WO2011118841A1 - High-strength electrical-resistance-welded steel pipe and manufacturing method therefor - Google Patents

High-strength electrical-resistance-welded steel pipe and manufacturing method therefor Download PDF

Info

Publication number
WO2011118841A1
WO2011118841A1 PCT/JP2011/057928 JP2011057928W WO2011118841A1 WO 2011118841 A1 WO2011118841 A1 WO 2011118841A1 JP 2011057928 W JP2011057928 W JP 2011057928W WO 2011118841 A1 WO2011118841 A1 WO 2011118841A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
strength
pipe
steel
Prior art date
Application number
PCT/JP2011/057928
Other languages
French (fr)
Japanese (ja)
Inventor
昌利 荒谷
河端 良和
松岡 才二
知正 平田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180015165.0A priority Critical patent/CN102822374B/en
Priority to EP11759643.7A priority patent/EP2551366B1/en
Priority to US13/636,857 priority patent/US20130160889A1/en
Priority to KR1020127026473A priority patent/KR101315568B1/en
Publication of WO2011118841A1 publication Critical patent/WO2011118841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention is a high-strength electric steel pipe suitable for a crash member of an automobile such as a door impact beam, a cross member, a pillar, or the like.
  • the present invention relates to a resistance welded steel tube, and more particularly, to a high-strength electric resistance welded steel pipe excellent in both workability and shock absorption characteristics.
  • the automobile body is designed to absorb impact energy at the time of collision.
  • a door impact beam which is an impact absorbing member, is subjected to a quenching treatment as shown in, for example, Patent Document 1 to obtain a martensitic structure (martensitic structure).
  • high strength steel pipes having a desired high strength have been applied.
  • Patent Document 1 The technique described in Patent Document 1 is as follows: C: 0.15 to 0.22%, Mn: 1.5% or less, Si: 0.5% or less, Ti: 0.04% or less, B: 0.0003 1 to 2 or more of Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less
  • a high strength steel pipe for machine structure is obtained by quenching a steel pipe containing steel to obtain a high strength steel pipe for machine structure with a tensile strength of 120 kgf / mm 2 or more (electric resistance welded steel tube structural use). is there.
  • a high-strength steel pipe having the above-described good elongation and a tensile strength of 120 kgf / mm 2 or more can be obtained by a single heat treatment.
  • Patent Documents 2 to 7 describe techniques relating to high-strength cold-rolled steel sheets having a tensile strength of 900 MPa or more used for automobile structural members. .
  • Each of these steel sheets has a two-phase structure of a ferrite phase and a martensite phase, or a structure including a bainite phase and a retained austenite phase, and defines an upper limit value of the area ratio of the bainite phase and the retained austenite phase. By adopting such a structure, the steel sheet has both workability and high strength.
  • Patent Document 1 does not cause a big problem in the case of a door impact beam that is used in a straight pipe without performing special processing, but requires complicated processing into various shapes.
  • the steel pipe used is required to have a further excellent workability in addition to high strength.
  • Patent Documents 2 to 5 since the cooling rate after heating and holding during annealing is slow, carbides precipitate, the amount of solid solution C of ferrite becomes insufficient, and prestraining-paint baking treatment There is a problem in that the amount of increase in strength (BH amount) due to is small, and the BH amount: 100 MPa or more cannot be secured.
  • the cooling rate from heating and holding during annealing to the start of water quenching is not considered, for example, the time from the production line layout to the start of water quenching.
  • the cooling rate is long and slow, the distribution of C amount between ferrite and austenite proceeds, and the amount of solid solution C remaining in the ferrite that is considered to contribute to the BH characteristics becomes insufficient. Therefore, Patent Document 6 does not describe or guarantee that the amount of BH is 100 MPa or more.
  • the cooling rate at the time of finish annealing is as slow as 550 ° C./min at the maximum shown in the examples, and only about 8% elongation is obtained.
  • the elongation is low overall and is 11% at the maximum. Therefore, when the steel sheet manufactured by the technique described in Patent Document 7 is processed into an electric-resistance-welded steel pipe, the elongation is further reduced and the elongation of 10% or more is ensured as a steel pipe when considering the processing strain during pipe making. There is a problem that you can not.
  • the present invention provides a high-strength electric resistance welded steel pipe that has excellent workability and that can ensure excellent shock absorption characteristics that are suitable for automobile shock absorbing members and a method for manufacturing the same. The purpose is to provide.
  • “high strength” here refers to a case where the tensile strength TS is 1180 MPa or more.
  • excellent workability here refers to a tube axis direction (tube axis direction) obtained by a tensile test using a JIS No. 12 tensile test piece (GL: 50 mm) defined in JIS standards.
  • excellent shock absorption characteristics here means that the tube was subjected to 2% pre-strain and further subjected to heat treatment (baking finishing) at 170 ° C. ⁇ 10 min.
  • the difference in strength between 0.2% proof stress and 2% pre-strain strength is a strength increase (BH (hardening value)) of 100 MPa or more, and the yield ratio in the tube axis direction is 90%. This is the case.
  • the amount of BH is defined in FIG.
  • the present invention has been completed based on such findings and further investigations. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: A composition comprising 0.01% or less, Al: 0.01 to 0.1%, N: 0.005% or less, the balance composed of Fe and inevitable impurities, and a two-phase structure composed of a ferrite phase and a martensite phase.
  • the martensite phase has a structure with a volume ratio of 20 to 60%, tensile strength TS is 1180 MPa or more, tube axis direction elongation El is 10% or more, and yield ratio is less than 90%.
  • the pre-strain 2%, and after applying the heat treatment at 170 ° C. for 10 minutes, the strength increase (BH amount) after the baking process is 100 MPa or more and the yield ratio is 90% or more.
  • Strength ERW steel pipe is 100 MPa
  • a hot rolling process for hot rolling a steel material into the steel material, and pickling the hot rolled sheet (pickling) cold rolling (cold rolling process) that is subjected to cold rolling (cold rolling sheet) and then subjected to annealing treatment (cold rolling process).
  • the steel pipe material is made into a steel pipe material by subjecting it to an annealing process to make a rolled and annealed sheet, and then the steel pipe material is continuously formed on the steel pipe material to form a substantially cylindrical shape.
  • Temperature in the two-phase temperature range Each time after heating and soaking, it was cooled to a temperature in the range of 600 to 750 ° C. at an average cooling rate of 10 ° C./s or more (defined as average cooling rate 1), From the temperature range of 600 to 750 ° C. to room temperature, on average, it is cooled at a cooling rate of 500 ° C./s or higher (defined as average cooling rate 2), and then the temperature range is 150 to 300 ° C.
  • a re-tempering treatment (tempering treatment) is performed to form a cold-rolled annealed plate, the forming is a cage roll type roll forming, the ERW steel pipe has a tensile strength TS of 1180 MPa or more, a pipe shaft Elongation El is 10% or more, yield ratio is less than 90%, pre-strain: 2%, and then heat treatment of 170 ° C x 10 min. ) Is a steel pipe having a yield ratio of 90% or higher and a yield ratio of 90 MPa or higher.
  • the composition in addition to the above-mentioned composition, in addition, by mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05% or less, and B: 0.0050% or less.
  • the composition further contains, by mass%, Ca: 0.0050% or less and REM: 0.0050% or less. Manufacturing method of high strength ERW steel pipe.
  • ADVANTAGE OF THE INVENTION it is the high intensity
  • Steel pipes can be manufactured inexpensively and easily, and have remarkable industrial effects.
  • the high-strength electric resistance welded steel pipe according to the present invention is not limited to a door impact beam, and other automotive shock absorbing members such as cross members and pillars that require particularly workability, as well as automotive framework members such as automobile frame members. There is also an effect that it can be applied as a material for automobile parts.
  • C 0.05-0.20%
  • C is an element having an effect of strengthening steel, and in the present invention, it is necessary to contain 0.05% or more in order to secure a desired strength.
  • the content exceeding 0.20% lowers weldability. Therefore, in the present invention, C is limited to a range of 0.05 to 0.20%. Note that the content is preferably 0.08 to 0.18%.
  • Si acts as a deoxidizer, solidifies to strengthen steel, and further promotes the formation of ferrite, and is an important element for ensuring excellent workability. Moreover, Si can achieve a desired high strength by suppressing the martensite phase fraction to a low level by solid solution strengthening of the ferrite phase. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 2.0%, a large amount of Si oxide is formed on the surface of the steel sheet, and chemical conversion treatability is lowered. Therefore, in the present invention, Si is limited to the range of 0.5 to 2.0%. Note that the content is preferably 1.0 to 1.8%.
  • Mn 1.0 to 3.0%
  • Mn is an element that improves the hardenability, facilitates the formation of a martensite phase, and increases the strength of the steel.
  • Mn is contained in an amount of 1.0% or more in the present invention. Need.
  • the content exceeds 3.0%, segregation is promoted, slab cracks are likely to occur during casting, and the martensite phase is excessively increased to reduce workability. For this reason, Mn was limited to the range of 1.0 to 3.0%. Note that the content is preferably 1.5 to 2.5%.
  • P 0.1% or less
  • P is preferably reduced as much as possible as an impurity in the present invention in order to avoid adverse effects on workability, but excessive reduction raises the refining cost. For this reason, P was limited to 0.1% or less, which has substantially no adverse effect. In addition, Preferably it is 0.05% or less.
  • S 0.01% or less S is an impurity in the present invention, as in P, and is preferably reduced as much as possible in order to avoid adverse effects on workability. However, excessive reduction increases the refining cost, so Was 0.01%. In addition, Preferably it is 0.005% or less.
  • Al 0.01 to 0.1%
  • Al is an element that acts as a deoxidizing agent, and in order to obtain such an effect, the content of 0.01% or more is required. On the other hand, even if the content exceeds 0.1%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, Al was limited to the range of 0.01 to 0.1%. In addition, Preferably it is 0.01 to 0.08%.
  • N 0.005% or less
  • N is an element that strengthens steel and lowers formability and is preferably reduced as an impurity as much as possible. However, excessive reduction increases the refining cost. For this reason, N was limited to 0.005% or less with substantially no adverse effect. In addition, Preferably it is 0.004% or less.
  • the above components are basic components.
  • Cu 1.0% or less
  • Ni 1.0% or less
  • Cr 0.5% or less
  • Mo 0.5% or less
  • Nb 0.05% or less
  • Ti 0.05% or less
  • W 0.05% or less
  • B one or more selected from 0.0050% or less
  • And / or Ca 0.0050% or less
  • REM One or two selected from 0.0050% or less can be selected and contained.
  • Cu, Ni, Cr, Mo, Nb, Ti, W, and B are all elements that increase the strength of the steel, and can be selected as necessary and contained in one or more.
  • Cu is an element having an action of increasing the strength of steel and improving corrosion resistance, and can be contained as necessary. Such an effect is recognized with a content of 0.05% or more. However, a content exceeding 1.0% reduces the hot workability. For this reason, when it contains, it is preferable to limit Cu to 1.0% or less. More preferably, it is 0.08 to 0.5%.
  • Ni 1.0% or less
  • Ni is an element that has the effect of increasing the strength of steel and improving the corrosion resistance, and can be contained if necessary. Such an effect is recognized at a content of 0.05% or more, but Ni is an expensive element, and a large content exceeding 1.0% raises the material cost. For this reason, when it contains, it is preferable to limit Ni to 1.0% or less. More preferably, it is 0.08 to 0.5%.
  • Cr 0.5% or less Cr is an element having an effect of increasing the strength of steel through improving hardenability and improving corrosion resistance, and can be contained as necessary. Such an effect is recognized with a content of 0.05% or more, but if it exceeds 0.5%, the workability is lowered. For this reason, when it contains, it is preferable to limit Cr to 0.5% or less. More preferably, it is 0.05 to 0.4%.
  • Mo 0.5% or less
  • Mo is an element having an action of increasing the strength of steel by precipitation strengthening in addition to improving hardenability, and can be contained as necessary. Such an effect is recognized with a content of 0.05% or more. However, when the content exceeds 0.5%, the ductility is lowered and the material cost is increased. For this reason, when it contains, it is preferable to limit Mo to 0.5% or less. More preferably, the content is 0.1 to 0.4%.
  • Nb 0.05% or less
  • Nb is an element having an effect of refining crystal grains and increasing the strength of steel through precipitation strengthening, and can be contained as necessary. Such an effect is recognized at a content of 0.005% or more, but when it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit Nb to 0.05% or less. More preferably, the content is 0.008 to 0.03%.
  • Ti 0.05% or less
  • Ti is an element having an effect of refining crystal grains and increasing the strength of steel through precipitation strengthening, and can be contained as necessary. Such an effect is recognized at a content of 0.005% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit Ti to 0.05% or less. More preferably, the content is 0.008 to 0.03%.
  • W 0.05% or less W is an element having an action of increasing the strength of steel through precipitation strengthening and can be contained as necessary. Such an effect is recognized at a content of 0.01% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit W to 0.05% or less. More preferably, the content is 0.01 to 0.03%.
  • B 0.0050% or less
  • B is an element having an action of adjusting the martensite fraction within a predetermined range through improvement of hardenability and increasing the strength of steel, and can be contained as necessary.
  • Such an effect is recognized with a content of 0.0005% or more, but a content exceeding 0.0050% is economically disadvantageous because the effect is saturated and an effect commensurate with the content cannot be expected.
  • it is preferable to limit B to 0.0050% or less. More preferably, the content is 0.001 to 0.003%.
  • Ca and REM are elements having an effect of improving ductility through the morphological control of sulfide inclusions. Can be contained depending on the case. Such an effect is recognized when the content of Ca and REM is 0.0020% or more. However, when the content exceeds 0.0050%, the amount of inclusions is excessively increased and the cleanness of the steel is decreased. For this reason, when it contains, it is preferable to limit both Ca and REM to 0.0050% or less. More preferably, the content is 0.0020 to 0.0040%. The balance other than the above components is Fe and inevitable impurities.
