、JIS Z 2202の4号試験片を、電縫鋼管の円周方向から、ノッチが電縫溶接部と平行で且つ中心にくるように採取し、この試験片を用い破面遷移温度vTrs(延性破面率が50%になる温度)で評価した。
(2)塗装後YR
電縫鋼管に重防食コーティング(250℃×10分)を施した後、鋼管長手方向のYR値で評価した。引張特性は小型の丸棒引張試験機を用いて測定した。ここで、YRは、0.5%引張時の応力/引張強さの比と定義される。
なお、本実施例では、目標をYR<90%、vTrs≦−30℃とした。
(1) Weld seam part toughness The weld seam part toughness was obtained by taking No. 4 test piece of JIS Z 2202 from the circumferential direction of the ERW steel pipe so that the notch is parallel to the ERW weld part and centered. Using this test piece, the fracture surface transition temperature vTrs (temperature at which the ductile fracture surface ratio becomes 50%) was evaluated.
(2) YR after painting
After applying a heavy anticorrosion coating (250 ° C. × 10 minutes) to the ERW steel pipe, the YR value in the longitudinal direction of the steel pipe was evaluated. Tensile properties were measured using a small round bar tensile tester. Here, YR is defined as the ratio of stress / tensile strength at 0.5% tension.
In this example, the targets were YR <90% and vTrs ≦ −30 ° C.

表2において、No.3は、成分組成および仕上圧延条件は適正であるが、仕上圧延終了後、冷却水による冷却を開始するまでの時間が短すぎるため、アスペクト比1以上4未満のポリゴナル状フェライト粒の割合が小さく、塗装後YRが高い。No.4も、成分組成および仕上圧延条件は適正であるが、仕上圧延終了後、冷却水による冷却を開始するまでの時間が長すぎるため、パーライトが析出し、溶接部靱性が低く、塗装後YRも高い。No.9は、成分組成および仕上圧延条件は適正であるが、仕上圧延終了後、冷却水による冷却を開始してから巻取りまでの平均冷却速度が大きすぎるため、アスペクト比1以上4未満のポリゴナル状フェライト粒の割合が小さく、すなわち二相分離が十分に進まなかったため、塗装後YRが高い。同様に、No.10は、仕上圧延時の圧下率が小さすぎるため、やはりポリゴナル状フェライト粒の割合が小さく、塗装後YRが高い。No.11は仕上圧延終了後、冷却水による冷却を開始してから巻取りまでの平均冷却速度が小さ過ぎるため、パーライトが析出し、塗装後YPが高い。No.12とNo.13は、巻取温度が不適切であるため所望のミクロ組織が得られず、このため溶接部靭性が低く、塗装後YRも高い。No.15〜18は、成分組成が不適切であるため所望のミクロ組織が得られず、このため溶接部靭性が低く、塗装後YRも高い。   In Table 2, no. No. 3, although the component composition and finish rolling conditions are appropriate, the time until finishing cooling with cooling water after finishing rolling is too short, the ratio of polygonal ferrite grains having an aspect ratio of 1 or more and less than 4 is small. , YR after painting is high. No. 4, the component composition and finish rolling conditions are appropriate, but after finishing finish rolling, the time until cooling with cooling water is started is too long, so that pearlite is precipitated, weld toughness is low, and YR after coating is also low. high. No. No. 9, although the component composition and finish rolling conditions are appropriate, the polygonal shape having an aspect ratio of 1 or more and less than 4 since the average cooling rate from the start of cooling with cooling water to the winding after finishing finish rolling is too high Since the ratio of ferrite grains is small, that is, the two-phase separation does not proceed sufficiently, the YR after coating is high. Similarly, no. No. 10 has a too low rolling reduction during finish rolling, so the ratio of polygonal ferrite grains is still small and the YR after coating is high. No. In No. 11, after finishing rolling, since the average cooling rate from the start of cooling with cooling water to winding is too small, pearlite is deposited and YP is high after coating. No. 12 and no. No. 13 cannot obtain a desired microstructure because of an inappropriate winding temperature, so that the weld toughness is low and the YR after coating is also high. No. No. 15-18 cannot obtain a desired microstructure because the component composition is inappropriate. For this reason, weld zone toughness is low, and YR after coating is also high.

