JPH03122219A - Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength - Google Patents

Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength

Info

Publication number
JPH03122219A
JPH03122219A JP26171889A JP26171889A JPH03122219A JP H03122219 A JPH03122219 A JP H03122219A JP 26171889 A JP26171889 A JP 26171889A JP 26171889 A JP26171889 A JP 26171889A JP H03122219 A JPH03122219 A JP H03122219A
Authority
JP
Japan
Prior art keywords
steel tube
steel
tensile strength
strength
120kgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26171889A
Other languages
Japanese (ja)
Inventor
Hiroto Tanabe
田邉 弘人
Itsurou Hiroshige
逸朗 弘重
Isao Anai
功 穴井
Akisada Takazawa
高沢 昭貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26171889A priority Critical patent/JPH03122219A/en
Publication of JPH03122219A publication Critical patent/JPH03122219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a steel tube having superior elongation and excellent in tensile strength by subjecting a steel tube formed by using, as a stock, a carbon steel or low alloy steel containing specific trace amounts of B to hardening treatment. CONSTITUTION:A steel tube 5 is produced by using a carbon steel or a low alloy steel having a composition which contains, by weight, 0.15-0.23% C, <=1.5% Mn, <=0.5% Si, <=0.04% Ti, 0.0003-0.0035% B as a hardenability-improving element, and <=0.0080% N for reducing the hardening effect or further contains one or >=2 kinds among <=0.5% Ni, %h0.5% Cr, and <0.5% Mo and in which trace amounts of sol. Al are allowed to remain by using Al for the deoxidation of the steel. Both ends of the above steel tube 5 are held by means of thrust P by jigs 6, and, while turning the steel tube 5, a high frequency induction heating coil 7 is moved in the direction of an arrow to heat the steel tube 5 up to a temp. in an austenite region, followed by hardening by means of water quenching using a water quenching ring 8. By this method, the steel tube excellent in ductility and having >=120kgf/mm<2> tensile strength can easily be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特に高強度を必要とする機械構造用鋼管、例え
ば、自動車の補強用鋼管であるドアインパクトバー、バ
ンパー用芯材等の引張り強さ120kgf/mm2以上
の機械構造用高強度鋼管の製造方法に関するものである
Detailed Description of the Invention (Industrial Application Field) The present invention is particularly useful for improving the tensile strength of mechanical structural steel pipes that require high strength, such as door impact bars and core materials for bumpers, which are reinforcing steel pipes for automobiles. The present invention relates to a method for manufacturing high-strength steel pipes for mechanical structures with a strength of 120 kgf/mm2 or more.

(従来の技術) 鋼管に対して熱処理を行なうことによる引張り強さ75
kgf/mm2以上の高強度鋼管の製造方法としては、
特開昭56−46538号公報に記載された高張力電縫
鋼管の製造方法が知られているが、焼入れ処理後、焼戻
し処理を実施することで、熱処理工程が2回必要であり
、工程が複雑であった。また、焼入れ、焼戻し処理は鋼
管の靭性・延性の回復のために必要であったが、高強度
と良好な伸びを同時に得るのが困難であった。例として
、第1図に焼戻し温度条件と、引張り特性を示す。
(Prior art) Tensile strength of 75 achieved by heat treating steel pipes
As a method for manufacturing high strength steel pipes of kgf/mm2 or more,
A method for manufacturing high-tensile resistance welded steel pipes is known, which is described in Japanese Patent Application Laid-Open No. 56-46538, but it requires two heat treatment steps and is slow due to the tempering treatment being carried out after the quenching treatment. It was complicated. In addition, quenching and tempering treatments were necessary to restore the toughness and ductility of steel pipes, but it was difficult to simultaneously obtain high strength and good elongation. As an example, FIG. 1 shows the tempering temperature conditions and tensile properties.

試験片サイズは、外径38.1mmX板厚2.0 mm
のJISII号試験片である。高周波焼入れ後に、横軸
の焼戻し温度にて処理した場合の引張り強さをQ印、降
伏強さを・印、伸びをΔ 印にて示す。焼戻し温度を高
くすると、伸びの回復は若干認められるが、充分な延性
の回復前に強度が著しく低下してしまう。120kgf
/mm2以上の引張り強さを保持しながら例えば、10
%以上の伸びを確保するのは非常に困難であった。
The test piece size is outer diameter 38.1 mm x plate thickness 2.0 mm.
This is a JIS II test piece. After induction hardening, the tensile strength when treated at the tempering temperature on the horizontal axis is indicated by Q, the yield strength is indicated by -, and the elongation is indicated by Δ. When the tempering temperature is raised, a slight recovery in elongation is observed, but the strength drops significantly before sufficient ductility is recovered. 120kgf
/mm2 or more while maintaining a tensile strength of, for example, 10
It was extremely difficult to secure an increase of more than 1%.

