JP5732999B2 - High-strength ERW steel pipe and manufacturing method thereof - Google Patents

High-strength ERW steel pipe and manufacturing method thereof Download PDF

Info

Publication number
JP5732999B2
JP5732999B2 JP2011096739A JP2011096739A JP5732999B2 JP 5732999 B2 JP5732999 B2 JP 5732999B2 JP 2011096739 A JP2011096739 A JP 2011096739A JP 2011096739 A JP2011096739 A JP 2011096739A JP 5732999 B2 JP5732999 B2 JP 5732999B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
strength
pipe
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011096739A
Other languages
Japanese (ja)
Other versions
JP2012229457A (en
Inventor
牧男 郡司
牧男 郡司
昌利 荒谷
昌利 荒谷
河端 良和
良和 河端
知正 平田
知正 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011096739A priority Critical patent/JP5732999B2/en
Publication of JP2012229457A publication Critical patent/JP2012229457A/en
Application granted granted Critical
Publication of JP5732999B2 publication Critical patent/JP5732999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、ドアインパクトビームや、クロスメンバー、ピラー等の自動車の衝突部材用として好適な、高強度電縫鋼管に係り、とくに、加工性および衝撃吸収特性がともに優れた高強度電縫鋼管に関する。   The present invention relates to a high-strength electric resistance welded steel pipe suitable for automobile impact members such as door impact beams, cross members, and pillars, and more particularly to a high-strength electric resistance welded steel pipe excellent in both workability and shock absorption characteristics. .

近年、自動車の安全性向上、とくに乗員の安全性確保を目的として、自動車車体には、衝突時の衝撃エネルギーを吸収するための衝撃吸収用部材が配設されるようになり、例えば、衝撃吸収用部材であるドアインパクトビームに、例えば特許文献1に示されるように、焼入れ処理を施され、マルテンサイト組織を有し、所望の高強度を有する高強度鋼管が適用されている。   In recent years, for the purpose of improving the safety of automobiles, in particular, ensuring the safety of passengers, automobile bodies have been provided with shock absorbing members for absorbing impact energy at the time of collision. For example, as shown in Patent Document 1, a high-strength steel pipe having a martensite structure and a desired high strength is applied to a door impact beam that is a structural member.

特許文献1に記載された技術は、C:0.15〜0.22%、Mn:1.5%以下、Si:0.5%以下、Ti:0.04%以下、B:0.0003〜0.0035%、N:0.0080%以下を含み、あるいはさらに、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、の1種または2種以上を含有する鋼管に焼入れ処理を行ない、引張強さ:120kgf/mm以上の機械構造用高強度鋼管を得るという機械構造用高強度鋼管の製造方法である。特許文献1に記載された技術によれば、自動車補強用鋼管である、ドアインパクトバー(ドアインパクトビーム)、バンパー用芯材として適用可能な、10%以上の良好な伸びを有し、引張強さ:120kgf/mm以上の高強度鋼管を、一度の熱処理で得ることができるとしている。 The technology described in Patent Document 1 includes C: 0.15-0.22%, Mn: 1.5% or less, Si: 0.5% or less, Ti: 0.04% or less, B: 0.0003-0.0035%, N: 0.0080% or less, or even, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, subjected to quenching treatment in one or steel pipe containing two or more, tensile strength: 120 kgf / mm 2 or more mechanical structures This is a method for producing a high-strength steel pipe for machine structure, in which a high-strength steel pipe is obtained. According to the technology described in Patent Document 1, it has a good elongation of 10% or more and can be applied as a core material for door impact bars (bump impact beams) and bumpers, which are steel tubes for automobile reinforcement, and has a tensile strength. It is said that a high-strength steel pipe of 120 kgf / mm 2 or more can be obtained by a single heat treatment.

特開平3−122219号公報Japanese Patent Laid-Open No. 3-122219

しかし、特許文献1に記載された技術では、特別な加工を施すことなく直管で使用する、ドアインパクトビームのような場合には大きな問題にならないが、各種形状への複雑な加工を必要とするクロスメンバー、ピラー等の他の自動車衝撃吸収用部材では、使用される鋼管には、高強度に加えて、さらに優れた加工性を具備することが要望されている。
本発明は、かかる要望に鑑み、優れた加工性を有し、特に、鋼管に対して偏平加工を行う場合においても、電縫溶接部の近傍に割れが発生することがなく、さらに自動車衝撃吸収部材用として好適な、優れた衝撃吸収特性を確保することが可能な、高強度電縫鋼管およびその製造方法を提供することを目的とする。
However, the technique described in Patent Document 1 does not cause a big problem in the case of a door impact beam that is used in a straight pipe without performing special processing, but requires complicated processing into various shapes. In other automobile impact absorbing members such as cross members, pillars, and the like, the steel pipe used is required to have a further excellent workability in addition to high strength.
In view of such demands, the present invention has excellent workability, and in particular, even when flattening a steel pipe, there is no occurrence of cracks in the vicinity of the electric-welded welded part, and further, automobile impact absorption is achieved. An object of the present invention is to provide a high-strength electric resistance welded steel pipe suitable for a member and capable of ensuring excellent shock absorption characteristics and a method for producing the same.

なお、ここでいう「高強度」とは、引張強さTSが1180MPa以上である場合をいうものとする。また、ここでいう「優れた加工性」とは、JIS規格に規定されるJIS 12号引張試験片(GL:50mm)を用いた引張試験で得られる、管軸方向の伸びElが10%以上、好ましくは12%以上で、かつ管軸方向の降伏比(=(0.2%耐力/引張強さ)×100(%))が90%未満である場合をいうものとする。また、ここでいう「優れた衝撃吸収特性」とは、管に2%以上の予歪を付与し、さらに170℃×20minの熱処理(塗装焼付け処理)を施したのちの0.2%耐力と、予歪付与後の強度との差、である強度増加量(BH量)が100MPa以上であり、管軸方向の降伏比が90%以上である場合をいうものとする。なお、BH量は、図5に定義される。   Here, “high strength” refers to a case where the tensile strength TS is 1180 MPa or more. The term “excellent workability” here means that the elongation El in the tube axis direction obtained by a tensile test using a JIS No. 12 tensile test piece (GL: 50 mm) specified by the JIS standard is 10% or more. Preferably, it is 12% or more and the yield ratio (= (0.2% proof stress / tensile strength) × 100 (%)) in the tube axis direction is less than 90%. The “excellent shock absorption property” here refers to 0.2% proof stress after applying a pre-strain of 2% or more to the pipe and further heat treatment (paint baking treatment) at 170 ° C for 20 minutes. It is assumed that the strength increase amount (BH amount), which is the difference from the strength after imparting strain, is 100 MPa or more and the yield ratio in the tube axis direction is 90% or more. The amount of BH is defined in FIG.

本発明者らは、上記した目的を達成するために、高強度を維持したまま、電縫鋼管の加工性を向上させるための各種方策について鋭意研究した。その結果、フェライトとマルテンサイトからなる二相組織を有し、加工性に優れ、かつ所望の塗装焼付け硬化性を有する鋼板(冷延鋼板)を鋼管素材として、素材の優れた加工性を極力低下させることなく造管できる造管方法を採用し、加工性に優れた電縫鋼管とすることに想到した。そして、このような電縫鋼管に、所望の部材形状とする加工を施したのち、熱処理(塗装焼付け処理)を施して降伏強さを増加させることにより、耐力が向上し、部材として優れた衝撃吸収特性を確保できることを見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied various measures for improving the workability of an electric resistance welded steel pipe while maintaining high strength. As a result, a steel pipe material (cold-rolled steel sheet) that has a two-phase structure consisting of ferrite and martensite, has excellent workability, and has the desired paint bake hardenability is reduced as much as possible. By adopting a pipe making method that can make pipes without making them, we have come up with an ERW steel pipe with excellent workability. And after giving the desired member shape to such an ERW steel pipe, heat resistance (paint baking process) is applied to increase the yield strength. It has been found that absorption characteristics can be secured.

本発明は、かかる知見に基いて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.05〜0.20%、Si:0.5〜2.0%、Mn:1.0〜3.0%、P:0.1%以
下、S:0.01%以下、Al:0.01〜0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、該マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満である優れた加工性と、予歪:2%付与したのち170℃×20minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる優れた衝撃吸収特性とを有し、電縫溶接部の内面ビード高さが-0.1〜0.1mmであることを特徴とする高強度電縫鋼管。
The present invention has been completed based on such findings and further investigations. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.1%, N: 0.005 And a composition composed of the balance Fe and inevitable impurities, and a two-phase structure composed of a ferrite phase and a martensite phase, the structure having a martensite phase volume ratio of 20 to 60%, and tensile Excellent processability with strength TS of 1180 MPa or more, tube axis elongation El of 10% or more, and yield ratio of less than 90%, and pre-strain: 2%, and then baking with 170 ° C x 20 min heat treatment The strength increase after treatment (BH amount) is 100MPa or more and the yield ratio is 90% or more. It has excellent shock absorption characteristics, and the inner bead height of the ERW weld is -0.1 to 0.1mm. A high-strength ERW steel pipe characterized by being.