Figure 2008111162
Figure 2008111162

Figure 2008111162
Figure 2008111162

熱延鋼板のCr,Moの各含有量と、鋼板を造管して得られた電縫鋼管の塗装後降伏比およびシーム部靱性との関係を示したグラフA graph showing the relationship between the Cr and Mo contents of a hot-rolled steel sheet and the post-painting yield ratio and seam toughness of an ERW steel pipe obtained by pipe-making the steel sheet

Claims (7)

質量%で、C:0.01〜0.1%、Si:1.0%以下、Mn:2.0%以下、P:0.05%以下、S:0.05%以下、Al:0.01〜0.10%、N:0.01%以下を含有し、さらに、CrおよびMoを、Cr:1.5%未満、Mo:0.3%未満であって、且つ下記(1)式を満足する条件で含有し、残部が鉄および不可避的不純物からなる成分組成を有するとともに、
フェライトと、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上の第二相を主体とする複合組織を有し、アスペクト比1以上4未満のフェライト粒の個数が組織中の全結晶粒の50%超であることを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。
−1.11×(Cr)+0.1<Mo<−0.13×(Cr)+0.3 …(1)
但し Cr:Cr含有量(質量%)
Mo:Mo含有量(質量%)
In mass%, C: 0.01 to 0.1%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.05% or less, S: 0.05% or less, Al: 0 0.01 to 0.10%, N: 0.01% or less, and Cr and Mo, Cr: less than 1.5%, Mo: less than 0.3%, and the following (1) Containing under the conditions satisfying the formula, the balance has a component composition consisting of iron and inevitable impurities,
It has a composite structure mainly composed of ferrite and one or more second phases selected from bainite, martensite, and retained austenite, and the number of ferrite grains having an aspect ratio of 1 or more and less than 4 is all crystal grains in the structure. A hot-rolled steel sheet for high-toughness ERW steel pipes with a low yield ratio after coating, characterized by being over 50%.
−1.11 × (Cr) 2 +0.1 <Mo <−0.13 × (Cr) 2 +0.3 (1)
However, Cr: Cr content (mass%)
Mo: Mo content (% by mass)
さらに、質量%で、Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下、Zr:0.5%以下の中から選ばれる1種以上を含有することを特徴とする、請求項1に記載の塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。   Furthermore, it contains at least one selected from the group consisting of Nb: 0.5% or less, Ti: 0.5% or less, V: 0.5% or less, Zr: 0.5% or less in mass%. The hot-rolled steel sheet for high-toughness ERW steel pipes having a low post-painting yield ratio according to claim 1. さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Sn:0.5%以下、Sb:0.5%以下の中から選ばれる1種以上を含有することを特徴とする、請求項1または2に記載の塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。   Furthermore, it contains at least one selected from Cu: 0.5% or less, Ni: 0.5% or less, Sn: 0.5% or less, and Sb: 0.5% or less by mass%. The hot-rolled steel sheet for high toughness ERW steel pipe having a low post-painting yield ratio according to claim 1 or 2. さらに、質量%で、Ca:0.01%以下、REM:0.01%以下の中から選ばれる1種以上を含有することを特徴とする、請求項1〜3のいずれかに記載の塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。   The coating according to any one of claims 1 to 3, further comprising at least one selected from Ca: 0.01% or less and REM: 0.01% or less by mass%. Hot rolled steel sheet for high tough ERW steel pipe with low post-yield ratio. 複合組織は、パーライトの体積率が3%以下(但し、0%を含む)であり、残部が、フェライトと、ベイナイト、マルテンサイト、残留オーステナイトの中から選ばれる1種以上の第二相からなることを特徴とする、請求項1〜4のいずれかに記載の塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板。   The composite structure has a pearlite volume fraction of 3% or less (including 0%), and the balance is composed of ferrite and one or more second phases selected from bainite, martensite, and retained austenite. The hot-rolled steel sheet for high-toughness electric resistance welded steel pipes having a low post-painting yield ratio according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の成分組成を有する鋼を加熱して熱間圧延し、該熱間圧延ではAr変態点〜Ar変態点+100℃の温度域での圧下率を50%以上とする仕上圧延を行い、圧延を終了して少なくとも0.5秒を経過してから冷媒を用いた冷却を開始するとともに、該冷却の開始から巻取りまでの平均冷却速度を3〜40℃/sとし、400〜600℃で巻取ることを特徴とする、塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板の製造方法。 The steel having the component composition according to any one of claims 1 to 4 is heated and hot-rolled, and in the hot rolling, the rolling reduction in the temperature range of Ar 3 transformation point to Ar 3 transformation point + 100 ° C is 50. After finishing the rolling, at least 0.5 second has passed and the cooling using the refrigerant is started, and the average cooling rate from the start of the cooling to the winding is 3 to 40%. A method for producing a hot-rolled steel sheet for a high toughness ERW steel pipe having a low post-painting yield ratio, characterized by being wound at 400 to 600 ° C. 請求項1〜5のいずれかに記載の熱延鋼板を造管して得られたことを特徴とする、塗装後降伏比の低い高靱性電縫鋼管。   A high toughness electric-welded steel pipe having a low post-painting yield ratio, obtained by pipe-making the hot-rolled steel sheet according to any one of claims 1 to 5.
JP2006295302A 2006-10-31 2006-10-31 Hot rolled steel sheet for high tough ERW steel pipe with low yield ratio after coating and method for producing the same Active JP4957185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295302A JP4957185B2 (en) 2006-10-31 2006-10-31 Hot rolled steel sheet for high tough ERW steel pipe with low yield ratio after coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295302A JP4957185B2 (en) 2006-10-31 2006-10-31 Hot rolled steel sheet for high tough ERW steel pipe with low yield ratio after coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008111162A true JP2008111162A (en) 2008-05-15
JP4957185B2 JP4957185B2 (en) 2012-06-20

