JP2006089804A - Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property - Google Patents

Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property Download PDF

Info

Publication number
JP2006089804A
JP2006089804A JP2004276902A JP2004276902A JP2006089804A JP 2006089804 A JP2006089804 A JP 2006089804A JP 2004276902 A JP2004276902 A JP 2004276902A JP 2004276902 A JP2004276902 A JP 2004276902A JP 2006089804 A JP2006089804 A JP 2006089804A
Authority
JP
Japan
Prior art keywords
mass
temperature
tube
cooling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276902A
Other languages
Japanese (ja)
Inventor
Koji Omosako
浩次 面迫
Shinichi Kodama
真一 児玉
Takashi Matsumoto
孝 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004276902A priority Critical patent/JP2006089804A/en
Publication of JP2006089804A publication Critical patent/JP2006089804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength electric resistance welded tube, while maintaining strength in the class of ≥980 N, having the sufficient strength even when being thinned, having excellent tube shrinking workability, and suitable as an automobile instrument panel reinforcement requiring high collision safety. <P>SOLUTION: A C-Si-Mn steel whose carbon equivalent C<SB>eq</SB>(C+Si/24+Mn/6) is controlled to 0.55 to 0.75 mass% is subjected to rough rolling at a heating temperature of ≥1,000°C, and is thereafter hot-rolled at a finishing temperature of Ar<SB>3</SB>+50°C or higher and a coiling temperature of ≤700°C. After cold rolling, the steel is subjected to continuous annealing of soaking at ≥830°C×60 s, primary cooling so as to be cooled to 720 to 600°C for ≤10°C/s, second cooling so as to be cooled at ≥7°C/s to a second cooling temperature T: (-248×C<SB>eq</SB>+538)°C, and isothermal treatment at T+≥30°C or higher for ≥3 min. Then, the obtained cold rolled-annealed sheet is made into a tube, thus a high strength electric resistance welded tube having excellent tube shrinking properties while maintaining its high strength is produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、980N級以上の引張強さをもち、優れた縮管性を活用し、自動車の補強部品であるインパネリインフォースメントとして好適な高強度電縫鋼管を製造する方法に関する。   The present invention relates to a method for producing a high-strength ERW steel pipe suitable for instrument panel reinforcement, which has a tensile strength of 980 N class or higher, uses excellent tube shrinkage, and is a reinforcing part of an automobile.

燃費節減,衝突安全性を両立させるため、自動車用部材として使用される鋼材には薄肉化しても必要強度を維持することが要求されており、強度:750N級以上の高強度電縫鋼管が使用され始めている。たとえば、インパネリインフォースメント,ピラー,メンバー等の補強部材は、搭乗者の人命を確保するため、衝突時に自動車内部の変形を防止するように組み込まれる。
正面衝突のフルラップやオフセット衝突試験で衝突安全性が一般的に評価されるため、ダッシュボードに組み込まれるインパネリインフォースメントが重要な保安部材である。インパネリインフォースメントは、運転席側と助手席側に区別され、それぞれ強度,板厚が異なる。剛性や制振が重視される運転席側では比較的大径で厚肉の鋼管部材が必要とされるが、助手席側では車体重量の軽減を狙って比較的小径で薄肉の鋼管部材が使用されている。
In order to achieve both fuel economy and collision safety, steel materials used as automotive parts are required to maintain the required strength even if they are thinned. Uses high-strength ERW steel pipes with a strength of 750 N or higher. Being started. For example, reinforcing members such as instrument panel reinforcements, pillars, and members are incorporated so as to prevent deformation of the interior of the automobile at the time of a collision in order to secure the life of the passenger.
Instrument safety that is built into the dashboard is an important security component because crash safety is generally evaluated in full-lap crashes and offset crash tests. Instrument panel reinforcement is classified into a driver's seat side and a passenger seat side, and has different strength and thickness. On the driver's seat where importance is placed on rigidity and vibration control, a relatively large diameter and thick steel pipe member is required. On the passenger seat side, a relatively small diameter and thin steel pipe member is used to reduce the weight of the vehicle body. Has been.

たとえば、小径の助手席側鋼管1を運転席側鋼管2と溶接するため、運転席側鋼管2の管端2aを縮径加工して溶接継手を設計している。溶接一体化された助手席側鋼管1,運転席側鋼管2はブラケット3にレーザ溶接w等で固着され、ブラケット3を介し車両幅方向に沿ってダッシュボード内に組み込まれる。−図1−   For example, in order to weld the small passenger-side steel pipe 1 to the driver-side steel pipe 2, the pipe end 2a of the driver-side steel pipe 2 is reduced in diameter to design a welded joint. The welder side steel pipe 1 and the driver side steel pipe 2 which are integrated by welding are fixed to the bracket 3 by laser welding w or the like, and are incorporated into the dashboard along the vehicle width direction via the bracket 3. -Fig. 1

運転席側,助手席側で径,肉厚が異なることから、通常は二本の鋼管をアーク溶接,レーザ溶接等で接合することによりインパネリインフォースメントを作製している。運転席側には強度440Nまでの電縫鋼管の使用が一般的であり、助手席側の鋼管部材は運転席側の鋼管を助手席側に必要な径まで縮管することにより用意している。
運転席側の鋼管部材を軽量化するために減肉しても、衝突時の吸収エネルギー,座屈までの最大荷重を所定レベル以上に維持する必要があるので、減肉分の強度向上が要求される。具体的には、鋼管部材を軽量化する場合、少なくとも980N級以上の引張強さが要求され、従来の440N鋼管から980N級鋼管への高強度化・薄肉化の切換えが加工メーカ側で進められている。
Since the diameter and thickness of the driver's seat and passenger's seat are different, the instrument panel reinforcement is usually made by joining two steel pipes by arc welding, laser welding or the like. It is common to use ERW steel pipes with a strength of up to 440 N on the driver side, and the steel pipe member on the passenger side is prepared by reducing the steel pipe on the driver side to the required diameter on the passenger side. .
Even if the thickness is reduced to reduce the weight of the steel pipe member on the driver's side, it is necessary to maintain the absorbed energy at the time of collision and the maximum load until buckling at a predetermined level or higher, so the strength of the reduced thickness is required. Is done. Specifically, when reducing the weight of a steel pipe member, a tensile strength of at least 980 N class or more is required, and switching between increasing the strength and reducing the thickness from the conventional 440 N steel pipe to the 980 N class steel pipe is promoted by the processing manufacturer. ing.