(2)(1)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高強度電縫鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする高強度電縫鋼管。
(2) In (1), in addition to the above composition, in addition to mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, Ti : 0.05% or less, W: 0.05% or less, B: A composition containing one or more selected from 0.0050% or less.
(3) In (1) or (2), in addition to the above composition, the composition further contains, by mass%, one or two selected from Ca: 0.0050% or less and REM: 0.0050% or less A high-strength ERW steel pipe characterized by

(4)鋼素材に、該鋼素材を熱間圧延して熱延板とする熱延工程と、該熱延板に酸洗処理を施し、ついで冷間圧延を施し冷延板とする冷延工程と、該冷延板に、焼鈍処理を施し冷延焼鈍板とする焼鈍工程とを施して鋼管用素材とし、ついで該鋼管用素材に、該鋼管用素材を連続的に成形し略円筒状のオープン管とし、該オープン管を電縫溶接して電縫管としたのち、該電縫溶接により形成される電縫溶接部の溶接ビードを切削する造管工程を施して電縫鋼管とするにあたり、前記鋼素材を、質量%で、C:0.05〜0.20%、Si:0.5〜2.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.01%以下、Al:0.01〜0.1%、N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱延工程を、仕上圧延終了温度がAr変態点以上で、巻取温度が500〜650℃である熱間圧延を施し熱延板とする工程とし、前記焼鈍工程を、前記冷延板に、Ac変態点〜Ac変態点の範囲の二相温度域の温度に、加熱し均熱したのち、600〜750℃の範囲の温度から室温まで、平均で、500℃/s以上の冷却速度で冷却する急冷処理を施し、ついで、150〜300℃の温度範囲に再加熱する焼戻処理を施し、冷延焼鈍板とする工程とし、前記成形を、ケージロール方式のロール成形とし、前記溶接ビードの切削により内面ビード高さを-0.1〜0.1mmとし、前記電縫鋼管が、フェライト相とマルテンサイト相からなる二相組織で、該マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満である優れた加工性と、予歪:2%付与したのち170℃×20minの熱処理を施す塗装焼付け処理後の降伏強さ増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる優れた衝撃吸収特性を有する鋼管である、ことを特徴とする高強度電縫鋼管の製造方法。 (4) A hot rolling process in which the steel material is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is pickled, and then cold-rolled into a cold-rolled sheet. An annealing process is performed on the cold-rolled sheet to form a cold-rolled annealed sheet to obtain a steel pipe material, and then the steel pipe material is continuously formed on the steel pipe material to form a substantially cylindrical shape. After the open pipe is electro-welded to form an electric-welded pipe, a pipe-forming step of cutting the weld bead of the electric-welded welded portion formed by the electric-resistance welding is performed to obtain an electric-welded steel pipe In this case, the steel material is, in mass%, C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.1%. , N: include 0.005% or less, in a steel material having a composition the balance being Fe and unavoidable impurities, said hot-rolled process, finish rolling temperature is Ar 3 transformation point or higher, A hot rolling process in which the coiling temperature is 500 to 650 ° C. is used as a hot rolled sheet, and the annealing process is performed on the cold rolled sheet in a two-phase temperature range of Ac 1 transformation point to Ac 3 transformation point. After heating and soaking, the sample is subjected to a rapid cooling treatment in which the cooling is performed at an average cooling rate of 500 ° C./s from a temperature in the range of 600 to 750 ° C. to room temperature, and then a temperature of 150 to 300 ° C. A process of tempering to reheat to a range and making it a cold-rolled annealed plate, the forming is a cage roll type roll forming, and the inner bead height is -0.1 to 0.1 mm by cutting the weld bead, The ERW steel pipe has a two-phase structure composed of a ferrite phase and a martensite phase, the martensite phase has a structure with a volume ratio of 20 to 60%, a tensile strength TS of 1180 MPa or more, and a pipe axis direction Excellent workability with an elongation El of 10% or more and a yield ratio of less than 90% and pre-strain: 2% after applying 1% It is a steel pipe with excellent shock absorption characteristics that yield strength increase (BH amount) after paint baking treatment with heat treatment of 70 ℃ x 20min is 100MPa or more and yield ratio is 90% or more. A method for producing a high-strength ERW steel pipe.

(5)(4)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高強度電縫鋼管の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を、含有する組成とすることを特徴とする高強度電縫鋼管の製造方法。
(5) In (4), in addition to the above composition, in addition to mass, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, Ti : 0.05% or less, W: 0.05% or less, and B: A composition containing one or more selected from 0.0050% or less.
(6) In (4) or (5), in addition to the above composition, the composition further contains one or two selected from Ca: 0.0050% or less and REM: 0.0050% or less by mass% A method for producing a high-strength ERW steel pipe.

本発明によれば、自動車の衝撃吸収部材用として好適な、優れた加工性を有し、さらに実部材形状に成形した後に、優れた衝撃吸収特性を確保することが可能な、高強度電縫鋼管を、安価でかつ容易に製造でき、産業上格段の効果を奏する。また、本発明になる高強度電縫鋼管は、ドアインパクトビームに限らず、とくに加工性を要求されるクロスメンバー、ピラー等の他の自動車衝撃吸収用部材、さらには自動車骨格部材など自動車部材全般にわたり、自動車部材用素材として適用できるという効果もある。   ADVANTAGE OF THE INVENTION According to this invention, it is the high intensity | strength electro-sewing which has the outstanding workability suitable for the impact-absorbing member of a motor vehicle, and can ensure the outstanding impact-absorbing characteristic, after shape | molding in a real member shape. Steel pipes can be manufactured inexpensively and easily, and have remarkable industrial effects. The high-strength electric resistance welded steel pipe according to the present invention is not limited to the door impact beam, but other automobile shock absorbing members such as cross members and pillars that require workability in particular, and automobile members such as automobile frame members in general. There is also an effect that it can be applied as a material for automobile parts.

本発明の実施に好適なCBR方式のロール成形法を採用した電縫鋼管製造設備の1例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the electric-resistance-welded steel pipe manufacturing equipment which employ | adopted the CBR type roll forming method suitable for implementation of this invention. 管長手方向に垂直な断面での、電縫溶接部近傍を示す断面図であり、(a)はビード切削前の状態を、(b)はビード切削後の状態を示す。It is sectional drawing which shows the ERW welding part vicinity in a cross section perpendicular | vertical to a pipe | tube longitudinal direction, (a) shows the state before bead cutting, (b) shows the state after bead cutting. 内面ビード切削装置の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of an inner surface bead cutting device. 偏平加工試験の実施要領を模式的に示す説明図である。It is explanatory drawing which shows typically the execution point of a flat work test. 塗装焼付け処理後の強度増加量(BH量)の定義を模式的に示す説明図である。It is explanatory drawing which shows typically the definition of the strength increase amount (BH amount) after a paint baking process.

まず、本発明になる高強度電縫鋼管の組成限定理由について説明する。以下、とくに断わらない限り質量%は、単に%で記す。
C:0.05〜0.20%
Cは、鋼を強化する作用を有する元素であり、所望の強度を確保するために本発明では0.05%以上の含有を必要とする。一方、0.20%を超える含有は、溶接性を低下させる。このため、本発明では、Cは0.05〜0.20%の範囲に限定した。なお、好ましくは0.08〜0.18%である。
First, the reasons for limiting the composition of the high-strength ERW steel pipe according to the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.05-0.20%
C is an element having an action of strengthening steel, and in the present invention, it is necessary to contain 0.05% or more in order to ensure a desired strength. On the other hand, if the content exceeds 0.20%, weldability decreases. For this reason, in this invention, C was limited to 0.05 to 0.20% of range. In addition, Preferably it is 0.08 to 0.18%.

Si:0.5〜2.0%
Siは、脱酸剤として作用するとともに、固溶して鋼を強化するとともに、フェライト形成を促進させる作用を有し、優れた加工性を確保するために重要な元素である。また、Siは、フェライト相を固溶強化することにより、マルテンサイト相分率を少なく抑えて、所望の高強度を達成できる。このような効果を得るためには、0.5%以上の含有を必要とする。一方、2.0%を超えて含有すると、鋼板表面にSi酸化物を多量に形成し、化成処理性を低下させる。このため、本発明では、Siは0.5〜2.0%の範囲に限定した。なお、好ましくは1.0〜1.8%である。
Si: 0.5-2.0%
Si acts as a deoxidizer and has the effect of solid solution to strengthen the steel and promote the formation of ferrite, and is an important element for securing excellent workability. In addition, Si can achieve a desired high strength by suppressing the martensite phase fraction to a low level by solid-solution strengthening the ferrite phase. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 2.0%, a large amount of Si oxide is formed on the surface of the steel sheet, and the chemical conversion processability is lowered. For this reason, in this invention, Si was limited to 0.5 to 2.0% of range. In addition, Preferably it is 1.0 to 1.8%.

Mn:1.0〜3.0%
Mnは、焼入れ性を向上させ、マルテンサイト相を生成しやすくして、鋼の強度を増加させる元素であり、所望の強度を確保するために本発明では1.0%以上の含有を必要とする。一方、3.0%を超える含有は、偏析を助長し、鋳造時にスラブ割れを発生しやすくするとともに、マルテンサイト相が過剰に増加して加工性を低下させる。このため、Mnは1.0〜3.0%の範囲に限定した。なお、好ましくは1.5〜2.5%である。
Mn: 1.0-3.0%
Mn is an element that improves the hardenability, facilitates the formation of a martensite phase, and increases the strength of the steel. In order to ensure the desired strength, Mn is required to be contained in an amount of 1.0% or more. On the other hand, if the content exceeds 3.0%, segregation is promoted, slab cracking is likely to occur during casting, and the martensite phase is excessively increased to deteriorate workability. For this reason, Mn was limited to the range of 1.0 to 3.0%. In addition, Preferably it is 1.5 to 2.5%.