  • the steel pipe of the present invention has a two-phase structure including a martensite phase with a volume ratio of 20 to 60% and the remaining ferrite phase.
  • tissue By setting it as such a structure
  • the martensite phase is less than 20% by volume, it becomes a structure mainly composed of a ferrite phase and a desired high strength cannot be achieved.
  • the amount of martensite phase exceeds 60% by volume, it becomes a structure mainly composed of martensite and desired workability cannot be ensured.
  • the structure fraction of the martensite phase is limited to a range of 20 to 60% by volume.
  • the volume ratio is preferably 40 to 55%.
  • the preferable manufacturing method of this invention steel pipe is demonstrated.
  • the steel material is subjected to a hot rolling process, a cold rolling process, and an annealing process to obtain a steel pipe material, and then the steel pipe material is subjected to a pipe making process to obtain an electric-welded steel pipe.
  • the manufacturing method of the steel raw material to be used is not particularly limited, the molten steel having the above-described composition is melted by a conventional melting method such as a converter, and steel such as a slab by a continuous casting method or an ingot-rolling method. It is preferable to use a raw material.
  • the obtained steel material is then subjected to a hot rolling process that is hot-rolled to form a hot-rolled sheet.
  • the obtained steel material may be reheated after cooling, or when the steel material retains a predetermined amount of heat, it may be directly sent and hot rolled without reheating.
  • the heating temperature is preferably 1000 to 1250 ° C. If the heating temperature at the time of reheating is less than 1000 ° C., the deformation resistance is high and the load applied to the rolling mill becomes too large, and rolling may be difficult. On the other hand, when the heating exceeds 1250 ° C., the coarsening of crystal grains proceeds and the ductility and the like are significantly reduced.
  • Hot rolling consists of rough rolling and finish rolling.
  • the rough rolling conditions are not particularly limited as long as a sheet bar having a predetermined size and shape can be obtained.
  • the finish rolling finish temperature is higher than the Ar 3 transformation point of the steel strip as the material to be rolled, and the finish rolling is taken up at a winding temperature of 500 to 700 ° C.
  • the finish rolling finish temperature is less than the Ar 3 transformation point, the finish rolling is a rolling at two-phase region ( ⁇ + ⁇ ), and a mixed grain structure in which extremely coarse crystal grains and fine crystal grains are mixed. (Mixed grain structure).
  • the finish rolling finishing temperature of the hot rolling is limited to the Ar 3 transformation point or higher.
  • the coiling temperature is less than 500 ° C., a hard phase is generated during cooling, so that a rolling load at the time of cold rolling is increased and productivity is decreased.
  • the temperature is higher than 700 ° C., non-transformed austenite is transformed into pearlite, so that workability is deteriorated.
  • the coiling temperature is limited to a range of 500 to 700 ° C. In addition, Preferably it is 650 degrees C or less.
  • the hot-rolled sheet obtained through the hot-rolling process is subjected to pickling treatment, and then subjected to a cold-rolling process in which cold rolling is performed to obtain a cold-rolled sheet.
  • Conditions for the cold rolling process such as cold rolling reduction are not particularly specified.
  • the obtained cold-rolled sheet is then subjected to an annealing process to form a cold-rolled annealed sheet.
  • the annealing step is an important step in securing desired workability and desired paint bake hardenability (BH property).
  • the annealing process preferably uses a continuous annealing line.
  • the cold-rolled sheet is heated to a temperature in the two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point, and is kept soaked, and then the average cooling rate of 10 to a temperature in the range of 600 to 750 ° C.
  • rapid cooling treatment (average cooling rate 2) is performed at a cooling rate of 500 ° C / s or higher on average from a temperature in the range of 600 to 750 ° C to room temperature.
  • a tempering treatment is performed to reheat to a temperature range of 150 to 300 ° C. to obtain a cold-rolled annealed plate.
  • the cooling rate (average cooling rate 1) from the heating and holding to the rapid cooling start temperature is preferably 15 ° C./s or more
  • the average cooling rate (average cooling rate 2) is preferably 800 ° C./s or more. More preferably, it is 1000 ° C./s or more. More preferably, it is 1100 degrees C / s or more.
  • the desired tissue fraction is obtained by rapid cooling thereafter.
  • the (ferrite + martensite) structure cannot be secured.
  • the cooling rate from the heating holding temperature to the rapid cooling start temperature average cooling rate 1
  • the distribution of the C amount of ferrite and austenite proceeds, and the solid content in the ferrite that is considered to contribute to the BH characteristics is increased. Since the amount of dissolved C is reduced, desired BH characteristics cannot be obtained.
  • the rapid cooling start temperature is out of the range of 750 ° C.
  • the quenching start temperature is higher than 750 ° C., the ductility is lowered, and if it is lower than 600 ° C., a desired high strength cannot be ensured.
  • the soaking time at the above-described temperature is 30 seconds or longer.
  • the cooling rate from the temperature in the range of 600 to 750 ° C. to room temperature is less than 500 ° C./s on average, the amount of martensite transformation is small, and the desired structure fraction (ferrite + (Martensite) structure cannot be obtained and desired high strength cannot be ensured.
  • the amount of dissolved C in ferrite that is considered to contribute to BH characteristics decreases, so the desired BH amount is 100 MPa or more. Cannot be obtained.
  • the cooling rate of the rapid cooling treatment is an average between the rapid cooling start temperature and 200 ° C.
  • thermo flow water jet flow water
  • a tempering treatment for reheating to a temperature range of 150 to 300 ° C. is performed after the rapid cooling treatment for the purpose of further improving the toughness. If the tempering temperature is less than 150 ° C., the toughness improving effect cannot be expected.
  • the temperature range of reheating was limited to 150 to 300 ° C.
  • the obtained cold-rolled annealed sheet may be further subjected to temper rolling if necessary. At this time, it is preferable that the rolling reduction of skinpass rolling is 0.2% or more and 1.0% or less. If the temper reduction ratio is less than 0.2%, the shape correction effect cannot be obtained. On the other hand, if it exceeds 1.0%, the deterioration of elongation becomes remarkable.
  • the cold-rolled annealed plate (cold-rolled annealed steel strip) that has undergone the above-described process is used as a steel pipe material, and then the steel pipe material is subjected to a pipe making process to obtain an electric-welded steel pipe.
  • the pipe making process is a process in which a steel pipe material is continuously formed to form a substantially cylindrical open pipe, and the open pipe is electro-welded to form an electric-welded pipe.
  • the forming in the pipe making process is a roll forming method using a cage roll method.
  • Roll forming by the cage roll method refers to roll forming of a method in which small rolls called cage rolls are lined up on the tube outer surface side and formed smoothly.
  • the CBR method Chance free Bulge Roll method
  • distortion applied to the band plate during molding can be minimized, and deterioration of material properties due to work hardening can be suppressed.
  • FIG. 1 An example of an ERW steel pipe manufacturing facility employing CBR roll forming is shown in FIG.
  • CBR roll forming both edge portions of the strip 1 are pre-formed with an edge bend roll 2 and then a center bend roll 3 and a cage roll 4 are used to form a central portion of the strip.
  • This is a forming method of forming a circular element pipe by performing stretch forming of the tube side part and bending and returning of the overbend part (bend and return forming) by reducing the diameter.
  • the roll forming method of the CBR method has less strain applied to the material (band plate) than the conventional BD (breakdown) method, and further, variation in strain applied in the tube circumferential direction. Is small. While pressing the circular element tube thus obtained with a squeeze roll 7, the butt portion is joined by welding means (high-frequency resistance welding) 6, and an electric-welded steel pipe 8 and To do.
  • the obtained high-strength ERW steel pipe has a tensile strength TS of 1180 MPa or more, an elongation El in the pipe axis direction of 10% or more, a yield ratio of less than 90%, and a pre-strain: 2%, and then 170 ° C. ⁇ 10 min.
  • This is a steel pipe having an increase in strength (BH amount) of 100 MPa or more and a yield ratio of 90% or more after the coating baking process for performing the heat treatment. If the elongation in the tube axis direction of the electric resistance welded steel pipe is less than 10%, the workability as a pipe is lowered and it becomes difficult to form a desired shape.
  • the elongation is preferably 12% or more, and if the yield ratio of the ERW steel pipe exceeds 90%, the workability as a pipe is lowered and it becomes difficult to form a desired shape.
  • the yield ratio is preferably 85% or less.
  • the amount of BH is 110 MPa or more.
  • the variation in the BH amount at each position in the pipe circumferential direction is small, and the BH amount at each position in the pipe circumferential direction excluding the ERW is uniform. Therefore, it can be set within the range of 100 to 130 MPa. Further, if the yield ratio of the ERW steel pipe is less than 90%, the energy that can be absorbed at the time of collision decreases, and the function as an impact member cannot be satisfied.
  • the heat treatment condition of the coating baking process is a heat treatment of 170 ° C. ⁇ 10 min. This condition is the lowest heat treatment condition that provides an increase in strength (BH amount) of 100 MPa or more after the coating baking process.
  • BH amount increase in strength
  • the ERW steel pipe of the present invention has a strength increase amount (BH amount) after the paint baking process of 100 MPa or more.
  • the heating temperature is in the range of 170 to 250 ° C. and the holding time is in the range of 10 to 30 minutes.
  • the heating temperature is less than 170 ° C.
  • the solid solution C necessary to bring about a desired increase in strength does not diffuse until dislocations are sufficiently fixed, so that the amount of increase in strength after the desired baking treatment ( BH amount) cannot be secured.
  • the temperature exceeds 250 ° C. and the temperature is excessively high, productivity is lowered and the material may be deteriorated because it may be heated to a blue-hot brittle region.
  • the holding time is as short as less than 10 min, the diffusion time is insufficient, and the required amount of solute C cannot reach dislocation, so that the amount of increase in strength after the desired baking process (BH amount) ) Cannot be secured.
  • the holding time is longer than 30 min, the productivity is lowered. Preferably it is 25 min or less.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method. These slabs (steel materials) are subjected to a hot rolling process under the conditions shown in Table 2 to form hot rolled sheets (thickness 2.4 to 3.0 mm), and then pickled and cold rolled on the hot rolled sheets. A cold-rolled step of forming a cold-rolled plate and an annealing step under the conditions shown in Table 2 were applied to the cold-rolled plate to obtain a cold-rolled annealed plate (plate thickness 1.2 to 1.8 mm), which was a steel pipe material. A specimen was collected from the obtained steel pipe material, and a structure observation and a tensile test were performed. The test method was as follows.
  • the obtained results are shown in Table 3.
  • the obtained steel pipe material was formed by CBR roll forming to obtain a substantially cylindrical open pipe. Next, while pressing the butt portion with a squeeze roll, the butt portion is electro-welded by high-frequency resistance welding, and an ERW steel pipe (size: outer diameter 48.6 mm ⁇ ⁇ wall thickness 1.2 to 1.8 mm) did.
  • the forming in the pipe making process is formed by the BD method.
  • the obtained ERW steel pipe was subjected to a structure observation, a tensile test, and a paint baking treatment test to evaluate the structure, tensile characteristics, and paint bake hardening characteristics.
  • the test method was as follows.
  • (1) Microstructure observation A specimen for microstructural observation is collected from the obtained steel pipe, the cross section in the axial direction of the pipe is polished, corroded using a nital liquid, and the structure is obtained using a scanning electron microscope (magnification: 2000 times). 10 images or more, and using an image analyzer, identify the type of tissue such as ferrite and martensite, and calculate the average tissue fraction (volume ratio) of each phase over 10 fields of view. did.
  • the coating bake hardening amount (BH amount) was calculated as a difference between the 0.2% proof stress after the coating baking treatment and the strength after applying the 2% tensile strain.
  • the amount of BH the maximum value and the minimum value at each position in the circumferential direction were obtained.
  • required the arithmetic average of the value in each position of the circumferential direction.
  • the tensile strength TS high strength of 1180 MPa or more
  • the elongation El in the tube axis direction is 10% or more
  • X 100 (%)) is less than 90%, pipe with excellent workability and 2% or more pre-strain and heat treatment (paint baking process) at 170 ° C x 10 min.
  • the electric resistance welded steel pipe has an excellent impact absorption characteristic with an axial yield ratio of 90% or more and a BH amount of 100 MPa or more. Further, in the example of the present invention, there is little variation in the BH amount at each position in the circumferential direction, and all are within the range of 100 to 130 MPa.
  • the tensile test piece was extract
  • collected from each pipe circumferential direction position (Electric seam part is 0 degree, a total of 11 positions at a 30 degree pitch in the circumferential direction. Excluding ERW part). Then, a tensile test is performed on the paint baking processed test piece to obtain 0.2% proof stress YS and tensile strength TS after the paint baking process, and the yield ratio after the paint baking process ( (YS / TS) ⁇ 100 (%)) was calculated. Further, as shown in FIG. 2, the coating bake hardening amount (BH amount) was calculated as a difference between the 0.2% proof stress after the coating baking treatment and the strength after applying the 2% tensile strain.
  • BH amount coating bake hardening amount
  • the heating temperature of the heat treatment is less than 170 ° C., which is a condition outside the range of the preferred paint baking treatment, a BH amount of 100 MPa or more is used unless an excessively long paint baking treatment is performed without considering a decrease in productivity. Is not secured stably.
  • the excessively long coating baking time here means time exceeding 30 minutes. Further, even when the heating temperature is 170 ° C. or higher, if the holding time is 5 minutes which is less than 10 minutes, a BH amount of 100 MPa or more may not be secured, and the desired BH amount cannot be secured stably. .

