JP2009006358A - Equipment and method for manufacturing steel pipe - Google Patents

Equipment and method for manufacturing steel pipe Download PDF

Info

Publication number
JP2009006358A
JP2009006358A JP2007169962A JP2007169962A JP2009006358A JP 2009006358 A JP2009006358 A JP 2009006358A JP 2007169962 A JP2007169962 A JP 2007169962A JP 2007169962 A JP2007169962 A JP 2007169962A JP 2009006358 A JP2009006358 A JP 2009006358A
Authority
JP
Japan
Prior art keywords
edge
molding
steel
steel pipe
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007169962A
Other languages
Japanese (ja)
Other versions
JP5135540B2 (en
Inventor
Yutaka Hattori
豊 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007169962A priority Critical patent/JP5135540B2/en
Publication of JP2009006358A publication Critical patent/JP2009006358A/en
Application granted granted Critical
Publication of JP5135540B2 publication Critical patent/JP5135540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To surely suppress peaking after O formation in a process where a steel pipe is manufactured by performing C-formation, U-formation and the O-formation of a steel plate. <P>SOLUTION: Edge-part deforming mechanisms 52A, 52B for deforming the edge parts 5e, 5f of a steel plate 5 and a control section 53 for controlling the edge deforming mechanisms 52A, 52B are provided in the C-formation. The control section 53 is constituted so that strength information for every steel plate 5 is obtained and edge part forming conditions corresponding to each steel plate 5 are respectively obtained on the basis of the strength information for every steel plate 5. The edge deforming mechanisms 52A, 52B allows the edge parts 5e, 5f of each steel plate to be respectively deformed according to the edge part forming conditions corresponding to each steel plate 5. By a such constitution, the generation of peaking is surely prevented even when the strength of each steel plate 5 is different each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼管製造設備及び鋼管製造方法に関する。   The present invention relates to a steel pipe manufacturing facility and a steel pipe manufacturing method.

鋼管の代表的な製造方法として、UO製造法が知られている(特許文献1、2、3参照)。この方法は、まず被成形材である平板状の鋼板の両縁部を曲げ変形させるC成形(端曲げ)を行い、次いで、被成形材の中央部を曲げ変形させて被成形材を略U字状にするU成形を行い、さらに被成形材を略U字状から略O字状(略円管状)に変形させるO成形を行った後、突合せ部(両縁部同士を近接させた部分)を溶接することにより、円管状の溶接鋼管(UO鋼管)を製造するものである。溶接後の鋼管は、拡管機によって所望の形状寸法に成形される。なお、被成形材としては、スラブ(連続鋳造設備において帯状に鋳造された鋳片を切断することにより得られる鋼片)を圧延することにより製造される厚板が用いられる。   A UO manufacturing method is known as a typical method for manufacturing a steel pipe (see Patent Documents 1, 2, and 3). In this method, first, C forming (end bending) is performed to bend and deform both edges of a flat steel plate that is a material to be formed, and then the center portion of the material to be formed is bent and deformed so that the material to be formed is substantially U-shaped. U-shaped to form a letter, and further O-shaped to deform the material to be molded from a substantially U-shape to a substantially O-shape (substantially circular), then a butted portion (part where both edges are close to each other) ) Are welded to produce a circular welded steel pipe (UO steel pipe). The welded steel pipe is formed into a desired shape and dimension by a pipe expander. In addition, as a to-be-molded material, the thick board manufactured by rolling a slab (steel piece obtained by cut | disconnecting the slab cast in strip | belt shape in the continuous casting equipment) is used.

このようなUO製造法においては、被成形材のC成形を適切に行うことで、O成形後の突合せ部のピーキングを抑制することが要求される。例えばC成形における被成形材の両縁部の変形量が少なすぎると、突合せ部が外側に向かって突出した状態になってしまう。即ち、プラスピーキングが発生する。逆に、両縁部の変形量が多すぎると、突合せ部が内側に向かって窪んだ状態になってしまう。即ち、マイナスピーキングが発生する。このようなピーキングを抑制する方法としては、従来、C成形における縁部成形条件(被成形材の縁部に対して与える成形力等)を、被成形材の強度、板厚等から求める方法が提案されている(特許文献3参照)。   In such a UO manufacturing method, it is required to suppress the peaking of the butt portion after the O molding by appropriately performing the C molding of the material to be molded. For example, if the amount of deformation at both edges of the material to be molded in C molding is too small, the butted portion protrudes outward. That is, positive peaking occurs. On the other hand, if the amount of deformation at both edges is too large, the butted portion will be recessed toward the inside. That is, minus peaking occurs. As a method for suppressing such peaking, conventionally, there is a method for obtaining edge molding conditions (such as molding force applied to the edge of the molding material) in C molding from the strength, plate thickness, etc. of the molding material. It has been proposed (see Patent Document 3).

特公昭60−40934号公報Japanese Patent Publication No. 60-40934 特開平7−32049号公報JP-A-7-32049 特許3214292号公報Japanese Patent No. 3214292

しかしながら、従来の鋼管製造方法にあっては、縁部成形条件を求める際に用いる被成形材の強度の設定値が、実際の強度とは異なり、縁部成形条件が不適切になる問題があった。例えば被成形材として、上述したようなスラブから製造された厚板を用いる場合では、ロットが同一の被成形材同士(即ち、同一の鋳片から得られた厚板同士)は、ほぼ同一の成分値、ほぼ同一の材質を有していると推定され、強度の設定値も同一にされていた。ところが、実際には強度のばらつきが大きいことがあり、ピーキングを十分に抑制することは難しかった。即ち、被成形材の実際の強度が設定値よりも高い場合は、被成形材の縁部に対して与える圧力が不足することとなり、被成形材の縁部の変形量が少なすぎて、プラスピーキングが発生しやすかった。逆に、被成形材の実際の強度が設定値よりも低い場合は、被成形材の縁部に対して与える圧力が過大になり、被成形材の縁部の変形量が多すぎて、マイナスピーキングが発生しやすかった。   However, in the conventional steel pipe manufacturing method, there is a problem that the edge forming conditions are inappropriate because the set value of the strength of the molding material used when obtaining the edge forming conditions is different from the actual strength. It was. For example, in the case where thick plates manufactured from the slab as described above are used as the molding material, the molding materials having the same lot (that is, the thick plates obtained from the same slab) are substantially the same. The component values were estimated to have almost the same material, and the strength setting values were also the same. However, in practice, there is a large variation in strength, and it is difficult to sufficiently suppress peaking. That is, when the actual strength of the material to be molded is higher than the set value, the pressure applied to the edge of the material to be molded is insufficient, and the amount of deformation of the edge of the material to be molded is too small. Speaking was easy to occur. On the other hand, if the actual strength of the molding material is lower than the set value, the pressure applied to the edge of the molding material becomes excessive, the amount of deformation of the edge of the molding material is too large, and minus Peaking was easy to occur.

本発明は、上記の点に鑑みてなされたものであり、O成形後のピーキングを確実に抑制できる鋼管製造設備及び鋼管製造方法を提供することを目的とする。   This invention is made | formed in view of said point, and it aims at providing the steel pipe manufacturing equipment and steel pipe manufacturing method which can suppress the peaking after O shaping | molding reliably.

上記課題を解決するため、本発明によれば、鋼板を順次C成形、U成形、O成形することにより鋼管を製造する鋼管製造設備であって、前記C成形において鋼板の縁部を変形させる縁部変形機構と、前記縁部変形機構を制御する制御部とを備え、前記制御部は、各鋼板の強度情報を取得し、当該強度情報に基づいて、各鋼板に対応する縁部成形条件をそれぞれ求め、前記縁部成形条件に従って、前記縁部変形機構を制御し、前記縁部変形機構は、前記各鋼板に対応する縁部成形条件に従って、各鋼板の縁部をそれぞれ変形させることを特徴とする、鋼管製造設備が提供される。   In order to solve the above-described problems, according to the present invention, a steel pipe manufacturing facility for manufacturing a steel pipe by sequentially forming a steel sheet by C forming, U forming, and O forming, an edge that deforms the edge of the steel sheet in the C forming. And a control unit for controlling the edge deformation mechanism, the control unit acquires strength information of each steel plate, and based on the strength information, sets the edge forming conditions corresponding to each steel plate. Obtaining each, controlling the edge deformation mechanism according to the edge forming conditions, the edge deformation mechanism respectively deform the edge of each steel plate according to the edge forming conditions corresponding to each steel plate A steel pipe manufacturing facility is provided.

前記強度情報は、鋼板の化学成分及び鋼板の圧延設備において用いられたTMCP条件に基づいて求めても良い。前記強度情報は、例えば式(1)に基づいて求めても良い。
TS=aX+bX+cX
+dY+eY+fY
+gZ+hZ+iZ+j+kβ ・・・(1)
(TS:引張強度、X:加熱温度、Y:水冷開始温度、Z:水冷停止温度、β:焼入れ性、a,b,c,d,e,f,g,h,i,j,k:係数)
The strength information may be obtained based on the chemical composition of the steel sheet and the TMCP conditions used in the steel sheet rolling equipment. The intensity information may be obtained based on, for example, the formula (1).
TS = aX 3 + bX 2 + cX
+ DY 3 + eY 2 + fY
+ GZ 3 + hZ 2 + iZ + j + kβ (1)
(TS: Tensile strength, X: Heating temperature, Y: Water cooling start temperature, Z: Water cooling stop temperature, β: Hardenability, a, b, c, d, e, f, g, h, i, j, k: coefficient)

前記強度情報は、鋼板の強度を実測することで得るようにしても良い。前記強度情報は、引張試験又は硬さ試験によって求めても良い。   The strength information may be obtained by actually measuring the strength of the steel plate. The strength information may be obtained by a tensile test or a hardness test.

前記縁部変形機構は、前記鋼板の下面側に当接する下金型と、前記鋼板の上面側に当接する上金型とを備え、前記下金型と前記上金型によって前記鋼板の縁部をプレス成形する構成としても良い。   The edge deformation mechanism includes a lower mold that contacts the lower surface side of the steel sheet and an upper mold that contacts the upper surface side of the steel sheet, and the edge portion of the steel sheet is formed by the lower mold and the upper mold. It is good also as a structure which press-molds.

また、前記縁部変形機構は、前記鋼板の下面側に当接する下ロールと、前記鋼板の上面側に当接する上ロールとを備え、前記下ロールと前記上ロールによって前記鋼板の縁部をロール成形する構成としても良い。   The edge deformation mechanism includes a lower roll that contacts the lower surface side of the steel plate and an upper roll that contacts the upper surface side of the steel plate, and the edge of the steel plate is rolled by the lower roll and the upper roll. It is good also as a structure to shape.

さらに、本発明によれば、鋼板を順次C成形、U成形、O成形することにより鋼管を製造する鋼管製造方法であって、各鋼板の強度情報を取得し、当該強度情報に基づいて、各鋼板に対応する縁部成形条件をそれぞれ求め、前記各鋼板に対応する縁部成形条件に従って、各鋼板の縁部をそれぞれ変形させることにより、各鋼板をC成形することを特徴とする、鋼管製造方法が提供される。   Furthermore, according to the present invention, there is provided a steel pipe manufacturing method for manufacturing a steel pipe by sequentially performing C forming, U forming, O forming of a steel sheet, obtaining strength information of each steel plate, and based on the strength information, Steel pipe manufacturing, characterized in that each edge forming condition corresponding to each steel sheet is determined and each steel sheet is C-shaped by deforming the edge of each steel sheet according to the edge forming conditions corresponding to each steel sheet. A method is provided.

前記強度情報は、鋼板の化学成分及び鋼板の圧延工程におけるTMCP条件に基づいて求めても良い。前記強度情報は、例えば、式(1)に基づいて求めても良い。
TS=aX+bX+cX
+dY+eY+fY
+gZ+hZ+iZ+j+kβ ・・・(1)
(TS:引張強度、X:加熱温度、Y:水冷開始温度、Z:水冷停止温度、β:焼入れ性、a,b,c,d,e,f,g,h,i,j,k:係数)
The strength information may be obtained based on the chemical composition of the steel sheet and the TMCP condition in the rolling process of the steel sheet. The intensity information may be obtained based on, for example, the formula (1).
TS = aX 3 + bX 2 + cX
+ DY 3 + eY 2 + fY
+ GZ 3 + hZ 2 + iZ + j + kβ (1)
(TS: Tensile strength, X: Heating temperature, Y: Water cooling start temperature, Z: Water cooling stop temperature, β: Hardenability, a, b, c, d, e, f, g, h, i, j, k: coefficient)

前記強度情報は、鋼板の強度を実測することで得るようにしても良い。前記強度情報は、引張試験又は硬さ試験によって求めても良い。   The strength information may be obtained by actually measuring the strength of the steel plate. The strength information may be obtained by a tensile test or a hardness test.

前記縁部成形条件は、前記鋼板の縁部に与える圧力情報、及び、前記鋼板の縁部を変形させる縁部変形機構の前記鋼板に対する位置情報を含むとしても良い。   The edge forming condition may include pressure information applied to the edge of the steel plate and position information with respect to the steel plate of an edge deformation mechanism that deforms the edge of the steel plate.

この鋼管製造方法にあっては、鋼板をプレス成形によってC成形するようにしても良い。また、鋼板をロール成形によってC成形しても良い。   In this steel pipe manufacturing method, the steel sheet may be C-formed by press forming. Further, the steel plate may be C-formed by roll forming.