P:0.1%以下
Pは、本発明では不純物として、加工性への悪影響を回避するため、できるだけ低減することが好ましいが、過度の低減は精錬コストを高騰させる。このため、Pは実質的に悪影響のない0.1%以下に限定した。なお、好ましくは0.05%以下である。
S:0.01%以下
Sは、Pと同様に本発明では不純物として、加工性への悪影響を回避するため、できるだけ低減することが好ましいが、過度の低減は精錬コストを高騰させるため、上限は0.01%とした。なお、好ましくは0.005%以下である。
P: 0.1% or less P is preferably reduced as much as possible as an impurity in the present invention in order to avoid adverse effects on workability, but excessive reduction increases the refining cost. For this reason, P was limited to 0.1% or less, which has substantially no adverse effect. In addition, Preferably it is 0.05% or less.
S: 0.01% or less S is an impurity in the present invention, as in the case of P, and is preferably reduced as much as possible in order to avoid adverse effects on workability. However, excessive reduction increases the refining cost, so the upper limit is 0.01. %. In addition, Preferably it is 0.005% or less.

Al:0.01〜0.1%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.1%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなる。このため、Alは0.01〜0.1%の範囲に限定した。なお、好ましくは0.01〜0.08%である。
Al: 0.01 to 0.1%
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it needs to be contained in an amount of 0.01% or more. On the other hand, even if the content exceeds 0.1%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, Al was limited to the range of 0.01 to 0.1%. In addition, Preferably it is 0.01 to 0.08%.

N:0.005%以下
Nは、鋼を強化し、成形性を低下させる元素であり、不純物としてできる限り低減することが好ましいが、過度の低減は精錬コストを高騰させる。このため、Nは実質的に悪影響のない0.005%以下に限定した。なお、好ましくは0.004%以下である。
上記した成分が基本の成分であるが、基本の組成に加えてさらに、必要に応じて、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種、を選択して含有することができる。
N: 0.005% or less N is an element that strengthens steel and lowers formability, and is preferably reduced as much as possible as impurities, but excessive reduction raises the refining cost. For this reason, N was limited to 0.005% or less with substantially no adverse effects. In addition, Preferably it is 0.004% or less.
The above components are basic components. In addition to the basic composition, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05% or less, B: one or more selected from 0.0050% or less, and / or Ca: 0.0050% or less, REM: 0.0050% or less One or two selected from among them can be selected and contained.

Cu、Ni、Cr、Mo、Nb、Ti、W、Bは、いずれも、鋼の強度を増加させる元素であり、必要に応じて選択して1種または2種以上含有できる。
Cu:1.0%以下
Cuは、鋼の強度を増加させるとともに、耐食性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、1.0%を超える含有は、熱間加工性を低下させる。このため、含有する場合は、Cuは1.0%以下に限定することが好ましい。なお、より好ましくは0.08〜0.5%である。
Cu, Ni, Cr, Mo, Nb, Ti, W, and B are all elements that increase the strength of the steel, and can be selected as necessary and contained in one or more.
Cu: 1.0% or less
Cu is an element that has the effect of increasing the strength of steel and improving the corrosion resistance, and can be contained if necessary. Such an effect is recognized at a content of 0.05% or more, but a content exceeding 1.0% reduces the hot workability. For this reason, when it contains, it is preferable to limit Cu to 1.0% or less. In addition, More preferably, it is 0.08 to 0.5%.

Ni:1.0%以下
Niは、鋼の強度を増加させるとともに、耐食性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、Niは高価な元素であり、1.0%を超える多量の含有は、材料コストを高騰させる。このため、含有する場合は、Niは1.0%以下に限定することが好ましい。なお、より好ましくは0.08〜0.5%である。
Ni: 1.0% or less
Ni is an element having an action of increasing the strength of steel and improving the corrosion resistance, and can be contained as necessary. Such an effect is recognized at a content of 0.05% or more, but Ni is an expensive element, and a large content exceeding 1.0% raises the material cost. For this reason, when it contains, it is preferable to limit Ni to 1.0% or less. In addition, More preferably, it is 0.08 to 0.5%.

Cr:0.5%以下
Crは、焼入れ性向上を介して鋼の強度を増加させるとともに、耐食性を向上させる作用を有する元素で、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、0.5%を超えて含有すると、加工性を低下させる。このため、含有する場合は、Crは0.5%以下に限定することが好ましい。なお、より好ましくは0.05〜0.4%である。
Cr: 0.5% or less
Cr is an element that has the effect of increasing the strength of steel through improving hardenability and improving corrosion resistance, and can be contained as necessary. Such an effect is recognized at a content of 0.05% or more, but if it exceeds 0.5%, the workability is lowered. For this reason, when contained, Cr is preferably limited to 0.5% or less. In addition, More preferably, it is 0.05 to 0.4%.

Mo:0.5%以下
Moは、焼入れ性向上に加えて、析出強化により鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.05%以上の含有で認められるが、0.5%を超えて含有すると、延性が低下するとともに、材料コストの高騰を招く。このため、含有する場合は、Moは0.5%以下に限定することが好ましい。なお、より好ましくは0.1〜0.4%である。
Mo: 0.5% or less
Mo is an element that has the effect of increasing the strength of steel by precipitation strengthening in addition to improving hardenability, and can be contained if necessary. Such an effect is recognized at a content of 0.05% or more, but when it exceeds 0.5%, the ductility is lowered and the material cost is increased. For this reason, when it contains, it is preferable to limit Mo to 0.5% or less. In addition, More preferably, it is 0.1 to 0.4%.

Nb:0.05%以下
Nbは、結晶粒を微細化するとともに、析出強化を介して鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.005%以上の含有で認められるが、0.05%を超えて含有すると、延性が低下する。このため、含有する場合は、Nbは0.05%以下に限定することが好ましい。なお、より好ましくは0.008〜0.03%である。
Nb: 0.05% or less
Nb is an element having an effect of refining crystal grains and increasing the strength of steel through precipitation strengthening, and can be contained as necessary. Such an effect is recognized at a content of 0.005% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit Nb to 0.05% or less. In addition, More preferably, it is 0.008 to 0.03%.

Ti:0.05%以下
Tiは、結晶粒を微細化するとともに、析出強化を介して鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.005%以上の含有で認められるが、0.05%を超えて含有すると、延性が低下する。このため、含有する場合は、Tiは0.05%以下に限定することが好ましい。なお、より好ましくは0.008〜0.03%である。
Ti: 0.05% or less
Ti is an element having an effect of refining crystal grains and increasing the strength of steel through precipitation strengthening, and can be contained as necessary. Such an effect is recognized at a content of 0.005% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit Ti to 0.05% or less. In addition, More preferably, it is 0.008 to 0.03%.

W:0.05%以下
Wは、析出強化を介して鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.01%以上の含有で認められるが、0.05%を超えて含有すると、延性が低下する。このため、含有する場合は、Wは0.05%以下に限定することが好ましい。なお、より好ましくは0.01〜0.03%である。
W: 0.05% or less W is an element having an action of increasing the strength of steel through precipitation strengthening and can be contained as necessary. Such an effect is recognized at a content of 0.01% or more, but if it exceeds 0.05%, the ductility is lowered. For this reason, when it contains, it is preferable to limit W to 0.05% or less. In addition, More preferably, it is 0.01 to 0.03%.

B:0.0050%以下
Bは、焼入れ性向上を介してマルテンサイト分率を所定の範囲内に調整するとともに、鋼の強度を増加させる作用を有する元素で、必要に応じて含有できる。このような効果は0.0005%以上の含有で認められるが、0.0050%を超える含有は、効果が飽和し含有量に見合う効果が期待できないため、経済的に不利となる。このため、含有する場合は、Bは0.0050%以下に限定することが好ましい。なお、より好ましくは0.001〜0.003%である。
B: 0.0050% or less B is an element having an action of adjusting the martensite fraction within a predetermined range through improvement of hardenability and increasing the strength of the steel, and can be contained as necessary. Such an effect is recognized with a content of 0.0005% or more, but a content exceeding 0.0050% is economically disadvantageous because the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, when it contains, it is preferable to limit B to 0.0050% or less. In addition, More preferably, it is 0.001 to 0.003%.

Ca:0.0050%以下、REM:0.0050%以下
Ca、REMはいずれも、硫化物系介在物の形態制御を介して延性を向上させる作用を有す
る元素であり、必要に応じて含有できる。このような効果はCa、REMともに0.0020%以上の含有で認められるが、0.0050%を超える含有は、介在物量が増加しすぎて、鋼の清浄度が低下する。このため、含有する場合は、Ca、REMはいずれも0.0050%以下に限定することが好ましい。なお、より好ましくはいずれも0.0020〜0.0040%である。
Ca: 0.0050% or less, REM: 0.0050% or less
Both Ca and REM are elements having an effect of improving ductility through the form control of sulfide inclusions, and can be contained as necessary. Such an effect is observed when the content of Ca and REM is 0.0020% or more. However, when the content exceeds 0.0050%, the amount of inclusions increases too much, and the cleanliness of the steel decreases. For this reason, when contained, both Ca and REM are preferably limited to 0.0050% or less. More preferably, both are 0.0020 to 0.0040%.