Abstract

The disclosed high-strength electrical-resistance-welded steel pipe is suitable for use as an automobile shock-absorbing member. Said steel pipe contains, by mass, between 0.05% and 0.20% carbon, between 0.5% and 2.0% silicon, between 1.0% and 3.0% manganese, at most 0.1% phosphorus, at most 0.01% sulfur, between 0.01% and 0.1% aluminum, and at most 0.005% nitrogen, with the remainder comprising iron and unavoidable impurities. Said steel pipe has a two-phase structure comprising a ferrite phase and a martensite phase, with the volume fraction of the martensite phase between 20% and 60%. The disclosed steel pipe has a tensile strength (TS) of at least 1,180 MPa, an axial elongation (El) of at least 10%, and a yield ratio of less than 90%. After a coating baking process in which the steel pipe is prestressed by 2% and then heat-treated at 170°C for 10 minutes, the amount of strength increase (BH amount) is at least 100 MPa and the yield ratio increases to at least 90%.

Description

高強度電縫鋼管およびその製造方法High-strength ERW steel pipe and manufacturing method thereof
 本発明は、ドアインパクトビーム(door impact beam)や、クロスメンバー(cross member)、ピラー(pillar)等の自動車の衝突部材(crash member)用として好適な、高強度電縫鋼管(high−strength electric resistance welded steel tube)に係り、とくに、加工性(formability)および衝撃吸収特性(shock absorption)がともに優れた高強度電縫鋼管に関する。 INDUSTRIAL APPLICABILITY The present invention is a high-strength electric steel pipe suitable for a crash member of an automobile such as a door impact beam, a cross member, a pillar, or the like. The present invention relates to a resistance welded steel tube, and more particularly, to a high-strength electric resistance welded steel pipe excellent in both workability and shock absorption characteristics.
 近年、自動車の安全性向上(enhanced safety)、とくに乗員の安全性確保(ensuring safety)を目的として、自動車車体(automotive body)には、衝突時の衝撃エネルギー(impact energy)を吸収するための衝撃吸収用部材が配設されるようになり、例えば、衝撃吸収用部材であるドアインパクトビームに、例えば特許文献1に示されるように、焼入れ処理(quenching treatment)を施され、マルテンサイト組織(martensitic structure)を有し、所望の高強度を有する高強度鋼管が適用されている。 In recent years, for the purpose of improving the safety of automobiles, particularly for the purpose of ensuring the safety of passengers, the automobile body is designed to absorb impact energy at the time of collision. For example, a door impact beam, which is an impact absorbing member, is subjected to a quenching treatment as shown in, for example, Patent Document 1 to obtain a martensitic structure (martensitic structure). high strength steel pipes having a desired high strength have been applied.
 特許文献1に記載された技術は、C:0.15~0.22%、Mn:1.5%以下、Si:0.5%以下、Ti:0.04%以下、B:0.0003~0.0035%、N:0.0080%以下を含み、あるいはさらに、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、の1種または2種以上を含有する鋼管に焼入れ処理を行ない、引張強さ:120kgf/mm以上の機械構造用高強度鋼管(electric resistance welded steel tube for machine structural use)を得るという機械構造用高強度鋼管の製造方法である。特許文献1に記載された技術によれば、自動車補強用鋼管である、ドアインパクトバー(door impact bar)(ドアインパクトビーム)、バンパー用芯材(center core for bumper)として適用可能な、10%以上の良好な伸びを有し、引張強さ:120kgf/mm以上の高強度鋼管を、一度の熱処理で得ることができるとしている。
 また、引張強さ:120kgf/mm以上を有する鋼板として、特許文献2~7には、自動車構造部材に使用される引張強さが900MPa以上の高強度冷延鋼板に関する技術が記載されている。これら鋼板はいずれも、フェライト相とマルテンサイト相の二相組織あるいは、さらにベイナイト相、残留オーステナイト相を含む組織を有し、ベイナイト相、残留オーステナイト相の面積率の上限値を規定している。このような組織とすることにより、加工性と高強度とを兼備した鋼板となるとしている。
The technique described in Patent Document 1 is as follows: C: 0.15 to 0.22%, Mn: 1.5% or less, Si: 0.5% or less, Ti: 0.04% or less, B: 0.0003 1 to 2 or more of Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less A high strength steel pipe for machine structure is obtained by quenching a steel pipe containing steel to obtain a high strength steel pipe for machine structure with a tensile strength of 120 kgf / mm 2 or more (electric resistance welded steel tube structural use). is there. According to the technology described in Patent Document 1, 10% applicable as a door impact bar (door impact beam) and a core for bumper, which is a steel pipe for reinforcing an automobile. A high-strength steel pipe having the above-described good elongation and a tensile strength of 120 kgf / mm 2 or more can be obtained by a single heat treatment.
Further, as steel sheets having a tensile strength of 120 kgf / mm 2 or more, Patent Documents 2 to 7 describe techniques relating to high-strength cold-rolled steel sheets having a tensile strength of 900 MPa or more used for automobile structural members. . Each of these steel sheets has a two-phase structure of a ferrite phase and a martensite phase, or a structure including a bainite phase and a retained austenite phase, and defines an upper limit value of the area ratio of the bainite phase and the retained austenite phase. By adopting such a structure, the steel sheet has both workability and high strength.
特開平3−122219号公報Japanese Patent Laid-Open No. 3-122219 特開2010−255094号公報JP 2010-255094 A 特開2010−126787号公報JP 2010-126787 A 特開2009−242816号公報JP 2009-242816 A 特開2009−203550号公報JP 2009-203550 A 特開2007−100114号公報JP 2007-100114 A 特開2005−163055号公報JP 2005-163055 A
 しかし、特許文献1に記載された技術では、特別な加工を施すことなく直管で使用する、ドアインパクトビームのような場合には大きな問題にならないが、各種形状への複雑な加工を必要とするクロスメンバー、ピラー等の他の自動車衝撃吸収用部材では、使用される鋼管には、高強度に加えて、さらに優れた加工性を具備することが要望されている。
 また、特許文献2~5に記載された技術では、焼鈍時の加熱保持後の冷却速度が遅いため、炭化物が析出し、フェライトの固溶C量が不十分となり、予歪付与−塗装焼付け処理による強度増加量(BH量)が少なく、BH量:100MPa以上を確保できていないという問題がある。
 また、特許文献6に記載された技術では、焼鈍時の加熱保持から水焼入れ開始するまでの冷却速度が考慮されておらず、例えば、製造ラインのレイアウトから、水焼入れを開始するまでの時間が長く、冷却速度が遅くなる場合には、フェライトとオーステナイトでのC量分配が進行し、BH特性に寄与すると考えられるフェライト中に残存する固溶C量が不十分となる。したがって、特許文献6には、BH量が100MPa以上を確保することが全く、記載されておらず、また、予期できるものではない。
 また、特許文献7に記載された技術では、仕上焼鈍時の冷却速度が、実施例に示された値で最大550℃/minと遅く、8%程度の伸びしか得られていない。また、伸びは全体に低く、最大でも11%である。したがって、特許文献7に記載された技術で製造された鋼板を電縫鋼管に加工した場合、造管時の加工歪を考慮すると、さらに伸びが低下して、鋼管として10%以上の伸びを確保できないという問題がある。
 本発明は、かかる要望に鑑み、優れた加工性を有し、さらに自動車衝撃吸収部材用として好適な、優れた衝撃吸収特性を確保することが可能な、高強度電縫鋼管およびその製造方法を提供することを目的とする。
However, the technique described in Patent Document 1 does not cause a big problem in the case of a door impact beam that is used in a straight pipe without performing special processing, but requires complicated processing into various shapes. In other automobile impact absorbing members such as cross members, pillars, and the like, the steel pipe used is required to have a further excellent workability in addition to high strength.
Further, in the techniques described in Patent Documents 2 to 5, since the cooling rate after heating and holding during annealing is slow, carbides precipitate, the amount of solid solution C of ferrite becomes insufficient, and prestraining-paint baking treatment There is a problem in that the amount of increase in strength (BH amount) due to is small, and the BH amount: 100 MPa or more cannot be secured.
Further, in the technique described in Patent Document 6, the cooling rate from heating and holding during annealing to the start of water quenching is not considered, for example, the time from the production line layout to the start of water quenching. When the cooling rate is long and slow, the distribution of C amount between ferrite and austenite proceeds, and the amount of solid solution C remaining in the ferrite that is considered to contribute to the BH characteristics becomes insufficient. Therefore, Patent Document 6 does not describe or guarantee that the amount of BH is 100 MPa or more.
Moreover, in the technique described in Patent Document 7, the cooling rate at the time of finish annealing is as slow as 550 ° C./min at the maximum shown in the examples, and only about 8% elongation is obtained. Further, the elongation is low overall and is 11% at the maximum. Therefore, when the steel sheet manufactured by the technique described in Patent Document 7 is processed into an electric-resistance-welded steel pipe, the elongation is further reduced and the elongation of 10% or more is ensured as a steel pipe when considering the processing strain during pipe making. There is a problem that you can not.
In view of such demands, the present invention provides a high-strength electric resistance welded steel pipe that has excellent workability and that can ensure excellent shock absorption characteristics that are suitable for automobile shock absorbing members and a method for manufacturing the same. The purpose is to provide.
 なお、ここでいう「高強度」とは、引張強さTSが1180MPa以上である場合をいうものとする。また、ここでいう「優れた加工性」とは、JIS規格に規定されるJIS 12号引張試験片(GL:50mm)を用いた引張試験(tensile test)で得られる、管軸方向(tube axis direction)の伸び(elongation)Elが10%以上、好ましくは12%以上で、かつ管軸方向の降伏比(=(0.2%耐力(proof stress)/引張強さ)×100(%))が90%未満である場合をいうものとする。また、ここでいう「優れた衝撃吸収特性」とは、管に2%の予歪(pre strain)を付与し、さらに170℃×10minの熱処理(塗装焼付け処理(baking finishing))を施したのちの0.2%耐力と、2%の予歪付与時の強度との差、である強度増加量(BH量(bake hardening value))が100MPa以上であり、管軸方向の降伏比が90%以上である場合をいうものとする。なお、BH量は、図2に定義される。 In addition, “high strength” here refers to a case where the tensile strength TS is 1180 MPa or more. In addition, “excellent workability” here refers to a tube axis direction (tube axis direction) obtained by a tensile test using a JIS No. 12 tensile test piece (GL: 50 mm) defined in JIS standards. The elongation El of the direction is 10% or more, preferably 12% or more, and the yield ratio in the tube axis direction (= (0.2% proof stress / tensile strength) × 100 (%)). Is less than 90%. In addition, “excellent shock absorption characteristics” here means that the tube was subjected to 2% pre-strain and further subjected to heat treatment (baking finishing) at 170 ° C. × 10 min. The difference in strength between 0.2% proof stress and 2% pre-strain strength is a strength increase (BH (hardening value)) of 100 MPa or more, and the yield ratio in the tube axis direction is 90%. This is the case. The amount of BH is defined in FIG.
 本発明者らは、上記した目的を達成するために、高強度を維持したまま、電縫鋼管の加工性を向上させるための各種方策について鋭意研究した。その結果、フェライト(ferrite)とマルテンサイト(martensite)からなる二相組織(dual phase structure)を有し、加工性に優れ、かつ所望の塗装焼付け硬化性(bake hardenability)を有する鋼板(冷延鋼板)を鋼管素材として、素材の優れた加工性を極力低下させることなく造管できる造管方法を採用し、加工性に優れた電縫鋼管とすることに想到した。そして、このような電縫鋼管に、所望の部材形状とする加工を施したのち、熱処理(塗装焼付け処理)を施して強度を増加させることにより、耐力が向上し、部材として優れた衝撃吸収特性を確保できることを見出した。 In order to achieve the above-mentioned object, the present inventors diligently studied various measures for improving the workability of the electric resistance welded steel pipe while maintaining high strength. As a result, a steel sheet (cold rolled steel sheet) having a dual phase structure composed of ferrite and martensite, excellent workability, and desired bake hardenability. ) Was adopted as a steel pipe material, and a pipe making method was adopted that would allow pipe making without reducing the excellent workability of the material as much as possible, resulting in an ERW steel pipe with excellent workability. And after giving the desired member shape to such an ERW steel pipe, heat resistance (paint baking process) is applied to increase the strength, thereby improving the proof stress and excellent shock absorption characteristics as a member It was found that it can be secured.
 本発明は、かかる知見に基いて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
 (1)質量%で、C:0.05~0.20%、Si:0.5~2.0%、Mn:1.0~3.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、該マルテンサイト相が体積率で20~60%である組織とを有し、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比(yield ratio)が90%未満で、予歪:2%付与したのち170℃×10minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となることを特徴とする高強度電縫鋼管。
The present invention has been completed based on such findings and further investigations. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: A composition comprising 0.01% or less, Al: 0.01 to 0.1%, N: 0.005% or less, the balance composed of Fe and inevitable impurities, and a two-phase structure composed of a ferrite phase and a martensite phase. The martensite phase has a structure with a volume ratio of 20 to 60%, tensile strength TS is 1180 MPa or more, tube axis direction elongation El is 10% or more, and yield ratio is less than 90%. The pre-strain: 2%, and after applying the heat treatment at 170 ° C. for 10 minutes, the strength increase (BH amount) after the baking process is 100 MPa or more and the yield ratio is 90% or more. Strength ERW steel pipe.
 (2)(1)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高強度電縫鋼管。
 (3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下を含有する組成とすることを特徴とする高強度電縫鋼管。
(2) In (1), in addition to the above-mentioned composition, in addition, by mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05% or less, and B: 0.0050% or less. A high-strength ERW steel pipe characterized by that.
(3) In (1) or (2), in addition to the above composition, the composition further contains, by mass%, Ca: 0.0050% or less and REM: 0.0050% or less. Strength ERW steel pipe.
 (4)鋼素材に、該鋼素材を熱間圧延(hot rolling)して熱延板(hot rolled sheet)とする熱延工程(hot rolling process)と、該熱延板に酸洗処理(pickling treatment)を施し、ついで冷間圧延(cold rolling)を施し冷延板(cold rolled sheet)とする冷延工程(cold rolling process)と、該冷延板に、焼鈍処理(annealing treatment)を施し冷延焼鈍板(coled and annealed sheet)とする焼鈍工程とを施して鋼管用素材(material for steel tube)とし、ついで該鋼管用素材に、該鋼管用素材を連続的に成形し略円筒状のオープン管(open pipe)とし、該オープン管を電縫溶接して電縫管とする造管工程(tube production process)を施して電縫鋼管とするにあたり、前記鋼素材を、質量%で、C:0.05~0.20%、Si:0.5~2.0%、Mn:1.0~3.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程を、仕上圧延終了温度(finishing temperature)がAr変態点以上で、巻取温度(coiling temperature)が500~700℃である熱間圧延を施し熱延板とする工程とし、前記焼鈍工程を、前記冷延板に、Ac変態点~Ac変態点の範囲の二相温度域の温度に、加熱し均熱したのち、600~750℃の範囲の温度まで、平均で冷却速度10℃/s以上の冷却速度(cooling rate)(平均冷却速度1と定義する)で冷却した後、600~750℃の範囲の温度から室温まで、平均で、500℃/s以上の冷却速度(平均冷却速度2と定義する)で冷却する急冷処理を施し、ついで、150~300℃の温度範囲に再加熱する焼戻処理(tempering treatment)を施し、冷延焼鈍板とする工程とし、前記成形を、ケージロール方式のロール成形とし、前記電縫鋼管が、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満であり、予歪:2%付与したのち170℃×10minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる鋼管である、ことを特徴とする高強度電縫鋼管の製造方法。 (4) A hot rolling process (hot rolling process) for hot rolling a steel material into the steel material, and pickling the hot rolled sheet (pickling) cold rolling (cold rolling process) that is subjected to cold rolling (cold rolling sheet) and then subjected to annealing treatment (cold rolling process). The steel pipe material is made into a steel pipe material by subjecting it to an annealing process to make a rolled and annealed sheet, and then the steel pipe material is continuously formed on the steel pipe material to form a substantially cylindrical shape. Open pi pe), and when a tube production process for forming an electric resistance welded pipe by electrowelding the open pipe is performed to obtain an electric resistance welded steel pipe, the steel material in mass%, C: 0.05 ~ 0.20%, Si: 0.5 ~ 2.0%, Mn: 1.0 ~ 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 ~ A steel material having a composition comprising 0.1%, N: 0.005% or less, the balance being Fe and inevitable impurities, and the hot rolling process is performed at a finish rolling temperature of Ar 3 transformation point or higher Then, a hot rolling with a coiling temperature of 500 to 700 ° C. is performed to form a hot rolled sheet, and the annealing process is performed on the cold rolled sheet with an Ac 1 transformation point to an Ac 3 transformation point. Temperature in the two-phase temperature range Each time after heating and soaking, it was cooled to a temperature in the range of 600 to 750 ° C. at an average cooling rate of 10 ° C./s or more (defined as average cooling rate 1), From the temperature range of 600 to 750 ° C. to room temperature, on average, it is cooled at a cooling rate of 500 ° C./s or higher (defined as average cooling rate 2), and then the temperature range is 150 to 300 ° C. A re-tempering treatment (tempering treatment) is performed to form a cold-rolled annealed plate, the forming is a cage roll type roll forming, the ERW steel pipe has a tensile strength TS of 1180 MPa or more, a pipe shaft Elongation El is 10% or more, yield ratio is less than 90%, pre-strain: 2%, and then heat treatment of 170 ° C x 10 min. ) Is a steel pipe having a yield ratio of 90% or higher and a yield ratio of 90 MPa or higher.