Family

ID=39443840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295302A Active JP4957185B2 (en) 2006-10-31 2006-10-31 Hot rolled steel sheet for high tough ERW steel pipe with low yield ratio after coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP4957185B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118841A1 (en) * 2010-03-24 2011-09-29 Jfeスチール株式会社 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
JP2012077378A (en) * 2010-09-09 2012-04-19 Jfe Steel Corp Welded joint excellent in corrosion resistance
JP2012214907A (en) * 2012-07-20 2012-11-08 Sumitomo Metal Ind Ltd Steel products coated with heavy corrosion resistant protected cover
US20130000796A1 (en) * 2010-03-31 2013-01-03 Nippon Steel Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
WO2014051119A1 (en) * 2012-09-27 2014-04-03 新日鐵住金株式会社 Electric resistance welded steel pipe
JP2016033236A (en) * 2014-07-31 2016-03-10 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in strength-uniform elongation balance and production method thereof
KR20160077418A (en) * 2014-12-23 2016-07-04 주식회사 포스코 Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same
WO2016143270A1 (en) * 2015-03-06 2016-09-15 Jfeスチール株式会社 High strength electric resistance welded steel pipe and manufacturing method therefor
CN110073018A (en) * 2016-12-12 2019-07-30 杰富意钢铁株式会社 Low yielding ratio rectangular steel tube hot rolled steel plate and its manufacturing method and low yielding ratio rectangular steel tube and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941035A (en) * 1995-08-04 1997-02-10 Kawasaki Steel Corp Production of low yield ratio hot rolled steel sheet excellent in toughness
JP2002020841A (en) * 2000-07-04 2002-01-23 Nippon Steel Corp Steel tube excellent in formability and its production method
JP2002226945A (en) * 2001-02-02 2002-08-14 Nkk Corp Steel tube and manufacturing method
JP2005290546A (en) * 2004-03-09 2005-10-20 Jfe Steel Kk Hot rolled steel sheet for low yr type electric resistance welded steel tube having excellent aging resistance and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941035A (en) * 1995-08-04 1997-02-10 Kawasaki Steel Corp Production of low yield ratio hot rolled steel sheet excellent in toughness
JP2002020841A (en) * 2000-07-04 2002-01-23 Nippon Steel Corp Steel tube excellent in formability and its production method
JP2002226945A (en) * 2001-02-02 2002-08-14 Nkk Corp Steel tube and manufacturing method
JP2005290546A (en) * 2004-03-09 2005-10-20 Jfe Steel Kk Hot rolled steel sheet for low yr type electric resistance welded steel tube having excellent aging resistance and method for manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315568B1 (en) * 2010-03-24 2013-10-08 제이에프이 스틸 가부시키가이샤 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
WO2011118841A1 (en) * 2010-03-24 2011-09-29 Jfeスチール株式会社 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
EP2551366A4 (en) * 2010-03-24 2015-07-15 Jfe Steel Corp High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
CN102822374A (en) * 2010-03-24 2012-12-12 杰富意钢铁株式会社 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
US9228244B2 (en) * 2010-03-31 2016-01-05 Nippon Steel & Sumitomo Metal Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
US20130000796A1 (en) * 2010-03-31 2013-01-03 Nippon Steel Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
US10113220B2 (en) 2010-03-31 2018-10-30 Nippon Steel & Sumitomo Metal Corporation High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
JP2012077378A (en) * 2010-09-09 2012-04-19 Jfe Steel Corp Welded joint excellent in corrosion resistance
JP2012214907A (en) * 2012-07-20 2012-11-08 Sumitomo Metal Ind Ltd Steel products coated with heavy corrosion resistant protected cover