上記した成分以外の残部は、Feおよび不可避的不純物である。
つぎに、本発明鋼管の組織限定理由について説明する。
本発明鋼管は、体積率で20〜60%のマルテンサイト相を含み、残部フェライト相からなる二相組織を有する。このような組織とすることにより、所望の高強度と、優れた加工性、優れた塗装焼付け硬化性を兼備することが可能となる。
The balance other than the above components is Fe and inevitable impurities.
Next, the reason for limiting the structure of the steel pipe of the present invention will be described.
The steel pipe of the present invention includes a martensite phase having a volume ratio of 20 to 60%, and has a two-phase structure composed of the remaining ferrite phase. By setting it as such a structure | tissue, it becomes possible to have desired high intensity | strength, the outstanding workability, and the outstanding paint bake hardenability.

マルテンサイト相が、20体積%未満では、フェライト相主体の組織となり所望の高強度を達成できない。一方、60体積%を超えてマルテンサイト相が多くなると、マルテンサイト主体の組織となり所望の加工性を確保できなくなる。このため、マルテンサイト相の組織分率を体積率で20〜60%の範囲に限定した。好ましくは体積率で40〜55%である。
つぎに、本発明鋼管では、電縫溶接部の内面ビード高さを-0.1〜0.1mmに調整することを必要とする。内面ビード高さが0.1mmを超えて、例えば0.2mm程度である場合には、上記した組成および組織を有する高強度鋼管に偏平加工を施すと、内面ビード部から亀裂が発生する。これは、上記した組成、組織を有する高強度鋼管は、母材部と溶接部(ビード部および熱影響部)との硬度差が大きく、変形が熱影響部に集中するためと考えられる。鋼管に亀裂が発生していると、部材とした場合に衝撃吸収能が劣化する。このため、偏平加工時の亀裂発生は、防止しなくてはならない。内面ビード高さが、0.1mm以下であれば偏平加工を行っても、内面からの亀裂発生は抑えられる。なお、内面ビード高さが-0.1mm未満では、その後に拡管加工を行う場合を考慮すると、この拡管加工時に内面ビード切削部の減肉が大きくなり、破断する恐れがある。このため、本発明では、内面ビード高さは-0.1〜0.1mmに限定した。なお、外面ビード高さは、通常の電縫鋼管と同様に滑らかに切削しておけばよい。
つぎに、本発明鋼管の好ましい製造方法について説明する。
If the martensite phase is less than 20% by volume, the structure is mainly composed of a ferrite phase, and a desired high strength cannot be achieved. On the other hand, when the amount of martensite phase exceeds 60% by volume, it becomes a structure mainly composed of martensite and desired workability cannot be ensured. For this reason, the structure fraction of the martensite phase is limited to a range of 20 to 60% by volume. Preferably, the volume ratio is 40 to 55%.
Next, in the steel pipe of the present invention, it is necessary to adjust the inner bead height of the ERW weld to -0.1 to 0.1 mm. When the inner surface bead height exceeds 0.1 mm, for example, about 0.2 mm, when flattening is performed on the high-strength steel pipe having the above composition and structure, a crack is generated from the inner surface bead portion. This is presumably because the high-strength steel pipe having the composition and structure described above has a large hardness difference between the base metal part and the welded part (bead part and heat-affected zone), and deformation concentrates on the heat-affected zone. If a crack is generated in the steel pipe, the shock absorbing ability is deteriorated when it is used as a member. For this reason, the generation of cracks during flattening must be prevented. If the inner bead height is 0.1 mm or less, cracking from the inner surface can be suppressed even if flattening is performed. If the inner bead height is less than -0.1 mm, considering the case where tube expansion processing is performed thereafter, the inner-bead cutting portion becomes thicker during the tube expansion processing, which may cause breakage. For this reason, in the present invention, the inner bead height is limited to -0.1 to 0.1 mm. In addition, what is necessary is just to cut the outer surface bead height smoothly like a normal ERW steel pipe.
Below, the preferable manufacturing method of this invention steel pipe is demonstrated.

本発明では、鋼素材に、熱延工程と、冷延工程と、焼鈍工程とを施して鋼管用素材とし、ついで該鋼管用素材に、造管工程を施して電縫鋼管とする。
使用する鋼素材の製造方法は、特に限定されないが、上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法あるいは造塊−圧延法でスラブ等の鋼素材とすることが好ましい。
In the present invention, the steel material is subjected to a hot rolling process, a cold rolling process, and an annealing process to obtain a steel pipe material, and then the steel pipe material is subjected to a pipe making process to obtain an electric-welded steel pipe.
Although the manufacturing method of the steel raw material to be used is not particularly limited, the molten steel having the above-described composition is melted by a conventional melting method such as a converter, and steel such as a slab by a continuous casting method or an ingot-rolling method. It is preferable to use a raw material.

得られた鋼素材は、ついで熱間圧延を施されて熱延板とする熱延工程を施される。
得られた鋼素材は、冷却後再加熱するか、あるいは鋼素材が所定量の熱を保有している場合には、再加熱することなくそのまま、直送して熱間圧延を行なってもよい。再加熱する場合には、加熱温度は1000〜1250℃とすることが好ましい。再加熱時の加熱温度が1000℃未満では、変形抵抗が高く圧延機に与える負荷が大きくなりすぎて、圧延が困難となる場合がある。一方、1250℃を超えて加熱すると、結晶粒の粗大化が進行し、延性等の低下が著しくなる。
The obtained steel material is then subjected to a hot rolling process that is hot-rolled to form a hot-rolled sheet.
The obtained steel material may be reheated after cooling, or when the steel material retains a predetermined amount of heat, it may be directly sent and hot rolled without reheating. In the case of reheating, the heating temperature is preferably 1000 to 1250 ° C. If the heating temperature at the time of reheating is less than 1000 ° C., the deformation resistance is high and the load applied to the rolling mill becomes too large, which may make rolling difficult. On the other hand, when heating is performed at a temperature exceeding 1250 ° C., the coarsening of crystal grains proceeds and the ductility and the like are significantly reduced.

熱間圧延は、粗圧延および仕上圧延とからなる。粗圧延の条件は所定の寸法形状のシートバーを得ることができればよく、とくにその条件は限定されない。また、仕上圧延は、仕上圧延終了温度が被圧延材である鋼帯のAr変態点以上となる圧延とし、仕上圧延終了後に、巻取温度:500〜650℃で巻き取ることとする。
仕上圧延終了温度がAr変態点未満では、仕上圧延が(α+γ)の二相域圧延となり、著しく粗大な結晶粒と微細な結晶粒とが混在する混粒組織となる。このため、その後に冷延工程−焼鈍工程を施しても、良好な加工性を確保できなかったり、プレス成形、曲げ加工等の加工に際して肌荒れが生じたりする。このため、熱間圧延の仕上圧延終了温度をAr変態点以上に限定した。また、巻取温度が、500℃未満では、冷却中に硬質相が生成するため、冷間圧延時の圧延負荷が大きくなり、生産性が低下する。一方、650℃を超えて高温となると、未変態オーステナイトがパーライトに変態するため、加工性が低下する。このため、巻取温度は500〜650℃の範囲に限定した。
Hot rolling consists of rough rolling and finish rolling. The rough rolling conditions are not particularly limited as long as a sheet bar having a predetermined size and shape can be obtained. In the finish rolling, the finish rolling finish temperature is set to be higher than the Ar 3 transformation point of the steel strip that is the material to be rolled, and the finish rolling is taken up at a winding temperature of 500 to 650 ° C.
When the finish rolling finish temperature is less than the Ar 3 transformation point, the finish rolling is a (α + γ) two-phase region rolling, resulting in a mixed grain structure in which extremely coarse crystal grains and fine crystal grains are mixed. For this reason, even if it performs a cold rolling process-annealing process after that, favorable workability cannot be ensured, or rough skin arises in processes, such as press molding and bending. For this reason, the finish rolling finishing temperature of hot rolling is limited to the Ar 3 transformation point or higher. On the other hand, when the coiling temperature is less than 500 ° C., a hard phase is generated during cooling, so that a rolling load during cold rolling increases and productivity decreases. On the other hand, when the temperature is higher than 650 ° C., untransformed austenite is transformed into pearlite, so that workability is deteriorated. For this reason, the coiling temperature was limited to a range of 500 to 650 ° C.

ついで、熱延工程を経て得られた熱延板は、酸洗処理を施され、ついで冷間圧延を行って冷延板とする冷延工程を施される。冷間圧延の圧下率などの冷延工程の条件はとくに規定されない。
得られた冷延板は、ついで、焼鈍工程を施され、冷延焼鈍板とされる。
焼鈍工程は、本発明では所望の加工性と所望の塗装焼付け硬化性(BH性)を確保するうえで重要な工程である。焼鈍工程は、連続焼鈍ラインを利用することが好ましい。
Next, the hot-rolled sheet obtained through the hot-rolling process is subjected to pickling treatment, and then subjected to a cold-rolling process in which cold rolling is performed to obtain a cold-rolled sheet. Conditions for the cold rolling process such as cold rolling reduction are not particularly specified.
The obtained cold-rolled sheet is then subjected to an annealing process to form a cold-rolled annealed sheet.
In the present invention, the annealing step is an important step in securing desired workability and desired paint bake hardenability (BH property). The annealing process preferably uses a continuous annealing line.