鋼材は一般的に高強度になるほど加工性が低下する傾向を示し、引張強さ:980N級以上の鋼管部材を助手席側に必要な径まで縮管することは極めて困難である。高強度鋼板の加工性を改善する方法は、従来から種々提案されているが、鋼管部材の縮管性に有効な手段はこれまでのところ実用化されていない。
たとえば、特許文献1は、引張強さ:590N級の高強度鋼板であっても、マルテンサイトの量,大きさを規制することにより伸びフランジ性を改善している。しかし、電縫鋼管用素材としての使用,ましてや電縫鋼管の縮管性については解明されていない。
特開平3-264646号公報
Steel materials generally show a tendency for workability to decrease as the strength increases, and it is extremely difficult to contract a steel pipe member having a tensile strength of 980 N class or higher to a required diameter on the passenger seat side. Various methods for improving the workability of a high-strength steel sheet have been proposed in the past, but no means effective for reducing the tube-pipe of steel pipe members has been put into practical use so far.
For example, Patent Document 1 improves stretch flangeability by regulating the amount and size of martensite even in a high-strength steel sheet having a tensile strength of 590N. However, its use as a material for ERW steel pipes, and even the shrinkability of ERW steel pipes, has not been elucidated.
JP-A-3-264646

特許文献2は、フェライトと第二相の硬度差を小さくすることにより必要な局部延性を高強度鋼板に付与している。この場合にも電縫鋼管用素材への適用可能性が言及されておらず、電縫鋼管の縮管性と金属組織,特に残留オーステナイトとの関係については何ら類推できない。
特開昭63-293121号公報
Patent Document 2 imparts necessary local ductility to a high-strength steel sheet by reducing the hardness difference between ferrite and the second phase. In this case as well, the applicability to the material for ERW steel pipe is not mentioned, and no analogy can be made about the relationship between the shrinkability of ERW steel pipe and the metal structure, particularly retained austenite.
JP-A 63-293121

特許文献3は、高強度鋼管を一旦拡管した後、縮管率:0.1〜1.0程度で縮管加工することにより、偏肉を抑制して板厚精度を向上している。0.1〜1.0程度の縮管率は、インパネリインフォースメントで予定されている30%前後の縮管率と異なり、当然のこととしてインパネリインフォースメント用電縫鋼管の縮管性を類推できるものではない。
特開2003-94113号公報
In Patent Document 3, once a high-strength steel pipe is expanded, it is contracted at a contraction ratio of about 0.1 to 1.0, thereby suppressing uneven thickness and improving plate thickness accuracy. The tube contraction rate of about 0.1 to 1.0 is different from the tube contraction rate of about 30% planned for instrument panel reinforcement, and of course, the tube contractibility of the electric resistance welded steel tube for instrument panel reinforcement can be inferred. It is not a thing.
JP 2003-94113 A

薄肉・高強度化したインパネリインフォースメントにあっても、助手席側は直管タイプで加工性が特に要求されずに衝撃吸収エネルギー,座屈最大荷重が重視され、運転席側では一段と高い衝撃吸収エネルギー,座屈最大荷重が必要なため助手席側よりも大きな外径の鋼管が使用される。そのため、運転席側鋼管の管端を縮径加工して助手席側鋼管と溶接する方式は依然として従来法と同じであり、引張強さ:980N級以上の電縫鋼管であっても優れた縮管性が要求される。   Even in thin and strong instrument panel reinforcements, the passenger side is straight tube type and workability is not particularly required, and the impact absorption energy and maximum buckling load are emphasized, and the driver side has much higher shock absorption. Since energy and maximum buckling load are required, a steel pipe with a larger outer diameter than the passenger side is used. Therefore, the method of reducing the diameter of the pipe end of the driver's side steel pipe and welding it to the passenger side's steel pipe is still the same as the conventional method, and excellent shrinkage even with ERW steel pipes with a tensile strength of 980 N class or higher. Pipelines are required.

本発明者等は、インパネリインフォースメントの形状,要求特性に及ぼす電縫鋼管の鋼種,製造条件を種々の観点から検討した結果、C-Si-Mn鋼を用い、連続焼鈍中に一部マルテンサイトを生成させ、変態歪みによるベイナイト変態促進効果によって鋼板中の残留オーステナイトを5面積%以上確保しながら微細組織化することにより、引張強さ:980N級以上であっても優れた縮管性が得られることを解明した。本発明は、かかる解明をベースにし、軽量化,高強度化に適したインパネリインフォースメント用高強度電縫鋼管を提供することを目的とする。   The inventors of the present invention have studied the types and manufacturing conditions of ERW steel pipes that affect the shape and required characteristics of instrument panel reinforcement from various viewpoints. As a result, C-Si-Mn steel was used and some martensite was used during continuous annealing. , And by microstructuring while securing 5 area% or more of retained austenite in the steel sheet due to the bainite transformation promotion effect by transformation strain, excellent tube shrinkage is obtained even when the tensile strength is 980 N class or more. It was clarified that An object of the present invention is to provide a high-strength electric resistance welded steel pipe for instrument panel reinforcement suitable for weight reduction and high strength based on such elucidation.

本発明は、C:0.15〜0.20質量%,Si:1.2〜1.8質量%,Mn:2.2〜3.0質量%,P:0.030質量%以下,S:0.010質量%以下,全Al:0.01〜0.1質量%,残部が実質的にFeで、式(1)で定義される炭素当量Ceqが:0.55〜0.75質量%の範囲に調整されたスラブを使用する。
eq(%)=C+Si/24+Mn/6・・・・(1)
The present invention includes C: 0.15-0.20 mass%, Si: 1.2-1.8 mass%, Mn: 2.2-3.0 mass%, P: 0.030 mass% or less, S : 0.010% by mass or less, Total Al: 0.01 to 0.1% by mass, the balance is substantially Fe, and the carbon equivalent C eq defined by the formula (1) is 0.55 to 0.75. Use a slab adjusted to a mass% range.
C eq (%) = C + Si / 24 + Mn / 6 (1)

粗圧延,熱間圧延,冷間圧延,連続焼鈍を経て冷延焼鈍板が製造されるが、各工程での製造条件を次のように制御する。
粗圧延工程では、スラブを1000℃以上に加熱して粗圧延する。
熱間圧延工程では、仕上げ温度をAr3+50℃以上に設定し、仕上げ圧延後に冷却して700℃以下で巻き取ることによりフェライト+パーライト組織に調質する。
次いで、焼鈍・酸洗後、圧延率:30%以上で目標板厚に冷間圧延する。
A cold-rolled annealed sheet is manufactured through rough rolling, hot rolling, cold rolling, and continuous annealing. The manufacturing conditions in each process are controlled as follows.
In the rough rolling process, the slab is heated to 1000 ° C. or higher and rough rolled.
In the hot rolling process, the finishing temperature is set to Ar 3 + 50 ° C. or higher, and after finishing rolling, the steel is cooled and wound at 700 ° C. or lower to temper the ferrite + pearlite structure.
Next, after annealing and pickling, cold rolling is performed to a target plate thickness at a rolling rate of 30% or more.

得られた冷延鋼板に次の連続焼鈍を施すことにより、引張強さ:980N級以上で縮管性に優れた高強度冷延鋼板となる。
・均熱処理:830℃以上,60秒以上
・一次冷却:均熱後に平均冷却速度:10℃/秒以下で720〜600℃まで冷却
この一次冷却により、面積率:50%以上でフェライトが生成する。
・二次冷却:平均冷却速度:7℃/秒以上で二次冷却温度Tまで冷却
二次冷却温度Tは式(2)で定義され、好ましくは二次冷却温度T±5℃に10〜30秒保持する。
T (℃)=-248×Ceq+538 ・・・・・(2)
・恒温処理:更にT+30℃以上の温度に3分以上保持した後、室温まで冷却
By subjecting the obtained cold-rolled steel sheet to the following continuous annealing, a high-strength cold-rolled steel sheet having a tensile strength of 980 N class or more and excellent in tube shrinkability is obtained.
・ Soaking: 830 ° C. or more, 60 seconds or more ・ Primary cooling: After soaking, average cooling rate: 10 ° C./sec or less to 720 to 600 ° C. By this primary cooling, ferrite is generated at an area ratio of 50% or more. .
Secondary cooling: Average cooling rate: Cooling to secondary cooling temperature T at 7 ° C./s or more Secondary cooling temperature T is defined by equation (2), preferably 10-30 at secondary cooling temperature T ± 5 ° C. Hold for seconds.
T (° C.) = − 248 × C eq +538 (2)
・ Constant temperature treatment: Hold at T + 30 ° C or higher for 3 minutes or more, then cool to room temperature