(発明が解決しようとする課題) 例えば、インパクトビーム用綱管の場合、第2図に示す
如く、実使用環境では、衝突により荷重1が負荷される
と、ボデー2とともにインパクトビーム3は塑性変形を
するが、搭乗者4にドア内部が接触するまえにどれだけ
のエネルギーを吸収できるかが大切であり、インパクト
ビームには、非常に高い強度と、ある程度の塑性変形、
いわゆる伸び量を有することが大切である。
(Problems to be Solved by the Invention) For example, in the case of a steel pipe for an impact beam, as shown in FIG. 2, in an actual use environment, when a load 1 is applied due to a collision, the impact beam 3 along with the body 2 undergoes plastic deformation. However, it is important to determine how much energy can be absorbed before the inside of the door comes into contact with the passenger 4, so the impact beam has extremely high strength, a certain amount of plastic deformation, and
It is important to have a so-called elongation amount.

本発明は、このような高強度と伸びを同時に確保するこ
とのできる高強度鋼管を、低コストで得ることを課題と
するものである。
An object of the present invention is to obtain a high-strength steel pipe that can simultaneously ensure such high strength and elongation at a low cost.

(課題を解決するための手段) 本発明は、 C:0.15〜0.23%(重量%、以下同じ)Mn≦
0.5% Si≦0.5% Ti≦0.04% B  :0.0003〜0.0035%N≦0.008
0% を含有し、あるいはさらにこれらに加えて、SiS0.
5% Cr≦0.5% Mo≦0.5% の一種または二種以上を含有し、残部は脱酸度を調整す
ることにより残存するsol、AI、 Feおよび不可
避的不純物よりなる鋼管に焼入れ処理を行なうことを特
徴とする引張り強さ120kgf/mm2以上の機械構
造用高強度鋼管の製造方法を要旨とするものである。
(Means for Solving the Problems) The present invention provides C: 0.15 to 0.23% (weight%, the same applies hereinafter) Mn≦
0.5% Si≦0.5% Ti≦0.04% B: 0.0003 to 0.0035% N≦0.008
0%, or in addition, SiSO0.
5% Cr≦0.5% Mo≦0.5% Contains one or more of the following, and the remainder consists of remaining sol, AI, Fe, and inevitable impurities by adjusting the degree of deoxidation.The steel pipe is then quenched. The gist of the present invention is to provide a method for manufacturing high-strength steel pipes for mechanical structures having a tensile strength of 120 kgf/mm2 or more, which is characterized by carrying out the following steps.

(作 用) 本発明は、上記課題を解決するためになされたもので、
成分を選定し、鋼管とした後に焼入れ処理を行なうこと
により、良好な伸びを示す高強度鋼管が得られる。
(Function) The present invention has been made to solve the above problems, and
By selecting the ingredients and performing a quenching treatment after forming the steel pipe, a high-strength steel pipe that exhibits good elongation can be obtained.

以下本発明における電縫鋼管製造条件の限定理由につい
て述べる。
The reason for limiting the manufacturing conditions for the electric resistance welded steel pipe in the present invention will be described below.

まず、成分系であるが、本発明は、焼入れマルテンサイ
ト組織による強化をめざしたもので、焼入れままのマル
テンサイト組織の強度はC含有量によって決定される。
First, regarding the component system, the present invention aims at strengthening by a quenched martensitic structure, and the strength of the as-quenched martensitic structure is determined by the C content.