本発明によれば、各鋼板(被成形材)の強度に基づいて縁部成形条件を個別に調節することで、各鋼板の強度が互いに異なっていても、各鋼管におけるピーキングの発生を確実に防止できる。さらに、ピーキングに起因する溶接欠陥、搬送不良、拡管割れ等を防止できる。   According to the present invention, by adjusting the edge forming conditions individually based on the strength of each steel plate (formable material), even if the strength of each steel plate is different from each other, the occurrence of peaking in each steel pipe is ensured. Can be prevented. Furthermore, welding defects, conveyance failures, pipe expansion cracks and the like due to peaking can be prevented.

以下、本発明にかかる実施形態を説明する。なお、本明細書及び図面においては、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。図1は、スラブ(例えば連続鋳造設備において帯状に鋳造された鋳片を切断することにより得られる鋼片)から鋼板としての厚板を製造する圧延設備2(鋼板製造設備)と、厚板を順次C成形、U成形、O成形することにより鋼管を製造する鋼管製造設備3の概略図を示している。   Embodiments according to the present invention will be described below. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 shows a rolling equipment 2 (steel production equipment) for producing a thick plate as a steel plate from a slab (for example, a steel piece obtained by cutting a slab cast in a strip shape in a continuous casting equipment), and a thick plate. The schematic of the steel pipe manufacturing equipment 3 which manufactures a steel pipe by carrying out C forming, U forming, and O forming sequentially is shown.

図1に示すように、圧延設備2は、被成形材5(スラブ)を加熱する加熱炉10、加熱炉10によって加熱された被成形材5を粗圧延(熱間圧延)する粗圧延機11、粗圧延された被成形材5を仕上げ圧延(熱間圧延)する仕上圧延機12、仕上げ圧延された被成形材5を冷却処理する冷却部13等を備えている。冷却部13は、仕上げ圧延後の高温状態の被成形材5に対して冷却水を供給し、被成形材5の水冷処理(水焼入れ)を行う構成となっている。これにより、所定の材質(強度等)及び寸法を有する被成形材5(厚板)が製造されるようになっている。また、本実施形態における圧延設備2は、例えばTMCP(Thermomechanical Control Process)などの制御冷却技術を用いた処理を行うように構成されている。即ち、各被成形材5に対してそれぞれ個別に設定されたTMCP条件に従って、加熱炉10における加熱温度X、冷却部13における水冷開始温度Y、冷却部13における水冷停止温度Zなどを適宜調整しながら、各被成形材5の圧延を行うことができる構成になっている。   As shown in FIG. 1, a rolling facility 2 includes a heating furnace 10 that heats a molding material 5 (slab), and a rough rolling mill 11 that performs rough rolling (hot rolling) the molding material 5 heated by the heating furnace 10. A finish rolling machine 12 that finish-rolls (hot-rolls) the roughly-rolled material 5, a cooling unit 13 that cools the finish-rolled material 5, and the like. The cooling unit 13 is configured to supply cooling water to the molding material 5 in a high temperature state after finish rolling, and to perform a water cooling process (water quenching) of the molding material 5. Thereby, the to-be-molded material 5 (thick board) which has a predetermined material (strength etc.) and a dimension is manufactured. Moreover, the rolling equipment 2 in this embodiment is configured to perform processing using a control cooling technique such as TMCP (Thermal Mechanical Control Process). That is, the heating temperature X in the heating furnace 10, the water cooling start temperature Y in the cooling unit 13, the water cooling stop temperature Z in the cooling unit 13, etc. are appropriately adjusted according to the TMCP conditions set individually for each molding material 5. However, it has the structure which can roll each to-be-shaped material 5. FIG.

鋼管製造設備3は、被成形材5(厚板)のC成形(Cプレス)を行うC成形機21(Cプレス機)、C成形された被成形材5のU成形(Uプレス)を行うU成形機22(Uプレス機)、U成形された被成形材5のO成形(Oプレス)を行うO成形機23(Oプレス機)、O成形された被成形材5の端部同士を溶接する溶接機31、被成形材5を所定の寸法(内径、外径、肉厚)に拡管する拡管機32などを備えている。また、図示はしないが、C成形機21に搬入される前の被成形材5(厚板)に対して後述するタブ板38の取付を行うタブ板溶接機、後述する開先加工を施すエッジミラー、溶接機31による溶接後の被成形材5から後述するタブ板38を除去するタブ板除去機等を備えている。   The steel pipe manufacturing equipment 3 performs a C molding machine 21 (C press machine) that performs C molding (C press) of the workpiece 5 (thick plate), and U molding (U press) of the C molded workpiece 5. U molding machine 22 (U press machine), O molding machine 23 (O press machine) that performs O molding (O press) of U molded material 5, and ends of O molded material 5 A welding machine 31 for welding, a pipe expanding machine 32 for expanding the molding material 5 to predetermined dimensions (inner diameter, outer diameter, wall thickness) and the like are provided. Further, although not shown, a tab plate welding machine for attaching a tab plate 38 to be described later to the material 5 (thick plate) before being carried into the C forming machine 21, and an edge for performing groove processing to be described later A mirror, a tab plate removing machine for removing a tab plate 38 to be described later from the workpiece 5 after welding by the welding machine 31, and the like are provided.

また、圧延設備2、鋼管製造設備3に設けられている各機器(加熱炉10、粗圧延機11、仕上圧延機12、冷却部13、C成形機21、U成形機22、O成形機23、溶接機31、拡管機32等)は、主制御部36(ビジネスコンピュータ)によって制御されるようになっている。   In addition, each equipment provided in the rolling equipment 2 and the steel pipe manufacturing equipment 3 (the heating furnace 10, the roughing mill 11, the finishing mill 12, the cooling unit 13, the C molding machine 21, the U molding machine 22, and the O molding machine 23). The welding machine 31, the pipe expansion machine 32, and the like) are controlled by the main control unit 36 (business computer).

図2は、C成形機21においてC成形される被成形材5を示している。被成形材5は、略長方形の平板状をなす鋼材(鋼板)であり、平面状の下面5aと上面5bを備えている。被成形材5の長さ方向D(板長方向)において互いに対向する両縁部、即ち、前縁部5cと後縁部5dには、タブ板38が2つずつ設けられている。タブ板38は、前縁部5c側からみて、前縁部5cの左端部と右端部、後縁部5dの左端部と右端部にそれぞれ設けられている。 FIG. 2 shows the molding material 5 that is C-molded by the C-molding machine 21. The molding material 5 is a steel material (steel plate) having a substantially rectangular flat plate shape, and includes a planar lower surface 5a and an upper surface 5b. Two tab plates 38 are provided at both edge portions facing each other in the length direction D L (plate length direction) of the molding material 5, that is, at the front edge portion 5 c and the rear edge portion 5 d. The tab plate 38 is provided at the left end and the right end of the front edge 5c, and at the left and right ends of the rear edge 5d, as viewed from the front edge 5c side.

被成形材5の幅方向D(板幅方向、長さ方向Dに対して直交する方向)において中央部を挟んで互いに対向する両縁部、即ち、左縁部5eと右縁部5fには、溶接を行うための開先加工が施されている。即ち、例えば図3に示すように、左縁部5eの下面5a側と右縁部5fの下面5a側に、第一の開先面41がそれぞれ設けられ、左縁部5eの上面5b側と右縁部5fの上面5b側には、第二の開先面42がそれぞれ設けられている。第一の開先面41、第二の開先面42は、それぞれ長さ方向Dに沿って設けられている。また、第一の開先面41は、外側(左縁部5eにおいては左側、右縁部5fにおいては右側)に向かうに従い下面5aから次第に上方に向かうように傾斜した傾斜面になっている。第二の開先面42は、外側に向かうに従い上面5bから次第に下方に向かうように傾斜した傾斜面になっている。 Both edge portions facing each other across the central portion in the width direction D B of the molded material 5 (the plate width direction and the direction perpendicular to the length direction D L), i.e., left edge 5e and right edges 5f Is provided with a groove for welding. That is, for example, as shown in FIG. 3, first groove surfaces 41 are provided on the lower surface 5a side of the left edge portion 5e and the lower surface 5a side of the right edge portion 5f, respectively, and the upper surface 5b side of the left edge portion 5e Second groove surfaces 42 are provided on the upper surface 5b side of the right edge portion 5f. The first groove surface 41, a second open tip surface 42 are respectively provided along the longitudinal direction D L. Further, the first groove surface 41 is an inclined surface that is gradually inclined upward from the lower surface 5a toward the outside (left side at the left edge portion 5e and right side at the right edge portion 5f). The second groove surface 42 is an inclined surface that is inclined so as to gradually go downward from the upper surface 5b as it goes outward.

次に、C成形機21の構成について説明する。図4に示すように、C成形機21は、被成形材5を搬送する搬送機構51、左縁部5eを変形させる縁部変形機構としての左縁部変形機構52A、右縁部5bを変形させる縁部変形機構としての右縁部変形機構52Bを備えている。さらに、C成形機21に備えられている各機器(搬送機構51、左縁部変形機構52A、右縁部変形機構52B等)を制御する制御部としてのC成形機制御部53(いわゆるプロセスコンピュータ)を備えている。   Next, the configuration of the C molding machine 21 will be described. As shown in FIG. 4, the C molding machine 21 deforms the conveyance mechanism 51 that conveys the molding material 5, the left edge deformation mechanism 52A as the edge deformation mechanism that deforms the left edge 5e, and the right edge 5b. A right edge deformation mechanism 52B is provided as an edge deformation mechanism. Further, a C molding machine control unit 53 (so-called process computer) as a control unit for controlling each device (conveying mechanism 51, left edge deformation mechanism 52A, right edge deformation mechanism 52B, etc.) provided in the C molding machine 21. ).

搬送機構51は、複数の搬送ロール51aを備えている。搬送ロール51aは、被成形材5の搬送方向D(水平方向)において複数並べて設けられており、また、各搬送ロール51aの長さ方向(中心軸方向)を搬送方向Dに対して略垂直な水平方向に向けた状態で備えられている。即ち、被成形材5を各搬送ロール51a上に載せた状態で、各搬送ロール51aをそれぞれの中心軸を中心として回転させることにより、被成形材5を略水平な姿勢で、所定の搬送方向Dに搬送する構成となっている。 The transport mechanism 51 includes a plurality of transport rolls 51a. Transport rolls 51a are substantially more aligned provided, also, the length direction of the transport rolls 51a (center axis direction) with respect to the conveying direction D 1 in the conveying direction D 1 of the the molded material 5 (horizontal direction) It is provided in a state of being oriented in the vertical horizontal direction. That is, in a state where the molding material 5 is placed on the respective transport rolls 51a, the respective transport rolls 51a are rotated around the respective central axes, whereby the molding material 5 is kept in a substantially horizontal posture in a predetermined transport direction. and it has a configuration for conveying the D 1.

左縁部変形機構52Aは、一対の金型、即ち、プレス成形の際に左縁部5eの下面5a側に当接する第一の当接体としての下金型61と、プレス成形の際に左縁部5eの上面5b側に当接する第二の当接体としての上金型62とを備えている。また、図示はしないが、下金型61と上金型62を搬送機構51上の被成形材5に対して移動させる金型移動装置を有している。さらに、金型移動装置の動作を制御する縁部変形機構制御装置65を備えている。   The left edge portion deformation mechanism 52A includes a pair of dies, that is, a lower die 61 as a first contact body that comes into contact with the lower surface 5a side of the left edge portion 5e during press molding, and a press molding. An upper die 62 as a second contact body that contacts the upper surface 5b side of the left edge portion 5e is provided. Further, although not shown, a mold moving device that moves the lower mold 61 and the upper mold 62 relative to the molding material 5 on the transport mechanism 51 is provided. Further, an edge deformation mechanism control device 65 for controlling the operation of the mold moving device is provided.

なお、下金型61の搬送方向Dにおける長さと、上金型62の搬送方向Dにおける長さは、左縁部5eの長さ(板長、被成形材5の長さ方向Dの寸法)に対して短く形成されている。つまり、左縁部5eに対する下金型61と上金型62の位置を長さ方向Dにおいてずらしながら、プレス成形を複数回に分けて行うことにより、左縁部5e全体を曲げ変形させる構成となっている。 Incidentally, the length in the conveying direction D 1 of the lower die 61, the length in the transport direction D 1 of the upper mold 62, the length of the left edge 5e (Itacho, of the molded material 5 lengthwise direction D L The dimension is shorter than In other words, while shifting in the longitudinal direction D L of the position of the lower die 61 and upper die 62 relative to the left edge 5e, by performing dividing the press-molding a plurality of times, thereby bending deformation across left edge 5e structure It has become.