発明の効果及び実施の形態Effects and embodiments of the invention

インパネリインフォースメント用電縫鋼管に必要な縮管性は、降伏強度が低いこと,伸びが良いこと,金属組織の均質性が高いこと等の冶金的特性に影響される。また、鋼板段階までは低降伏比で加工性がよく、造管時の加工硬化によって高強度化される鋼種が好ましい。
通常、引張強さ:980N級以上の高強度鋼板では伸びは15%程度が限界であるが、本発明に従った適正条件下で製造された高強度鋼板は残留オーステナイトが5面積%以上(具体的には8面積%程度)の組織をもち、引張強さ:980N/mm2以上,降伏比:70%以下,全伸び:18%以上を示す。
The shrinkage required for an electric resistance steel pipe for instrument panel reinforcement is affected by metallurgical properties such as low yield strength, good elongation, and high homogeneity of the metal structure. In addition, a steel type that has a low yield ratio and good workability up to the steel plate stage and that is strengthened by work hardening during pipe making is preferable.
Usually, the tensile strength is about 980 N grade or higher, and the limit of elongation is about 15%. However, the high-strength steel plate manufactured under appropriate conditions according to the present invention has a retained austenite of 5 area% or more (specifically Specifically, it has a structure of about 8 area%), tensile strength: 980 N / mm 2 or more, yield ratio: 70% or less, and total elongation: 18% or more.

該高強度鋼板を造管ラインに通板し、たとえば8%程度の造管歪みを付与して製造された高強度電縫鋼管は、残留オーステナイト:2面積%以上の組織をもち、引張強さ:980N/mm2以上,降伏比:80%以下,全伸び:20%以上で優れた縮管性を維持している。優れた縮管性が得られる理由は必ずしも明確でないが、鋼板の降伏比が80%以下と低く、造管後の鋼管に残留オーステナイトが残存しているため均一伸びが改善され、縮管時に偏肉,皺,座屈,割れ等が生じないものと考えられる。 The high-strength electric resistance welded steel pipe manufactured by passing the high-strength steel sheet through a pipe-making line and giving a pipe-forming strain of, for example, about 8% has a structure of retained austenite: 2 area% or more and has a tensile strength. : 980 N / mm 2 or more, yield ratio: 80% or less, and total elongation: 20% or more. The reason why excellent tube shrinkage can be obtained is not necessarily clear, but the yield ratio of the steel sheet is as low as 80% or less, and the retained austenite remains in the steel tube after pipe forming, so that uniform elongation is improved, and uneven deformation occurs during tube contraction. It is considered that no meat, crunch, buckling, cracking, etc. occur.

連続焼鈍時の二次冷却でマルテンサイトが生成するが、本発明は、成分設計,製造条件を適正化し、炭素当量Ceqとの関係で二次冷却温度Tを規制することにより、微細な残留オーステナイトが均一分散したフェライト+ベイナイト+マルテンサイト+残留オーステナイトの複合組織を生成させている。具体的には、C-Si-Mn鋼の熱延条件,焼鈍条件を適正管理することにより、連続焼鈍中に一部マルテンサイトを生成させ、変態歪みを利用したベイナイト変態促進効果によって5面積%以上の残留オーステナイトを鋼中に確保する。 Although martensite is generated by secondary cooling during continuous annealing, the present invention optimizes the component design and manufacturing conditions, and regulates the secondary cooling temperature T in relation to the carbon equivalent C eq , so that fine residual A composite structure of ferrite + bainite + martensite + residual austenite in which austenite is uniformly dispersed is generated. Specifically, by properly managing the hot rolling conditions and annealing conditions of C—Si—Mn steel, some martensite is generated during continuous annealing, and the bainite transformation promoting effect using transformation strain is 5% by area. The above retained austenite is secured in the steel.

一部マルテンサイトが生成することにより旧オーステナイト粒界が分断され、変態歪みが付与されると共に結晶粒が微細化する。また、マルテンサイト生成温度直上で変態歪みによる下部ベイナイト変態が促進されるのでC濃化も進行する。その結果、安定な残留オーステナイトが増加し、鋼管段階でも残存する。しかも、下部ベイナイト変態の促進に伴い、未変態オーステナイトが更に分断され、一層微細な残留オーステナイトの均一分散が図られる。   When some martensite is generated, the prior austenite grain boundaries are divided, transformation strain is imparted, and crystal grains are refined. Further, since the lower bainite transformation due to transformation strain is promoted immediately above the martensite generation temperature, C enrichment also proceeds. As a result, stable retained austenite increases and remains at the steel pipe stage. In addition, as the lower bainite transformation is promoted, the untransformed austenite is further divided, and a finer dispersion of retained austenite is achieved.

以下、本発明で規定した各種条件を説明する。
〔合金成分〕
・C:0.15〜0.20質量%
鋼材の強度を向上させると共に、優れた縮管性に必要な残留オーステナイトの生成・安定化に影響を及ぼす成分である。すなわち、オーステナイト安定化元素であるCは、ベイナイト変態時にフェライトからオーステナイトに濃化し、オーステナイトの化学的安定度を向上させる。必要な残留オーステナイト量:2%以上を得る上でC含有量を0.15質量%以上としているが、0.20質量%を超える過剰量のCが含まれると、溶接性の劣化や過剰な強度上昇を招き、却って縮管性が劣化する。好ましくは、0.16〜0.18質量%の範囲でC含有量を選定する。
Hereinafter, various conditions defined in the present invention will be described.
[Alloy components]
C: 0.15 to 0.20% by mass
It is a component that improves the strength of steel and affects the formation and stabilization of retained austenite necessary for excellent tube shrinkage. That is, C, which is an austenite stabilizing element, concentrates from ferrite to austenite during bainite transformation, and improves the chemical stability of austenite. Necessary amount of retained austenite: C content is 0.15% by mass or more in order to obtain 2% or more, but if excessive amount of C exceeding 0.20% by mass is contained, the weldability is deteriorated or excessive. The strength is increased, and on the contrary, the ductility deteriorates. Preferably, the C content is selected in the range of 0.16 to 0.18% by mass.

・Si:1.2〜1.8質量%
固溶強化により強度-伸びバランスを改善しながら高強度化する成分であると共に、フェライト変態を促進させてオーステナイト相にCを濃化させる作用がある。そのため、残留オーステナイトが安定化し、室温での変態誘起塑性を示す残留オーステナイト量の確保が容易になる。更に、ベイナイト変態温度域においてセメンタイトの析出を抑制し、未変態オーステナイトへのC濃化が一層促進される。このような効果は1.2質量%以上のSi添加で得られるが、1.8質量%を超える過剰量のSiを添加すると脱スケール性の悪いスケールが熱延時に生じやすくなり酸洗性,溶接性,製品の表面性状に悪影響を及ぼす。好ましくは、1.4〜1.6質量%の範囲でSi含有量を選定する。
・ Si: 1.2 to 1.8% by mass
It is a component that increases strength while improving the strength-elongation balance by solid solution strengthening, and also has an effect of concentrating C in the austenite phase by promoting ferrite transformation. Therefore, the retained austenite is stabilized, and it becomes easy to secure the retained austenite amount that exhibits transformation-induced plasticity at room temperature. Furthermore, precipitation of cementite is suppressed in the bainite transformation temperature range, and C concentration to untransformed austenite is further promoted. Such an effect can be obtained by adding Si in an amount of 1.2% by mass or more. However, if an excessive amount of Si exceeding 1.8% by mass is added, a scale having poor descalability is likely to occur during hot rolling, and pickling properties. Detrimental to weldability and product surface properties. Preferably, the Si content is selected in the range of 1.4 to 1.6 mass%.