焼鈍工程は、冷延板に、Ac変態点〜Ac変態点の範囲の二相温度域の温度に、加熱し均熱保持したのち、600〜750℃の範囲の温度から室温まで、平均で、500℃/s以上の冷却速度で冷却する急冷処理を施し、ついで、150〜300℃の温度範囲に再加熱する焼戻処理を施し、冷延焼鈍板とする工程とする。なお、所望の高強度を安定して確保するためには、急冷処理における平均冷却速度は800℃/s以上とすることが好ましい。より好ましくは1000℃/s以上である。 In the annealing process, the cold-rolled sheet is heated to a temperature in the two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point, held soaked, and then averaged from a temperature in the range of 600 to 750 ° C. to room temperature. Then, a rapid cooling process for cooling at a cooling rate of 500 ° C./s or more is performed, and then a tempering process for reheating to a temperature range of 150 to 300 ° C. is performed to form a cold-rolled annealed plate. In order to stably secure a desired high strength, the average cooling rate in the rapid cooling treatment is preferably set to 800 ° C./s or more. More preferably, it is 1000 ° C./s or more.

加熱し均熱保持する温度が、Ac変態点〜Ac変態点の範囲の二相温度域を外れると、その後の急冷で、所望の組織分率の(フェライト+マルテンサイト)組織を確保できなくなる。また、急冷開始温度が、750℃〜600℃の範囲を外れると、所望の組織分率の(フェライト+マルテンサイト)組織を得ることができなくなる。急冷開始温度が、750℃を超えて高くなると延性が低下し、600℃未満では所望の高強度が確保できなくなる。なお、上記した温度で均熱保持する時間は、30s以上とすることが望ましい。 If the temperature for heating and soaking is out of the two-phase temperature range from the Ac 1 transformation point to the Ac 3 transformation point, the desired structure fraction (ferrite + martensite) structure can be secured by the subsequent rapid cooling. Disappear. On the other hand, if the rapid cooling start temperature is out of the range of 750 ° C. to 600 ° C., it becomes impossible to obtain a (ferrite + martensite) structure having a desired structure fraction. If the quenching start temperature is higher than 750 ° C, the ductility is lowered, and if it is lower than 600 ° C, a desired high strength cannot be secured. In addition, it is desirable that the soaking time at the above-mentioned temperature is 30 s or longer.

また、600〜750℃の範囲の温度から室温までの冷却速度が、平均で、500℃/s未満では、マルテンサイト変態量が少なく、所望の組織分率の(フェライト+マルテンサイト)組織とすることができず、所望の高強度を確保できなくなる。なお、冷却速度は、焼入れ開始温度から200℃の間の平均とする。
なお、急冷処理の方法については、とくに限定されないが、鋼板幅方向、長手方向の材質ばらつきを抑制するという観点からは、噴流水を用いた冷却とすることが好ましい。
さらに、本発明の焼鈍工程では、急冷処理後、さらに靭性向上を目的として、150〜300℃の温度範囲に再加熱する焼戻処理を行う。焼戻温度が150℃未満では、靭性改善効果が期待できない。
Further, when the cooling rate from the temperature in the range of 600 to 750 ° C. to room temperature is less than 500 ° C./s on average, the amount of martensite transformation is small and a desired structure fraction (ferrite + martensite) structure is obtained. The desired high strength cannot be ensured. The cooling rate is an average between the quenching start temperature and 200 ° C.
In addition, although it does not specifically limit about the method of a rapid-cooling process, From a viewpoint of suppressing the material dispersion | variation in a steel plate width direction and a longitudinal direction, it is preferable to set it as cooling using jet water.
Furthermore, in the annealing step of the present invention, after the rapid cooling treatment, a tempering treatment is performed in which reheating is performed to a temperature range of 150 to 300 ° C. for the purpose of further improving toughness. If the tempering temperature is less than 150 ° C, the effect of improving toughness cannot be expected.

一方、300℃を超えると低温焼戻脆性により延性が低下する。このため、再加熱の温度範囲は150〜300℃に限定した。
得られた冷延焼鈍板には、さらに必要に応じて、調質圧延をおこなってもよい。その際、調質圧下率は、0.2%以上1.0%以下とすることが好ましい。調質圧下率が0.2%未満では、形状矯正効果が得られない。一方、1.0%を超えると、伸びの劣化が著しくなる。
On the other hand, when it exceeds 300 ° C., ductility is lowered due to low temperature temper brittleness. For this reason, the temperature range of reheating was limited to 150-300 degreeC.
The obtained cold-rolled annealed sheet may be further subjected to temper rolling as necessary. At that time, the temper reduction ratio is preferably 0.2% or more and 1.0% or less. If the temper reduction ratio is less than 0.2%, the shape correction effect cannot be obtained. On the other hand, if it exceeds 1.0%, the deterioration of elongation becomes remarkable.

上記した工程を経た冷延焼鈍板(冷延焼鈍鋼帯)を鋼管用素材とし、ついで、該鋼管用素材に造管工程を施して、電縫鋼管とする。造管工程は、鋼管用素材を連続的に成形し略円筒状のオープン管とし、該オープン管を電縫溶接して電縫管とし、さらに電縫管の電縫溶接部の溶接ビードを切削する工程である。
本発明では、造管工程における成形を、ケージロール方式によるロール成形とする。ケージロール方式によるロール成形は、ケージロールと呼ばれる小型ロールを、管外面となる側に並べて、滑らかに成形する方式のロール成形をいう。なお、ケージロール方式によるロール成形のなかでも、CBR方式のロール成形とすることが好ましい。この方式による成形では、成形時に帯板へ付加される歪を最小限に抑えることができ、加工硬化による材料特性劣化を抑制できる。
The cold-rolled annealed plate (cold-rolled annealed steel strip) that has undergone the above-described process is used as a steel pipe material, and then the steel pipe material is subjected to a pipe making process to obtain an electric-welded steel pipe. In the pipe making process, the steel pipe material is continuously formed into a substantially cylindrical open pipe, the open pipe is electro-welded to form an electric-welded pipe, and the weld bead of the electric-welded welded portion of the electric-welded pipe is cut. It is a process to do.
In the present invention, the forming in the pipe making process is roll forming by a cage roll method. Roll forming by the cage roll method refers to roll forming of a method in which small rolls called cage rolls are lined up on the tube outer surface side and formed smoothly. Of the roll forming by the cage roll method, CBR roll forming is preferred. In molding by this method, distortion applied to the strip during molding can be minimized, and deterioration of material properties due to work hardening can be suppressed.

CBR方式のロール成形を採用した電縫鋼管の製造設備の一例を図1に示す。CBR方式のロール成形は、帯板1の両エッジ部をエッジベンドロール2により予め成形したのち、センターベンドロール3とケージロール4とにより、帯板中央部を曲げ成形し、縦長の小判形の素管をつくり、ついでフィンパスロール5により、管円周方向の4ヶ所をいったんオーバーベンドしたのち、縮径圧縮することにより管サイド部の張出し成形とオーバーベンド部の曲げ戻し成形を行い円形素管とする成形方法である(川崎製鉄技報、vol.32(2000)、pp49〜53参照)。なお、CBR方式のロール成形法は、従来のBD(ブレークダウン)方式に比べて、素材(帯板)に付与される歪が少なく、さらに管円周方向に付与される歪のばらつきが小さいという特徴を有している。このようにして得られた円形素管をスクイズロール7で押圧しながら、突合せ部を溶接手段(高周波抵抗溶接)6により接合し、さらに、内外面のビード切削を行い、電縫鋼管8とする。
図2は、電縫溶接後の鋼管の管長手方向に直交する断面の、溶接部近傍の断面図であり、(a)はビード切削前の状態であり、(b)はビード切削後の状態を示す。電縫溶接直後には,図2(a)に示すように、鋼管8の内外面に溶接ビード、すなわち鋼管8の内面には内面ビード11が、鋼管8の外面には外面ビード12が生ずる。通常、この内面ビード11および外面ビード12を切削して図2(b)に示すようにビード高さを低くすることが行われる。
内面ビードの切削は、例えば、図3に示すように、鋼管8の内部に挿入自在にした棒状のバー13と、該バー13の先端に設けられ、バイト14を取り付けた支持部材15とを有する切削装置で行う。図3に示す切削装置では、走行している鋼管8の溶接点16の下流側で、バイト14の先端を鋼管内面の溶接ビードに押し当てることで、連続的に内面ビードを切削する。
この内面ビードの切削では、切削後の内面ビード高さを-0.1〜0.1mmとする。というのは、上記したように、内面ビード高さが-0.1〜0.1mmの範囲から外れると、得られる鋼管を偏平加工した際に内面ビード近傍に亀裂が発生する。なお、ここで、内面ビード高さは、図2(b)に示すように、鋼管の管長手方向と直交する断面における内周面の円弧からの内面ビードの高さhをいう。
An example of the production equipment of the ERW steel pipe which employ | adopted CBR type roll forming is shown in FIG. In CBR roll forming, both edge portions of the strip 1 are pre-formed by the edge bend roll 2, and then the center portion of the strip is bent by the center bend roll 3 and the cage roll 4, so that the oblong oblong shape is formed. After making the raw pipe, and then overbending the four places in the pipe circumferential direction with the fin pass roll 5, the pipe side part is stretched and the overbend part is bent back by compressing the diameter. This is a method of forming a pipe (see Kawasaki Steel Technical Report, vol. 32 (2000), pp 49-53). The roll forming method of the CBR method has less strain applied to the material (strip) than the conventional BD (breakdown) method, and further, variation in strain applied in the tube circumferential direction is small. It has characteristics. While joining the circular element pipe obtained in this way with the squeeze roll 7, the butt portion is joined by the welding means (high frequency resistance welding) 6, and bead cutting is further performed on the inner and outer surfaces to obtain an electric resistance steel pipe 8. .
FIG. 2 is a cross-sectional view in the vicinity of the welded portion of a cross section perpendicular to the longitudinal direction of the steel pipe after ERW welding, (a) is a state before bead cutting, and (b) is a state after bead cutting. Indicates. Immediately after the electric-welding welding, as shown in FIG. 2A, a weld bead is formed on the inner and outer surfaces of the steel pipe 8, that is, an inner bead 11 is formed on the inner surface of the steel pipe 8, and an outer bead 12 is formed on the outer surface of the steel pipe 8. Usually, the inner bead 11 and the outer bead 12 are cut to lower the bead height as shown in FIG.
For example, as shown in FIG. 3, the cutting of the inner surface bead includes a bar-like bar 13 that can be inserted into the steel pipe 8, and a support member 15 that is provided at the tip of the bar 13 and to which a cutting tool 14 is attached. Perform with a cutting machine. In the cutting apparatus shown in FIG. 3, the inner surface bead is continuously cut by pressing the tip of the cutting tool 14 against the weld bead on the inner surface of the steel pipe on the downstream side of the welding point 16 of the traveling steel pipe 8.
In this internal bead cutting, the internal bead height after cutting is set to -0.1 to 0.1 mm. This is because, as described above, if the inner bead height is out of the range of -0.1 to 0.1 mm, cracks occur in the vicinity of the inner bead when the obtained steel pipe is flattened. Here, as shown in FIG. 2 (b), the inner surface bead height refers to the height h of the inner surface bead from the arc of the inner peripheral surface in a cross section perpendicular to the pipe longitudinal direction of the steel pipe.