図5に示すように、下金型61は、円柱面に沿って形成された凹曲面61aを備えている。凹曲面61aは、左側下方に向かって凹状に、また、被成形材5側から左側に向かうに従い次第に上方に向かうように形成されている。一方、上金型62は、下金型61の上方に設けられており、円柱面に沿って形成された凸曲面62aを備えている。凸曲面62aは、左側下方に向かって凸状に、また、被成形材5側から左側に向かうに従い次第に上方に向かうように形成されている。即ち、凹曲面61aと凸曲面62aとの間に左縁部5eを挟んで加圧することで、左縁部5eをプレス成形により曲げ加工する構成となっている。なお、図5に示す例では、平面視において凹曲面61aと凸曲面62aに重なる部分、即ち、プレス成形する前の被成形材5の左側面(左縁部5eの端面)から幅方向Dにおいて曲げ長さLの幅の部分が、凹曲面61aと凸曲面62aの間の隙間に沿って、左側に向かうに従い次第に上方に向かう形状に曲げ変形されるようになっている。 As shown in FIG. 5, the lower mold 61 includes a concave curved surface 61a formed along a cylindrical surface. The concave curved surface 61a is formed in a concave shape toward the lower left side and gradually upward as it goes from the molding material 5 side to the left side. On the other hand, the upper mold 62 is provided above the lower mold 61 and includes a convex curved surface 62a formed along a cylindrical surface. The convex curved surface 62a is formed so as to protrude downward on the left side and gradually upward as it goes from the molding material 5 side to the left side. That is, the left edge portion 5e is bent by press molding by pressing the left edge portion 5e between the concave curved surface 61a and the convex curved surface 62a. In the example shown in FIG. 5, the portion overlapping the concave curved surface 61a and the convex curved surface 62a in a plan view, i.e., the left side surface of the molded material 5 prior to press-molding the width direction D from (end surface of the left edge 5e) B width portion of the length L M bent at is, along the gap between the concave curved surface 61a and the convex curved surface 62a, it is adapted to be bent and deformed into a shape gradually upward toward the left.

また、下金型61と上金型62は、金型移動装置(図示せず)の作動によって、上下方向(搬送機構51によって支持されている被成形材5の厚さ方向D(板厚方向、長さ方向Dと幅方向Dに対して直交する方向)において互いに近接及び離隔することができる。即ち、下金型61と上金型62を上下方向において離隔させると、搬送機構51によって支持されている被成形材5から下金型61と上金型62が離隔して、被成形材5を下金型61と上金型62に対して搬送方向Dに移動させることが可能な状態になる。また、下金型61と上金型62を上下方向において近接させると、搬送機構51によって支持されている被成形材5に対して下金型61と上金型62が当接して、下金型61と上金型62から被成形材5に対して圧力(プレス圧力、成形力)が加えられるように構成されている。 Further, the lower mold 61 and the upper mold 62 are moved in the vertical direction (thickness direction D T (plate thickness of the molding material 5 supported by the transport mechanism 51) by operation of a mold moving device (not shown). direction, it is possible to close and away from each other in the direction) perpendicular to the longitudinal direction D L and the width direction D B. that is, when separating the lower mold 61 and upper mold 62 in the vertical direction, the transport mechanism lower die 61 and upper die 62 from the molding material 5 is supported by 51 spaced apart, moving in the conveying direction D 1 of the molded material 5 with respect to the lower mold 61 and upper mold 62 Further, when the lower mold 61 and the upper mold 62 are brought close to each other in the vertical direction, the lower mold 61 and the upper mold 62 with respect to the molding material 5 supported by the transport mechanism 51. Comes into contact with the workpiece 5 from the lower mold 61 and the upper mold 62. Pressure (pressing pressure, bending force) is configured to be added.

さらに、下金型61と上金型62は、金型移動装置(図示せず)の作動によって、搬送方向Dに対して直交する水平方向(幅方向D)にスライドすることができる。即ち、搬送機構51によって支持されている被成形材5に対して凹曲面61aが当接する当接位置と、凸曲面62aが当接する当接位置を、幅方向Dにおいて調節できるように構成されている。かかる構成により、曲げ長さLを所望の値に調節できるようになっている。 Furthermore, the lower mold 61 and the upper mold 62 can be slid in a horizontal direction (width direction D B ) orthogonal to the transport direction D 1 by operation of a mold moving device (not shown). That is, the contact position where the concave curved surface 61a abuts against the molded material 5 which is supported by the transport mechanism 51, the contact position of the convex curved surface 62a is in contact, is configured to be adjusted in the width direction D B ing. With this configuration, so that the bending length L M can be adjusted to the desired value.

縁部変形機構制御装置65は、C成形機制御部53に対して電気的に接続されており、C成形機制御部53から送信された制御情報(例えば後述する縁部成形条件等の情報)に従って、金型移動装置(図示せず)を制御するようになっている。即ち、受信した縁部成形条件を実現するように、金型移動装置(図示せず)を作動させるようになっている。   The edge deformation mechanism control device 65 is electrically connected to the C molding machine control unit 53, and control information transmitted from the C molding machine control unit 53 (for example, information such as edge molding conditions described later). Accordingly, a mold moving device (not shown) is controlled. That is, a mold moving device (not shown) is operated so as to realize the received edge forming conditions.

右縁部変形機構52Bは、実質的に左縁部変形機構52Aと左右対称な構成を有している。右縁部変形機構52Bの詳細な説明は、上記の左縁部変形機構52Aと重複するので省略する。   The right edge deformation mechanism 52B has a configuration that is substantially symmetrical to the left edge deformation mechanism 52A. The detailed description of the right edge portion deformation mechanism 52B overlaps with the left edge portion deformation mechanism 52A described above, and is therefore omitted.

C成形機制御部53は、主制御部36に対して電気的に接続されており、主制御部36から送信された制御情報に従って、左縁部変形機構52Aの縁部変形機構制御装置65、右縁部変形機構52Bの縁部変形機構制御装置65に対してそれぞれ制御情報を送信するように構成されている。また、C成形機制御部53は、各被成形材5の情報(例えば各被成形材5の化学成分の成分値、圧延設備2における各被成形材5の圧延工程においてそれぞれ用いられたTMCP条件の情報、各被成形材5の寸法、各被成形材5の強度情報等)を取得し、さらに、各被成形材5の強度情報に基づいて、各被成形材5に対応する縁部成形条件を、一枚ごとに個別に求めることができる。   The C molding machine control unit 53 is electrically connected to the main control unit 36, and according to the control information transmitted from the main control unit 36, the edge deformation mechanism control device 65 of the left edge deformation mechanism 52A, Control information is transmitted to the edge deformation mechanism control device 65 of the right edge deformation mechanism 52B. Further, the C molding machine control unit 53 includes information on each material 5 (for example, component values of chemical components of each material 5, TMCP conditions used in the rolling process of each material 5 in the rolling equipment 2, respectively). Information, dimensions of each molding material 5, strength information of each molding material 5, and the like, and further, edge molding corresponding to each molding material 5 based on the strength information of each molding material 5 Conditions can be determined individually for each sheet.

本実施形態においては、各被成形材5の化学成分、圧延設備2におけるTMCP条件、寸法などの情報は、主制御部36に記憶されるように構成されている。そして、この主制御部36に記憶されている各被成形材5の化学成分、圧延設備2におけるTMCP条件などの情報が、主制御部36からC成形機制御部53に送信されることで、C成形機制御部53に取得されるようになっている。各被成形材5の化学成分の成分値は、例えばC(炭素)の含有量R(質量%)、Si(ケイ素)の含有量RSi(質量%)、Mn(マンガン)の含有量RMn(質量%)、Ni(ニッケル)の含有量RNi(質量%)、Cu(銅)の含有量RCu(質量%)、Cr(クロム)の含有量RCr(質量%)、V(バナジウム)の含有量R(質量%)、Mo(モリブデン)の含有量RMo(質量%)等であっても良い。また、TMCP条件の情報には、例えば、加熱炉10における加熱温度X、冷却部13における水冷開始温度Y、冷却部13における水冷停止温度Zなどを含めても良い。 In the present embodiment, information such as the chemical composition of each workpiece 5, TMCP conditions in the rolling equipment 2, and dimensions is stored in the main control unit 36. And, information such as the chemical composition of each molding material 5 stored in the main control unit 36 and the TMCP conditions in the rolling equipment 2 is transmitted from the main control unit 36 to the C molding machine control unit 53. It is acquired by the C molding machine control unit 53. Component values of the chemical components of each of the molding material 5, for example, the C content R C (mass%) of (carbon), the content of Si (silicon) R Si (% by mass), the content of Mn (manganese) R Mn (mass%), Ni (nickel) content R Ni (mass%), Cu (copper) content R Cu (mass%), Cr (chromium) content R Cr (mass%), V ( the content of vanadium) R V (wt%), Mo (may be the content R Mo (wt%), etc. molybdenum). In addition, the TMCP condition information may include, for example, the heating temperature X in the heating furnace 10, the water cooling start temperature Y in the cooling unit 13, the water cooling stop temperature Z in the cooling unit 13, and the like.

また、C成形機制御部53は、主制御部36から受信した各被成形材5の化学成分の成分値に基づいて、各被成形材5の焼入れ性β(予測値)を計算することができ、さらに、計算した焼入れ性βとTMCP条件に基づいて、被成形材5の一枚ごとの強度TS(引張強度の予測値)を計算することができる。つまり、各被成形材5の化学成分とTMCP条件に基づいて、強度TSを求めることができる。   Further, the C molding machine control unit 53 can calculate the hardenability β (predicted value) of each molding material 5 based on the component value of the chemical component of each molding material 5 received from the main control unit 36. Further, based on the calculated hardenability β and the TMCP condition, the strength TS (predicted value of tensile strength) for each piece of the molding material 5 can be calculated. That is, the strength TS can be obtained based on the chemical component of each molding material 5 and the TMCP condition.

強度TSは、例えば、以下の式(1)(強度予測式)と式(2)(焼入れ性予測式)に基づいて求めることができる。本実施形態においては、式(1)、(2)を利用して強度TSを計算するためのプログラムが、C成形機制御部53に記憶されており、このプログラムを実行することにより、強度TSを算出する構成となっている。
TS=aX+bX+cX
+dY+eY+fY
+gZ+hZ+iZ+j+kβ ・・・(1)
(TS:強度(引張強度)、X:加熱温度、Y:水冷開始温度、Z:水冷停止温度、β:焼入れ性、a,b,c,d,e,f,g,h,i,j,k:係数)
β=f(R,RSi,RMn,RNi,RCu,RCr,R,RMo) ・・・(2)
(R:Cの含有量(質量%)、RSi:Siの含有量(質量%)、RMn:Mnの含有量(質量%)、RNi:Niの含有量(質量%)、RCu:Cuの含有量(質量%)、RCr:Crの含有量(質量%)、R:Vの含有量(質量%)、RMo:Moの含有量(質量%))
The strength TS can be obtained based on, for example, the following formula (1) (strength prediction formula) and formula (2) (hardenability prediction formula). In the present embodiment, a program for calculating the strength TS using the formulas (1) and (2) is stored in the C molding machine control unit 53, and by executing this program, the strength TS Is calculated.
TS = aX 3 + bX 2 + cX
+ DY 3 + eY 2 + fY
+ GZ 3 + hZ 2 + iZ + j + kβ (1)
(TS: Strength (tensile strength), X: Heating temperature, Y: Water cooling start temperature, Z: Water cooling stop temperature, β: Hardenability, a, b, c, d, e, f, g, h, i, j , K: coefficient)
β = f (R C , R Si , R Mn , R Ni , R Cu , R Cr , R V , R Mo ) (2)
(R C : C content (% by mass), R Si : Si content (% by mass), R Mn : Mn content (% by mass), R Ni : Ni content (% by mass), R Cu : Cu content (% by mass), R Cr : Cr content (% by mass), R V : V content (% by mass), R Mo : Mo content (% by mass)

因みに、式(2)は、焼入れ性βが被成形材5の成分値(R,RSi,RMn,RNi,RCu,RCr,R,RMo)に依存することを意味している。 Incidentally, the formula (2) means that the hardenability β depends on the component values (R C , R Si , R Mn , R Ni , R Cu , R Cr , R V , R Mo ) of the material 5 to be molded. is doing.

さらに、C成形機制御部53は、計算した被成形材5の強度TSと、主制御部36から送信された被成形材5の厚さ(板厚、厚さ方向Dにおける寸法)に基づいて、縁部成形条件を計算する機能を有する。C成形機制御部53において求められる縁部成形条件には、例えば、左縁部変形機構52Aの下金型61と上金型62によって左縁部5eに対して与える圧力情報、右縁部変形機構52Bの下金型61と上金型62によって右縁部5fに対して与える圧力情報、搬送機構51によって支持されている被成形材5に対する左縁部変形機構52Aの位置情報、搬送機構51によって支持されている被成形材5に対する右縁部変形機構52Bの位置情報等が含まれている。なお、本実施形態において、被成形材5に対する左縁部変形機構52A(右縁部変形機構52B)の位置情報とは、下金型61の幅方向Dにおける位置情報、上金型62の幅方向Dにおける位置情報、下金型61の厚さ方向Dにおける位置情報、上金型62の厚さ方向Dにおける位置情報である。 Further, the C molding machine control unit 53 is based on the calculated strength TS of the molding material 5 and the thickness of the molding material 5 transmitted from the main control unit 36 (plate thickness, dimension in the thickness direction DT ). And has a function of calculating edge forming conditions. The edge molding conditions required by the C molding machine controller 53 include, for example, pressure information applied to the left edge 5e by the lower mold 61 and the upper mold 62 of the left edge deformation mechanism 52A, and right edge deformation. Pressure information given to the right edge 5f by the lower mold 61 and the upper mold 62 of the mechanism 52B, position information of the left edge deformation mechanism 52A with respect to the molding material 5 supported by the transport mechanism 51, and the transport mechanism 51 The position information and the like of the right edge portion deformation mechanism 52B with respect to the molding material 5 supported by the above-mentioned are included. In the present embodiment, the position information of the left edge deformation mechanism 52A with respect to the molding material 5 (right edge deformation mechanism 52B), the position information in the width direction D B of the lower mold 61, the upper die 62 location in the width direction D B, position information in the thickness direction D T of the lower mold 61, the position information in the thickness direction D T of the upper mold 62.