・Mn:2.2〜3.0質量%
焼入れ性を改善しオーステナイトの安定化に有効な成分である。冷却途中でパーライト変態を抑制し、強度向上に有効なベイナイト,疲労特性の改善に有効な残留オーステナイトの必要量を確保する作用も呈する。このような効果は、2.2質量%以上のMn添加でみられる。しかし、3.0質量%を超えるMnの過剰添加は、焼入れ性を過剰に高めて過度の強度上昇,延性劣化を引き起こし、溶接性,縮管性共に劣化させる原因になる。好ましくは、2.2〜2.6質量%の範囲でMn含有量を選定する。
Mn: 2.2 to 3.0% by mass
It is an effective component for improving hardenability and stabilizing austenite. It also suppresses pearlite transformation during cooling, and also has the effect of securing the necessary amount of bainite effective for strength improvement and retained austenite effective for improvement of fatigue properties. Such an effect is observed when Mn is added in an amount of 2.2% by mass or more. However, an excessive addition of Mn exceeding 3.0% by mass increases the hardenability excessively, causes an excessive increase in strength and ductility, and causes deterioration in both weldability and ductility. Preferably, the Mn content is selected in the range of 2.2 to 2.6 mass%.

・P:0.03質量%以下
Siと同様にフェライト生成に影響を及ぼす成分であるが、過剰含有は延性,縮管性を劣化させるので、0.03質量%に上限を設定した。
・S:0.010質量%以下
残留オーステナイトの生成に悪影響を及ぼすことはないが、疲労強度に有害なA系介在物がS含有量の増加に応じて多量生成する。A系介在物の増加傾向は0.010質量%を超えると顕著になるので、S含有量の上限を0.010質量%(好ましくは、0.005質量%)と規制した。
-P: 0.03 mass% or less Although it is a component that affects the formation of ferrite in the same manner as Si, excessive content deteriorates ductility and ductility, so an upper limit was set to 0.03 mass%.
-S: 0.010 mass% or less Although it does not have a bad influence on the production | generation of a retained austenite, A type | system | group inclusion harmful | toxic to fatigue strength produces | generates abundantly with the increase in S content. Since the increasing tendency of the A-based inclusions becomes remarkable when the content exceeds 0.010% by mass, the upper limit of the S content is regulated to 0.010% by mass (preferably 0.005% by mass).

・全Al:0.01〜0.1質量%
Siと同様に室温で安定な残留オーステナイトの確保に重要な成分である。セメンタイトに固溶せず、ベイナイト変態させる恒温処理の際にもセメンタイトの析出を抑える。Siよりもフェライト形成能が強いAlを添加すると、Si添加に比較して変態開始が早くなり、極短時間保持でもオーステナイトにCが濃化される。その結果、オーステナイト相が一層安定化し、生成したオーステナイトのC濃度が高くなると共に、残留オーステナイト量も多くなり高い加工硬化特性を示す。Alの添加効果は全Alとして0.01質量%以上でみられるが、全Alが0.1質量%を超えると溶接性が低下する傾向を示す。好ましくは、0.05〜0.08質量%の範囲でAl含有量を選定する。
-Total Al: 0.01-0.1 mass%
Like Si, it is an important component for securing retained austenite that is stable at room temperature. It does not dissolve in cementite and suppresses the precipitation of cementite during the isothermal treatment for bainite transformation. If Al, which has a stronger ferrite forming ability than Si, is added, the transformation starts earlier than Si addition, and C is concentrated in austenite even if kept for a very short time. As a result, the austenite phase is further stabilized, the C concentration of the generated austenite is increased, the amount of retained austenite is increased, and high work hardening characteristics are exhibited. The effect of addition of Al is seen at 0.01% by mass or more as the total Al, but when the total Al exceeds 0.1% by mass, the weldability tends to decrease. Preferably, the Al content is selected in the range of 0.05 to 0.08 mass%.

・炭素当量Ceq:0.55〜0.75質量%
本成分系では、式(1)で炭素当量Ceqが算出される。要求強度を得る上では0.55質量%以上の炭素当量Ceqが必要であるが、炭素当量Ceqが0.75質量%を超える成分設計では焼入れ性が過度になり、急激な強度上昇,曲げ性の著しい低下の原因となる。好ましくは、0.6〜0.65質量%の範囲で炭素当量Ceqを選定する。
T (℃)=-248×Ceq+538 ・・・・・(2)
-Carbon equivalent C eq : 0.55-0.75 mass%
In this component system, the carbon equivalent C eq is calculated by the equation (1). In order to obtain the required strength, a carbon equivalent C eq of 0.55% by mass or more is necessary. However, in the component design in which the carbon equivalent C eq exceeds 0.75% by mass, the hardenability becomes excessive and the strength increases rapidly. It causes a significant decrease in bendability. Preferably, the carbon equivalent C eq is selected in the range of 0.6 to 0.65% by mass.
T (° C.) = − 248 × C eq +538 (2)

〔粗圧延〕
所定の成分・組成に調整された溶鋼を転炉で溶製し、連続鋳造で得られたスラブを加熱後に粗圧延する。粗圧延に先立つ加熱では、結晶粒の粗大化を防止し、フェライト変態を促進させるため加熱温度を1000℃以上に設定する。
[Rough rolling]
Molten steel adjusted to predetermined components and composition is melted in a converter, and a slab obtained by continuous casting is roughly rolled after heating. In the heating prior to the rough rolling, the heating temperature is set to 1000 ° C. or more in order to prevent coarsening of crystal grains and promote ferrite transformation.

〔熱間圧延〕
粗圧延後のスラブを所定板厚まで熱間圧延する。熱間圧延では、仕上げ温度:Ar3+50℃以上に設定し、熱延鋼帯を巻取り温度:700℃以下で巻き取ることによりフェライト+パーライト組織に調質する。Ar3+50℃に達しない仕上げ温度では熱延時の変形抵抗が高く、絞込みが発生しやすい。逆に仕上げ温度が900℃を超えると粗粒化が進行するので、(Ar3+50℃)〜(Ar3+100℃)の範囲で仕上げ温度を調節することが好ましい。
熱延された鋼帯は、焼鈍後に得られる材質を安定化させるため比較的高温で巻き取られる。低温巻取りでは、ベイナイトやマルテンサイトが生成して後工程の連続焼鈍時にオーステナイトが不安定化すると共に、板幅エッジの冷却速度過多に起因する部分的な硬化が生じやすい。逆に700℃を超える高温巻取りでは、フェライト結晶粒が粗大化し、後工程の連続焼鈍時に板幅方向に沿ったオーステナイト化が不安定化する。好ましくは、550〜680℃の温度範囲で巻取り温度を選定する。
(Hot rolling)
The slab after rough rolling is hot-rolled to a predetermined plate thickness. In hot rolling, the finishing temperature is set to Ar 3 + 50 ° C. or higher, and the hot rolled steel strip is wound at a winding temperature of 700 ° C. or lower to be tempered into a ferrite + pearlite structure. At a finishing temperature that does not reach Ar 3 + 50 ° C., deformation resistance during hot rolling is high, and narrowing tends to occur. Conversely, when the finishing temperature exceeds 900 ° C., coarsening proceeds, so it is preferable to adjust the finishing temperature in the range of (Ar 3 + 50 ° C.) to (Ar 3 + 100 ° C.).
The hot-rolled steel strip is wound at a relatively high temperature in order to stabilize the material obtained after annealing. In low-temperature winding, bainite and martensite are generated and austenite becomes unstable during subsequent annealing, and partial hardening due to excessive cooling speed of the sheet width edge is likely to occur. On the other hand, in high temperature winding exceeding 700 ° C., ferrite crystal grains become coarse, and austenitization along the plate width direction becomes unstable during subsequent annealing in the subsequent process. Preferably, the winding temperature is selected in the temperature range of 550 to 680 ° C.