変態の利用により過飽和に導入される固溶C量が支配要
因となっていると考えられる。そこで、90%以上のマ
ルテンサイト組織を得る前提で120kgf/mm2以
上の強度を確保するためには、詳細に検討した結果、第
3図に示す如くC量は0.15%以上必要であることが
確かめられた。即ち、C量が0.15%以上であると引
張り強さ120kgf/mm2以上の強度が得られ、C
量の増加と共に引張り強さが上昇する。しかし、引張り
強さと共に延性も考慮する必要があり、C量が増加する
と伸びが低下し、10%以上の伸びを確保するためにC
量を0.23%以下とした(尚、第3図に示すC量以外
の他の成分はS : 0.20%、Mn:2.20%、
  P : 0.016 %、Si: 0.003%。
It is thought that the amount of solid solute C introduced into supersaturation through the use of transformation is a controlling factor. Therefore, in order to secure a strength of 120 kgf/mm2 or more on the premise of obtaining a martensitic structure of 90% or more, as shown in Figure 3, as shown in Figure 3, a carbon content of 0.15% or more is required. was confirmed. That is, when the C content is 0.15% or more, a tensile strength of 120 kgf/mm2 or more can be obtained, and C
Tensile strength increases with increasing amount. However, it is necessary to consider ductility as well as tensile strength, and as the amount of C increases, elongation decreases.
The amount was set to 0.23% or less (other components other than the amount of C shown in Figure 3 are S: 0.20%, Mn: 2.20%,
P: 0.016%, Si: 0.003%.

N : 0.025  %、Cr:0.20%、Ti:
0.02%、 B: 0.001%である試料を用い、
焼入れ処理としては高周波焼入れを行なった)。特開昭
56−46538号公報にみられる如く、従来一般的に
行なわれている焼入れ後焼戻し処理を施こす場合の焼戻
し処理は、延性を確保するため行なわれるものであるが
、固溶Cは凝集し炭化物へ移行する。従って、焼戻し処
理を実施する場合の鋼の強化機構は、固溶強化から、析
出強化に変化するものであり、本発明は析出強化とは異
なり、焼戻し処理を行わないことによる固溶強化を行な
うものであり、強化機構が大きく異なるものである。
N: 0.025%, Cr: 0.20%, Ti:
Using a sample with B: 0.001%,
As the hardening treatment, induction hardening was performed). As seen in JP-A No. 56-46538, the conventional tempering treatment after quenching is performed to ensure ductility, but solid solution C is It aggregates and transitions to carbide. Therefore, the strengthening mechanism of steel when tempering is performed changes from solid solution strengthening to precipitation strengthening, and unlike precipitation strengthening, the present invention performs solid solution strengthening by not performing tempering. However, the strengthening mechanism is very different.

Mnは鋼のマルテンサイト変態温度を低下させ、焼入れ
性を向上させるとともに、焼入れ処理途中にて変態後の
セルフテンパーを回避し、強度を高く保つ効果を有する
元素である。ただし、Mnは、例えば電縫溶接にて鋼管
を製造する場合を想定すると溶接欠陥を生じ易く、Mn
は1.50%を上限とする。
Mn is an element that has the effect of lowering the martensitic transformation temperature of steel and improving hardenability, as well as avoiding self-tempering after transformation during the hardening process and maintaining high strength. However, Mn tends to cause welding defects when manufacturing steel pipes by electric resistance welding, for example, and Mn
The upper limit is 1.50%.

Mnに比べ、Ni、 Cr、 Moは非常に高価である
が、Mnの他にこれらNi、 Cr、 Moを添加する
と、マルテンサイト変態温度を低下させ、セルフテンパ
ーを回避し、高強度化により効果を有するものである。
Compared to Mn, Ni, Cr, and Mo are very expensive, but adding these Ni, Cr, and Mo in addition to Mn lowers the martensitic transformation temperature, avoids self-tempering, and is effective in increasing strength. It has the following.

溶接性の観点から上限はそれぞれ0.5%とする。From the viewpoint of weldability, the upper limit is 0.5% for each.

Siについては、Mnとともに電縫溶接にて鋼管を製造
する場合に、溶接部の健全性を維持するうえで非常に重
要な元素である。Stの上限は、溶接部にてペネトレー
ターと呼ばれる酸化物を形成しないため上限を0.5%
とするとともに、Mn/Si比のバランスを、3〜10
とするのが望ましい。
Si, together with Mn, is a very important element in maintaining the integrity of the weld when manufacturing steel pipes by electric resistance welding. The upper limit of St is 0.5% to prevent the formation of oxides called penetrators in welds.
At the same time, the balance of Mn/Si ratio is set to 3 to 10.
It is desirable to do so.