因みに、縁部成形条件の計算には、例えば公知の方法を用いることが可能である。例えば、左縁部変形機構52Aや右縁部変形機構52Bから被成形材5に対して与える圧力は、被成形材5の強度TS等から求めることができる(特許文献3参照)。また、例えばO成形後(拡管前)の被成形材5の外径、被成形材5の板厚(肉厚)等から、左縁部5e又は右縁部5fの曲げ長さLの目標範囲を求めることができ(特許文献1参照)、この曲げ長さLから、下金型61の位置情報と上金型62の位置情報を設定することが可能である。 Incidentally, for example, a known method can be used for calculating the edge forming conditions. For example, the pressure applied to the molding material 5 from the left edge deformation mechanism 52A or the right edge deformation mechanism 52B can be obtained from the strength TS of the molding material 5 (see Patent Document 3). Further, for example, after O molding the outer diameter of the molded material 5 (tube expansion before), from such a thickness of the molded material 5 (thickness), the goal of bending length L M of the left edge 5e or right edge 5f range can be obtained (see Patent Document 1), from the bending length L M, it is possible to set the position information of the position information and the upper die 62 of the lower mold 61.

次に、以上のように構成された鋼管製造設備3における鋼管製造方法について説明する。先ず、主制御部36には、複数の被成形材5(鋼板一枚ごと)に関する情報(各被成形材5の化学成分、圧延設備2において用いられたTMCP条件、寸法等)が予め記憶されている。なお、各被成形材5の化学成分は、例えば被成形材5(スラブ)が圧延設備2に搬入される前の製鋼設備(連続鋳造設備)における製鋼工程において、連続鋳造設備のタンデッシュに貯留されている溶鋼等からサンプリングを行い、検査することにより求めるようにしても良い。即ち、溶鋼の分析結果(成分値)を主制御部36に記憶させても良い。また、TMCP条件については、圧延設備2において圧延を行った際に、主制御部36から圧延設備2(例えば、加熱炉10を制御するプロセスコンピュータ、粗圧延機11を制御するプロセスコンピュータ、仕上圧延機12を制御するプロセスコンピュータ、冷却部13を制御するプロセスコンピュータ等)に対して送信した制御情報(例えば、加熱炉10における加熱温度Xの設定値、冷却部13における水冷開始温度Yの設定値、冷却部13における水冷停止温度Zの設定値等)を保存しておくようにしても良い。あるいは、圧延設備2から主制御部36に対してTMCP条件の実績値(例えば、加熱炉10における加熱温度Xの実績値、冷却部13における水冷開始温度Yの実績値、冷却部13における水冷停止温度Zの実績値等)を送信し、これを主制御部36に記憶させても良い。   Next, a steel pipe manufacturing method in the steel pipe manufacturing facility 3 configured as described above will be described. First, the main control unit 36 stores in advance information (a chemical component of each material 5, TMCP conditions used in the rolling equipment 2, dimensions, etc.) regarding a plurality of materials 5 (each steel sheet). ing. In addition, the chemical component of each to-be-molded material 5 is stored in the tundish of the continuous casting equipment in the steel making process in the steel making equipment (continuous casting equipment) before the to-be-formed material 5 (slab) is carried into the rolling equipment 2, for example. You may make it obtain | require by sampling from the molten steel etc. which are currently inspected. That is, the analysis result (component value) of the molten steel may be stored in the main control unit 36. As for the TMCP condition, when rolling is performed in the rolling facility 2, the main control unit 36 controls the rolling facility 2 (for example, a process computer that controls the heating furnace 10, a process computer that controls the roughing mill 11, and finish rolling. Control information transmitted to a process computer for controlling the machine 12, a process computer for controlling the cooling unit 13, etc. (for example, a set value of the heating temperature X in the heating furnace 10, a set value of the water cooling start temperature Y in the cooling unit 13) The set value of the water cooling stop temperature Z in the cooling unit 13) may be stored. Alternatively, the actual value of the TMCP condition from the rolling equipment 2 to the main control unit 36 (for example, the actual value of the heating temperature X in the heating furnace 10, the actual value of the water cooling start temperature Y in the cooling unit 13, and the water cooling stop in the cooling unit 13) The actual value of the temperature Z or the like) may be transmitted and stored in the main control unit 36.

鋼管製造設備3においては、先ず被成形材5に対してタブ板38が溶接によって取り付けられ、次に、図示しないエッジミラーを用いた切削により、開先加工(第一の開先面41、第二の開先面42の形成)が施される。その後、C成形機21によってC成形(Cプレス)される。   In the steel pipe manufacturing facility 3, a tab plate 38 is first attached to the material 5 by welding, and then groove processing (first groove surface 41, first groove) is performed by cutting using an edge mirror (not shown). Formation of the second groove surface 42). Thereafter, C molding (C press) is performed by the C molding machine 21.

C成形機21において、C成形機制御部53は、最初にC成形が施される1番目の被成形材5の情報(1番目の被成形材5の化学成分、1番目の被成形材5のTMCP条件、1番目の被成形材5の寸法等)を、主制御部36から取得する。そして、上記式(1)、(2)に基づく計算を行うことにより、化学成分、TMCP条件から1番目の被成形材5の強度TS(1)を求める。 In the C molding machine 21, the C molding machine control unit 53 firstly provides information on the first molding material 5 on which C molding is performed (the chemical composition of the first molding material 5, the first molding material 5). The TMCP conditions, the dimensions of the first molding material 5, etc.) are acquired from the main control unit 36. And by calculating based on said Formula (1), (2), intensity | strength TS (1) of the 1st to-be-molded material 5 is calculated | required from a chemical component and TMCP conditions.

さらに、C成形機制御部53は、1番目の被成形材5の寸法、計算された強度TS(1)等に基づいて、1番目の被成形材5に対応する縁部成形条件(即ち、1番目の被成形材5の左縁部5eに対して与える圧力情報、1番目の被成形材5の右縁部5fに対して与える圧力情報、1番目の被成形材5に対する左縁部変形機構52Aの位置情報、1番目の被成形材5に対する右縁部変形機構52Bの位置情報等)を計算する。即ち、例えば水冷停止温度Zが低く、強度TS(1)が高いほど、左縁部5eや右縁部5fに対して与える圧力を高くするように、縁部成形条件を設定する。こうしてC成形機制御部53において求められた1番目の被成形材5に対応する縁部成形条件を、左縁部変形機構52Aの縁部変形機構制御装置65、右縁部変形機構52Bの縁部変形機構制御装置65に対してそれぞれ送信する。 Further, the C molding machine control unit 53 determines the edge molding condition corresponding to the first molding material 5 (that is, based on the dimension of the first molding material 5, the calculated strength TS (1), etc. Pressure information given to the left edge portion 5e of the first molding material 5, pressure information given to the right edge portion 5f of the first molding material 5, and left edge deformation of the first molding material 5 Position information of the mechanism 52A, position information of the right edge portion deformation mechanism 52B with respect to the first molding material 5, and the like) are calculated. That is, for example, the edge molding conditions are set so that the pressure applied to the left edge 5e and the right edge 5f is higher as the water cooling stop temperature Z is lower and the strength TS (1) is higher. Thus, the edge molding conditions corresponding to the first workpiece 5 obtained in the C molding machine control unit 53 are set as the edge deformation mechanism control device 65 of the left edge deformation mechanism 52A and the edge of the right edge deformation mechanism 52B. Each is transmitted to the part deformation mechanism control device 65.

一方、1番目の被成形材5は、搬送機構51によって略水平な姿勢で支持され、搬送方向Dに沿って搬送される(図6参照)。搬送の際、下面5aは下方に向けられ、上面5bは上方に向けられ、前縁部5cは前側(搬送方向Dにおいて搬出側)に配置され、後縁部5dは後側(搬送方向Dにおいて搬入側)に配置される。また、前縁部5c側からみて左側に左縁部5eが配置され、右側に右縁部5fが配置される。被成形材5の長さ方向Dは搬送方向Dに向けられ、幅方向Dは搬送方向Dに対して略垂直に向けられる。 Meanwhile, first the molded material 5 is supported substantially horizontal posture by the conveying mechanism 51, it is conveyed along the conveying direction D 1 (see FIG. 6). During transport, the lower surface 5a is directed downward, an upper surface 5b is directed upwards, the front edge portion 5c is disposed in front (out side in the conveying direction D 1), the trailing edge portion 5d is rear (conveying direction D 1 on the carry-in side). Further, the left edge portion 5e is disposed on the left side when viewed from the front edge portion 5c side, and the right edge portion 5f is disposed on the right side. The length direction D L of the molded member 5 is directed in the conveying direction D 1, the width direction D B are oriented substantially perpendicular to the conveying direction D 1.

こうして搬送方向Dに沿って搬送されることにより、被成形材5は、前縁部5c側から左縁部変形機構52A、右縁部変形機構52Bに挿入される(図6参照)。このとき、左縁部変形機構52Aの下金型61と上金型62、右縁部変形機構52Bの下金型61と上金型62は、それぞれ上下に離隔させられており、被成形材5に対して接触しない位置に待機させられている。かかる状態において、左縁部変形機構52Aの下金型61と上金型62との間に、左縁部5eの前端部が挿入され、右縁部変形機構52Bの下金型61と上金型62との間に、右縁部5fの前端部が挿入される。 By being conveyed along the conveying direction D 1 Thus, the molded material 5 is inserted from the front edge portion 5c side left edge deformation mechanism 52A, the right edge deformation mechanism 52B (see FIG. 6). At this time, the lower mold 61 and the upper mold 62 of the left edge deforming mechanism 52A, and the lower mold 61 and the upper mold 62 of the right edge deforming mechanism 52B are separated from each other in the vertical direction. It is made to stand by in the position which does not contact with 5. In this state, the front end of the left edge portion 5e is inserted between the lower mold 61 and the upper mold 62 of the left edge deformation mechanism 52A, and the lower mold 61 and the upper mold of the right edge deformation mechanism 52B are inserted. Between the mold 62, the front end portion of the right edge portion 5f is inserted.

次に、左縁部変形機構52Aの下金型61と上金型62、右縁部変形機構52Bの下金型61と上金型62が、それぞれ上下方向において近接させられることにより、左縁部5eの前端部、右縁部5fの前端部がそれぞれ左縁部変形機構52Aの下金型61(凹曲面61a)と上金型62(凸曲面62a)との間、右縁部変形機構52の下金型61と上金型62との間に挟まれて、プレス成形される(図5、図7参照)。即ち、左縁部5eの前端部(左縁部5eの端面から曲げ長さLの部分)は、左縁部変形機構52Aの下金型61と上金型62によって圧力が与えられることにより、左縁部変形機構52Aの凹曲面61aと凸曲面62aに沿って曲げ変形させられる。つまり、左側に向かうに従い上方に向かうように、略円柱面に沿って(前縁部5c側からみて略円弧状に)湾曲した形状になる。また、右縁部5fの前端部(右縁部5fの端面から曲げ長さLの部分)は、右縁部変形機構52Bの下金型61と上金型62によって圧力が与えられることにより、右縁部変形機構52Bの凹曲面61aと凸曲面62aに沿って曲げ変形させられる。つまり、右側に向かうに従い上方に向かうように、略円柱面に沿って湾曲した形状になる。こうして、左縁部5eの前端部と右縁部5fの前端部は、前縁部5c側からみて互いに左右対称な形状に湾曲させられる。 Next, the lower mold 61 and the upper mold 62 of the left edge deforming mechanism 52A and the lower mold 61 and the upper mold 62 of the right edge deforming mechanism 52B are brought close to each other in the vertical direction, so that the left edge The front edge part of the part 5e and the front edge part of the right edge part 5f are respectively between the lower mold 61 (concave surface 61a) and the upper mold 62 (convex surface 62a) of the left edge deformation mechanism 52A, and the right edge part deformation mechanism. 52 is sandwiched between a lower mold 61 and an upper mold 62 and press-molded (see FIGS. 5 and 7). That is, the front end portion (the portion of the length L M bending from the end face of the left edge 5e) of the left edge 5e, by the pressure given by the lower die 61 and upper die 62 of the left edge deformation mechanism 52A The left edge portion deforming mechanism 52A is bent and deformed along the concave curved surface 61a and the convex curved surface 62a. That is, the shape is curved along a substantially cylindrical surface (in a substantially arc shape when viewed from the front edge portion 5c side) so as to go upward as it goes to the left side. Further, a front end portion (right edge portion 5f of the length L M bending from the end face of) the right edge 5f, by the pressure given by the lower die 61 and upper die 62 of the right edge deformation mechanism 52B Then, it is bent and deformed along the concave curved surface 61a and the convex curved surface 62a of the right edge portion deformation mechanism 52B. That is, it becomes a shape curved along a substantially cylindrical surface so as to go upward as it goes to the right side. In this way, the front end portion of the left edge portion 5e and the front end portion of the right edge portion 5f are curved in a shape that is symmetrical to each other when viewed from the front edge portion 5c side.