〔デスケーリング〕
熱延工程の途中で鋼帯表面を一回以上デスケーリングすると、高強度冷延鋼板の疲労特性が改善される。デスケーリングに際してはスラブの加熱温度を1170℃以下に調節し、仕上げ圧延前の鋼帯表面に衝突圧:2.0kgf/cm2以上で高圧水を衝突させる方法が代表的であるが、加圧ロールで同様な圧下力を加える酸洗前圧延によるデスケーリングも採用可能である。
デスケーリング性に悪影響を及ぼすファイアライトが生成しやすいSi鋼をベースにしているので、ファイアライトの融点(1170℃)よりもスラブの加熱温度を下げることが好ましい。1170℃を超える加熱温度では、ファイアライトが結晶粒界に食い込み、デスケーリングによっても剥離しがたくなる。また、衝突圧:2.0kgf/cm2以上で一回以上デスケーリングすることにより、熱延鋼帯の表面肌が飛躍的に良くなり、焼鈍時の粒界酸化等によるスケール起因の疲労破壊が減少して疲労特性が改善される。
[Descaling]
If the steel strip surface is descaled one or more times during the hot rolling process, the fatigue properties of the high-strength cold-rolled steel sheet are improved. A typical method for descaling is to adjust the heating temperature of the slab to 1170 ° C or lower and make high-pressure water collide with the steel strip surface before finish rolling at a collision pressure of 2.0 kgf / cm 2 or more. Descaling by rolling before pickling in which a similar rolling force is applied by a roll can also be employed.
Since it is based on Si steel that easily generates firelight that adversely affects descaling properties, it is preferable to lower the heating temperature of the slab than the melting point of firelight (1170 ° C.). When the heating temperature exceeds 1170 ° C., the firelite bites into the crystal grain boundaries and is difficult to peel off even by descaling. In addition, by performing descaling once or more at a collision pressure of 2.0 kgf / cm 2 or more, the surface skin of the hot-rolled steel strip is dramatically improved, and fatigue failure due to scale due to grain boundary oxidation during annealing, etc. Reduces fatigue properties.

〔冷間圧延〕
熱延鋼帯は、焼鈍・酸洗後、所定板厚まで冷間圧延される。冷間圧延では、再結晶温度の低下,オーステナイトの安定化を狙って圧延率を30%以上に設定する。圧延率が30%に達しない軽圧下圧延では、再結晶温度の低下に有効な歪が蓄積されがたく、オーステナイトの安定度も低下しやすい。
(Cold rolling)
The hot-rolled steel strip is cold-rolled to a predetermined thickness after annealing and pickling. In cold rolling, the rolling rate is set to 30% or more with the aim of lowering the recrystallization temperature and stabilizing austenite. In light reduction rolling where the rolling rate does not reach 30%, strain effective for lowering the recrystallization temperature hardly accumulates, and the stability of austenite tends to decrease.

〔連続焼鈍〕
冷間圧延された鋼帯を連続焼鈍することにより、フェライト+ベイナイト+マルテンサイト+残留オーステナイトの複合組織に調質される。連続焼鈍は、均熱処理,一次冷却,二次冷却,恒温処理の工程を経る。
・均熱処理
冷延鋼帯を保持温度:830℃以上,保持時間:60秒以上で均熱することによりオーステナイト化を十分進行させる。830℃に達しない保持温度ではオーステナイト化が不十分になり、残留オーステナイトが減少し、安定した縮管加工性が得られがたい。しかし、過度の高温に保持するとフェライト変態を遅延させる結晶粒の粗大化が生じ、未変態オーステナイトへのC濃化が不十分になりやすいので、均熱温度の上限を900℃とすることが好ましい。
[Continuous annealing]
By continuously annealing the cold-rolled steel strip, it is tempered into a composite structure of ferrite + bainite + martensite + residual austenite. Continuous annealing undergoes steps of soaking, primary cooling, secondary cooling, and isothermal treatment.
-Soaking process The austenitization is sufficiently advanced by soaking the cold-rolled steel strip at a holding temperature of 830 ° C or more and a holding time of 60 seconds or more. At a holding temperature that does not reach 830 ° C., austenitization becomes insufficient, residual austenite is reduced, and stable tube shrinkability is difficult to obtain. However, if it is kept at an excessively high temperature, the coarsening of the crystal grains that delay the ferrite transformation occurs, and the C concentration in the untransformed austenite tends to be insufficient. Therefore, the upper limit of the soaking temperature is preferably 900 ° C. .

・一次冷却
均熱処理された鋼帯を平均冷却速度:10℃/秒以下で720〜600℃まで冷却すると面積率:50%以上でフェライトが生成する。フェライトの生成は冷却速度の影響を受け、平均冷却速度を10℃/秒以下とすることにより面積率:50%以上のフェライトが確保される。10℃/秒を超える冷却速度では、必要なフェライト面積率が得られず、未変態オーステナイトへのC濃化が不十分になる。一次冷却温度:720〜600℃も面積率:50%以上でフェライトを生成させる上で重要な条件であり、当該温度範囲を外れると十分量のフェライトが得られない。
-Primary cooling When the steel strip subjected to soaking is cooled to 720 to 600 ° C. at an average cooling rate of 10 ° C./second or less, ferrite is generated at an area ratio of 50% or more. The generation of ferrite is affected by the cooling rate, and ferrite with an area ratio of 50% or more is secured by setting the average cooling rate to 10 ° C./second or less. When the cooling rate exceeds 10 ° C./second, the necessary ferrite area ratio cannot be obtained, and C concentration to untransformed austenite becomes insufficient. Primary cooling temperature: 720 to 600 ° C. is also an important condition for producing ferrite at an area ratio of 50% or more. If the temperature is out of the temperature range, a sufficient amount of ferrite cannot be obtained.

・二次冷却
一次冷却で面積率:50%以上のフェライトを生成させた後、平均冷却速度:7℃/秒以上で二次冷却温度Tまで二次冷却する。二次冷却温度Tは、適量のマルテンサイトを生成させるため(-248×Ceq+538)℃に設定され、好ましくは二次冷却温度T±5℃に10秒以上(好適には、20〜30秒)保持される。過度に低い温度まで二次冷却すると、マルテンサイト生成量が過剰になり造管加工性が劣化する。
-Secondary cooling After forming ferrite with an area ratio of 50% or more by primary cooling, secondary cooling is performed to the secondary cooling temperature T at an average cooling rate of 7 ° C / second or more. The secondary cooling temperature T is set to (−248 × C eq +538) ° C. in order to generate an appropriate amount of martensite, preferably 10 seconds or more at the secondary cooling temperature T ± 5 ° C. (preferably 20 to 30). Seconds). When the secondary cooling is performed to an excessively low temperature, the amount of martensite produced becomes excessive, and the tube forming workability deteriorates.