 (5)(4)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高強度電縫鋼管の製造方法。
 (6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下を含有する組成とすることを特徴とする高強度電縫鋼管の製造方法。
(5) In (4), in addition to the above-mentioned composition, in addition, by mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05% or less, and B: 0.0050% or less. A method for producing a high-strength ERW steel pipe.
(6) In (4) or (5), in addition to the above composition, the composition further contains, by mass%, Ca: 0.0050% or less and REM: 0.0050% or less. Manufacturing method of high strength ERW steel pipe.
 本発明によれば、自動車の衝撃吸収部材用として好適な、優れた加工性を有し、さらに実部材形状に成形した後に、優れた衝撃吸収特性を確保することが可能な、高強度電縫鋼管を、安価でかつ容易に製造でき、産業上格段の効果を奏する。また、本発明になる高強度電縫鋼管は、ドアインパクトビームに限らず、とくに加工性を要求されるクロスメンバー、ピラー等の他の自動車衝撃吸収用部材、さらには自動車骨格部材など自動車部材全般にわたり、自動車部材用素材として適用できるという効果もある。 ADVANTAGE OF THE INVENTION According to this invention, it is the high intensity | strength electro-sewing which has the outstanding workability suitable for the impact-absorbing member of a motor vehicle, and can ensure the outstanding impact-absorbing characteristic, after shape | molding in a real member shape. Steel pipes can be manufactured inexpensively and easily, and have remarkable industrial effects. The high-strength electric resistance welded steel pipe according to the present invention is not limited to a door impact beam, and other automotive shock absorbing members such as cross members and pillars that require particularly workability, as well as automotive framework members such as automobile frame members. There is also an effect that it can be applied as a material for automobile parts.
本発明の実施に好適なCBR方式のロール成形法を採用した電縫鋼管製造設備の1例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the electric-resistance-welded steel pipe manufacturing equipment which employ | adopted the CBR type roll forming method suitable for implementation of this invention. 塗装焼付け処理後の強度増加量(BH量)の定義を模式的に示す説明図である。It is explanatory drawing which shows typically the definition of the strength increase amount (BH amount) after a paint baking process.
 まず、本発明になる高強度電縫鋼管の組成限定理由について説明する。以下、とくに断わらない限り質量%は、単に%で記す。
 C:0.05~0.20%
 Cは、鋼を強化する作用を有する元素であり、所望の強度を確保するために本発明では0.05%以上の含有を必要とする。一方、0.20%を超える含有は、溶接性(weldability)を低下させる。このため、本発明では、Cは0.05~0.20%の範囲に限定した。なお、好ましくは0.08~0.18%である。
First, the reasons for limiting the composition of the high-strength ERW steel pipe according to the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.05-0.20%
C is an element having an effect of strengthening steel, and in the present invention, it is necessary to contain 0.05% or more in order to secure a desired strength. On the other hand, the content exceeding 0.20% lowers weldability. Therefore, in the present invention, C is limited to a range of 0.05 to 0.20%. Note that the content is preferably 0.08 to 0.18%.
 Si:0.5~2.0%
 Siは、脱酸剤として作用するとともに、固溶して鋼を強化し、さらに、フェライト形成を促進させる作用を有し、優れた加工性を確保するために重要な元素である。また、Siは、フェライト相を固溶強化することにより、マルテンサイト相分率を少なく抑えて、所望の高強度を達成できる。このような効果を得るためには、0.5%以上の含有を必要とする。一方、2.0%を超えて含有すると、鋼板表面にSi酸化物を多量に形成し、化成処理性(chemical conversion treatability)を低下させる。このため、本発明では、Siは0.5~2.0%の範囲に限定した。なお、好ましくは1.0~1.8%である。
Si: 0.5 to 2.0%
Si acts as a deoxidizer, solidifies to strengthen steel, and further promotes the formation of ferrite, and is an important element for ensuring excellent workability. Moreover, Si can achieve a desired high strength by suppressing the martensite phase fraction to a low level by solid solution strengthening of the ferrite phase. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 2.0%, a large amount of Si oxide is formed on the surface of the steel sheet, and chemical conversion treatability is lowered. Therefore, in the present invention, Si is limited to the range of 0.5 to 2.0%. Note that the content is preferably 1.0 to 1.8%.
 Mn:1.0~3.0%
 Mnは、焼入れ性(hardenability)を向上させ、マルテンサイト相を生成しやすくして、鋼の強度を増加させる元素であり、所望の強度を確保するために本発明では1.0%以上の含有を必要とする。一方、3.0%を超える含有は、偏析(segregation)を助長し、鋳造時にスラブ割れ(slab crack)を発生しやすくするとともに、マルテンサイト相が過剰に増加して加工性を低下させる。このため、Mnは1.0~3.0%の範囲に限定した。なお、好ましくは1.5~2.5%である。
Mn: 1.0 to 3.0%
Mn is an element that improves the hardenability, facilitates the formation of a martensite phase, and increases the strength of the steel. In order to secure a desired strength, Mn is contained in an amount of 1.0% or more in the present invention. Need. On the other hand, if the content exceeds 3.0%, segregation is promoted, slab cracks are likely to occur during casting, and the martensite phase is excessively increased to reduce workability. For this reason, Mn was limited to the range of 1.0 to 3.0%. Note that the content is preferably 1.5 to 2.5%.
 P:0.1%以下
 Pは、本発明では不純物として、加工性への悪影響を回避するため、できるだけ低減することが好ましいが、過度の低減は精錬コスト(refining cost)を高騰させる。このため、Pは実質的に悪影響のない0.1%以下に限定した。なお、好ましくは0.05%以下である。
 S:0.01%以下
 Sは、Pと同様に本発明では不純物として、加工性への悪影響を回避するため、できるだけ低減することが好ましいが、過度の低減は精錬コストを高騰させるため、上限は0.01%とした。なお、好ましくは0.005%以下である。
P: 0.1% or less P is preferably reduced as much as possible as an impurity in the present invention in order to avoid adverse effects on workability, but excessive reduction raises the refining cost. For this reason, P was limited to 0.1% or less, which has substantially no adverse effect. In addition, Preferably it is 0.05% or less.
S: 0.01% or less S is an impurity in the present invention, as in P, and is preferably reduced as much as possible in order to avoid adverse effects on workability. However, excessive reduction increases the refining cost, so Was 0.01%. In addition, Preferably it is 0.005% or less.
 Al:0.01~0.1%
 Alは、脱酸剤(deoxidizing agent)として作用する元素であり、このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.1%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなる。このため、Alは0.01~0.1%の範囲に限定した。なお、好ましくは0.01~0.08%である。
Al: 0.01 to 0.1%
Al is an element that acts as a deoxidizing agent, and in order to obtain such an effect, the content of 0.01% or more is required. On the other hand, even if the content exceeds 0.1%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, Al was limited to the range of 0.01 to 0.1%. In addition, Preferably it is 0.01 to 0.08%.
 N:0.005%以下
 Nは、鋼を強化し、成形性を低下させる元素であり、不純物としてできる限り低減することが好ましいが、過度の低減は精錬コストを高騰させる。このため、Nは実質的に悪影響のない0.005%以下に限定した。なお、好ましくは0.004%以下である。
 上記した成分が基本の成分であるが、基本の組成に加えてさらに、必要に応じて、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種、を選択して含有することができる。
N: 0.005% or less N is an element that strengthens steel and lowers formability and is preferably reduced as an impurity as much as possible. However, excessive reduction increases the refining cost. For this reason, N was limited to 0.005% or less with substantially no adverse effect. In addition, Preferably it is 0.004% or less.
The above components are basic components. In addition to the basic composition, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05% or less, B: one or more selected from 0.0050% or less, And / or Ca: 0.0050% or less, REM: One or two selected from 0.0050% or less can be selected and contained.
 Cu、Ni、Cr、Mo、Nb、Ti、W、Bは、いずれも、鋼の強度を増加させる元素であり、必要に応じて選択して1種または2種以上含有できる。
 Cu:1.0%以下
 Cuは、鋼の強度を増加させるとともに、耐食性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、1.0%を超える含有は、熱間加工性(hot workability)を低下させる。このため、含有する場合は、Cuは1.0%以下に限定することが好ましい。なお、より好ましくは0.08~0.5%である。
Cu, Ni, Cr, Mo, Nb, Ti, W, and B are all elements that increase the strength of the steel, and can be selected as necessary and contained in one or more.
Cu: 1.0% or less Cu is an element having an action of increasing the strength of steel and improving corrosion resistance, and can be contained as necessary. Such an effect is recognized with a content of 0.05% or more. However, a content exceeding 1.0% reduces the hot workability. For this reason, when it contains, it is preferable to limit Cu to 1.0% or less. More preferably, it is 0.08 to 0.5%.
 Ni:1.0%以下
 Niは、鋼の強度を増加させるとともに、耐食性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、Niは高価な元素であり、1.0%を超える多量の含有は、材料コストを高騰させる。このため、含有する場合は、Niは1.0%以下に限定することが好ましい。なお、より好ましくは0.08~0.5%である。
Ni: 1.0% or less Ni is an element that has the effect of increasing the strength of steel and improving the corrosion resistance, and can be contained if necessary. Such an effect is recognized at a content of 0.05% or more, but Ni is an expensive element, and a large content exceeding 1.0% raises the material cost. For this reason, when it contains, it is preferable to limit Ni to 1.0% or less. More preferably, it is 0.08 to 0.5%.
 Cr:0.5%以下
 Crは、焼入れ性向上を介して鋼の強度を増加させるとともに、耐食性を向上させる作用を有する元素で、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、0.5%を超えて含有すると、加工性を低下させる。このため、含有する場合は、Crは0.5%以下に限定することが好ましい。なお、より好ましくは0.05~0.4%である。
Cr: 0.5% or less Cr is an element having an effect of increasing the strength of steel through improving hardenability and improving corrosion resistance, and can be contained as necessary. Such an effect is recognized with a content of 0.05% or more, but if it exceeds 0.5%, the workability is lowered. For this reason, when it contains, it is preferable to limit Cr to 0.5% or less. More preferably, it is 0.05 to 0.4%.
 Mo:0.5%以下
 Moは、焼入れ性向上に加えて、析出強化(precipitation strengthening)により鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、0.5%を超えて含有すると、延性(ductility)が低下するとともに、材料コストの高騰を招く。このため、含有する場合は、Moは0.5%以下に限定することが好ましい。なお、より好ましくは0.1~0.4%である。
Mo: 0.5% or less Mo is an element having an action of increasing the strength of steel by precipitation strengthening in addition to improving hardenability, and can be contained as necessary. Such an effect is recognized with a content of 0.05% or more. However, when the content exceeds 0.5%, the ductility is lowered and the material cost is increased. For this reason, when it contains, it is preferable to limit Mo to 0.5% or less. More preferably, the content is 0.1 to 0.4%.
 Nb:0.05%以下
 Nbは、結晶粒を微細化するとともに、析出強化を介して鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.005%以上の含有で認められるが、0.05%を超えて含有すると、延性が低下する。このため、含有する場合は、Nbは0.05%以下に限定することが好ましい。なお、より好ましくは0.008~0.03%である。
Nb: 0.05% or less Nb is an element having an effect of refining crystal grains and increasing the strength of steel through precipitation strengthening, and can be contained as necessary. Such an effect is recognized at a content of 0.005% or more, but when it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit Nb to 0.05% or less. More preferably, the content is 0.008 to 0.03%.
 Ti:0.05%以下
 Tiは、結晶粒を微細化するとともに、析出強化を介して鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.005%以上の含有で認められるが、0.05%を超えて含有すると、延性が低下する。このため、含有する場合は、Tiは0.05%以下に限定することが好ましい。なお、より好ましくは0.008~0.03%である。
Ti: 0.05% or less Ti is an element having an effect of refining crystal grains and increasing the strength of steel through precipitation strengthening, and can be contained as necessary. Such an effect is recognized at a content of 0.005% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit Ti to 0.05% or less. More preferably, the content is 0.008 to 0.03%.
 W:0.05%以下
 Wは、析出強化を介して鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.01%以上の含有で認められるが、0.05%を超えて含有すると、延性が低下する。このため、含有する場合は、Wは0.05%以下に限定することが好ましい。なお、より好ましくは0.01~0.03%である。
W: 0.05% or less W is an element having an action of increasing the strength of steel through precipitation strengthening and can be contained as necessary. Such an effect is recognized at a content of 0.01% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit W to 0.05% or less. More preferably, the content is 0.01 to 0.03%.
 B:0.0050%以下
 Bは、焼入れ性向上を介してマルテンサイト分率を所定の範囲内に調整するとともに、鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.0005%以上の含有で認められるが、0.0050%を超える含有は、効果が飽和し含有量に見合う効果が期待できないため、経済的に不利となる。このため、含有する場合は、Bは0.0050%以下に限定することが好ましい。なお、より好ましくは0.001~0.003%である。
B: 0.0050% or less B is an element having an action of adjusting the martensite fraction within a predetermined range through improvement of hardenability and increasing the strength of steel, and can be contained as necessary. Such an effect is recognized with a content of 0.0005% or more, but a content exceeding 0.0050% is economically disadvantageous because the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, when it contains, it is preferable to limit B to 0.0050% or less. More preferably, the content is 0.001 to 0.003%.
 Ca:0.0050%以下、REM:0.0050%以下
 Ca、REMはいずれも、硫化物系介在物の形態制御(morphological control)を介して延性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果はCa、REMともに0.0020%以上の含有で認められるが、0.0050%を超える含有は、介在物量が増加しすぎて、鋼の清浄度(cleanness)が低下する。このため、含有する場合は、Ca、REMはいずれも0.0050%以下に限定することが好ましい。なお、より好ましくは0.0020~0.0040%である。
 上記した成分以外の残部は、Feおよび不可避的不純物である。
Ca: 0.0050% or less, REM: 0.0050% or less Both Ca and REM are elements having an effect of improving ductility through the morphological control of sulfide inclusions. Can be contained depending on the case. Such an effect is recognized when the content of Ca and REM is 0.0020% or more. However, when the content exceeds 0.0050%, the amount of inclusions is excessively increased and the cleanness of the steel is decreased. For this reason, when it contains, it is preferable to limit both Ca and REM to 0.0050% or less. More preferably, the content is 0.0020 to 0.0040%.
The balance other than the above components is Fe and inevitable impurities.
 つぎに、本発明鋼管の組織限定理由について説明する。
 本発明鋼管は、体積率で20~60%のマルテンサイト相を含み、残部フェライト相からなる二相組織を有する。このような組織とすることにより、所望の高強度と、優れた加工性、優れた塗装焼付け硬化性を兼備することが可能となる。
Next, the reason for limiting the structure of the steel pipe of the present invention will be described.
The steel pipe of the present invention has a two-phase structure including a martensite phase with a volume ratio of 20 to 60% and the remaining ferrite phase. By setting it as such a structure | tissue, it becomes possible to combine desired high intensity | strength, the outstanding workability, and the outstanding paint bake hardenability.
 マルテンサイト相が、20体積%未満では、フェライト相主体の組織となり所望の高強度を達成できない。一方、60体積%を超えてマルテンサイト相が多くなると、マルテンサイト主体の組織となり所望の加工性を確保できなくなる。このため、マルテンサイト相の組織分率を体積率で20~60%の範囲に限定した。好ましくは体積率で40~55%である。 If the martensite phase is less than 20% by volume, it becomes a structure mainly composed of a ferrite phase and a desired high strength cannot be achieved. On the other hand, when the amount of martensite phase exceeds 60% by volume, it becomes a structure mainly composed of martensite and desired workability cannot be ensured. For this reason, the structure fraction of the martensite phase is limited to a range of 20 to 60% by volume. The volume ratio is preferably 40 to 55%.
 つぎに、本発明鋼管の好ましい製造方法について説明する。