Bは、焼入れ性を飛躍的に向上させる元素で、本発明鋼
の場合、比較的低Cにてマルテンサイト分率90%以上
を得るため、B添加を特徴としているが、0.0003
%未満では、焼入れ性向上効果が期待できず、0.00
35%より多量の場合、コスト高になるばかりでなく、
表面疵や初生劣化の原因となり易い。従って、B含有量
は0.0003〜0.0035%とした。
B is an element that dramatically improves hardenability, and the steel of the present invention is characterized by the addition of B in order to obtain a martensite fraction of 90% or more at a relatively low C.
If it is less than 0.00%, no improvement in hardenability can be expected;
If the amount is more than 35%, not only will the cost be high,
It can easily cause surface flaws and initial deterioration. Therefore, the B content was set to 0.0003 to 0.0035%.

このBの焼入れ性向上効果は、Nが0.003%以上存
在すると失われるので、このNの固定化の目的でTiの
添加を実施する。添加するTiの量は、0.04%をこ
えると疵の発生、切削性等品質面でトラブルを生じ易く
、従ってTi0.04%以下に規制する。
This hardenability improving effect of B is lost if N is present in an amount of 0.003% or more, so Ti is added for the purpose of fixing this N. If the amount of Ti added exceeds 0.04%, quality problems such as occurrence of scratches and machinability are likely to occur, so the amount of Ti added is limited to 0.04% or less.

尚、Nは不可避的に鋼中に存在し、BNを形成し、Bの
効果を軽減してしまう。そこで、Nは極力軽減すべく、
上限を0.0080%とする。
Note that N inevitably exists in steel, forms BN, and reduces the effect of B. Therefore, in order to reduce N as much as possible,
The upper limit is set to 0.0080%.

以上のような成分よりなる鋼管に焼入れ処理を実施する
ことにより引張り強さを120kgf/mm2以上とす
るが、本発明が対象としている例えばインパクトビーム
用等の鋼管は、外径が、40順φ以下で、肉厚も2.0
 mm程度と非常に顕熱が小さく温度降下がはげしい。
By subjecting a steel pipe made of the above-mentioned components to a tensile strength of 120 kgf/mm2 or more, the steel pipe for use in impact beams, etc., targeted by the present invention, has an outer diameter of 40 mm. Below, the wall thickness is 2.0
Sensible heat is very small, on the order of mm, and the temperature drop is significant.

第4図に、従来−船釣に実施されている炉加熱水焼入れ
法の場合と、本発明に必要な焼入れ条件の比較を示すが
、破線にて示す従来法の場合、加熱中の脱炭層の生成、
炉から抽出後の温度降下がはげしく、温度ムラを発生し
やすい。こういった材料にその後急冷を実施しても焼き
むらの発生、組織ばらつき、強度ばらつき、強度不足を
生じる。そこで本発明の焼入れ熱処理においては、高温
で放冷を受けるような時間を短くし、急熱急冷にて強制
的に温度制御を行なうことにより、組織バラツキを軽減
するようにつとめるのが重要である。そのための方法と
しては、高周波誘導加熱を用いるのが有効であり、例え
ば第5図に示すような熱処理方法が考えられる。即ち、
鋼管5の両側を円錐状の治具6にて、寸法精度(曲り、
長さ)の確保のため熱処理時のし方向拘束を適正化する
ように一定の推力Pにて両側よりはさむことにより固定
し、この治具より回転を伝えることにより、鋼管を回転
させながら、鋼管の一端より、高周波誘導加熱コイル7
を移動させることにより、管端より順次オーステナイト
領域の温度まで加熱し、そのすぐ後方を追従する水冷リ
ング8により、水温まで急速に冷却する方法である。以
上述べたように高周波焼入れ方法が有効であるが、瞬時
に加熱・冷却を与えることができる手法であれば特に方
法はこだわるものではない。
Figure 4 shows a comparison between the conventional furnace-heated water quenching method used for boat fishing and the quenching conditions required for the present invention. generation of,
The temperature drops rapidly after extraction from the furnace, and temperature unevenness is likely to occur. Even if such materials are subsequently rapidly cooled, uneven heating, structure variations, strength variations, and insufficient strength occur. Therefore, in the quenching heat treatment of the present invention, it is important to try to reduce the structure variation by shortening the time during which the material is allowed to cool at a high temperature and by forcibly controlling the temperature by rapid heating and cooling. . As a method for this purpose, it is effective to use high frequency induction heating, and for example, a heat treatment method as shown in FIG. 5 can be considered. That is,
The dimensional accuracy (bending,
The steel pipe is fixed by sandwiching it from both sides with a constant thrust P to ensure proper direction restraint during heat treatment, and by transmitting rotation from this jig, while rotating the steel pipe, From one end, the high frequency induction heating coil 7
In this method, the tube is heated sequentially from the tube end to the temperature of the austenite region by moving the tube, and then rapidly cooled to the water temperature by the water cooling ring 8 that follows immediately behind. As mentioned above, the induction hardening method is effective, but there is no particular restriction on the method as long as it can provide instant heating and cooling.