7℃/秒に達しない緩冷却では、未変態オーステナイトからパーライトが生成して残留オーステナイト量が減少するばかりでなく、高温で生成した硬質で粗大なパーライトとフェライトの界面でクラックが生じやすくなり、伸び性が劣化する。二次冷却温度Tまで一旦冷却することにより、不安定なオーステナイトから一部マルテンサイトが生成し、マルテンサイト変態時に発生する変態歪みによりベイナイト変態が促進される。また、ベイナイト変態の促進に必要な変態歪みを得るため、二次冷却温度Tに10秒以上保持する。10秒に達しない保持時間では、ベイナイト変態を促進させる変態歪みが量的に不足しがちになる。   With slow cooling that does not reach 7 ° C / second, not only does pearlite form from untransformed austenite and the amount of retained austenite decreases, but cracks are likely to occur at the interface between hard and coarse pearlite and ferrite formed at high temperatures, Extensibility deteriorates. By once cooling to the secondary cooling temperature T, a part of martensite is generated from unstable austenite, and the bainite transformation is promoted by transformation strain generated during the martensite transformation. Further, in order to obtain transformation strain necessary for promoting bainite transformation, the secondary cooling temperature T is maintained for 10 seconds or more. If the holding time does not reach 10 seconds, the transformation strain that promotes bainite transformation tends to be insufficient in quantity.

・恒温処理
二次冷却後の鋼帯を保持温度:T+30℃以上に3分以上保持することにより、適正な残留オーステナイト量を維持しながらベイナイト変態を進行させる。短すぎる保持時間では、ベイナイト変態が不足し、残留オーステナイト量も減少し、オーステナイト相へのC濃化も不十分になる。その結果、ベイナイト変態温度から常温まで冷却する過程で未変態オーステナイトからマルテンサイトが生成し、強度が上昇して縮管加工性が劣化する。
-Constant temperature treatment By holding the steel strip after secondary cooling at a holding temperature: T + 30 ° C or higher for 3 minutes or longer, the bainite transformation proceeds while maintaining an appropriate amount of retained austenite. If the holding time is too short, the bainite transformation is insufficient, the amount of retained austenite is reduced, and the C concentration to the austenite phase is insufficient. As a result, martensite is generated from untransformed austenite in the process of cooling from the bainite transformation temperature to room temperature, the strength is increased, and the tube shrinkability is deteriorated.

表1の組成をもつ鋼材を転炉で溶製し、スラブに連続鋳造した後、粗圧延を経て板厚:2.0mmに熱間圧延し、更に冷間圧延して板厚:1.2mmの冷延鋼帯を製造した。熱延工程では、1250℃に加熱したスラブを仕上げ温度:880℃で熱間圧延し、600℃でコイル状に巻き取った。冷延工程では、酸洗した熱延鋼帯を圧延率:40%で冷間圧延した。   A steel material having the composition shown in Table 1 is melted in a converter, continuously cast into a slab, hot rolled to a thickness of 2.0 mm through rough rolling, and further cold rolled to a thickness of 1.2 mm. A cold-rolled steel strip was manufactured. In the hot rolling step, the slab heated to 1250 ° C. was hot-rolled at a finishing temperature of 880 ° C. and wound into a coil at 600 ° C. In the cold rolling process, the pickled hot rolled steel strip was cold rolled at a rolling rate of 40%.

Figure 2006089804
Figure 2006089804

次いで、冷延鋼帯を連続焼鈍することにより、冷延焼鈍板を製造した。連続焼鈍工程では、840℃に120秒均熱した後、平均冷却速度:8℃/秒で680℃まで一次冷却し、引き続き二次冷却速度:12℃/秒で380℃まで冷却し、保持温度:410℃に3分恒温保持した。
冷延焼鈍板を所定幅の切板に裁断し、切板をオープンパイプ形状にロール成形した後、幅方向両端部を高周波溶接することにより、径:54mmの電縫鋼管を製造した。造管後、溶接部の硬質化に起因する縮管性劣化を防止するため、600℃×5秒のシームアニールにより溶接部硬さを母材硬さ±30HV以内に調質した。
Subsequently, the cold-rolled steel strip was manufactured by continuously annealing the cold-rolled steel strip. In the continuous annealing process, after soaking to 840 ° C. for 120 seconds, primary cooling to 680 ° C. at an average cooling rate of 8 ° C./second, followed by cooling to 380 ° C. at a secondary cooling rate of 12 ° C./second, holding temperature : Held at 410 ° C. for 3 minutes.
After the cold-rolled annealed plate was cut into a cut plate having a predetermined width, the cut plate was roll-formed into an open pipe shape, and then both ends in the width direction were subjected to high-frequency welding to produce an ERW steel pipe having a diameter of 54 mm. After pipe making, in order to prevent shrinkage deterioration due to hardening of the welded portion, the welded portion hardness was tempered to a base material hardness of ± 30 HV by seam annealing at 600 ° C. for 5 seconds.

造管前の冷延焼鈍板及び製造された電縫鋼管から切り出した試験片を引張試験にかけて、機械的性質を調査した。冷延焼鈍板の試験片としては圧延方向に直行する方向のJIS 5号引張試験片を、電縫鋼管の試験片としては圧延方向に沿ったJIS 11号引張試験片を用意した。
電縫鋼管については、絞り率〔(縮径加工前の外径−縮径加工後の外径)/(縮径加工前の外径)×100〕を変化させたダイ絞り試験に試験片を供し、肉厚比(縮管加工後の肉厚/縮管加工前の肉厚)を1.2とし、皺,座屈又は割れが生じない限界絞り率を縮管率として求めた。
The specimens cut from the cold rolled annealed plate before pipe making and the manufactured ERW steel pipe were subjected to a tensile test to investigate the mechanical properties. A JIS No. 5 tensile test piece in a direction perpendicular to the rolling direction was prepared as a cold-rolled annealed specimen, and a JIS No. 11 tensile test piece along the rolling direction was prepared as an ERW steel pipe test piece.
For electric resistance welded steel pipes, the test piece was applied to a die drawing test with the drawing ratio [(outer diameter before diameter reduction-outer diameter after diameter reduction processing) / (outer diameter before diameter reduction processing) × 100] changed. The thickness ratio (thickness after tube reduction / wall thickness before tube reduction) was set to 1.2, and the limit drawing ratio at which no wrinkle, buckling or cracking occurred was obtained as the tube reduction ratio.