上記したような製造方法で得られた、高強度を有し加工性に優れ、かつ塗装焼付け硬化性に優れた鋼板(鋼管素材)を用いて、上記したような造管工程で造管することにより、造管時に付加される歪を最小限に低減することができ加工硬化を抑制して、優れた加工性を有し、さらに偏平加工を含む種々の加工を施して部材となった後に、優れた衝撃吸収特性を確保することが可能な、高強度電縫鋼管を製造できる。   Using a steel plate (steel pipe material) having high strength, excellent workability, and excellent paint bake hardenability obtained by the manufacturing method as described above, pipes are manufactured in the pipe forming process as described above. With this, the strain applied during pipe making can be reduced to a minimum, work hardening can be suppressed, and excellent workability can be obtained. A high-strength ERW steel pipe capable of ensuring excellent shock absorption characteristics can be manufactured.

得られた高強度電縫鋼管は、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満であり、予歪:2%付与したのち170℃×20minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる鋼管である。
電縫鋼管の管軸方向の伸びが10%未満では、管としての加工性が低下し、所望の形状への成形が難しくなる。なお、好ましくは伸びは12%以上である、また、電縫鋼管の降伏比が90%を超えると、管としての加工性が低下し、所望の形状への成形が難しくなる。なお、好ましくは降伏比は85%以下である。また、電縫鋼管のBH量が100MPa未満では、衝突時に吸収できるエネルギーが少なくなり、衝撃部材として機能を満足できなくなる。なお、好ましくはBH量は110MPa以上である。また、本発明電縫鋼管の製造に当たり採用した造管工程では、造管時に付加される歪を最小限に低減することができ、さらに管円周方向に付与される歪のばらつきも小さくなるため、本発明電縫鋼管における、管円周方向各位置でのBH量のばらつき(最大値と最小値との差)は小さく、電縫部を除く管円周方向各位置でのBH量は、均一で、100〜130MPaの範囲内とすることができる。
The obtained high-strength ERW steel pipe has a tensile strength TS of 1180 MPa or more, an elongation El in the tube axis direction of 10% or more, a yield ratio of less than 90%, and pre-strain: 2%, then 170 ° C x 20 min This steel pipe has a strength increase amount (BH amount) of 100 MPa or more and a yield ratio of 90% or more after the coating baking process is performed.
When the elongation of the electric resistance steel pipe in the pipe axis direction is less than 10%, the workability as a pipe is lowered, and it becomes difficult to form a desired shape. The elongation is preferably 12% or more, and when the yield ratio of the ERW steel pipe exceeds 90%, the workability as a pipe is lowered, and it becomes difficult to form a desired shape. The yield ratio is preferably 85% or less. Further, if the BH amount of the electric resistance welded pipe is less than 100 MPa, the energy that can be absorbed at the time of collision is reduced, and the function as an impact member cannot be satisfied. Preferably, the BH amount is 110 MPa or more. In addition, in the pipe making process adopted in the production of the electric resistance welded steel pipe of the present invention, strain applied during pipe making can be reduced to a minimum, and further, variation in strain applied in the pipe circumferential direction is reduced. In the ERW steel pipe of the present invention, the variation in the BH amount at each position in the pipe circumferential direction (difference between the maximum value and the minimum value) is small, and the BH amount at each position in the pipe circumferential direction excluding the ERW is uniform. And within the range of 100 to 130 MPa.

表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材)とした。これらスラブ(鋼素材)に、表2に示す条件の熱延工程を施し、熱延板としたのち、酸洗し、該熱延板に表2に示す条件の冷間圧延を施し冷延板とする冷延工程と、該冷延板に表2に示す条件の焼鈍工程を施し、板厚1.8mmの冷延焼鈍板とし、鋼管素材とした。得られた鋼管素材から試験片を採取して、組織観察、引張試験を実施した。試験方法は次のとおりとした。   Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method. These slabs (steel materials) are subjected to a hot rolling process with the conditions shown in Table 2 to form hot rolled sheets, and then pickled, and cold rolled with the conditions shown in Table 2 to the hot rolled sheets. The cold-rolled step and the annealing step under the conditions shown in Table 2 were applied to the cold-rolled plate to obtain a cold-rolled annealed plate having a thickness of 1.8 mm, which was a steel pipe material. A specimen was collected from the obtained steel pipe material, and a structure observation and a tensile test were performed. The test method was as follows.

(1)組織観察
得られた鋼管素材から、組織観察用試験片を採取し、圧延方向断面を研磨し、ナイタール液を用いて腐食して、走査型電子顕微鏡(倍率:2000倍)を用い組織を観察し、各10視野以上撮像し、画像解析装置を利用して、フェライト、マルテンサイト等組織の種類を同定し、各相の組織分率(体積率)を算出した。
(1) Microstructure observation From the obtained steel pipe material, a specimen for microstructural observation is collected, the cross section in the rolling direction is polished, corroded using a nital liquid, and the structure is obtained using a scanning electron microscope (magnification: 2000 times). Were observed, 10 or more fields of view were imaged, and using an image analysis device, the type of structure such as ferrite and martensite was identified, and the structure fraction (volume ratio) of each phase was calculated.

(2)引張試験
得られた鋼管素材から、JIS Z 2201の規定に準拠して、引張方向が圧延方向となるようにJIS 12号引張試験片(標点距離:50mm)を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、0.2%耐力YS(MPa)、引張強さTS(MPa)、伸びEl(%)を求め、降伏比YRを算出し、強度と加工性を評価した。
(2) Tensile test In accordance with the provisions of JIS Z 2201, a JIS No. 12 tensile test piece (marking distance: 50 mm) was collected from the obtained steel pipe material so that the tensile direction was the rolling direction. In accordance with the provisions of 2241, a tensile test is conducted to obtain 0.2% proof stress YS (MPa), tensile strength TS (MPa), and elongation El (%), and calculate the yield ratio YR to determine the strength and workability. evaluated.

得られた結果を表4に示す。
ついで、得られた鋼管素材に、表3に示す造管工程を施し、電縫鋼管(大きさ:外径48.6mmφ×肉厚1.8mm)とした。造管工程では、鋼管素材に、CBR方式のロール成形による成形を施し、略円筒状のオープン管とし、ついで、スクイズロールで突き合せ部を押圧しながら、高周波抵抗溶接により該突合せ部を電縫溶接した。電縫溶接後、内外面のビード切削を施した。このビード切削では、内面ビード高さを-0.2〜0.2mmの範囲で変化させた。なお、一部の鋼管では、造管工程における成形をBD方式による成形とした。
Table 4 shows the obtained results.
Subsequently, the obtained steel pipe material was subjected to a pipe making process shown in Table 3 to obtain an electric resistance steel pipe (size: outer diameter 48.6 mmφ × wall thickness 1.8 mm). In the pipe making process, the steel pipe material is formed by CBR roll forming to form a substantially cylindrical open pipe, and then the butt is pressed by high-frequency resistance welding while pressing the butt with a squeeze roll. Welded. After ERW welding, the inner and outer surfaces were subjected to bead cutting. In this bead cutting, the inner bead height was changed in the range of -0.2 to 0.2 mm. In some steel pipes, the forming in the pipe making process was formed by the BD method.