このようにして、焼入れ熱処理だけで、良好な延性を示
す引張り強さ120kgf/mm2以上の機械構造用高
強度鋼管を得ることができる。
In this way, it is possible to obtain a high-strength steel pipe for mechanical structures that exhibits good ductility and has a tensile strength of 120 kgf/mm 2 or more just by quenching heat treatment.

(実施例) 第1表に本発明の実施例および比較例を示す。(Example) Table 1 shows examples and comparative examples of the present invention.

外径38.1 mmφX 2. Omm tの鋼管に対
して第5図の方法にて熱処理を実施した場合のJIS1
1号引張り試験結果を示す。実施例A−Gではいずれの
場合も引張り強度120kgf/mm2以上、伸び10
%以上が得られる。
Outer diameter 38.1 mmφX 2. JIS 1 when heat treatment is performed on a steel pipe of Omm t using the method shown in Figure 5.
The results of the No. 1 tensile test are shown. In Examples A to G, the tensile strength was 120 kgf/mm2 or more and the elongation was 10 in all cases.
% or more can be obtained.

比較例HはC含有量が本発明成分範囲より低い場合で、
目標の強度が得られない。比較例!はC量が本発明成分
範囲より高い場合で、伸びが非常に低い状態である。
Comparative Example H is a case in which the C content is lower than the range of the components of the present invention,
Targeted strength is not achieved. Comparative example! This is a case where the amount of C is higher than the range of the components of the present invention, and the elongation is very low.

比較例Jは炉加熱・水焼入れの場合で、焼入れ組織が不
充分で、実施例Cに比べ強度が低く、伸びが少ない。硬
さに評価すると、長手方向・肉厚方向・周方向のバラツ
キは非常に大きかった。
Comparative Example J is a case of furnace heating and water quenching, and the quenched structure is insufficient, and compared to Example C, the strength is lower and the elongation is less. When evaluating the hardness, there were very large variations in the longitudinal, thickness, and circumferential directions.

また、比較例に−Nは焼鈍にて目標強度・伸びバランス
を狙った例であるが、強度・延性を安定して満たすのは
、 非常に困難である。
In addition, the comparative example -N is an example in which the target strength/elongation balance was achieved through annealing, but it is extremely difficult to stably satisfy the strength/ductility requirements.

(発明の効果) 以上説明したように本発明によれば、伸びの良好な、引
張り強さ120kgf/mm2以上の鋼管を焼入れ処理
という一度の熱処理だけで得ることができる。
(Effects of the Invention) As explained above, according to the present invention, a steel pipe with good elongation and a tensile strength of 120 kgf/mm 2 or more can be obtained by only one heat treatment called quenching treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、焼戻し処理により得られる鋼管の引張り特性
を示す図、第2図は、本発明鋼管の利用例を示す図、第
3図は、本発明の熱処理を実施した場合の炭素含有量と
引張り特性を示す図、第4図は、本発明で実施が必要な
焼入れ熱サイクルの特徴を示す図、第5図は、本発明の
焼入れ熱処理の実施方法を示す図である。 第2図 第3図 C含有量 (utt幻 第1図 規戻し温度(°C) 第4図 然履歴比較
Fig. 1 is a diagram showing the tensile properties of steel pipes obtained by tempering treatment, Fig. 2 is a diagram showing an example of the use of the steel pipe of the present invention, and Fig. 3 is a diagram showing the carbon content when the heat treatment of the present invention is performed. FIG. 4 is a diagram showing the characteristics of the quenching heat cycle required to be carried out in the present invention, and FIG. 5 is a diagram showing the method of carrying out the quenching heat treatment of the present invention. Figure 2 Figure 3 C content (utt phantom Figure 1 Return temperature (°C) Figure 4 Natural history comparison

Claims (1)