また、かかるプレス成形を行う際、左縁部変形機構52Aの縁部変形機構制御装置65は、C成形機制御部53から送信された縁部成形条件(1番目の被成形材5の縁部成形条件)に基づいて、左縁部変形機構52Aの金型移動装置(図示せず)を制御する。即ち、左縁部変形機構52Aの凹曲面61aと凸曲面62aは、搬送機構51によって支持されている被成形材5(1番目の被成形材5の縁部成形条件)に対して、縁部成形条件に基づいた所定の位置に当接させられる。また、縁部成形条件に基づいた所定の圧力で左縁部5eを加圧する。同様に、右縁部変形機構52Bの縁部変形機構制御装置65は、C成形機制御部53から送信された縁部成形条件に基づいて、右縁部変形機構52Bの金型移動装置(図示せず)を制御する。即ち、右縁部変形機構52Bの凹曲面61aと凸曲面62aは、搬送機構51によって支持されている被成形材5に対して、縁部成形条件に基づいた所定の位置に当接させられる。また、縁部成形条件に基づいた所定の圧力で右縁部5fを加圧する。こうして、左縁部変形機構52Aと右縁部変形機構52Bは、C成形機制御部53から送信された縁部成形条件に従って、左縁部5eの前端部と右縁部5fの前端部をそれぞれ変形させ、左縁部5eの前端部と右縁部5fの前端部(最初の被成形部分)は、1番目の被成形材5の強度TS等に基づいた最適な縁部成形条件で、最適な形状に成形される。   Further, when performing such press molding, the edge deformation mechanism control device 65 of the left edge deformation mechanism 52 </ b> A receives the edge molding conditions (the edge of the first molding material 5) transmitted from the C molding machine control unit 53. Based on the molding conditions), the mold moving device (not shown) of the left edge portion deformation mechanism 52A is controlled. That is, the concave curved surface 61a and the convex curved surface 62a of the left edge deforming mechanism 52A are edge portions with respect to the molding material 5 (edge molding conditions of the first molding material 5) supported by the transport mechanism 51. It is brought into contact with a predetermined position based on molding conditions. Further, the left edge 5e is pressurized with a predetermined pressure based on the edge molding conditions. Similarly, the edge deformation mechanism control device 65 of the right edge deformation mechanism 52B is based on the edge molding conditions transmitted from the C molding machine control unit 53, and the mold moving device (see FIG. (Not shown). In other words, the concave curved surface 61a and the convex curved surface 62a of the right edge deforming mechanism 52B are brought into contact with the molding material 5 supported by the transport mechanism 51 at predetermined positions based on the edge molding conditions. Further, the right edge 5f is pressurized with a predetermined pressure based on the edge molding conditions. Thus, the left edge deforming mechanism 52A and the right edge deforming mechanism 52B respectively change the front end of the left edge 5e and the front edge of the right edge 5f according to the edge forming conditions transmitted from the C molding machine controller 53. The front edge part of the left edge part 5e and the front edge part (first molded part) of the right edge part 5f are optimal under the optimum edge molding conditions based on the strength TS of the first molded material 5, etc. It is molded into a simple shape.

左縁部5eの前端部と右縁部5fの前端部のプレス成形が終了すると、左縁部変形機構52Aの下金型61と上金型62、右縁部変形機構52Bの下金型61と上金型62は、再び上下に離隔させられ、被成形材5に対して接触しない位置に配置される。そして、搬送機構51の作動により、被成形材5が搬送方向Dに沿って搬送される(図8参照)。即ち、被成形材5に対する左縁部変形機構52A、右縁部変形機構52Bの相対的な位置が、後方に移動させられる。そして、左縁部5eにおいてプレス成形された部分の後側に隣接する部分(未だプレス成形が施されていない部分)が、左縁部変形機構52Aにおける次の被成形部分として、左縁部変形機構52Aの下金型61と上金型62との間に配置される。また、右縁部5eにおいてプレス成形された部分の後側に隣接する部分が、右縁部変形機構52Bにおける次の被成形部分として、右縁部変形機構52Bの下金型61と上金型62との間に配置される。かかる状態で、搬送機構51が一時停止させられ、上記のプレス成形と同様にして、左縁部5eと右縁部5eがそれぞれプレス成形される(図9参照)。このときも、左縁部変形機構52Aの縁部変形機構制御装置65、右縁部変形機構52Bの縁部変形機構制御装置65は、上述した1番目の被成形材5の縁部成形条件に従って、それぞれの金型移動装置(図示せず)を制御する。こうして、次の被成形部分も、最初の被成形部分と同様に、1番目の被成形材5の強度TS等に基づいた最適な縁部成形条件で、最適な形状に成形される。 When the press forming of the front end portion of the left edge portion 5e and the front end portion of the right edge portion 5f is completed, the lower die 61 and the upper die 62 of the left edge portion deformation mechanism 52A, and the lower die 61 of the right edge portion deformation mechanism 52B. And the upper mold 62 are again separated from each other in the vertical direction, and are disposed at a position where they do not contact the material to be molded 5. Then, by the operation of the transport mechanism 51, the molded material 5 is conveyed along the conveying direction D 1 (see FIG. 8). That is, the relative positions of the left edge deformation mechanism 52A and the right edge deformation mechanism 52B with respect to the molding material 5 are moved backward. Then, the portion adjacent to the rear side of the press-formed portion in the left edge portion 5e (the portion that has not yet been press-formed) is used as the next molding portion in the left edge portion deformation mechanism 52A, and the left edge portion deformation. The mechanism 52A is disposed between the lower mold 61 and the upper mold 62. Further, the portion adjacent to the rear side of the press-formed portion in the right edge portion 5e is the next molding portion in the right edge portion deforming mechanism 52B, and the lower die 61 and the upper die of the right edge portion deforming mechanism 52B. 62. In this state, the transport mechanism 51 is temporarily stopped, and the left edge portion 5e and the right edge portion 5e are respectively press-molded (see FIG. 9) in the same manner as in the above-described press molding. Also at this time, the edge deformation mechanism control device 65 of the left edge deformation mechanism 52A and the edge deformation mechanism control device 65 of the right edge deformation mechanism 52B follow the edge molding conditions of the first workpiece 5 described above. Each mold moving device (not shown) is controlled. In this way, the next part to be molded is also formed into an optimal shape under the optimal edge forming conditions based on the strength TS of the first material 5 as in the case of the first part.

以上のようにして、1番目の被成形材5は、1番目の被成形材5の縁部成形条件に基づいて、前縁部5c側から後縁部5d側に向かって、順次プレス成形されていく。即ち、左縁部変形機構52Aによる被成形部分、右縁部変形機構52Bによる被成形部分は、それぞれ搬送方向Dにおいて複数のエリアに分割されている。そして、総ての被成形部分がプレス成形されることにより、左縁部5e全体(左縁部5eの端面から曲げ長さLの部分全体)、右縁部5f全体(右縁部5fの端面から曲げ長さLの部分全体)が連続的に曲げ変形させられた状態、即ち、被成形材5にC成形が施された状態となる。各被成形部分は、最初の被成形部分と同様に、1番目の被成形材5の強度TS等に基づいた最適な縁部成形条件で、最適な形状に成形される。 As described above, the first molding material 5 is press-molded sequentially from the front edge portion 5c side to the rear edge portion 5d side based on the edge molding conditions of the first molding material 5. To go. That is, the molded portion by a left edge deformation mechanism 52A, the molded part by right edge deformation mechanism 52B is divided into a plurality of areas in each conveying direction D 1. By that all of the molded part is press-molded, (total of the length L M bending from the end face of the left edge 5e) left edge 5e whole, the right edge portion 5f total (right edge portion 5f state the entire portion of the length L M bending from the end face) was allowed to continuously bending deformation, i.e., a state in which C molded into the molded material 5 is applied. Each molded part is molded into an optimal shape under optimal edge molding conditions based on the strength TS of the first molded material 5 and the like, like the first molded part.

C成形が施された1番目の被成形材5は、左縁部変形機構52A、右縁部変形機構52Bよりも前方において、C成形機21から搬出される。こうして、1番目の被成形材5のC成形工程が終了する。   The first molding material 5 subjected to the C molding is carried out of the C molding machine 21 in front of the left edge deformation mechanism 52A and the right edge deformation mechanism 52B. Thus, the C forming process of the first material 5 is completed.

その後、C成形が施された1番目の被成形材5は、U成形機22に搬送され、U成形機22において、幅方向Dにおける中央部分が、略円柱面に沿って曲げ変形される(図10参照)。即ち、一定の略U字型の断面を有する形状に、U成形される。 Thereafter, the first to be molded member 5 C molding has been performed is conveyed to the U forming machine 22, the U forming machine 22, the central portion in the width direction D B, is bent along the substantially cylindrical surface deformation (See FIG. 10). That is, it is U-shaped into a shape having a certain substantially U-shaped cross section.

U成形が施された1番目の被成形材5は、O成形機23に搬送され、O成形機23によってO成形され、略円管状に成形される。図11に示すように、下面5aは外周面5aとなり、上面5bは内周面5bとなり、左縁部5eと右縁部5fは、被成形材5の上部において互いに近接させられ、突合せ部68を形成する。ここで、1番目の被成形材5の左縁部5eと右縁部5fは、C成形機21において最適な形状に曲げ変形させられているため、突合せ部68においてピーキング(図11において一点鎖線で示すプラスピーキング、又は、二点鎖線で示すマイナスピーキング)が発生することはない。即ち、図11において実線で示すように、被成形材5を真円度の高い略円管状に(径方向に沿った断面形状が真円度の高い略円環状になるように)成形することができる。   The first workpiece 5 that has been subjected to U molding is conveyed to the O molding machine 23, O molded by the O molding machine 23, and shaped into a substantially tubular shape. As shown in FIG. 11, the lower surface 5a becomes the outer peripheral surface 5a, the upper surface 5b becomes the inner peripheral surface 5b, and the left edge portion 5e and the right edge portion 5f are brought close to each other at the upper portion of the molding material 5, and the butting portion 68 Form. Here, since the left edge portion 5e and the right edge portion 5f of the first workpiece 5 are bent and deformed to an optimum shape in the C molding machine 21, they are peaked at the butting portion 68 (indicated by the one-dot chain line in FIG. 11). Or negative peaking indicated by a two-dot chain line) does not occur. That is, as shown by a solid line in FIG. 11, the material 5 is molded into a substantially circular tube with a high roundness (so that the cross-sectional shape along the radial direction is a substantially circular shape with a high roundness). Can do.

O成形後、被成形材5は、O成形機23から溶接機31に搬送され、溶接機31において突合せ部68の溶接が行われる。O成形機23から溶接機31に被成形材5を搬送する際などは、ピーキングを抑制することで、ピーキングに起因する搬送不良を防止できる。即ち、突合せ部68が搬送機構に引っ掛かることなどを防止でき、被成形材5を安定した状態で保持し、円滑に搬送できる。   After the O molding, the molding material 5 is conveyed from the O molding machine 23 to the welding machine 31, and the butt portion 68 is welded in the welding machine 31. When conveying the molding material 5 from the O molding machine 23 to the welding machine 31, it is possible to prevent conveyance failure due to peaking by suppressing peaking. That is, the butting portion 68 can be prevented from being caught by the transport mechanism, and the molding material 5 can be held in a stable state and smoothly transported.

溶接機31における溶接工程では、図12に示すように、左縁部5eの第一の開先面41と右縁部5fの第一の開先面41との間に形成された溝部(突合せ部68の外周面側の開先)、及び、左縁部5eの第二の開先面42と右縁部5fの第二の開先面42との間に形成された溝部(突合せ部68の内周面側の開先)に、被成形材5の長さ方向Dに沿って、溶加材71が付加される(図12参照)。これにより、左縁部5eと右縁部5fが接合される。このとき、被成形材5にピーキングが発生していると、ピーキングに起因する溶接欠陥が発生するおそれがあるが、ピーキングを抑制することにより、そのような溶接欠陥を防止でき、溶接を確実に行うことができる。なお、溶接は、前縁部5cに設けられているタブ板38から開始され、第一の開先面41、第二の開先面42においては連続的に行われ、後縁部5dに設けられているタブ板38において終了される。溶接後は、被成形材5からタブ板38が除去される。即ち、溶接が不安定になりやすい溶接の開始部分と終了部分が、タブ板38とともに除去される。 In the welding process in the welding machine 31, as shown in FIG. 12, a groove (butting) is formed between the first groove surface 41 of the left edge portion 5e and the first groove surface 41 of the right edge portion 5f. Groove portion (butting portion 68) formed between the second groove surface 42 of the left edge portion 5e and the second groove surface 42 of the right edge portion 5f. the groove) of the inner peripheral surface side of and along the length D L of the molded material 5, the filler material 71 is added (see FIG. 12). Thereby, the left edge part 5e and the right edge part 5f are joined. At this time, if peaking occurs in the material 5 to be molded, there is a possibility that welding defects due to peaking may occur. However, by suppressing peaking, such welding defects can be prevented and welding can be reliably performed. It can be carried out. The welding is started from the tab plate 38 provided on the front edge portion 5c, and is continuously performed on the first groove surface 41 and the second groove surface 42, and is provided on the rear edge portion 5d. The tab plate 38 is finished. After the welding, the tab plate 38 is removed from the molding material 5. That is, the start and end portions of the welding that are likely to become unstable are removed together with the tab plate 38.