 本発明では、鋼素材に、熱延工程と、冷延工程と、焼鈍工程とを施して鋼管用素材とし、ついで該鋼管用素材に、造管工程を施して電縫鋼管とする。
 使用する鋼素材の製造方法は、特に限定されないが、上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法あるいは造塊−圧延法でスラブ等の鋼素材とすることが好ましい。
Below, the preferable manufacturing method of this invention steel pipe is demonstrated.
In the present invention, the steel material is subjected to a hot rolling process, a cold rolling process, and an annealing process to obtain a steel pipe material, and then the steel pipe material is subjected to a pipe making process to obtain an electric-welded steel pipe.
Although the manufacturing method of the steel raw material to be used is not particularly limited, the molten steel having the above-described composition is melted by a conventional melting method such as a converter, and steel such as a slab by a continuous casting method or an ingot-rolling method. It is preferable to use a raw material.
 得られた鋼素材は、ついで熱間圧延を施されて熱延板とする熱延工程を施される。
 得られた鋼素材は、冷却後再加熱するか、あるいは鋼素材が所定量の熱を保有している場合には、再加熱することなくそのまま、直送して熱間圧延を行なってもよい。再加熱する場合には、加熱温度は1000~1250℃とすることが好ましい。再加熱時の加熱温度が1000℃未満では、変形抵抗が高く圧延機に与える負荷が大きくなりすぎて、圧延が困難となる場合がある。一方、1250℃を超えて加熱すると、結晶粒の粗大化が進行し、延性等の低下が著しくなる。
The obtained steel material is then subjected to a hot rolling process that is hot-rolled to form a hot-rolled sheet.
The obtained steel material may be reheated after cooling, or when the steel material retains a predetermined amount of heat, it may be directly sent and hot rolled without reheating. In the case of reheating, the heating temperature is preferably 1000 to 1250 ° C. If the heating temperature at the time of reheating is less than 1000 ° C., the deformation resistance is high and the load applied to the rolling mill becomes too large, and rolling may be difficult. On the other hand, when the heating exceeds 1250 ° C., the coarsening of crystal grains proceeds and the ductility and the like are significantly reduced.
 熱間圧延は、粗圧延(rough rolling)および仕上圧延(finish rolling)とからなる。粗圧延の条件は所定の寸法形状のシートバー(sheet bar)を得ることができればよく、とくにその条件は限定されない。また、仕上圧延は、仕上圧延終了温度が被圧延材である鋼帯のAr変態点以上となる圧延とし、仕上圧延終了後に、巻取温度:500~700℃で巻き取ることとする。
 仕上圧延終了温度がAr変態点未満では、仕上圧延が(α+γ)の二相域圧延(rolling at two−phase region)となり、著しく粗大な結晶粒と微細な結晶粒とが混在する混粒組織(mixed grain structure)となる。このため、その後に冷延工程−焼鈍工程を施しても、良好な加工性を確保できなかったり、プレス成形(press forming)、曲げ加工(bending work)等の加工に際して肌荒れが生じたりする。このため、熱間圧延の仕上圧延終了温度をAr変態点以上に限定した。また、巻取温度が、500℃未満では、冷却中に硬質相(hard phase)が生成するため、冷間圧延時の圧延負荷(roll load)が大きくなり、生産性(productivity)が低下する。一方、700℃を超えて高温となると、未変態オーステナイト(non−transformed austenite)がパーライト(pearlite)に変態するため、加工性が低下する。このため、巻取温度は500~700℃の範囲に限定した。なお、好ましくは650℃以下である。
Hot rolling consists of rough rolling and finish rolling. The rough rolling conditions are not particularly limited as long as a sheet bar having a predetermined size and shape can be obtained. In the finish rolling, the finish rolling finish temperature is higher than the Ar 3 transformation point of the steel strip as the material to be rolled, and the finish rolling is taken up at a winding temperature of 500 to 700 ° C.
When the finish rolling finish temperature is less than the Ar 3 transformation point, the finish rolling is a rolling at two-phase region (α + γ), and a mixed grain structure in which extremely coarse crystal grains and fine crystal grains are mixed. (Mixed grain structure). For this reason, even if it performs a cold rolling process-annealing process after that, favorable workability cannot be ensured, or rough skin arises at the time of processing, such as press forming (press forming) and bending work (bending work). For this reason, the finish rolling finishing temperature of the hot rolling is limited to the Ar 3 transformation point or higher. In addition, when the coiling temperature is less than 500 ° C., a hard phase is generated during cooling, so that a rolling load at the time of cold rolling is increased and productivity is decreased. On the other hand, when the temperature is higher than 700 ° C., non-transformed austenite is transformed into pearlite, so that workability is deteriorated. For this reason, the coiling temperature is limited to a range of 500 to 700 ° C. In addition, Preferably it is 650 degrees C or less.
 ついで、熱延工程を経て得られた熱延板は、酸洗処理を施され、ついで冷間圧延を行って冷延板とする冷延工程を施される。冷間圧延の圧下率などの冷延工程の条件はとくに規定されない。
 得られた冷延板は、ついで、焼鈍工程を施され、冷延焼鈍板とされる。
 焼鈍工程は、本発明では所望の加工性と所望の塗装焼付け硬化性(BH性)を確保するうえで重要な工程である。焼鈍工程は、連続焼鈍ラインを利用することが好ましい。
Next, the hot-rolled sheet obtained through the hot-rolling process is subjected to pickling treatment, and then subjected to a cold-rolling process in which cold rolling is performed to obtain a cold-rolled sheet. Conditions for the cold rolling process such as cold rolling reduction are not particularly specified.
The obtained cold-rolled sheet is then subjected to an annealing process to form a cold-rolled annealed sheet.
In the present invention, the annealing step is an important step in securing desired workability and desired paint bake hardenability (BH property). The annealing process preferably uses a continuous annealing line.
 焼鈍工程は、冷延板に、Ac変態点~Ac変態点の範囲の二相温度域の温度に、加熱し均熱保持したのち、600~750℃の範囲の温度まで平均冷却速度10℃/s以上で冷却(平均冷却速度1)した後、600~750℃の範囲の温度から室温まで、平均で、500℃/s以上の冷却速度で冷却する急冷処理(平均冷却速度2)を施し、ついで、150~300℃の温度範囲に再加熱する焼戻処理を施し、冷延焼鈍板とする工程とする。なお、所望の高強度およびBH特性を安定して確保するためには、加熱保持から急冷開始温度までの冷却速度(平均冷却速度1)は15℃/s以上とすることが好ましく、急冷処理における平均冷却速度(平均冷却速度2)は800℃/s以上とすることが好ましい。より好ましくは1000℃/s以上である。さらに好ましくは、1100℃/s以上である。 In the annealing process, the cold-rolled sheet is heated to a temperature in the two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point, and is kept soaked, and then the average cooling rate of 10 to a temperature in the range of 600 to 750 ° C. After cooling at ℃ / s or higher (average cooling rate 1), rapid cooling treatment (average cooling rate 2) is performed at a cooling rate of 500 ° C / s or higher on average from a temperature in the range of 600 to 750 ° C to room temperature. Next, a tempering treatment is performed to reheat to a temperature range of 150 to 300 ° C. to obtain a cold-rolled annealed plate. In order to stably secure desired high strength and BH characteristics, the cooling rate (average cooling rate 1) from the heating and holding to the rapid cooling start temperature is preferably 15 ° C./s or more, The average cooling rate (average cooling rate 2) is preferably 800 ° C./s or more. More preferably, it is 1000 ° C./s or more. More preferably, it is 1100 degrees C / s or more.
 加熱し均熱保持する温度が、Ac変態点~Ac変態点の範囲の二相温度域(two−phase temperature region)を外れると、その後の急冷(rapid cooling)で、所望の組織分率の(フェライト+マルテンサイト)組織を確保できなくなる。また、加熱保持温度から急冷開始温度までの冷却速度(平均冷却速度1)が10℃/s未満では、フェライトとオーステナイトのC量の分配が進行し、BH特性に寄与すると考えられるフェライト中の固溶C量が少なくなるため、所望のBH特性が得られなくなる。また、急冷開始温度が、750℃~600℃の範囲を外れると、所望の組織分率の(フェライト+マルテンサイト)組織を得ることができなくなる。急冷開始温度が、750℃を超えて高くなると延性が低下し、600℃未満では所望の高強度が確保できなくなる。なお、上記した温度で均熱保持する時間は、30s以上とすることが望ましい。 When the temperature at which heating and soaking is maintained is out of the two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point, the desired tissue fraction is obtained by rapid cooling thereafter. The (ferrite + martensite) structure cannot be secured. Further, when the cooling rate from the heating holding temperature to the rapid cooling start temperature (average cooling rate 1) is less than 10 ° C./s, the distribution of the C amount of ferrite and austenite proceeds, and the solid content in the ferrite that is considered to contribute to the BH characteristics is increased. Since the amount of dissolved C is reduced, desired BH characteristics cannot be obtained. On the other hand, when the rapid cooling start temperature is out of the range of 750 ° C. to 600 ° C., it becomes impossible to obtain a (ferrite + martensite) structure having a desired structure fraction. If the quenching start temperature is higher than 750 ° C., the ductility is lowered, and if it is lower than 600 ° C., a desired high strength cannot be ensured. In addition, it is desirable that the soaking time at the above-described temperature is 30 seconds or longer.
 また、600~750℃の範囲の温度から室温までの冷却速度(平均冷却速度2)が、平均で、500℃/s未満では、マルテンサイト変態量が少なく、所望の組織分率の(フェライト+マルテンサイト)組織とすることができず、所望の高強度を確保できなくなることに加えて、BH特性に寄与すると考えられるフェライト中の固溶C量が少なくなるため、所望のBH量が100MPa以上が得られなくなる。なお、急冷処理の冷却速度は、急冷開始温度から200℃の間の平均とする。
 なお、急冷処理の方法については、とくに限定されないが、鋼板幅方向、長手方向の材質ばらつきを抑制するという観点からは、噴流水(jet flow water)を用いた冷却とすることが好ましい。
 さらに、本発明の焼鈍工程(annealing process)では、急冷処理後、さらに靭性向上を目的として、150~300℃の温度範囲に再加熱する焼戻処理(tempering treatment)を行う。焼戻温度が150℃未満では、靭性改善効果が期待できない。
Further, when the cooling rate from the temperature in the range of 600 to 750 ° C. to room temperature (average cooling rate 2) is less than 500 ° C./s on average, the amount of martensite transformation is small, and the desired structure fraction (ferrite + (Martensite) structure cannot be obtained and desired high strength cannot be ensured. In addition, the amount of dissolved C in ferrite that is considered to contribute to BH characteristics decreases, so the desired BH amount is 100 MPa or more. Cannot be obtained. In addition, the cooling rate of the rapid cooling treatment is an average between the rapid cooling start temperature and 200 ° C.
In addition, although it does not specifically limit about the method of a rapid cooling process, From the viewpoint of suppressing the material dispersion | variation in the steel plate width direction and a longitudinal direction, it is preferable to set it as the cooling using jet flow water (jet flow water).
Furthermore, in the annealing process of the present invention, a tempering treatment (tempering treatment) for reheating to a temperature range of 150 to 300 ° C. is performed after the rapid cooling treatment for the purpose of further improving the toughness. If the tempering temperature is less than 150 ° C., the toughness improving effect cannot be expected.
 一方、300℃を超えると低温焼戻脆性(low−temperature tempering brittleness)により延性が低下する。このため、再加熱の温度範囲は150~300℃に限定した。
 得られた冷延焼鈍板には、さらに必要に応じて、調質圧延(skinpass rolling)をおこなってもよい。その際、調質圧下率(rolling reduction of skinpass rolling)は、0.2%以上1.0%以下とすることが好ましい。調質圧下率が0.2%未満では、形状矯正効果が得られない。一方、1.0%を超えると、伸びの劣化が著しくなる。
On the other hand, when it exceeds 300 ° C., the ductility is lowered due to low-temperature tempering brittleness. For this reason, the temperature range of reheating was limited to 150 to 300 ° C.
The obtained cold-rolled annealed sheet may be further subjected to temper rolling if necessary. At this time, it is preferable that the rolling reduction of skinpass rolling is 0.2% or more and 1.0% or less. If the temper reduction ratio is less than 0.2%, the shape correction effect cannot be obtained. On the other hand, if it exceeds 1.0%, the deterioration of elongation becomes remarkable.
 上記した工程を経た冷延焼鈍板(冷延焼鈍鋼帯)を鋼管用素材とし、ついで、該鋼管用素材に造管工程を施して、電縫鋼管とする。造管工程は、鋼管用素材を連続的に成形し略円筒状のオープン管とし、該オープン管を電縫溶接して電縫管とする工程である。
 本発明では、造管工程における成形を、ケージロール方式(cage roll method)によるロール成形(roll forming method)とする。ケージロール方式によるロール成形は、ケージロールと呼ばれる小型ロールを、管外面となる側に並べて、滑らかに成形する方式のロール成形をいう。なお、ケージロール方式によるロール成形のなかでも、CBR方式(Chance free Bulge Roll method)のロール成形とすることが好ましい。この方式による成形では、成形時に帯板へ付加される歪を最小限に抑えることができ、加工硬化(work hardening)による材料特性劣化を抑制できる。
The cold-rolled annealed plate (cold-rolled annealed steel strip) that has undergone the above-described process is used as a steel pipe material, and then the steel pipe material is subjected to a pipe making process to obtain an electric-welded steel pipe. The pipe making process is a process in which a steel pipe material is continuously formed to form a substantially cylindrical open pipe, and the open pipe is electro-welded to form an electric-welded pipe.
In the present invention, the forming in the pipe making process is a roll forming method using a cage roll method. Roll forming by the cage roll method refers to roll forming of a method in which small rolls called cage rolls are lined up on the tube outer surface side and formed smoothly. In addition, among the roll forming by the cage roll method, the CBR method (Chance free Bulge Roll method) is preferable. In molding by this method, distortion applied to the band plate during molding can be minimized, and deterioration of material properties due to work hardening can be suppressed.
 CBR方式のロール成形を採用した電縫鋼管の製造設備の一例を図1に示す。CBR方式のロール成形は、帯板1の両エッジ部をエッジベンドロール(edge bend roll)2により予め成形したのち、センターベンドロール(center bend roll)3とケージロール4とにより、帯板中央部を曲げ成形し、縦長の小判形(vertically long oval figure)の素管をつくり、ついでフィンパスロール(fin pass roll)5により、管円周方向の4ヶ所をいったんオーバーベンド(over bend)したのち、縮径圧縮(reducing)することにより管サイド部の張出し成形(stretch forming)とオーバーベンド部の曲げ戻し成形(bend and return forming)を行い円形素管とする成形方法である(川崎製鉄技報、vol.32(2000)、pp49~53参照)。なお、CBR方式のロール成形法は、従来のBD(ブレークダウン(breakdown))方式に比べて、素材(帯板)に付与される歪が少なく、さらに管円周方向に付与される歪のばらつきが小さいという特徴を有している。このようにして得られた円形素管をスクイズロール(squeeze roll)7で押圧しながら、突合せ部を溶接手段(高周波抵抗溶接(high−frequency resistance welding))6により接合し、電縫鋼管8とする。 An example of an ERW steel pipe manufacturing facility employing CBR roll forming is shown in FIG. In CBR roll forming, both edge portions of the strip 1 are pre-formed with an edge bend roll 2 and then a center bend roll 3 and a cage roll 4 are used to form a central portion of the strip. Was bent and formed into a vertically long oval figured tube, and then four bends in the circumferential direction of the pipe were once over-bended by a fin pass roll 5. This is a forming method of forming a circular element pipe by performing stretch forming of the tube side part and bending and returning of the overbend part (bend and return forming) by reducing the diameter. Kawasaki Steel Technical Report, vol.32 (2000), see pp49 ~ 53). Note that the roll forming method of the CBR method has less strain applied to the material (band plate) than the conventional BD (breakdown) method, and further, variation in strain applied in the tube circumferential direction. Is small. While pressing the circular element tube thus obtained with a squeeze roll 7, the butt portion is joined by welding means (high-frequency resistance welding) 6, and an electric-welded steel pipe 8 and To do.
 上記したような製造方法で得られた、高強度を有し加工性に優れ、かつ塗装焼付け硬化性に優れた鋼板(鋼管素材)を用いて、上記したような造管工程で造管することにより、造管時に付加される歪を最小限に低減することができ加工硬化を抑制して、優れた加工性を有し、さらに部材となった後に、優れた衝撃吸収特性を確保することが可能な、高強度電縫鋼管を製造できる。 Using a steel plate (steel pipe material) having high strength, excellent workability, and excellent paint bake hardenability obtained by the manufacturing method as described above, pipes are manufactured in the pipe forming process as described above. Therefore, it is possible to minimize distortion applied during pipe making, suppress work hardening, have excellent workability, and further ensure excellent shock absorption characteristics after becoming a member. Possible to produce high strength ERW steel pipe.
 得られた高強度電縫鋼管は、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満であり、予歪:2%付与したのち170℃×10minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる鋼管である。
 電縫鋼管の管軸方向の伸びが10%未満では、管としての加工性が低下し、所望の形状への成形が難しくなる。なお、好ましくは伸びは12%以上である、また、電縫鋼管の降伏比が90%を超えると、管としての加工性が低下し、所望の形状への成形が難しくなる。なお、好ましくは降伏比は85%以下である。
 また、塗装焼付け処理後の電縫鋼管のBH量が100MPa未満では、衝突時に吸収できるエネルギーが少なくなり、衝撃部材として機能を満足できなくなる。なお好ましくはBH量は110MPa以上である。また、本発明電縫鋼管の製造に当たり採用した造管工程では、造管時に付加される歪を最小限に低減することができ、さらに管円周方向に付与される歪のばらつきも小さくなるため、本発明電縫鋼管における、管円周方向各位置でのBH量のばらつき(最大値と最小値との差)は小さく、電縫部を除く管円周方向各位置でのBH量は、均一で、100~130MPaの範囲内とすることができる。また、電縫鋼管の降伏比が90%未満であると、衝突時に吸収できるエネルギーが少なくなり、衝撃部材として機能を満足できなくなる。