【特許請求の範囲】 C:0.15〜0.23%(重量%、以下同じ)Mn≦
1.5% Si≦0.5% Ti≦0.04% B:0.0003〜0.0035% N≦0.0080% を含有し、あるいはさらにこれらに加えて、Ni≦0.
5% Cr≦0.5% Mo≦0.5% の一種または二種以上を含有し、残部は脱酸度を調整す
ることにより残存するsol.Al、Feおよび不可避
的不純物よりなる鋼管に焼入れ処理を行なうことを特徴
とする引張り強さ120kgf/mm^2以上の機械構
造用高強度鋼管の製造方法。
[Claims] C: 0.15 to 0.23% (weight %, same hereinafter) Mn≦
1.5% Si≦0.5% Ti≦0.04% B: 0.0003 to 0.0035% N≦0.0080%, or in addition to these, Ni≦0.
5% Cr≦0.5% Mo≦0.5% Contains one or more of the following, and the remainder is sol. A method for manufacturing a high-strength steel pipe for mechanical structures having a tensile strength of 120 kgf/mm^2 or more, which comprises subjecting a steel pipe made of Al, Fe and inevitable impurities to a quenching treatment.
JP26171889A 1989-10-06 1989-10-06 Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength Pending JPH03122219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26171889A JPH03122219A (en) 1989-10-06 1989-10-06 Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26171889A JPH03122219A (en) 1989-10-06 1989-10-06 Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength

Publications (1)

Publication Number Publication Date
JPH03122219A true JPH03122219A (en) 1991-05-24

Family

ID=17365745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26171889A Pending JPH03122219A (en) 1989-10-06 1989-10-06 Production of high strength steel tube for machine structural use having >=120kgf/mm2 tensile strength

Country Status (1)

Country Link
JP (1) JPH03122219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118841A1 (en) 2010-03-24 2011-09-29 Jfeスチール株式会社 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
JP2013199677A (en) * 2012-03-23 2013-10-03 Neturen Co Ltd Method and apparatus for heating ring member
CN106636567A (en) * 2016-10-19 2017-05-10 四川六合锻造股份有限公司 Method for improving through hardening property of G20CrNiMoA

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215719A (en) * 1984-04-07 1985-10-29 Nippon Steel Corp Manufacture of electric welded steel pipe for front fork of bicycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215719A (en) * 1984-04-07 1985-10-29 Nippon Steel Corp Manufacture of electric welded steel pipe for front fork of bicycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118841A1 (en) 2010-03-24 2011-09-29 Jfeスチール株式会社 High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
JP2013199677A (en) * 2012-03-23 2013-10-03 Neturen Co Ltd Method and apparatus for heating ring member
CN106636567A (en) * 2016-10-19 2017-05-10 四川六合锻造股份有限公司 Method for improving through hardening property of G20CrNiMoA

Similar Documents

Publication Publication Date Title
RU2562654C2 (en) Hot-stamped article, method of its production, power absorbing element and method of its production
JP5231373B2 (en) Method, work piece and use of work piece for making work piece
JP4443910B2 (en) Steel materials for automobile structural members and manufacturing method thereof
KR101052008B1 (en) Steel pipe for high strength automobile parts and manufacturing method thereof
JP2814882B2 (en) Method for manufacturing high strength and high ductility ERW steel pipe
JPH06306543A (en) High strength pc wire rod excellent in delayed fracture resistance and its production
JPS5810442B2 (en) Manufacturing method for high-toughness, high-strength steel with excellent workability
JP2009191330A (en) Electric resistance steel tube
JP2006037205A (en) Method for producing hollow drive shaft having excellent fatigue resistance
Zhang et al. Optimization of double-pulse process in resistance spot welding of hot stamped steel sheet
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JPH03122219A (en) Production of high strength steel tube for machine structural use having &gt;=120kgf/mm2 tensile strength
JP3846156B2 (en) Steel sheet for high-strength press-formed part of automobile and method for producing the same
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JPH01116032A (en) Production of high-strength-high-toughness un-tempered steel
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPH09202921A (en) Production of wire for cold forging
JPH03140441A (en) Steel pipe material for reinforcing automobile door
JPH0735543B2 (en) Clad steel plate manufacturing method
KR940003248B1 (en) Method of manufacturing impact beam for automobile
JPH0565541A (en) Manufacture of high strength resistance welded steel tube for automotive use excellent in ductility and three-point bendability
JPH083641A (en) Production of high tensile strength electric resistance welded tube
JPH10121131A (en) Manufacture of thick high tensile steel plate excellent in brittle fracture propagation stop characteristic and weldability
JP2004190086A (en) Resistance welded steel tube to be induction-hardened