被成形材5からタブ板38が除去された後は、拡管機32において、被成形材5の拡管が行われる。拡管の際、被成形材5にピーキングが発生していると、ピーキングに起因する拡管割れが発生するおそれがあるが、ピーキングを抑制することにより、そのような拡管割れを防止でき、拡管を確実に行うことができる。こうして、所定の寸法の鋼管を製造することができる。   After the tab plate 38 is removed from the material 5, the tube 5 is expanded in the tube expansion machine 32. During peak expansion, if peaking occurs in the material 5 to be molded, there is a risk of pipe expansion cracking due to peaking. By suppressing peaking, such pipe expansion cracking can be prevented and tube expansion is ensured. Can be done. Thus, a steel pipe having a predetermined dimension can be manufactured.

なお、1番目の被成形材5がC成形機21から搬出された後は、次の未処理の被成形材5、即ち、2番目の被成形材5が、C成形機21に搬入される。そして、上記の1番目の被成形材5と同様にして、2番目の被成形材5のC成形が行われる。   After the first molding material 5 is unloaded from the C molding machine 21, the next unprocessed molding material 5, that is, the second molding material 5 is loaded into the C molding machine 21. . Then, C molding of the second molding material 5 is performed in the same manner as the first molding material 5 described above.

2番目の被成形材5のC成形の際、C成形機制御部53は、上記の1番目の被成形材5に関する情報とは別に、2番目の被成形材5に関する情報(2番目の被成形材5の化学成分、2番目の被成形材5のTMCP条件、2番目の被成形材5の寸法等)を、主制御部36から取得する。そして、2番目の被成形材5に関する情報と上記式(1)、(2)に基づく計算により、2番目の被成形材5の強度TS(2)を求める。さらに、2番目の被成形材5の寸法、計算された2番目の被成形材5の強度TS(2)等に基づいて、2番目の被成形材5に対応する縁部成形条件を計算する。そして、2番目の被成形材5に対応する縁部成形条件を、左縁部変形機構52Aの縁部変形機構制御装置65、右縁部変形機構52Bの縁部変形機構制御装置65に対してそれぞれ送信する。従って、プレス成形を行う際、左縁部変形機構52Aの縁部変形機構制御装置65、右縁部変形機構52Bの縁部変形機構制御装置65は、C成形機制御部53から送信された2番目の被成形材5の縁部成形条件に従って、それぞれの金型移動装置(図示せず)を制御する。 In the C molding of the second workpiece 5, the C molding machine controller 53 separates the information on the second workpiece 5 (the second workpiece) separately from the information on the first workpiece 5. The chemical composition of the molding material 5, the TMCP condition of the second molding material 5, the dimensions of the second molding material 5, etc.) are acquired from the main control unit 36. And strength TS (2) of the 2nd molding material 5 is calculated | required by the calculation based on the information regarding the 2nd molding material 5, and said Formula (1), (2). Further, the edge molding conditions corresponding to the second molding material 5 are calculated based on the dimensions of the second molding material 5 and the calculated strength TS (2) of the second molding material 5. . The edge molding conditions corresponding to the second workpiece 5 are set to the edge deformation mechanism control device 65 of the left edge deformation mechanism 52A and the edge deformation mechanism control device 65 of the right edge deformation mechanism 52B. Send each one. Therefore, when performing press molding, the edge deformation mechanism control device 65 of the left edge deformation mechanism 52A and the edge deformation mechanism control device 65 of the right edge deformation mechanism 52B are transmitted from the C molding machine control unit 53. Each mold moving device (not shown) is controlled in accordance with the edge molding conditions of the second molding material 5.

こうして、2番目の被成形材5においても、各被成形部分は、2番目の被成形材5の強度TS(2)等に基づいた最適な縁部成形条件で、最適な形状に成形される。即ち、2番目の被成形材5の化学成分、TMCP条件、寸法、焼入れ性β、強度TS等が、上述した1番目の被成形材5と異なっていても、1番目の被成形材5とは別に、2番目の被成形材5を所望の形状に成形するために必要な圧力等、縁部成形条件が新たに計算され、その縁部成形条件に従って成形される。従って、左縁部変形機構52A、右縁部変形機構52Bから2番目の被成形材5に対して与える圧力が不足したり過剰になったりすることを防止できる。即ち、2番目の被成形材5を適度に曲げ変形させることができ、O成形後のピーキングが発生することを防止できる。 Thus, also in the second molding material 5, each molding part is molded into an optimum shape under the optimum edge molding conditions based on the strength TS (2) of the second molding material 5. . That is, even if the chemical composition, TMCP conditions, dimensions, hardenability β, strength TS, and the like of the second molding material 5 are different from the first molding material 5 described above, In addition, the edge molding conditions such as the pressure necessary for molding the second molding material 5 into a desired shape are newly calculated and molded according to the edge molding conditions. Accordingly, it is possible to prevent the pressure applied to the second molding material 5 from the left edge deformation mechanism 52A and the right edge deformation mechanism 52B from becoming insufficient or excessive. That is, the second molding material 5 can be appropriately bent and deformed, and peaking after the O molding can be prevented.

同様に、3番目以降のn番目の被成形材5をC成形する際も、C成形機制御部53は、各被成形材5の情報(n番目の被成形材5の化学成分、n番目の被成形材5のTMCP条件、n番目の被成形材5の寸法等)を、主制御部36からそれぞれ取得し、これらの情報に基づいて、n番目の被成形材5に対応する縁部成形条件をそれぞれ求め、その縁部成形条件に従って、左縁部変形機構52A、右縁部変形機構52Bを制御する。左縁部変形機構52A、右縁部変形機構52Bは、各被成形材5に対応する縁部成形条件に従って(n番目の被成形材5を成形する際はn番目の被成形材5に対応する縁部成形条件に従って)、各被成形材5をそれぞれ成形する。従って、各被成形材5は、それぞれの被成形材5の強度TS(n)等に基づいた最適な縁部成形条件で、最適な形状に成形される。 Similarly, when C-molding the third and subsequent n-th workpieces 5, the C-molding machine control unit 53 also provides information on each molding material 5 (chemical components of the n-th molding material 5, n-th molding material 5). The TMCP conditions of the molding material 5 and the dimensions of the n-th molding material 5 are respectively acquired from the main control unit 36, and based on these information, the edge corresponding to the n-th molding material 5 The molding conditions are obtained, and the left edge deformation mechanism 52A and the right edge deformation mechanism 52B are controlled according to the edge molding conditions. The left edge part deformation mechanism 52A and the right edge part deformation mechanism 52B correspond to the edge part molding conditions corresponding to the respective molding materials 5 (when the nth molding material 5 is molded, they correspond to the nth molding material 5). Each molding material 5 is respectively molded according to the edge molding conditions to be performed. Accordingly, each molding material 5 is molded into an optimum shape under optimum edge molding conditions based on the strength TS (n) of each molding material 5 and the like.

また、被成形材5のC成形が行われた後は、上記の1番目の被成形材5と同様にして、2番目以降の各被成形材5のU成形、O成形、溶接、拡管などが順次行われる。上述したように、2番目以降の被成形材5においても、O成形でピーキングが発生することを防止できる。また、2番目以降の被成形材5においても、ピーキングに起因する溶接欠陥、搬送不良、拡管割れを好適に防止できる。   In addition, after the molding of the molding material 5 is performed, the U molding, O molding, welding, tube expansion, and the like of each molding material 5 after the second is performed in the same manner as the first molding material 5 described above. Are performed sequentially. As described above, in the second and subsequent workpieces 5 as well, it is possible to prevent peaking from occurring during O molding. In the second and subsequent molding materials 5 as well, welding defects, conveyance failures, and pipe expansion cracks due to peaking can be suitably prevented.

以上説明したように、本実施形態によれば、被成形材5の一枚ごとの強度TS(TS(n),n=1,2,3,・・・)に基づいて、C成形の縁部成形条件を個別に調節することで、各被成形材5の強度TSが互いに異なっていても、各被成形材5に対応する縁部成形条件を用いて、各被成形材5をそれぞれ適切にC成形することができる。例えば、ロットが同一の被成形材5(同一の鋳片から得られた厚板同士)において、実際の強度にばらつきがあっても、各被成形材5に最適な縁部成形条件を一枚ごとに求め、それぞれ適切にC成形することができる。C成形を適切に行うことにより、各被成形材5のO成形後、ピーキングが発生することを確実に防止でき、各被成形材5の真円度を高くすることができる。さらに、各被成形材5のピーキングに起因する溶接欠陥、搬送不良、拡管割れを確実に防止でき、所望の形状寸法を有する鋼管を確実に製造できる。 As described above, according to the present embodiment, the edge of the C molding is based on the strength TS (TS (n) , n = 1, 2, 3,...) For each material 5 to be molded. Even if the strength TS of each molding material 5 is different from each other by adjusting the part molding conditions individually, each molding material 5 is appropriately used by using the edge molding conditions corresponding to each molding material 5. Can be C-shaped. For example, in the molding material 5 with the same lot (thick plates obtained from the same slab), even if the actual strength varies, one piece of the optimum edge molding condition for each molding material 5 It can obtain | require for every and can respectively carry out C shaping | molding appropriately. By appropriately performing the C molding, it is possible to reliably prevent occurrence of peaking after the O molding of each molding material 5 and to increase the roundness of each molding material 5. Furthermore, it is possible to reliably prevent welding defects, conveyance failures, and pipe expansion cracks due to peaking of the respective molding materials 5, and to reliably manufacture steel pipes having desired shape dimensions.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば下金型61や上金型62の形状は、図5に示したものには限定されない。図5においては、下金型61と上金型62の間において、被成形材5の被成形部分全体(曲げ長さLの部分全体)に凹曲面61aが接触する状態を示したが、例えば図13に示すように、被成形部分の一部(先端部)のみが接触するようにしても良い。このような縁部変形機構を用いる場合も、縁部成形条件を好適に求めることができる。即ち、下金型61と上金型62によって被成形材5に対して与える圧力、被成形材5に対する下金型61の位置、被成形材5に対する上金型62の位置等を、好適に計算することができる。 For example, the shapes of the lower mold 61 and the upper mold 62 are not limited to those shown in FIG. In FIG. 5, between the lower mold 61 and upper mold 62, but the concave surface 61a showed a state in contact with the whole the molded part of the molded material 5 (entire portion of the bending length L M), For example, as shown in FIG. 13, only a part (tip portion) of the part to be molded may be in contact. Even when such an edge deformation mechanism is used, the edge molding conditions can be suitably obtained. That is, the pressure applied to the workpiece 5 by the lower mold 61 and the upper mold 62, the position of the lower mold 61 with respect to the molding material 5, the position of the upper mold 62 with respect to the molding material 5, etc. Can be calculated.

また、以上の実施形態では、被成形材5を縁部変形機構に対して搬送方向Dにずらしながら、一枚の被成形材5に対して複数回のプレス成形を行うことにより、左縁部5e全体、右縁部5f全体を曲げ変形させる構成としたが、かかる構成には限定されない。即ち、凹曲面61aと凸曲面62aの長さ(搬送方向Dにおける寸法)を、左縁部5e又は右縁部5fの長さとほぼ同じ寸法(あるいは左縁部5e又は右縁部5fよりも長い寸法)とし、左縁部5e又は右縁部5fを1度のプレス成形で、一括して曲げ変形できるように構成しても良い。 In the above embodiments, while shifting in the conveying direction D 1 of the molded material 5 to the edge deformation mechanism, by performing a plurality of press-molded to a sheet of the molded member 5, the left edge Although the entire portion 5e and the entire right edge portion 5f are bent and deformed, the present invention is not limited to such a configuration. That is, the length of the concave curved surface 61a and the convex curved surface 62a (the dimension in the transport direction D 1), than about the same size (or the left edge 5e or right edge 5f and the length of the left edge 5e or right edge 5f The left edge portion 5e or the right edge portion 5f may be configured to be bent and deformed collectively by one press molding.

以上の実施形態では、左縁部変形機構52A、右縁部変形機構52Bは、凹曲面61aを有する下金型61と、凸曲面62aを有する上金型62とによって、被成形材5を挟むことにより、プレス成形を行う構成としたが、縁部変形機構とは、かかるものには限定されない。例えば図14に示す左縁部変形機構80A、右縁部変形機構80Bのように、一対のロール、即ち、下ロール81と上ロール82によって被成形材5をロール成形する構成としても良い。即ち、下面5a側に当接する第一の当接体、上面5b側に当接する第二の当接体は、それぞれロール状としても良い。   In the above embodiment, the left edge deformation mechanism 52A and the right edge deformation mechanism 52B sandwich the material 5 to be molded between the lower mold 61 having the concave curved surface 61a and the upper mold 62 having the convex curved surface 62a. Thus, the press molding is performed, but the edge deformation mechanism is not limited to this. For example, like the left edge part deformation mechanism 80A and the right edge part deformation mechanism 80B shown in FIG. 14, it is good also as a structure which roll-forms the to-be-shaped material 5 with a pair of roll, ie, the lower roll 81 and the upper roll 82. That is, the first contact body that contacts the lower surface 5a side and the second contact body that contacts the upper surface 5b side may each have a roll shape.