WO2014051119A1 (en) * 2012-09-27 2014-04-03 新日鐵住金株式会社 Electric resistance welded steel pipe
JP5516834B1 (en) * 2012-09-27 2014-06-11 新日鐵住金株式会社 ERW welded steel pipe
US9726305B2 (en) 2012-09-27 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe
EP2902519A4 (en) * 2012-09-27 2016-06-01 Nippon Steel & Sumitomo Metal Corp Electric resistance welded steel pipe
JP2016033236A (en) * 2014-07-31 2016-03-10 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in strength-uniform elongation balance and production method thereof
KR20160077418A (en) * 2014-12-23 2016-07-04 주식회사 포스코 Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same
KR101657812B1 (en) 2014-12-23 2016-09-20 주식회사 포스코 Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same
JP6004144B1 (en) * 2015-03-06 2016-10-05 Jfeスチール株式会社 High-strength ERW steel pipe and manufacturing method thereof
KR20170113626A (en) * 2015-03-06 2017-10-12 제이에프이 스틸 가부시키가이샤 High strength electric resistance welded steel pipe and manufacturing method therefor
EP3246427A4 (en) * 2015-03-06 2017-11-22 JFE Steel Corporation High strength electric resistance welded steel pipe and manufacturing method therefor
CN107406940A (en) * 2015-03-06 2017-11-28 杰富意钢铁株式会社 High-strength electric resistance welded steel pipe and its manufacture method
WO2016143270A1 (en) * 2015-03-06 2016-09-15 Jfeスチール株式会社 High strength electric resistance welded steel pipe and manufacturing method therefor
KR101993542B1 (en) 2015-03-06 2019-09-30 제이에프이 스틸 가부시키가이샤 High-strength electric resistance welded steel pipe and method for producing the same
CN110073018A (en) * 2016-12-12 2019-07-30 杰富意钢铁株式会社 Low yielding ratio rectangular steel tube hot rolled steel plate and its manufacturing method and low yielding ratio rectangular steel tube and its manufacturing method
CN110073018B (en) * 2016-12-12 2021-08-27 杰富意钢铁株式会社 Hot-rolled steel sheet for low yield ratio steel pipe, method for producing same, low yield ratio square steel pipe, and method for producing same

Also Published As

Publication number Publication date
JP4957185B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
KR101730756B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP4957185B2 (en) Hot rolled steel sheet for high tough ERW steel pipe with low yield ratio after coating and method for producing the same
JP6288390B1 (en) AZROLL ERW Steel Pipe for Line Pipe
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
WO2013027779A1 (en) Thick-walled electric-resistance-welded steel pipe and process for producing same
JP6135577B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6213703B1 (en) ERW steel pipe for line pipe
WO2017130885A1 (en) Steel sheet for high-strength/high-toughness steel tubes, and method for producing same
JP6070642B2 (en) Hot-rolled steel sheet having high strength and excellent low-temperature toughness and method for producing the same
EP3428299B1 (en) Electroseamed steel pipe for line pipe
JP2007254797A (en) Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
EP3715494A1 (en) Hot-rolled steel sheet and method for producing same
JPWO2020170333A1 (en) Electric resistance sewn steel pipe for line pipe
JP6947333B2 (en) Electric resistance steel pipe and its manufacturing method, line pipe and building structure
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5640899B2 (en) Steel for line pipe
JP5786351B2 (en) Steel pipe for line pipes with excellent anti-collapse performance
WO2010143433A1 (en) High strength steel pipe and method for producing same
JP6213702B1 (en) ERW steel pipe for line pipe
JP6693610B1 (en) ERW steel pipe for line pipe
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150