The obtained high-strength ERW steel pipe has a tensile strength TS of 1180 MPa or more, an elongation El in the pipe axis direction of 10% or more, a yield ratio of less than 90%, and a pre-strain: 2%, and then 170 ° C. × 10 min. This is a steel pipe having an increase in strength (BH amount) of 100 MPa or more and a yield ratio of 90% or more after the coating baking process for performing the heat treatment.
If the elongation in the tube axis direction of the electric resistance welded steel pipe is less than 10%, the workability as a pipe is lowered and it becomes difficult to form a desired shape. The elongation is preferably 12% or more, and if the yield ratio of the ERW steel pipe exceeds 90%, the workability as a pipe is lowered and it becomes difficult to form a desired shape. The yield ratio is preferably 85% or less.
Moreover, if the BH amount of the ERW steel pipe after the paint baking process is less than 100 MPa, the energy that can be absorbed at the time of collision decreases, and the function as an impact member cannot be satisfied. Preferably, the amount of BH is 110 MPa or more. In addition, in the pipe making process adopted in the production of the electric resistance welded steel pipe of the present invention, strain applied during pipe making can be reduced to a minimum, and further, variation in strain applied in the pipe circumferential direction is reduced. In the ERW steel pipe of the present invention, the variation in the BH amount at each position in the pipe circumferential direction (difference between the maximum value and the minimum value) is small, and the BH amount at each position in the pipe circumferential direction excluding the ERW is uniform. Therefore, it can be set within the range of 100 to 130 MPa. Further, if the yield ratio of the ERW steel pipe is less than 90%, the energy that can be absorbed at the time of collision decreases, and the function as an impact member cannot be satisfied.
 なお、本発明では、塗装焼付け処理の熱処理条件を、170℃×10minの熱処理としたが、この条件は、塗装焼付け処理後に100MPa以上の強度増加量(BH量)が得られる最低の熱処理条件であり、これ以外でも好ましい条件であれば、本発明電縫鋼管は、塗装焼付け処理後の強度増加量(BH量)が、100MPa以上を示す。塗装焼付け処理後に100MPa以上の強度増加量(BH量)が得られる熱処理条件としては、170~250℃の範囲の加熱温度で、10~30minの範囲の保持時間とすることが好ましい。加熱温度が170℃未満では、所望の強度増加をもたらすに必要な固溶Cが、転位に拡散し、転位を十分に固着するまでに至らないため、所望の塗装焼付け処理後の強度増加量(BH量)を確保できない。一方、250℃を超えて過度に高温とすると、生産性を低下するうえ、青熱脆性域に加熱される恐れがあり、材質が劣化する場合がある。 In the present invention, the heat treatment condition of the coating baking process is a heat treatment of 170 ° C. × 10 min. This condition is the lowest heat treatment condition that provides an increase in strength (BH amount) of 100 MPa or more after the coating baking process. There are other preferable conditions, and the ERW steel pipe of the present invention has a strength increase amount (BH amount) after the paint baking process of 100 MPa or more. As a heat treatment condition for obtaining a strength increase amount (BH amount) of 100 MPa or more after the coating baking process, it is preferable that the heating temperature is in the range of 170 to 250 ° C. and the holding time is in the range of 10 to 30 minutes. If the heating temperature is less than 170 ° C., the solid solution C necessary to bring about a desired increase in strength does not diffuse until dislocations are sufficiently fixed, so that the amount of increase in strength after the desired baking treatment ( BH amount) cannot be secured. On the other hand, if the temperature exceeds 250 ° C. and the temperature is excessively high, productivity is lowered and the material may be deteriorated because it may be heated to a blue-hot brittle region.
 また、保持時間が10min未満と短い場合には、拡散時間が不足し、必要な量の固溶Cが、転位に到達することができないため、所望の塗装焼付け処理後の強度増加量(BH量)を確保できない。一方、保持時間が30minを超えて長くなると、生産性が低下する。好ましくは25min以下である。 In addition, when the holding time is as short as less than 10 min, the diffusion time is insufficient, and the required amount of solute C cannot reach dislocation, so that the amount of increase in strength after the desired baking process (BH amount) ) Cannot be secured. On the other hand, when the holding time is longer than 30 min, the productivity is lowered. Preferably it is 25 min or less.
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材)とした。これらスラブ(鋼素材)に、表2に示す条件の熱延工程を施し、熱延板(板厚2.4~3.0mm)としたのち、酸洗し、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に表2に示す条件の焼鈍工程を施し、冷延焼鈍板(板厚1.2~1.8mm)とし、鋼管素材とした。得られた鋼管素材から試験片を採取して、組織観察、引張試験を実施した。試験方法は次のとおりとした。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method. These slabs (steel materials) are subjected to a hot rolling process under the conditions shown in Table 2 to form hot rolled sheets (thickness 2.4 to 3.0 mm), and then pickled and cold rolled on the hot rolled sheets. A cold-rolled step of forming a cold-rolled plate and an annealing step under the conditions shown in Table 2 were applied to the cold-rolled plate to obtain a cold-rolled annealed plate (plate thickness 1.2 to 1.8 mm), which was a steel pipe material. A specimen was collected from the obtained steel pipe material, and a structure observation and a tensile test were performed. The test method was as follows.
 (1)組織観察(observation)
 得られた鋼管素材から、組織観察用試験片を採取し、圧延方向断面を研磨し、ナイタール液(nital)を用いて腐食して、走査型電子顕微鏡(scanning electron microscope)(倍率:2000倍)を用い組織を観察し、各10視野以上撮像し、画像解析装置(image analyzer)を利用して、フェライト、マルテンサイト等組織の種類を同定し、各相の組織分率(体積率)を算出した。
(1) Tissue observation
From the obtained steel pipe material, a specimen for structure observation was collected, the cross section in the rolling direction was polished, corroded using a nital liquid, and a scanning electron microscope (magnification: 2000 times). Observe the tissue using 10 images, image more than 10 fields of view, use an image analyzer to identify the type of tissue such as ferrite and martensite, and calculate the fraction of each phase (volume fraction) did.
 (2)引張試験(tensile test)
 得られた鋼管素材から、JIS Z 2201の規定に準拠して、引張方向が圧延方向となるようにJIS 12号引張試験片(標点距離:50mm)を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、0.2%耐力YS(MPa)、引張強さTS(MPa)、伸びEl(%)を求め、降伏比YRを算出し、強度と加工性を評価した。
(2) Tensile test
In accordance with JIS Z 2201, the JIS No. 12 tensile test piece (marking distance: 50 mm) is collected from the obtained steel pipe material in accordance with the JIS Z 2201 standard, and conforms to the JIS Z 2241 standard. Then, a tensile test was performed, 0.2% yield strength YS (MPa), tensile strength TS (MPa), and elongation El (%) were obtained, yield ratio YR was calculated, and strength and workability were evaluated.
 得られた結果を表3に示す。
 得られた鋼管素材に、CBR方式のロール成形による成形を施し、略円筒状のオープン管とした。ついで、スクイズロールで突き合せ部を押圧しながら、高周波抵抗溶接により該突合せ部を電縫溶接し、電縫鋼管(大きさ:外径48.6mmφ×肉厚1.2~1.8mm)とした。一部の鋼管では、造管工程における成形をBD方式による成形とした。
The obtained results are shown in Table 3.
The obtained steel pipe material was formed by CBR roll forming to obtain a substantially cylindrical open pipe. Next, while pressing the butt portion with a squeeze roll, the butt portion is electro-welded by high-frequency resistance welding, and an ERW steel pipe (size: outer diameter 48.6 mmφ × wall thickness 1.2 to 1.8 mm) did. For some steel pipes, the forming in the pipe making process is formed by the BD method.
 得られた電縫鋼管について、組織観察、引張試験、および塗装焼付け処理試験を実施し、組織、引張特性、塗装焼付け硬化特性を評価した。試験方法は次のとおりとした。
 (1)組織観察
 得られた鋼管から、組織観察用試験片を採取し、管軸方向断面を研磨し、ナイタール液を用いて腐食して、走査型電子顕微鏡(倍率:2000倍)を用い組織を観察し、各10視野以上撮像し、画像解析装置を利用して、フェライト、マルテンサイト等の組織の種類を同定し、10視野以上の各相の平均の組織分率(体積率)を算出した。
The obtained ERW steel pipe was subjected to a structure observation, a tensile test, and a paint baking treatment test to evaluate the structure, tensile characteristics, and paint bake hardening characteristics. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained steel pipe, the cross section in the axial direction of the pipe is polished, corroded using a nital liquid, and the structure is obtained using a scanning electron microscope (magnification: 2000 times). 10 images or more, and using an image analyzer, identify the type of tissue such as ferrite and martensite, and calculate the average tissue fraction (volume ratio) of each phase over 10 fields of view. did.
 (2)引張試験
 得られた鋼管から、JIS Z 2201の規定に準拠して、引張方向が管軸方向となるようにJIS 12号引張試験片(標点距離:50mm)を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、0.2%耐力YS(MPa)、引張強さTS(MPa)、伸びEl(%)を求め、降伏比YRを算出し、強度と加工性を評価した。
(2) Tensile test JIS No. 12 tensile test piece (marking distance: 50 mm) was sampled from the obtained steel pipe so that the tensile direction was the pipe axis direction in accordance with the provisions of JIS Z 2201. In accordance with the provisions of 2241, a tensile test is carried out, 0.2% yield strength YS (MPa), tensile strength TS (MPa), elongation El (%) are obtained, yield ratio YR is calculated, strength and processing Sex was evaluated.
 (3)塗装焼付け処理試験
 得られた鋼管から、JIS Z 2201の規定に準拠して、引張方向が管軸方向となるようにJIS 12号引張試験片を採取し、ついで予歪として2%の引張歪を付与し、170℃×10minの熱処理を行なう、塗装焼付け処理を施した。なお、引張試験片は、管円周方向各位置(電縫部を0°とし、円周方向に30°ピッチで、計11位置。電縫部は除く)から採取した。
(3) Paint baking test From the obtained steel pipe, in accordance with the provisions of JIS Z 2201, a JIS No. 12 tensile test piece was sampled so that the tensile direction was the pipe axis direction. A coating baking process was performed, in which a tensile strain was applied and a heat treatment was performed at 170 ° C. for 10 minutes. In addition, the tensile test piece was extract | collected from each pipe circumferential direction position (Electric seam part is 0 degree, a total of 11 positions at a 30 degree pitch in the circumferential direction. Excluding ERW part).
 そして、処理済み試験片について引張試験を実施して、塗装焼付け処理後の、0.2%耐力YSおよび引張強さTSを求め、塗装焼付け処理後の降伏比(=(YS/TS)×100(%))を算出した。また、塗装焼付け硬化量(BH量)を、図2に示すように、塗装焼付け処理後の0.2%耐力と2%の引張歪を付与後の強度との差として算出した。BH量は円周方向各位置での最大値と最小値を求めた。なお、YS、TSは円周方向各位置での値の算術平均を求めた。 Then, a tensile test is performed on the treated test piece to obtain 0.2% proof stress YS and tensile strength TS after the paint baking process, and the yield ratio after the paint baking process (= (YS / TS) × 100). (%)) Was calculated. Further, as shown in FIG. 2, the coating bake hardening amount (BH amount) was calculated as a difference between the 0.2% proof stress after the coating baking treatment and the strength after applying the 2% tensile strain. As for the amount of BH, the maximum value and the minimum value at each position in the circumferential direction were obtained. In addition, YS and TS calculated | required the arithmetic average of the value in each position of the circumferential direction.
 得られた結果を表3に示す。 Table 3 shows the obtained results.
 本発明例はいずれも、引張強さTS:1180MPa以上の高強度と、管軸方向の伸びElが10%以上で、かつ管軸方向の降伏比(=(0.2%耐力/引張強さ)×100(%))が90%未満で、優れた加工性と、さらに、2%以上の予歪を付与し、さらに170℃×10minの熱処理(塗装焼付け処理)を施したのちの、管軸方向の降伏比が90%以上で、かつBH量が100MPa以上と、優れた衝撃吸収特性を有する電縫鋼管となっている。さらに本発明例は、円周方向各位置でのBH量のばらつきは少なく、いずれも100~130MPaの範囲内に収まっている。 In all of the examples of the present invention, the tensile strength TS: high strength of 1180 MPa or more, the elongation El in the tube axis direction is 10% or more, and the yield ratio in the tube axis direction (= (0.2% proof stress / tensile strength). ) X 100 (%)) is less than 90%, pipe with excellent workability and 2% or more pre-strain and heat treatment (paint baking process) at 170 ° C x 10 min. The electric resistance welded steel pipe has an excellent impact absorption characteristic with an axial yield ratio of 90% or more and a BH amount of 100 MPa or more. Further, in the example of the present invention, there is little variation in the BH amount at each position in the circumferential direction, and all are within the range of 100 to 130 MPa.
 一方、本発明の範囲を外れる比較例は、強度が不足しているか、加工性が低下しているか、あるいはBH量が不足している。
 なお、さらに塗装焼付け処理条件の影響を調査した。
 表2に示す鋼管No.1(本発明例)から、JIS Z 2201の規定に準拠して、引張方向が管軸方向となるようにJIS 12号引張試験片を採取し、ついで予歪として2%の引張歪を付与し、加熱温度と保持時間を、100~250℃×5~30minの範囲で変化させた熱処理を行う、塗装焼付け処理を施した。なお、引張試験片は、管円周方向各位置(電縫部を0°とし、円周方向に30°ピッチで、計11位置。電縫部は除く)から採取した。そして、塗装焼付け処理済み試験片について引張試験を実施して、塗装焼付け処理後の、0.2%耐力YSおよび引張強さTSを求め、塗装焼付け処理後の降伏比(=(YS/TS)×100(%))を算出した。また、塗装焼付け硬化量(BH量)を、図2に示すように、塗装焼付け処理後の0.2%耐力と2%の引張歪を付与後の強度との差として算出した。BH量は円周方向各位置での最大値と最小値を求めた。なお、YS、TSは円周方向各位置での値の算術平均を求めた。得られた結果を表4に示す。
On the other hand, in the comparative examples that are out of the scope of the present invention, the strength is insufficient, the workability is lowered, or the BH amount is insufficient.
In addition, the influence of paint baking treatment conditions was further investigated.
Steel pipe No. shown in Table 2 In accordance with the provisions of JIS Z 2201, the JIS No. 12 tensile test piece was sampled from No. 1 (invention example) so that the tensile direction would be the tube axis direction, and then 2% tensile strain was applied as a pre-strain. Then, a coating baking process was performed in which a heat treatment was performed by changing the heating temperature and holding time in the range of 100 to 250 ° C. × 5 to 30 min. In addition, the tensile test piece was extract | collected from each pipe circumferential direction position (Electric seam part is 0 degree, a total of 11 positions at a 30 degree pitch in the circumferential direction. Excluding ERW part). Then, a tensile test is performed on the paint baking processed test piece to obtain 0.2% proof stress YS and tensile strength TS after the paint baking process, and the yield ratio after the paint baking process (= (YS / TS) × 100 (%)) was calculated. Further, as shown in FIG. 2, the coating bake hardening amount (BH amount) was calculated as a difference between the 0.2% proof stress after the coating baking treatment and the strength after applying the 2% tensile strain. As for the amount of BH, the maximum value and the minimum value at each position in the circumferential direction were obtained. In addition, YS and TS calculated | required the arithmetic average of the value in each position of the circumferential direction. Table 4 shows the obtained results.
 好ましい塗装焼付け処理の範囲から外れる条件である、熱処理の加熱温度が170℃未満の場合には、生産性の低下を考慮せずに、過剰に長い塗装焼付け処理を行わない限り100MPa以上のBH量を安定して確保できていない。なお、ここでいう過剰に長い塗装焼付け時間とは、30minを超える時間をいう。また、加熱温度が170℃以上であっても、保持時間が10min未満である5minの場合には、100MPa以上のBH量を確保できない場合があり、所望のBH量を安定して確保できていない。 When the heating temperature of the heat treatment is less than 170 ° C., which is a condition outside the range of the preferred paint baking treatment, a BH amount of 100 MPa or more is used unless an excessively long paint baking treatment is performed without considering a decrease in productivity. Is not secured stably. In addition, the excessively long coating baking time here means time exceeding 30 minutes. Further, even when the heating temperature is 170 ° C. or higher, if the holding time is 5 minutes which is less than 10 minutes, a BH amount of 100 MPa or more may not be secured, and the desired BH amount cannot be secured stably. .
1 帯板
2 エッジベンドロール
3 センターベンドロール
4 ケージロール
5 フィンパスロール
6 溶接手段
7 スクイズロール
8 電縫溶接管
9 切断機
10 オープン管
DESCRIPTION OF SYMBOLS 1 Strip 2 Edge bend roll 3 Center bend roll 4 Cage roll 5 Fin pass roll 6 Welding means 7 Squeeze roll 8 Electric resistance welded pipe 9 Cutting machine 10 Open pipe
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (6)