図14において、左縁部変形機構80Aは、下ロール81と上ロール82を備えている。下ロール81は、外側に向かうに従い次第に外径が大きくなるように、また、外周面の縦断面形状が凹曲面状になるように形成されている。上ロール82は、下ロール81の上方に設けられており、外側に向かうに従い次第に外径が小さくなるように、また、外周面の縦断面形状が凸曲面状になるように形成されている。さらに、下ロール81、上ロール82は、それぞれ略水平方向に向けられた中心軸を中心として回転可能になっている。即ち、下ロール81の外周面と上ロール82の外周面との間に被成形材5(左縁部5e又は右縁部5f)を挟み、下ロール81と上ロール82によって被成形材5に対して圧力を与えながら、下ロール81と上ロール82を互いに反対方向に回転させることにより、被成形材5を下ロール81の外周面と上ロール82の外周面に沿って曲げ変形させながら、搬送方向Dに送り出すように構成されている。右縁部変形機構52Bは、左縁部変形機構52Aに対して実質的に左右対称な構成となっている。このような縁部変形機構を用いる場合も、C成形機制御部53において、縁部成形条件を好適に求めることができる。即ち、下ロール81と上ロール82によって被成形材5に対して与える圧力、被成形材5に対する下ロール81の位置、被成形材5に対する上ロール82の位置等を、好適に計算することが可能である。 In FIG. 14, the left edge portion deformation mechanism 80 </ b> A includes a lower roll 81 and an upper roll 82. The lower roll 81 is formed so that the outer diameter gradually increases toward the outer side, and the vertical cross-sectional shape of the outer peripheral surface is a concave curved surface. The upper roll 82 is provided above the lower roll 81 and is formed so that the outer diameter gradually decreases toward the outer side, and the vertical cross-sectional shape of the outer peripheral surface becomes a convex curved surface. Further, the lower roll 81 and the upper roll 82 are rotatable about a central axis directed substantially in the horizontal direction. That is, the molding material 5 (the left edge portion 5e or the right edge portion 5f) is sandwiched between the outer circumferential surface of the lower roll 81 and the outer circumferential surface of the upper roll 82, and the molding material 5 is sandwiched between the lower roll 81 and the upper roll 82. While applying pressure to the lower roll 81 and the upper roll 82 in directions opposite to each other, the material 5 is bent and deformed along the outer peripheral surface of the lower roll 81 and the outer peripheral surface of the upper roll 82. and it is configured to deliver the conveying direction D 1. The right edge deforming mechanism 52B is substantially symmetrical with respect to the left edge deforming mechanism 52A. Even when such an edge deformation mechanism is used, the edge molding conditions can be suitably obtained in the C molding machine controller 53. That is, the pressure applied to the molding material 5 by the lower roll 81 and the upper roll 82, the position of the lower roll 81 with respect to the molding material 5, the position of the upper roll 82 with respect to the molding material 5, and the like can be suitably calculated. Is possible.

以上の実施形態では、各被成形材5の化学成分、TMCP条件、寸法などの情報は、主制御部36(上位の制御コンピュータ)に記憶される構成とし、被成形材5の焼入れ性β、強度TSなどの情報は、C成形機制御部53(主制御部36に対する下位の制御コンピュータ)において計算されることにより得られるとしたが、かかる形態には限定されない。例えば各被成形材5の焼入れ性βは、主制御部36において計算させるようにしても良い。即ち、焼入れ性βの情報は、主制御部36から送信されることにより、C成形機制御部53に取得されるようにしても良い。TMCP条件の情報は、冷却部13からC成形機制御部53に直接送信しても良い。また、強度TSを主制御部36において計算させるようにしても良い。即ち、強度TSの情報(強度情報)は、主制御部36から送信されることにより、C成形機制御部53に取得されるようにしても良い。   In the above embodiment, information such as chemical components, TMCP conditions, and dimensions of each molding material 5 is stored in the main control unit 36 (upper control computer), and the hardenability β of the molding material 5, The information such as the strength TS is obtained by calculation in the C molding machine control unit 53 (subordinate control computer for the main control unit 36), but is not limited to such a form. For example, the hardenability β of each molding material 5 may be calculated by the main control unit 36. That is, the information on the hardenability β may be acquired by the C molding machine control unit 53 by being transmitted from the main control unit 36. The TMCP condition information may be directly transmitted from the cooling unit 13 to the C molding machine control unit 53. Further, the strength TS may be calculated by the main control unit 36. That is, information on the strength TS (strength information) may be acquired by the C molding machine control unit 53 by being transmitted from the main control unit 36.

さらに、被成形材5の強度の計算方法は、式(1)、(2)を用いるものには限定されない。例えば、金属学的数式モデルやニューラルネットワークを用いた計算方法等によって、被成形材5の材質、即ち、強度(降伏強度、引張強度等)を求めるようにしても良い(特開2005−315703号公報参照)。このような場合も、計算された強度から縁部成形条件を求めることができる。   Furthermore, the calculation method of the strength of the molding material 5 is not limited to that using the formulas (1) and (2). For example, the material of the molding material 5, that is, the strength (yield strength, tensile strength, etc.) may be obtained by a calculation method using a metallurgical mathematical model or a neural network (Japanese Patent Laid-Open No. 2005-315703). See the official gazette). Even in such a case, the edge forming condition can be obtained from the calculated strength.

さらに、縁部成形条件を求めるために用いる被成形材5の強度は、計算によって求める予測値(予測強度)には限定されず、実績値(測定値、実測強度)であっても良い。即ち、強度情報は、被成形材5の強度を実測することで得るようにしても良い。例えば、冷却部13による水冷後、C成形を行う前に、被成形材5(鋼板)の一部を、試験片として採取し、この試験片に対して物理的な特性試験(引張試験機を用いて行う引張試験等)を行うことにより、強度の実績値を測定することができる。このような方法で、各被成形材5の一枚ごとの強度の実績値をそれぞれ測定し、これらの実績値を、主制御部36又はC成形機制御部53に送信するようにしても良い。   Furthermore, the strength of the molding material 5 used for obtaining the edge molding conditions is not limited to the predicted value (predicted strength) obtained by calculation, but may be a past value (measured value, actually measured strength). That is, the strength information may be obtained by actually measuring the strength of the molding material 5. For example, after water cooling by the cooling unit 13 and before C forming, a part of the molding material 5 (steel plate) is sampled as a test piece, and a physical property test (a tensile tester is installed on the test piece). The actual strength value can be measured by performing a tensile test or the like. With such a method, the actual value of the strength of each material to be molded 5 may be measured, and the actual value may be transmitted to the main control unit 36 or the C molding machine control unit 53. .

また、以上の実施形態では、強度情報の強度とは引張強度であるとしたが、かかるものには限定されず、その他の機械的強度、例えば硬度(硬さ)などであっても良い。例えば上記の試験片(C成形を行う前に採取した試験片)に対して行う特性試験として、硬さ試験機を用いた硬さ試験(例えばビッカース硬さ試験など)を行うことによって、硬度の実績値を求めるようにしても良い。   In the above embodiment, the strength of the strength information is the tensile strength. However, the strength information is not limited to this, and may be other mechanical strength such as hardness (hardness). For example, as a characteristic test to be performed on the above-described test piece (test piece collected before C forming), a hardness test using a hardness tester (for example, a Vickers hardness test) is performed. The actual value may be obtained.

本発明者らは、C成形機21によるピーキングの低減効果について検討した。先ず、複数の被成形材5について、式(1)、(2)に基づいて求めた強度の予測値TSと、被成形材5から採取した試験片に対して引張試験を行うことにより求めた引張強度の実績値とをそれぞれ比較した。その結果、図15に示すように、実績値に対する予測値TSの誤差(精度)、即ち、実績値−予測値TSの値は、±30MPa程度であった。   The inventors examined the peaking reduction effect of the C molding machine 21. First, it calculated | required by performing the tensile test with respect to the estimated value TS of the intensity | strength calculated | required based on Formula (1), (2) about the some to-be-molded material 5, and the test piece extract | collected from the to-be-molded material 5. The actual values of tensile strength were compared. As a result, as shown in FIG. 15, the error (accuracy) of the predicted value TS with respect to the actual value, that is, the value of the actual value−predicted value TS was about ± 30 MPa.

また、C成形におけるプレス圧力等の縁部成形条件を同一(被成形材5の引張強度が660MPaであるときにピーキング量pが0mmとなるような条件)とした状態で、複数の被成形材5をそれぞれC成形した後、U成形、O成形を行い、各被成形材5の強度(引張強度)の実績値とO成形後のピーキング量pとの関係を調べた。図16は、その結果を示している。なお、ピーキング量pは、図17に示すように、ピーキングが無い場合における突合せ部68の外面の位置を基準として求めた。即ち、被成形材5の内部空間における中央部Pから突合せ部68の外面までの距離Lから、ピーキング量pが0mmである場合における中央部Pから突合せ部68の外面までの距離L(被成形材5の外径の半分)を差し引いた値(p=L−L)とした。 Further, a plurality of molding materials in the state where the edge molding conditions such as the press pressure in the C molding are the same (conditions such that the peaking amount p is 0 mm when the tensile strength of the molding material 5 is 660 MPa). 5 was subjected to C molding, U molding and O molding were performed, and the relationship between the actual value of strength (tensile strength) of each molding material 5 and the peaking amount p after O molding was examined. FIG. 16 shows the result. In addition, the peaking amount p was calculated | required on the basis of the position of the outer surface of the butt | matching part 68 when there is no peaking, as shown in FIG. That is, the distance L p from the central portion PO to the outer surface of the butt portion 68 in the inner space of the molding material 5, and the distance L from the central portion PO to the outer surface of the butt portion 68 when the peaking amount p is 0 mm. A value obtained by subtracting O (half of the outer diameter of the molding material 5) (p = L p −L O ) was used.

図16の結果より、ピーキング量pは、被成形材5の強度に対してほぼ比例することがわかる。即ち、被成形材5の強度とピーキング量pとの関係は、図16において点線で示したグラフ線に従うものと推測される。また、図16から、例えば被成形材5の強度の予測値TSが660MPaであった場合に、この予測値TSに基づいて、ピーキング量pが0mmとなるような縁部成形条件を設定すると、実績値に対する予測値TSの誤差が±30MPa程度であれば、ピーキング量pを±0.9mm程度に、十分に小さく抑制できることがわかる。即ち、被成形材5の実際の強度が、予測値TSよりも30MPa程度大きい場合(約690MPaである場合)は、ピーキング量pは+0.9mm程度となり、被成形材5の実際の強度が、予測値TSよりも30MPa程度小さい場合(約630MPaである場合)は、ピーキング量pは−0.9mm程度となる。換言すれば、予測値TSの誤差に起因するピーキング量pのばらつきの範囲を、約1.8mm程度に抑制できるといえる。   From the result of FIG. 16, it can be seen that the peaking amount p is substantially proportional to the strength of the molding material 5. That is, it is estimated that the relationship between the strength of the molding material 5 and the peaking amount p follows a graph line indicated by a dotted line in FIG. Also, from FIG. 16, for example, when the predicted value TS of the strength of the molding material 5 is 660 MPa, on the basis of the predicted value TS, when setting the edge molding conditions such that the peaking amount p is 0 mm, If the error of the predicted value TS with respect to the actual value is about ± 30 MPa, it can be seen that the peaking amount p can be suppressed to be sufficiently small to about ± 0.9 mm. That is, when the actual strength of the molding material 5 is about 30 MPa larger than the predicted value TS (when it is about 690 MPa), the peaking amount p is about +0.9 mm, and the actual strength of the molding material 5 is When it is smaller than the predicted value TS by about 30 MPa (when it is about 630 MPa), the peaking amount p is about -0.9 mm. In other words, it can be said that the range of variation in the peaking amount p caused by the error of the predicted value TS can be suppressed to about 1.8 mm.

(比較例)
ロットが同一の被成形材(同一の鋳片から得られた厚板)について、水冷停止温度Zを変動させて、被成形材5の強度(引張強度)の実績値を測定した。その結果、水冷停止温度Zのばらつきの範囲が約67℃程度である場合、実績値のばらつきの範囲は、約120MPa程度になった。この場合、予測値TSを用いずに、従来の方法でC成形を行うと(即ち、縁部成形条件を求める際に用いる被成形材の強度の設定値を、ロットが同一の被成形材について同一にしたままで縁部成形条件を求めると)、ピーキング量pのばらつきの範囲は、図16に示したグラフ線(点線)のような比例関係から、約3.6mm程度になると考えられる。
(Comparative example)
About the molding material with the same lot (thick plate obtained from the same slab), the water cooling stop temperature Z was varied, and the actual value of the strength (tensile strength) of the molding material 5 was measured. As a result, when the range of variation of the water cooling stop temperature Z was about 67 ° C., the range of variation of the actual value was about 120 MPa. In this case, when C molding is performed by the conventional method without using the predicted value TS (that is, the set value of the strength of the molding material used when obtaining the edge molding conditions is set for the molding material having the same lot. When the edge forming conditions are determined while keeping the same), the range of variation in the peaking amount p is considered to be about 3.6 mm from the proportional relationship shown by the graph line (dotted line) shown in FIG.

以上の結果より、上記の実施形態のように、予測値TSに基づいて縁部成形条件を設定する方法を用いることで、従来の縁部成形条件の設定方法を用いた場合に対して、ピーキング量pのばらつきの範囲を約50%程度(1.8mm/3.6mm×100)に低減できるといえる。   From the above results, as in the above embodiment, by using the method of setting the edge molding condition based on the predicted value TS, the peaking is performed compared to the case of using the conventional method of setting the edge molding condition. It can be said that the variation range of the quantity p can be reduced to about 50% (1.8 mm / 3.6 mm × 100).