調査結果を、X線回折法で定量した残留オーステナイト量と共に表2に示す。
表2から明らかなように、成分条件が本発明で規定した要件を満足する試験No.1〜5は、何れも鋼管の引張試験で引張強さ:980N/mm2以上,降伏比:80%以下,鋼管段階での残留オーステナイト量:2面積%以上,ダイ絞り試験における縮管率:25%以上を満足しており、縮管性に優れた電縫鋼管であることが確認できた。
これに対し、Ti添加で析出物を分散させた試験No.6は、析出物のため降伏比が増加し、残留オーステナイトが少なく小さな縮管率であった。Cが過剰でNbを添加した試験No.7は、必要とする残留オーステナイト量を確保できているものの、降伏比が高く縮管率も小さな値であった。C,Siが不足する試験No.8は、残留オーステナイト量が少なく、縮管率も小さな値であった。
The survey results are shown in Table 2 together with the amount of retained austenite quantified by the X-ray diffraction method.
As apparent from Table 2, the test Nos. 1 to 5 satisfying the requirements specified in the present invention for the component conditions are all tensile strengths of 980 N / mm 2 or more in the steel pipe tensile test, yield ratio: 80%. In the following, the amount of retained austenite at the steel pipe stage: 2 area% or more and the tube shrinkage rate in the die drawing test: 25% or more were satisfied, and it was confirmed that this was an electric resistance steel tube excellent in tube shrinkability.
On the other hand, in test No. 6 in which the precipitate was dispersed by adding Ti, the yield ratio was increased due to the precipitate, and the retained austenite was small and the tube contraction rate was small. In Test No. 7 in which C was excessive and Nb was added, the required amount of retained austenite was secured, but the yield ratio was high and the tube contraction rate was also small. Test No. 8 in which C and Si are insufficient has a small amount of retained austenite and a small tube contraction rate.

Figure 2006089804
Figure 2006089804

更に、良好な縮管率を示したNos1,4の鋼管について、連続焼鈍条件を条件A〜J(表3)と変化させ、連続焼鈍条件が機械性質,縮管性に及ぼす影響を詳細に調査した。   Furthermore, with regard to Nos 1 and 4 steel pipes that showed good tube shrinkage rates, the continuous annealing conditions were changed to conditions A to J (Table 3), and the effects of continuous annealing conditions on mechanical properties and tube shrinkage were investigated in detail. did.

Figure 2006089804
Figure 2006089804

製造された各冷延焼鈍板及び該冷延焼鈍板から製造された電縫鋼管の物性について同様な試験で調査した結果を表5に示す。
本発明に従った焼鈍条件A,C,D,G,Jで製造された電縫鋼管は、何れも降伏比が低く残留オーステナイト量も2面積%以上となっているので、25%以上の縮管性を示した。優れた縮管性は、一部マルテンサイトが生成することで旧オーステナイト粒界が分断され、変態歪みの付与によって結晶粒が微細化すること、下部ベイナイト変態の促進に伴うC濃化で安定な残留オーステナイトが増加し、鋼管段階でも必要量の残留オーステナイトが確保されること、下部ベイナイト変態により未変態オーステナイトが更に分断され一層微細な残留オーステナイトが均一分散したこと等が原因として掲げられる。
Table 5 shows the results of a similar test conducted on the physical properties of each manufactured cold-rolled annealed plate and the ERW steel tube manufactured from the cold-rolled annealed plate.
The ERW steel pipes manufactured under the annealing conditions A, C, D, G, and J according to the present invention all have a low yield ratio and a residual austenite amount of 2 area% or more. Showed tubular. Excellent tuberculosis is stable due to the formation of some martensite, which breaks the former austenite grain boundaries, refines the crystal grains by imparting transformation strain, and C concentration due to the promotion of lower bainite transformation. This is because the retained austenite increases, the necessary amount of retained austenite is secured even at the steel pipe stage, the untransformed austenite is further divided by the lower bainite transformation, and finer retained austenite is uniformly dispersed.

他方、二次冷却温度,降温処理時の保持温度が高すぎる焼鈍条件Bでは、一部マルテンサイトが生成せず、ベイナイト変態が生じるものの温度が高いため上部ベイナイトとなって降伏比が高くなり、C濃化もないため残留オーステナイトが少なくなった結果が小さな縮管率となって現れている。
均熱処理時間が短すぎる焼鈍条件Eでは、オーステナイト量が少なくベイナイト変態時間も短いため、残留オーステナイト量が減少した結果として縮管率が小さくなっている。
一次冷却温度が高すぎる焼鈍条件Fでは、フェライト変態が遅延してオーステナイトへのC濃化が起こらず、残留オーステナイト量が減少した結果として縮管率が小さくなっている。
On the other hand, in the secondary cooling temperature, the annealing condition B in which the holding temperature during the temperature lowering process is too high, some martensite is not generated, and although the bainite transformation occurs, the temperature is high, so the upper bainite becomes high and the yield ratio becomes high. Since there is no C concentration, the result of the decrease in retained austenite appears as a small contraction rate.
In the annealing condition E where the soaking time is too short, the amount of austenite is small and the bainite transformation time is also short, so that the reduced austenite amount is reduced, resulting in a reduction in the tube contraction rate.
Under the annealing condition F in which the primary cooling temperature is too high, the ferrite transformation is delayed and C enrichment to austenite does not occur, and as a result of the reduction in the amount of retained austenite, the tube contraction rate is reduced.

二次冷却温度が式(2)で定義される温度Tよりも低い焼鈍条件Hでは、マルテンサイト生成量が増加したため降伏比が高くなり、ベイナイト変態が促進されるものの組織が不均一になり、残留オーステナイト量が減少して縮管性も劣化した。
均熱温度が低すぎる焼鈍条件Iでは、二相域での均熱のためオーステナイト量が少なくなり、C濃度としては高くなる。また、一次冷却温度が低いためフェライトの生成なくベイナイト変態のみが進行した結果、降伏比が高くなり、残留オーステナイト量が減少して縮管率が低下した。
Under the annealing condition H in which the secondary cooling temperature is lower than the temperature T defined by the formula (2), the yield ratio becomes high because the amount of martensite generated increases, and the bainite transformation is promoted, but the structure becomes uneven. The amount of retained austenite decreased, and the ductility deteriorated.
In the annealing condition I where the soaking temperature is too low, the amount of austenite decreases due to soaking in the two-phase region, and the C concentration increases. In addition, since the primary cooling temperature was low, only the bainite transformation proceeded without the formation of ferrite, resulting in a high yield ratio, a decrease in the amount of retained austenite, and a reduction in tube shrinkage.

以上の対比から明らかなように、同じ鋼種を使用した場合でも、連続焼鈍条件を適正管理することにより、フェライト+ベイナイト+マルテンサイト+残留オーステナイトの複合組織に調質でき、引張強さ:980N級以上の強度で縮管性に優れた高強度電縫鋼管が得られることが確認される。   As is clear from the above comparison, even when the same steel type is used, it can be tempered into a composite structure of ferrite + bainite + martensite + residual austenite by appropriately managing the continuous annealing conditions, and tensile strength: 980N class It is confirmed that a high-strength electric resistance welded steel pipe with the above strength and excellent tube shrinkability is obtained.

Figure 2006089804
Figure 2006089804

以上に説明したように、組成,製造条件の適正管理により、引張強さ:980N級以上の強度を維持しながら、縮管性に優れた高強度電縫鋼管が得られる。この高強度電縫鋼管は、軽量化のために薄肉化しても十分な強度をもち、皺,座屈,割れ等の欠陥なく縮管加工できることを活用し、運転席側,助手席側共に高い衝突安全性が要求されるインパネリインフォースメントに好適な素材として使用される。   As described above, a high-strength ERW steel pipe excellent in tube shrinkability can be obtained while maintaining a tensile strength of 980 N class or higher by appropriate management of composition and production conditions. This high-strength electric resistance welded steel pipe has sufficient strength even if it is thinned for weight reduction, and it is high on both the driver's side and passenger's side by utilizing the fact that it can be reduced without defects such as wrinkles, buckling, and cracks. It is used as a material suitable for instrument panel reinforcement that requires collision safety.