  1.  質量%で、
    C:0.05~0.20%、      Si:0.5~2.0%、
    Mn:1.0~3.0%、        P:0.1%以下、
    S:0.01%以下、         Al:0.01~0.1%、
    N:0.005%以下
    を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、該マルテンサイト相が体積率で20~60%である組織とを有し、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満で、予歪:2%付与したのち170℃×10minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる高強度電縫鋼管。
    % By mass
    C: 0.05 to 0.20%, Si: 0.5 to 2.0%,
    Mn: 1.0 to 3.0%, P: 0.1% or less,
    S: 0.01% or less, Al: 0.01 to 0.1%,
    N: a composition containing 0.005% or less, the balance consisting of Fe and inevitable impurities, and a two-phase structure consisting of a ferrite phase and a martensite phase, wherein the martensite phase is 20 to 60% by volume With a tensile strength TS of 1180 MPa or more, an elongation El in the tube axis direction of 10% or more, a yield ratio of less than 90%, a pre-strain: 2%, and a heat treatment of 170 ° C. × 10 min. A high-strength electric resistance welded steel pipe with a subsequent increase in strength (BH amount) of 100 MPa or more and a yield ratio of 90% or more.
  2.  前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成である請求項1に記載の高強度電縫鋼管。 In addition to the above-mentioned composition, further, by mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less Ti: 0.05% or less, W: 0.05% or less, B: A composition containing one or more selected from 0.0050% or less. ERW steel pipe.
  3.  前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下含有する組成である請求項1または2に記載の高強度電縫鋼管。 The high-strength ERW steel pipe according to claim 1 or 2, further comprising, in addition to the above composition, Ca: 0.0050% or less and REM: 0.0050% or less in terms of mass%.
  4.  鋼素材に、該鋼素材を熱間圧延して熱延板とする熱延工程と、該熱延板に酸洗処理を施し、ついで冷間圧延を施し冷延板とする冷延工程と、該冷延板に、焼鈍処理を施し冷延焼鈍板とする焼鈍工程とを施して鋼管用素材とし、ついで該鋼管用素材に、該鋼管用素材を連続的に成形し略円筒状のオープン管とし、該オープン管を電縫溶接して電縫管とする造管工程を施して電縫鋼管とするにあたり、前記鋼素材を、質量%で、
    C:0.05~0.20%、      Si:0.5~2.0%、
    Mn:1.0~3.0%、        P:0.1%以下、
    S:0.01%以下、         Al:0.01~0.1%、
    N:0.005%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
    前記熱延工程を、仕上圧延終了温度がAr変態点以上で、巻取温度が500~700℃である熱間圧延を施し熱延板とする工程とし、
    前記焼鈍工程を、Ac変態点~Ac変態点の範囲の二相温度域の温度で、均熱保持したのち、600~750℃の範囲の温度まで、平均で冷却速度10℃/s以上の冷却速度で冷却した後、600~750℃の範囲の温度から室温まで500℃/s以上の冷却速度で急冷し、ついで、150~300℃の温度範囲で均熱保持する処理を施す工程とし、
    前記成形を、ケージロール方式のロール成形とし、
    前記電縫鋼管が、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満であり、予歪:2%付与したのち170℃×10minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる鋼管である高強度電縫鋼管の製造方法。
    A hot rolling process in which the steel material is hot-rolled into a hot-rolled sheet on the steel material, a cold-rolling process in which the hot-rolled sheet is subjected to a pickling treatment, and then cold-rolled into a cold-rolled sheet, An annealing process is performed on the cold-rolled sheet to form a cold-rolled annealed sheet to obtain a steel pipe material, and then the steel pipe material is continuously formed on the steel pipe material to form a substantially cylindrical open pipe. When the electric pipe is subjected to a pipe forming process to form an electric resistance welded pipe by electro-welding the open pipe, the steel material is, in mass%,
    C: 0.05 to 0.20%, Si: 0.5 to 2.0%,
    Mn: 1.0 to 3.0%, P: 0.1% or less,
    S: 0.01% or less, Al: 0.01 to 0.1%,
    N: A steel material containing 0.005% or less and having the balance Fe and inevitable impurities,
    The hot rolling step is a step of performing hot rolling at a finish rolling end temperature of Ar 3 transformation point or higher and a coiling temperature of 500 to 700 ° C. to obtain a hot rolled sheet,
    The annealing step is maintained at a two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point, and after that, the average cooling rate is 10 ° C./s or more to a temperature in the range of 600 to 750 ° C. After cooling at a cooling rate of 600 ° C. to 750 ° C., quenching from room temperature to room temperature at a cooling rate of 500 ° C./s or higher, and then performing a process of maintaining soaking at a temperature range of 150 ° C. to 300 ° C. ,
    The molding is a cage roll type roll molding,
    The ERW steel pipe has a tensile strength TS of 1180 MPa or more, an elongation E1 in the pipe axis direction of 10% or more, a yield ratio of less than 90%, a pre-strain: 2%, and then heat treatment at 170 ° C. × 10 min. A method for producing a high-strength ERW steel pipe, which is a steel pipe having a strength increase amount (BH amount) of 100 MPa or more and a yield ratio of 90% or more after paint baking.
  5.  前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成である請求項4に記載の高強度電縫鋼管の製造方法。 In addition to the above-mentioned composition, further, by mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less Ti: 0.05% or less, W: 0.05% or less, B: 0.0050% or less, the composition containing one or more selected from the group consisting of two or more. A method for manufacturing ERW steel pipes.
  6.  前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下含有する組成である請求項4または5に記載の高強度電縫鋼管の製造方法。 The method for producing a high-strength electric resistance welded steel pipe according to claim 4 or 5, wherein, in addition to the composition, the composition further contains, by mass%, Ca: 0.0050% or less and REM: 0.0050% or less.
PCT/JP2011/057928 2010-03-24 2011-03-23 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor WO2011118841A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180015165.0A CN102822374B (en) 2010-03-24 2011-03-23 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
EP11759643.7A EP2551366B1 (en) 2010-03-24 2011-03-23 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
US13/636,857 US20130160889A1 (en) 2010-03-24 2011-03-23 High-strength electric resistance welded steel tube and production method therefor
KR1020127026473A KR101315568B1 (en) 2010-03-24 2011-03-23 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010068499 2010-03-24
JP2010-068499 2010-03-24
JP2011-015076 2011-01-27
JP2011015076 2011-01-27