得られた電縫鋼管について、組織観察、引張試験、および塗装焼付け処理試験を実施し、組織、引張特性、塗装焼付け硬化特性を評価した。試験方法は次のとおりとした。
(1)組織観察
得られた鋼管から、組織観察用試験片を採取し、管軸方向断面を研磨し、ナイタール液を用いて腐食して、走査型電子顕微鏡(倍率:2000倍)を用い組織を観察し、各10視野以上撮像し、画像解析装置を利用して、フェライト、マルテンサイト等の組織の種類を同定し、各相の組織分率(体積率)を算出した。
The obtained ERW steel pipe was subjected to a structure observation, a tensile test, and a paint baking treatment test to evaluate the structure, tensile characteristics, and paint bake hardening characteristics. The test method was as follows.
(1) Microstructure observation From the obtained steel pipe, a specimen for microstructural observation is collected, the cross section in the axial direction of the pipe is polished, corroded using a nital liquid, and the structure is obtained using a scanning electron microscope (magnification: 2000 times). Were observed, 10 or more fields of view were imaged, and using an image analysis device, the type of structure such as ferrite and martensite was identified, and the structure fraction (volume ratio) of each phase was calculated.

(2)引張試験
得られた鋼管から、JIS Z 2201の規定に準拠して、引張方向が管軸方向となるようにJIS 12号引張試験片(標点距離:50mm)を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、0.2%耐力YS(MPa)、引張強さTS(MPa)、伸びEl(%)を求め、降伏比YRを算出し、強度と加工性を評価した。
(2) Tensile test In accordance with the provisions of JIS Z 2201, a JIS No. 12 tensile test piece (mark distance: 50 mm) was collected from the obtained steel pipe so that the tensile direction was the pipe axis direction. In accordance with the provisions of 2241, a tensile test is conducted to obtain 0.2% proof stress YS (MPa), tensile strength TS (MPa), and elongation El (%), and calculate the yield ratio YR to determine the strength and workability. evaluated.

(3)偏平加工試験
得られた鋼管から、長さ500mmの偏平加工試験片を切り出し、偏平加工試験に供した。採取した偏平加工試験片20について、図4に示すように、試験片20の溶接ビード位置21が偏平加工方向から90°の位置となるようにして鋼管を7/8×D(Dは試験片の加工前の外径)まで偏平させる偏平加工を行ない、偏平加工後にビード部での亀裂の有無を目視で調査した。亀裂が認められたものを不良(×)、亀裂が認められなかったものを良(○)として、偏平加工性を評価した。
(4)拡管試験
得られた鋼管を、6分割セグメント拡管機を用いて、外径を1.05×D(Dは試験片加工前の外径)まで拡大させる拡管を行い、拡管後にビード部での割れの有無を目視で調査し、割れの発生があったものを不良(×)、割れの発生がなかったものを良(○)として、拡管加工性を評価した。
(5)塗装焼付け処理試験
得られた鋼管から、JIS Z 2201の規定に準拠して、引張方向が管軸方向となるようにJIS 12号引張試験片を採取し、ついで予歪として2%の引張歪を付与し、170℃×20minの熱処理を行なう、塗装焼付け処理を施した。なお、引張試験片は、管円周方向各位置(電縫部を0°とし、円周方向に30°ピッチで、計11位置。電縫部は除く)から採取した。
(3) Flattening test From the obtained steel pipe, a flattened test piece having a length of 500 mm was cut out and subjected to a flattening test. As shown in FIG. 4, the collected flattened test piece 20 is 7/8 × D (D is the test piece) so that the weld bead position 21 of the test piece 20 is 90 ° from the flattening direction. The outer surface was flattened to the outer diameter before processing), and the presence or absence of cracks in the bead portion was visually inspected after the flat processing. The flat workability was evaluated with the case where cracks were recognized as bad (x) and the case where cracks were not observed as good (◯).
(4) Pipe expansion test Using the 6-segment segment expansion machine, the obtained steel pipe was expanded to expand the outer diameter to 1.05 x D (D is the outer diameter before processing the test piece). The presence or absence of cracks was visually inspected, and the pipe expansion workability was evaluated with the cracks occurring as bad (X) and the cracks not occurring as good (O).
(5) Paint baking test From the obtained steel pipe, in accordance with the provisions of JIS Z 2201, JIS No. 12 tensile test specimens were collected so that the tensile direction would be the pipe axis direction. A paint baking process was performed, in which a tensile strain was applied and a heat treatment was performed at 170 ° C. for 20 minutes. The tensile test specimens were collected from each position in the circumferential direction of the tube (the position of ERW was 0 °, and a total of 11 positions at a pitch of 30 ° in the circumferential direction, excluding the ERW).

そして、処理済み試験片について引張試験を実施して、塗装焼付け処理後の、0.2%耐力YSおよび引張強さTSを求め、塗装焼付け処理後の降伏比(=(YS/TS)×100(%))を算出した。また、塗装焼付け硬化量(BH量)を、図5に示すように、塗装焼付け処理後の0.2%耐力と2%の引張歪を付与後の強度との差として算出した。BH量は円周方向各位置での最大値と最小値を求めた。なお、YS、TSは円周方向各位置での値の算術平均を求めた。   Then, a tensile test is performed on the treated specimen to obtain a 0.2% proof stress YS and a tensile strength TS after the paint baking process, and a yield ratio (= (YS / TS) × 100 (%) after the paint baking process. )) Was calculated. Further, as shown in FIG. 5, the coating bake hardening amount (BH amount) was calculated as a difference between the 0.2% proof stress after the coating baking treatment and the strength after applying the 2% tensile strain. As for the amount of BH, the maximum value and the minimum value at each position in the circumferential direction were obtained. For YS and TS, the arithmetic average of the values at each position in the circumferential direction was obtained.

得られた結果を表5に示す。   The results obtained are shown in Table 5.

Figure 0005732999
Figure 0005732999

Figure 0005732999
Figure 0005732999

Figure 0005732999
Figure 0005732999

Figure 0005732999
Figure 0005732999

Figure 0005732999
Figure 0005732999

Figure 0005732999
Figure 0005732999

Figure 0005732999
Figure 0005732999

本発明例はいずれも、引張強さTS:1180MPa以上の高強度と、管軸方向の伸びElが10%
以上で、かつ管軸方向の降伏比(=(0.2%耐力/引張強さ)×100(%))が90%未満である、優れた加工性と、さらに、2%以上の予歪を付与し、さらに170℃×20minの熱処理(塗装焼付け処理)を施したのちの、管軸方向の降伏比が90%以上で、かつBH量が100MPa以上と、優れた衝撃吸収特性と、を有する電縫鋼管となっている。さらに本発明例は、円周方向各位置でのBH量のばらつきは少なく、いずれも100〜130MPaの範囲内に収まっている。さらに本発明例は、偏平加工を行ってもビード部に亀裂の発生が認められず、偏平加工性に優れ、さらに、拡管加工を行ってもビード部に割れの発生が認められず、拡管加工性に優れた鋼管となっている。
In all of the examples of the present invention, the tensile strength TS: high strength of 1180 MPa or more, and the elongation El in the tube axis direction is 10%.
Excellent workability with a yield ratio (= (0.2% proof stress / tensile strength) x 100 (%)) in the tube axis direction of less than 90%, plus 2% or more pre-strain In addition, after heat treatment (paint baking treatment) at 170 ° C x 20 min, the electrode has an excellent shock absorption characteristic with a yield ratio in the tube axis direction of 90% or more and a BH amount of 100 MPa or more. It is a sewn steel pipe. Furthermore, in the example of the present invention, there is little variation in the BH amount at each position in the circumferential direction, and all are within the range of 100 to 130 MPa. Furthermore, in the present invention, even when flattening is performed, cracks are not observed in the bead part, and flatness is excellent. Further, even if pipe expansion is performed, cracks are not observed in the bead part. It is a steel pipe with excellent properties.

一方、本発明の範囲を外れる比較例は、強度が不足しているか、加工性が低下しているか、衝撃吸収性が低下しているか、偏平加工性が劣っているか、あるいは、拡管加工性が劣っている。   On the other hand, the comparative examples that are outside the scope of the present invention are insufficient in strength, workability is reduced, impact absorbability is lowered, flat workability is inferior, or pipe workability is poor. Inferior.

1 帯板
2 エッジベンドロール
3 センターベンドロール
4 ケージロール
5 フィンパスロール
6 溶接手段
7 スクイズロール
8 電縫溶接管
9 切断機
10 オープン管
11 内面ビード
12 外面ビード
13 バー
14 バイト
15 支持部材
20 偏平加工試験片
21 溶接ビード位置
DESCRIPTION OF SYMBOLS 1 Strip 2 Edge bend roll 3 Center bend roll 4 Cage roll 5 Fin pass roll 6 Welding means 7 Squeeze roll 8 Electric resistance welded tube 9 Cutting machine
10 open tube
11 inner bead
12 External bead
13 bar
14 bytes
15 Support member
20 Flat processing specimen
21 Weld bead position

Claims (6)