ダッシュボードに組み込まれるインパネリインフォースメントの概略図Schematic of instrument panel reinforcement built into the dashboard

符号の説明Explanation of symbols

1:助手席側鋼管 2:運転席側鋼管 2a:運転席側鋼管の縮径管端 3:ブラケット 1: Passenger side steel pipe 2: Driver side steel pipe 2a: Reduced diameter pipe end of driver side steel pipe 3: Bracket

Claims (1)

C:0.15〜0.20質量%,Si:1.2〜1.8質量%,Mn:2.2〜3.0質量%,P:0.030質量%以下,S:0.010質量%以下,全Al:0.01〜0.1質量%,残部が実質的にFeで、式(1)で定義される炭素当量Ceqが0.55〜0.75質量%の範囲にあるスラブを用意し、
スラブを1000℃以上に加熱して粗圧延し、
Ar3+50℃以上の仕上げ温度から冷却して700℃以下で巻き取る熱間圧延により熱延鋼帯をフェライト+パーライト組織に調質し、
酸洗後に圧延率:30%以上で冷間圧延し、
830℃以上,60秒以上の加熱保持後に平均冷却速度:10℃/秒以下で720〜600℃まで冷却する一次冷却により面積率:50%以上でフェライトを生成させ、次いで平均冷却速度:7℃/秒以上で式(2)で定義される二次冷却温度T(℃)まで冷却し、更にT+30℃以上の温度に3分以上保持した後、室温まで冷却する熱処理を施し、
室温まで冷却した冷延焼鈍板を所定幅の切板に裁断し、
切板をオープンパイプ形状に成形した後、幅方向両端部を高周波溶接することを特徴とする縮管性に優れたインパネリインフォースメント用高強度電縫鋼管の製造方法。
eq(%)=C+Si/24+Mn/6・・・・(1)
T (℃)=-248×Ceq+538・・・・・・(2)
C: 0.15-0.20 mass%, Si: 1.2-1.8 mass%, Mn: 2.2-3.0 mass%, P: 0.030 mass% or less, S: 0.010 Less than mass%, total Al: 0.01 to 0.1 mass%, the balance is substantially Fe, and the carbon equivalent C eq defined by the formula (1) is in the range of 0.55 to 0.75 mass%. Prepare a slab,
The slab is heated to 1000 ° C. or higher and roughly rolled,
The hot rolled steel strip is tempered into a ferrite + pearlite structure by hot rolling by cooling from a finishing temperature of Ar 3 + 50 ° C. or higher and winding at 700 ° C. or lower.
After pickling, the rolling rate is cold rolled at 30% or more,
The average cooling rate after heating and holding at 830 ° C. or higher for 60 seconds or longer is reduced to 720 to 600 ° C. at a rate of 10 ° C./second or lower. Cooling to the secondary cooling temperature T (° C.) defined by the formula (2) at a rate of at least / sec, further holding for 3 minutes or more at a temperature of T + 30 ° C.
The cold-rolled annealed plate cooled to room temperature is cut into a cut plate of a predetermined width,
A method of manufacturing a high-strength ERW steel pipe for instrument panel reinforcement, which is excellent in tube shrinkage, characterized by high-frequency welding at both ends in the width direction after forming a cut plate into an open pipe shape.
C eq (%) = C + Si / 24 + Mn / 6 (1)
T (° C.) = − 248 × C eq +538 (2)
JP2004276902A 2004-09-24 2004-09-24 Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property Pending JP2006089804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276902A JP2006089804A (en) 2004-09-24 2004-09-24 Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276902A JP2006089804A (en) 2004-09-24 2004-09-24 Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property

Publications (1)

Publication Number Publication Date
JP2006089804A true JP2006089804A (en) 2006-04-06

Family

ID=36231058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276902A Pending JP2006089804A (en) 2004-09-24 2004-09-24 Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property

Country Status (1)

Country Link
JP (1) JP2006089804A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006358A (en) * 2007-06-28 2009-01-15 Nippon Steel Corp Equipment and method for manufacturing steel pipe
JP2010090442A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp High workability and high strength steel pipe having excellent chemical treatment property and method for producing the same
JP2010089127A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp Working method of member excellent in chemical conversion property
LU91466B1 (en) * 2008-03-24 2010-10-01 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
WO2012133057A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2012214869A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2012214868A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
EP2551366A4 (en) * 2010-03-24 2015-07-15 Jfe Steel Corp High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
WO2022004817A1 (en) * 2020-06-30 2022-01-06 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet, and method for producing said member
WO2022004820A1 (en) * 2020-06-30 2022-01-06 Jfeスチール株式会社 Zinc-plated steel sheet, member, and methods for producing these

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006358A (en) * 2007-06-28 2009-01-15 Nippon Steel Corp Equipment and method for manufacturing steel pipe
LU91466B1 (en) * 2008-03-24 2010-10-01 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
US9255313B2 (en) 2008-03-24 2016-02-09 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
JP2010090442A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp High workability and high strength steel pipe having excellent chemical treatment property and method for producing the same
JP2010089127A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp Working method of member excellent in chemical conversion property
EP2551366A4 (en) * 2010-03-24 2015-07-15 Jfe Steel Corp High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
WO2012133057A1 (en) * 2011-03-31 2012-10-04 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and manufacturing process therefor
JP2012214868A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
JP2012214869A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd High-rigidity steel plate excellent in processability and its manufacturing method
WO2022004817A1 (en) * 2020-06-30 2022-01-06 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet, and method for producing said member
WO2022004820A1 (en) * 2020-06-30 2022-01-06 Jfeスチール株式会社 Zinc-plated steel sheet, member, and methods for producing these
JP7031801B1 (en) * 2020-06-30 2022-03-08 Jfeスチール株式会社 Galvanized steel sheets, members and their manufacturing methods
JP7031800B1 (en) * 2020-06-30 2022-03-08 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods
CN115698362A (en) * 2020-06-30 2023-02-03 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN115698362B (en) * 2020-06-30 2024-05-14 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
US12091723B2 (en) 2020-06-30 2024-09-17 Jfe Steel Corporation Galvanized steel sheet, member, and method for producing them

Similar Documents

Publication Publication Date Title
EP3555336B1 (en) High strength and high formability cold-rolled and heat-treated steel sheet, manufacturing method, and resistance spot welded joint
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP3440894B2 (en) High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4085583B2 (en) High-strength cold-rolled galvanized steel sheet and method for producing the same
US6364968B1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
KR101668545B1 (en) High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method for manufacturing the same and high strength welded steel pipe made of the same
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
WO2012002520A1 (en) Ultrahigh-strength cold-rolled steel sheet with excellent ductility and delayed-fracture resistance, and process for producing same
JP3539548B2 (en) Manufacturing method of high tensile hot rolled steel sheet for processing
JPH083679A (en) Hot rolled high strength steel plate excellent in formability and fatigue characteristic and having thermal softening resistance and its production
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP2000080440A (en) High strength cold rolled steel sheet and its manufacture
KR101115739B1 (en) Steel sheet having excellent spot weldabity, strength and elongation for automobile and method for manufacturing the same
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JP2006089804A (en) Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
JP2006183138A (en) Thin steel sheet and its production method
JP7167159B2 (en) Hot-rolled steel sheet for electric resistance welded steel pipe, manufacturing method thereof, and electric resistance welded steel pipe
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
JP4692519B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110223