Publications (1)

Publication Number Publication Date
WO2011118841A1 true WO2011118841A1 (en) 2011-09-29

Family

ID=44673378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057928 WO2011118841A1 (en) 2010-03-24 2011-03-23 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor

Country Status (6)

Country Link
US (1) US20130160889A1 (en)
EP (1) EP2551366B1 (en)
JP (1) JP4957854B1 (en)
KR (1) KR101315568B1 (en)
CN (1) CN102822374B (en)
WO (1) WO2011118841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605240A (en) * 2011-12-09 2012-07-25 首钢总公司 High-strength and high-plasticity dual-phase steel and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170054554A (en) 2011-11-28 2017-05-17 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 High silicon bearing dual phase steels with improved ductility
CN105238995B (en) * 2014-06-11 2017-08-11 鞍钢股份有限公司 A kind of shaped by fluid pressure steel pipe hot rolling acid-cleaning plate and its manufacture method
CN106048153A (en) * 2016-07-20 2016-10-26 柳州科尔特锻造机械有限公司 Rapid heat treatment technology for alloy steel
MX2019002073A (en) * 2016-10-24 2019-07-01 Jfe Steel Corp Electric resistance welded steel pipe for high-strength thin hollow stabilizer and manufacturing method therefor.
KR102043524B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Ultra high strength hot rolled steel, steel tube, steel member, and method for manufacturing thereof
WO2020071522A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Cold-rolled steel sheet
CN109465609A (en) * 2018-12-29 2019-03-15 无锡苏嘉法斯特汽车零配件有限公司 A kind of preparation method of automobile abnormal shape door anti-collision joist welded still pipe
EP3992060A4 (en) * 2019-06-28 2022-09-21 Nippon Steel Corporation Shock absorbing member, method of manufacturing shock absorbing member, and method of manufacturing steel plate for cold plastic working

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122219A (en) 1989-10-06 1991-05-24 Nippon Steel Corp Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength
JPH04276017A (en) * 1991-03-01 1992-10-01 Kobe Steel Ltd Manufacture of door guard bar excellent in collapse resistant property
JP2005163055A (en) 2003-11-28 2005-06-23 Jfe Steel Kk Method for producing high workability and extra-high strength cold-rolled steel sheet excellent in delayed fracture resistant characteristic after forming
JP2006299414A (en) * 2005-03-24 2006-11-02 Jfe Steel Kk Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP2007100114A (en) 2005-09-30 2007-04-19 Jfe Steel Kk Method for producing high-tensile cold-rolled steel sheet
JP2008111162A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Hot-rolled steel sheet for electroseamed steel pipe having high toughness and showing low yield ratio after having been painted, and manufacturing method therefor
JP2009030148A (en) * 2007-06-22 2009-02-12 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet and plated steel sheet
JP2009203550A (en) 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2009242816A (en) 2008-03-28 2009-10-22 Jfe Steel Corp High strength steel sheet and producing method therefor
JP2010126787A (en) 2008-11-28 2010-06-10 Kobe Steel Ltd Ultrahigh-strength steel sheet having excellent hydrogen embrittlement resistance and workability, and method for producing the same
JP2010255094A (en) 2008-11-28 2010-11-11 Jfe Steel Corp High-strength cold-rolled steel sheet having excellent workability, hot-dip galvanized high-strength steel sheet, and method for producing them

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515847B (en) * 1997-04-09 2003-01-01 Kawasaki Steel Co Coating/baking curable type cold rolled steel sheet with excellent strain aging resistance and method for producing the same
EP1201780B1 (en) * 2000-04-21 2005-03-23 Nippon Steel Corporation Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
CN1922337B (en) * 2004-02-19 2010-06-16 新日本制铁株式会社 Steel sheet or steel pipe being reduced in expression of baushinger effect, and method for production thereof
JP2006089804A (en) * 2004-09-24 2006-04-06 Nisshin Steel Co Ltd Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property
CA2531615A1 (en) * 2004-12-28 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property
KR20090004840A (en) * 2005-10-24 2009-01-12 엑손모빌 업스트림 리서치 캄파니 High strength dual phase steel with low yield ratio, high toughness and superior weldability
JP4466619B2 (en) * 2006-07-05 2010-05-26 Jfeスチール株式会社 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122219A (en) 1989-10-06 1991-05-24 Nippon Steel Corp Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength
JPH04276017A (en) * 1991-03-01 1992-10-01 Kobe Steel Ltd Manufacture of door guard bar excellent in collapse resistant property
JP2005163055A (en) 2003-11-28 2005-06-23 Jfe Steel Kk Method for producing high workability and extra-high strength cold-rolled steel sheet excellent in delayed fracture resistant characteristic after forming
JP2006299414A (en) * 2005-03-24 2006-11-02 Jfe Steel Kk Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP2007100114A (en) 2005-09-30 2007-04-19 Jfe Steel Kk Method for producing high-tensile cold-rolled steel sheet
JP2008111162A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Hot-rolled steel sheet for electroseamed steel pipe having high toughness and showing low yield ratio after having been painted, and manufacturing method therefor
JP2009030148A (en) * 2007-06-22 2009-02-12 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet and plated steel sheet
JP2009203550A (en) 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2009242816A (en) 2008-03-28 2009-10-22 Jfe Steel Corp High strength steel sheet and producing method therefor
JP2010126787A (en) 2008-11-28 2010-06-10 Kobe Steel Ltd Ultrahigh-strength steel sheet having excellent hydrogen embrittlement resistance and workability, and method for producing the same
JP2010255094A (en) 2008-11-28 2010-11-11 Jfe Steel Corp High-strength cold-rolled steel sheet having excellent workability, hot-dip galvanized high-strength steel sheet, and method for producing them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWASAKI-- STEEL GIHO, vol. 32, 2000, pages 49 - 53
See also references of EP2551366A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605240A (en) * 2011-12-09 2012-07-25 首钢总公司 High-strength and high-plasticity dual-phase steel and manufacturing method thereof

Also Published As

Publication number Publication date
US20130160889A1 (en) 2013-06-27
EP2551366A4 (en) 2015-07-15
JP4957854B1 (en) 2012-06-20
KR20120123602A (en) 2012-11-08
CN102822374B (en) 2014-12-17
CN102822374A (en) 2012-12-12
KR101315568B1 (en) 2013-10-08
JP2012167358A (en) 2012-09-06
EP2551366B1 (en) 2017-05-17
EP2551366A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4957854B1 (en) High-strength ERW steel pipe and manufacturing method thereof
US11279986B2 (en) Cold-rolled high-strength steel having tensile strength of not less than 1500 MPA and excellent formability, and manufacturing method therefor
CA2869700C (en) Hot rolled steel sheet for square column for building structural members and method for manufacturing the same
KR101630975B1 (en) High strength cold rolled steel sheet having high yield ratio and excellent hole expansibility and method for manufacturing the same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
WO2014077294A1 (en) Automobile collision energy absorbing member and manufacturing method therefor
WO2012033210A1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
CN112673122A (en) Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and method for producing same
JP6048623B2 (en) High strength steel sheet
JP4954909B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent bake hardening properties and slow aging at room temperature, and its manufacturing method
KR101620744B1 (en) Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
WO2013051714A1 (en) Steel plate and method for producing same
JP5732999B2 (en) High-strength ERW steel pipe and manufacturing method thereof
JP4306078B2 (en) High tensile hot-rolled steel sheet excellent in bake hardenability and impact resistance and method for producing the same
JP4730070B2 (en) Manufacturing method of thin steel sheet
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
KR102456737B1 (en) Hot rolled steel sheet for coiled tubing and manufacturing method thereof
CN114058942B (en) Steel plate for torsion beam and manufacturing method thereof, torsion beam and manufacturing method thereof
JP6515386B2 (en) Hot rolled steel sheet and method of manufacturing the same
KR101066691B1 (en) Hot-rolled steel sheet having ultra-high strength and high burring workability, and method for producing the same
JP5549582B2 (en) Sheet steel
US20240141454A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
KR20220084651A (en) High-strength steel sheet having excellent bendability and formabiity and mathod for manufacturing thereof
JP4815729B2 (en) Manufacturing method of high strength ERW steel pipe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015165.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2601/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004939

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127026473

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011759643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011759643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636857

Country of ref document: US