質量%で、
C:0.05〜0.20%、 Si:0.5〜2.0%、
Mn:1.0〜3.0%、 P:0.1%以下、
S:0.01%以下、 Al:0.01〜0.1%、
N:0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成と、フェライト相とマルテンサイト相からなる二相組織で、該マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満である優れた加工性と、予歪:2%付与したのち170℃×20minの熱処理を施す塗装焼付け処理後の強度増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる優れた衝撃吸収特性とを有し、電縫溶接部の内面ビード高さが-0.1〜0.1mmであることを特徴とする高強度電縫鋼管。
% By mass
C: 0.05-0.20%, Si: 0.5-2.0%,
Mn: 1.0 to 3.0%, P: 0.1% or less,
S: 0.01% or less, Al: 0.01 to 0.1%,
N: 0.005% or less, a composition composed of the balance Fe and inevitable impurities, and a two-phase structure composed of a ferrite phase and a martensite phase, the martensite phase having a volume ratio of 20 to 60%. Excellent workability with tensile strength TS of 1180 MPa or more, tube axis elongation El of 10% or more, yield ratio of less than 90%, and pre-strain: 2%, and then heat treatment at 170 ° C x 20 min. It has excellent shock absorption characteristics such that the amount of increase in strength (BH amount) after coating baking treatment is 100MPa or more and the yield ratio is 90% or more, and the inner bead height of ERW welds is -0.1 ~ High-strength ERW steel pipe characterized by being 0.1mm.
前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の高強度電縫鋼管。   In addition to the above composition, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05 The high-strength electric resistance welded steel pipe according to claim 1, wherein the composition contains one or more selected from B: 0.005% or less and B: 0.0050% or less. 前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または2に記載の高強度電縫鋼管。   The composition according to claim 1 or 2, further comprising one or two kinds selected from Ca: 0.0050% or less and REM: 0.0050% or less in mass% in addition to the composition. High strength ERW steel pipe as described. 鋼素材に、該鋼素材を熱間圧延して熱延板とする熱延工程と、該熱延板に酸洗処理を施し、ついで冷間圧延を施し冷延板とする冷延工程と、該冷延板に、焼鈍処理を施し冷延焼鈍板とする焼鈍工程とを施して鋼管用素材とし、ついで該鋼管用素材に、該鋼管用素材を連続的に成形し略円筒状のオープン管とし、該オープン管を電縫溶接して電縫管としたのち、該電縫溶接により形成される電縫溶接部の溶接ビードを切削する造管工程を施して電縫鋼管とするにあたり、前記鋼素材を、質量%で、
C:0.05〜0.20%、 Si:0.5〜2.0%、
Mn:1.0〜3.0%、 P:0.1%以下、
S:0.01%以下、 Al:0.01〜0.1%、
N:0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱延工程を、仕上圧延終了温度がAr変態点以上で、巻取温度が500〜650℃である熱間圧延を施し熱延板とする工程とし、前記焼鈍工程を、前記冷延板に、Ac変態点〜Ac変態点の範囲の二相温度域の温度に、加熱し均熱したのち、600〜750℃の範囲の温度から室温まで、平均で、500℃/s以上の冷却速度で冷却する急冷処理を施し、ついで、150〜300℃の温度範囲に再加熱する焼戻処理を施し、冷延焼鈍板とする工程とし、前記成形を、ケージロール方式のロール成形とし、前記溶接ビードの切削により内面ビード高さを-0.1〜0.1mmとし、前記電縫鋼管が、フェライト相とマルテンサイト相からなる二相組織で、該マルテンサイト相が体積率で20〜60%である組織とを有し、引張強さTSが1180MPa以上、管軸方向の伸びElが10%以上、降伏比が90%未満である優れた加工性と、予歪:2%付与したのち170℃×20minの熱処理を施す塗装焼付け処理後の降伏強さ増加量(BH量)が100MPa以上で、かつ降伏比が90%以上となる優れた衝撃吸収特性とを有する鋼管である、ことを特徴とする高強度電縫鋼管の製造方法。
A hot rolling process in which the steel material is hot-rolled into a hot-rolled sheet on the steel material, a cold-rolling process in which the hot-rolled sheet is subjected to a pickling treatment, and then cold-rolled into a cold-rolled sheet, An annealing process is performed on the cold-rolled sheet to form a cold-rolled annealed sheet to obtain a steel pipe material, and then the steel pipe material is continuously formed on the steel pipe material to form a substantially cylindrical open pipe. And, after the open pipe is electro-welded to form an electro-sewn pipe, a pipe forming step of cutting the weld bead of the electro-sealed welded portion formed by the electro-resistance welding is performed to form an electro-welded steel pipe. Steel material in mass%
C: 0.05-0.20%, Si: 0.5-2.0%,
Mn: 1.0 to 3.0%, P: 0.1% or less,
S: 0.01% or less, Al: 0.01 to 0.1%,
N: A steel material containing 0.005% or less and having the balance Fe and inevitable impurities,
The hot rolling step is a step of performing hot rolling with a finish rolling end temperature of Ar 3 transformation point or higher and a coiling temperature of 500 to 650 ° C. to form a hot rolled plate, and the annealing step is the cold rolled plate. In addition, after heating and soaking to a temperature in the two-phase temperature range of Ac 1 transformation point to Ac 3 transformation point, from the temperature range of 600 to 750 ° C. to room temperature, the average is 500 ° C./s or more. It is subjected to a rapid cooling process that cools at a cooling rate, and then a tempering process that is reheated to a temperature range of 150 to 300 ° C. to form a cold-rolled annealed sheet, and the molding is a cage roll type roll molding, The inner bead height is set to -0.1 to 0.1 mm by cutting the weld bead, and the ERW steel pipe is a two-phase structure composed of a ferrite phase and a martensite phase, and the martensite phase is 20 to 60% by volume. It has a certain structure, tensile strength TS is 1180 MPa or more, tube axis direction elongation El is 10% or more, and yield ratio is 90 Excellent workability of less than 10% and pre-strain: 2%, and then the yield strength increase (BH amount) after coating baking treatment with heat treatment of 170 ℃ x 20min is 100MPa or more, and the yield ratio is 90 %. A method for producing a high-strength ERW steel pipe, characterized by being a steel pipe having an excellent impact absorption characteristic of at least%.
前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.05%以下、Ti:0.05%以下、W:0.05%以下、B:0.0050%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4に記載の高強度電縫鋼管の製造方法。   In addition to the above composition, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.05% or less, Ti: 0.05% or less, W: 0.05 % Or less, B: It is set as the composition containing 1 type, or 2 or more types chosen from below 0.0050%, The manufacturing method of the high intensity | strength ERW steel pipe of Claim 4 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4または5に記載の高強度電縫鋼管の製造方法。   The composition according to claim 4 or 5, further comprising, in addition to the above composition, one or two kinds selected from Ca: 0.0050% or less and REM: 0.0050% or less in terms of mass%. The manufacturing method of the high intensity | strength ERW steel pipe of description.
JP2011096739A 2011-04-25 2011-04-25 High-strength ERW steel pipe and manufacturing method thereof Active JP5732999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096739A JP5732999B2 (en) 2011-04-25 2011-04-25 High-strength ERW steel pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096739A JP5732999B2 (en) 2011-04-25 2011-04-25 High-strength ERW steel pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012229457A JP2012229457A (en) 2012-11-22
JP5732999B2 true JP5732999B2 (en) 2015-06-10

Family

ID=47431230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096739A Active JP5732999B2 (en) 2011-04-25 2011-04-25 High-strength ERW steel pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5732999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022169938A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Method of evaluating butt-welded part of steel pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357740B (en) * 2014-11-14 2016-06-01 武汉钢铁(集团)公司 A kind of high strength low-carbon height silicomanganese system cold-rolled dual phase steel of molybdenum niobium and production method
CN109465609A (en) * 2018-12-29 2019-03-15 无锡苏嘉法斯特汽车零配件有限公司 A kind of preparation method of automobile abnormal shape door anti-collision joist welded still pipe
WO2021256128A1 (en) * 2020-06-19 2021-12-23 Jfeスチール株式会社 Alloy pipe and method for manufacturing same
JP7396327B2 (en) * 2021-04-28 2023-12-12 Jfeスチール株式会社 Steel pipe workability evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022169938A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Method of evaluating butt-welded part of steel pipe
JP7459835B2 (en) 2021-04-28 2024-04-02 Jfeスチール株式会社 Evaluation method for steel pipe joints

Also Published As

Publication number Publication date
JP2012229457A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP4957854B1 (en) High-strength ERW steel pipe and manufacturing method thereof
JP4853082B2 (en) Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof
CN113677448B (en) Square steel pipe, method for producing same, and building structure
CN114599812B (en) Electric resistance welded steel pipe, method for producing same, line pipe, and building structure
JP5732999B2 (en) High-strength ERW steel pipe and manufacturing method thereof
JP2010111931A (en) High-tensile welded steel pipe for automotive member, and method for producing the same
TWI724782B (en) Square steel pipe and its manufacturing method, and building structure
CN115362273A (en) Electric resistance welded steel pipe and method for producing same
JP2009242858A (en) High-strength steel pipe and manufacturing method therefor
WO2020170775A1 (en) Square steel pipe, method for manufacturing same, and building structure
JP7529049B2 (en) Square steel pipe and its manufacturing method, hot-rolled steel sheet and its manufacturing method, and building structure
JP5141440B2 (en) High-strength steel pipe excellent in workability and manufacturing method thereof
US11535908B2 (en) Hot-rolled steel sheet having excellent durability and method for manufacturing same
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP7276641B1 (en) Electric resistance welded steel pipe and its manufacturing method
WO2023210046A1 (en) Electric resistance welded steel pipe and method for manufacturing same
JP7563585B2 (en) Electric resistance welded steel pipe and its manufacturing method
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JP4244749B2 (en) Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof
WO2021065493A1 (en) Rectangular steel pipe and method for manufacturing same, and building structure
JP4815729B2 (en) Manufacturing method of high strength ERW steel pipe
JP2023036442A (en) Electroseamed steel pipe and its manufacturing method
JPH07216504A (en) Electric resistance welded tube excellent in ductility and toughness and having 680-1070mpa tensile strength and its production
JP2024126142A (en) Non-tempered circular welded steel pipe and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5732999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250