本発明は、例えばUO鋼管、UOE鋼管等を製造する際に用いられる鋼管製造設備及び鋼管製造方法に適用できる。   The present invention can be applied to, for example, a steel pipe manufacturing facility and a steel pipe manufacturing method used when manufacturing UO steel pipes, UOE steel pipes, and the like.

圧延設備と鋼管製造設備の概略を示した説明図である。It is explanatory drawing which showed the outline of the rolling equipment and the steel pipe manufacturing equipment. 被成形材(鋼板)の平面図である。It is a top view of a molding material (steel plate). 被成形材(鋼板)の断面図である。It is sectional drawing of a to-be-molded material (steel plate). C成形機の概略斜視図である。It is a schematic perspective view of a C molding machine. 左縁部変形機構、右縁部変形機構の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a left edge part deformation | transformation mechanism and a right edge part deformation | transformation mechanism. C成形工程を説明する説明図である。It is explanatory drawing explaining a C shaping | molding process. C成形工程を説明する説明図である。It is explanatory drawing explaining a C shaping | molding process. C成形工程を説明する説明図である。It is explanatory drawing explaining a C shaping | molding process. C成形工程を説明する説明図である。It is explanatory drawing explaining a C shaping | molding process. U成形された被成形材の断面図である。It is sectional drawing of the to-be-molded material U-shaped. O成形された被成形材の断面図である。It is sectional drawing of the to-be-molded material O-molded. 溶接後の突合せ部を示した断面図である。It is sectional drawing which showed the butt | matching part after welding. 下金型を被成形部分の先端部にのみ当接させる実施形態を示した断面図である。It is sectional drawing which showed embodiment which makes a lower metal mold | die contact | abut only to the front-end | tip part of a to-be-molded part. ローラ成形を行う構成としたC成形機を示した説明図である。It is explanatory drawing which showed C molding machine made into the structure which performs roller molding. 被成形材の強度の予測値TSと実績値とを比較して示したグラフである。It is the graph which compared and showed the predicted value TS and the actual value of the intensity | strength of a to-be-molded material. 被成形材の強度の実績値とピーキング量pとの関係を示したグラフである。It is the graph which showed the relationship between the performance value of the to-be-molded material, and the peaking amount p. ピーキング量pを説明する説明図である。It is explanatory drawing explaining the peaking amount p.

符号の説明Explanation of symbols

2 圧延設備
3 鋼管製造設備
5 被成形材
5e 左縁部
5f 右縁部
13 冷却部
21 C成形機
22 U成形機
23 O成形機
36 主制御部
52A 左縁部変形機構
52B 右縁部変形機構
53 C成形機制御部
61 下金型
62 上金型
DESCRIPTION OF SYMBOLS 2 Rolling equipment 3 Steel pipe manufacturing equipment 5 Molding material 5e Left edge part 5f Right edge part 13 Cooling part 21 C forming machine 22 U forming machine 23 O forming machine 36 Main control part 52A Left edge part deformation mechanism 52B Right edge part deformation mechanism 53 C molding machine controller 61 Lower mold 62 Upper mold

Claims (15)

鋼板を順次C成形、U成形、O成形することにより鋼管を製造する鋼管製造設備であって、
前記C成形において鋼板の縁部を変形させる縁部変形機構と、
前記縁部変形機構を制御する制御部とを備え、
前記制御部は、各鋼板の強度情報を取得し、当該強度情報に基づいて、各鋼板に対応する縁部成形条件をそれぞれ求め、前記縁部成形条件に従って、前記縁部変形機構を制御し、
前記縁部変形機構は、前記各鋼板に対応する縁部成形条件に従って、各鋼板の縁部をそれぞれ変形させることを特徴とする、鋼管製造設備。
A steel pipe manufacturing facility for manufacturing a steel pipe by sequentially forming steel sheets into C, U and O,
An edge deformation mechanism for deforming the edge of the steel sheet in the C-forming,
A control unit for controlling the edge deformation mechanism,
The control unit acquires the strength information of each steel plate, obtains the edge forming conditions corresponding to each steel plate based on the strength information, respectively, controls the edge deformation mechanism according to the edge forming conditions,
The said edge part deformation | transformation mechanism deform | transforms the edge part of each steel plate according to the edge part formation conditions corresponding to each said steel plate, respectively, The steel pipe manufacturing equipment characterized by the above-mentioned.
前記強度情報は、鋼板の化学成分及び鋼板の圧延設備において用いられたTMCP条件に基づいて求められることを特徴とする、請求項1に記載の鋼管製造設備。 The steel pipe manufacturing facility according to claim 1, wherein the strength information is obtained based on a chemical composition of a steel plate and a TMCP condition used in a steel plate rolling facility. 前記強度情報は、式(1)に基づいて求められることを特徴とする、請求項2に記載の鋼管製造設備。
TS=aX+bX+cX
+dY+eY+fY
+gZ+hZ+iZ+j+kβ ・・・(1)
(TS:引張強度、X:加熱温度、Y:水冷開始温度、Z:水冷停止温度、β:焼入れ性、a,b,c,d,e,f,g,h,i,j,k:係数)
The steel pipe manufacturing facility according to claim 2, wherein the strength information is obtained based on the formula (1).
TS = aX 3 + bX 2 + cX
+ DY 3 + eY 2 + fY
+ GZ 3 + hZ 2 + iZ + j + kβ (1)
(TS: Tensile strength, X: Heating temperature, Y: Water cooling start temperature, Z: Water cooling stop temperature, β: Hardenability, a, b, c, d, e, f, g, h, i, j, k: coefficient)
前記強度情報は、鋼板の強度を実測することで得られることを特徴とする、請求項1に記載の鋼管製造設備。 The steel pipe manufacturing facility according to claim 1, wherein the strength information is obtained by actually measuring the strength of a steel plate. 前記強度情報は、引張試験又は硬さ試験によって求められることを特徴とする、請求項4に記載の鋼管製造設備。 The steel pipe manufacturing facility according to claim 4, wherein the strength information is obtained by a tensile test or a hardness test. 前記縁部変形機構は、前記鋼板の下面側に当接する下金型と、前記鋼板の上面側に当接する上金型とを備え、前記下金型と前記上金型によって前記鋼板の縁部をプレス成形することを特徴とする、請求項1〜5のいずれかに記載の鋼管製造設備。 The edge deformation mechanism includes a lower mold that contacts the lower surface side of the steel sheet and an upper mold that contacts the upper surface side of the steel sheet, and the edge portion of the steel sheet is formed by the lower mold and the upper mold. The steel pipe manufacturing equipment according to claim 1, wherein the steel pipe is press-formed. 前記縁部変形機構は、前記鋼板の下面側に当接する下ロールと、前記鋼板の上面側に当接する上ロールとを備え、前記下ロールと前記上ロールによって前記鋼板の縁部をロール成形することを特徴とする、請求項1〜6のいずれかに記載の鋼管製造設備。 The edge deformation mechanism includes a lower roll that contacts the lower surface side of the steel sheet and an upper roll that contacts the upper surface side of the steel sheet, and rolls the edge of the steel sheet by the lower roll and the upper roll. The steel pipe manufacturing facility according to any one of claims 1 to 6, wherein 鋼板を順次C成形、U成形、O成形することにより鋼管を製造する鋼管製造方法であって、
各鋼板の強度情報を取得し、
当該強度情報に基づいて、各鋼板に対応する縁部成形条件をそれぞれ求め、
前記各鋼板に対応する縁部成形条件に従って、各鋼板の縁部をそれぞれ変形させることにより、各鋼板をC成形することを特徴とする、鋼管製造方法。
A steel pipe manufacturing method for manufacturing a steel pipe by sequentially forming steel sheets into C, U, and O,
Obtain strength information for each steel plate,
Based on the strength information, obtain the edge forming conditions corresponding to each steel sheet,
A steel pipe manufacturing method, wherein each steel plate is C-shaped by deforming the edge of each steel plate according to the edge forming conditions corresponding to each steel plate.
前記強度情報は、鋼板の化学成分及び鋼板の圧延工程におけるTMCP条件に基づいて求められることを特徴とする、請求項8に記載の鋼管製造方法。 The steel pipe manufacturing method according to claim 8, wherein the strength information is obtained based on a chemical composition of the steel sheet and a TMCP condition in the rolling process of the steel sheet. 前記強度情報は、式(1)に基づいて求められることを特徴とする、請求項8に記載の鋼管製造方法。
TS=aX+bX+cX
+dY+eY+fY
+gZ+hZ+iZ+j+kβ ・・・(1)
(TS:引張強度、X:加熱温度、Y:水冷開始温度、Z:水冷停止温度、β:焼入れ性、a,b,c,d,e,f,g,h,i,j,k:係数)
The steel pipe manufacturing method according to claim 8, wherein the strength information is obtained based on the formula (1).
TS = aX 3 + bX 2 + cX
+ DY 3 + eY 2 + fY
+ GZ 3 + hZ 2 + iZ + j + kβ (1)
(TS: Tensile strength, X: Heating temperature, Y: Water cooling start temperature, Z: Water cooling stop temperature, β: Hardenability, a, b, c, d, e, f, g, h, i, j, k: coefficient)
前記強度情報は、鋼板の強度を実測することで得られることを特徴とする、請求項8に記載の鋼管製造方法。 The steel pipe manufacturing method according to claim 8, wherein the strength information is obtained by actually measuring the strength of a steel plate. 前記強度情報は、引張試験又は硬さ試験によって求められることを特徴とする、請求項11に記載の鋼管製造方法。 The method of manufacturing a steel pipe according to claim 11, wherein the strength information is obtained by a tensile test or a hardness test. 前記縁部成形条件は、前記鋼板の縁部に与える圧力情報、及び、前記鋼板の縁部を変形させる縁部変形機構の前記鋼板に対する位置情報を含むことを特徴とする、請求項8〜12のいずれかに記載の鋼管製造方法。 The edge forming condition includes pressure information applied to an edge of the steel plate and position information with respect to the steel plate of an edge deformation mechanism that deforms the edge of the steel plate. The steel pipe manufacturing method in any one of. 鋼板をプレス成形によってC成形することを特徴とする、請求項8〜13のいずれかに記載の鋼管製造方法。 The steel pipe manufacturing method according to any one of claims 8 to 13, wherein the steel plate is C-formed by press forming. 鋼板をロール成形によってC成形することを特徴とする、請求項8〜13のいずれかに記載の鋼管製造方法。 The steel pipe manufacturing method according to any one of claims 8 to 13, wherein the steel plate is C-formed by roll forming.
JP2007169962A 2007-06-28 2007-06-28 Steel pipe manufacturing equipment and steel pipe manufacturing method Expired - Fee Related JP5135540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169962A JP5135540B2 (en) 2007-06-28 2007-06-28 Steel pipe manufacturing equipment and steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169962A JP5135540B2 (en) 2007-06-28 2007-06-28 Steel pipe manufacturing equipment and steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2009006358A true JP2009006358A (en) 2009-01-15
JP5135540B2 JP5135540B2 (en) 2013-02-06

Family

ID=40321998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169962A Expired - Fee Related JP5135540B2 (en) 2007-06-28 2007-06-28 Steel pipe manufacturing equipment and steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP5135540B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110586A (en) * 2009-11-27 2011-06-09 Seiko Epson Corp Method for manufacturing transfer roller, printing apparatus, transfer unit, and transfer roller
WO2019188001A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
WO2019188002A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
CN111918727A (en) * 2018-03-30 2020-11-10 杰富意钢铁株式会社 Method and apparatus for bending end of steel plate, and method and apparatus for manufacturing steel pipe
KR20210041032A (en) * 2018-09-14 2021-04-14 제이에프이 스틸 가부시키가이샤 Steel pipe manufacturing method and press mold

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264220A (en) * 1987-04-21 1988-11-01 Nippon Steel Corp Setting method for cage roll for electric welded tube
JPH0724532A (en) * 1993-07-12 1995-01-27 Sumitomo Metal Ind Ltd Method and device for preventing rolling of welded tube
JPH08294727A (en) * 1995-04-25 1996-11-12 Nkk Corp Production of uoe steel tube
JPH09141339A (en) * 1995-11-16 1997-06-03 Nippon Light Metal Co Ltd Method for bend-working of extruded shape
JPH11197990A (en) * 1997-02-10 1999-07-27 Kobe Steel Ltd Metal material original plate
JP2001009524A (en) * 1999-06-30 2001-01-16 Toyota Motor Corp Manufacture of cylinder element
JP2003340525A (en) * 2002-05-29 2003-12-02 Jfe Steel Kk Method and device for forming end part of steel strip
JP2005205413A (en) * 2004-01-20 2005-08-04 Tadayuki Shigematsu Program and apparatus for calculating extent of movement
JP2005207774A (en) * 2004-01-20 2005-08-04 Nippon Steel Corp Method for calculating coefficient of friction of metallic material, and molding simulation method
JP2006089804A (en) * 2004-09-24 2006-04-06 Nisshin Steel Co Ltd Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264220A (en) * 1987-04-21 1988-11-01 Nippon Steel Corp Setting method for cage roll for electric welded tube
JPH0724532A (en) * 1993-07-12 1995-01-27 Sumitomo Metal Ind Ltd Method and device for preventing rolling of welded tube
JPH08294727A (en) * 1995-04-25 1996-11-12 Nkk Corp Production of uoe steel tube
JPH09141339A (en) * 1995-11-16 1997-06-03 Nippon Light Metal Co Ltd Method for bend-working of extruded shape
JPH11197990A (en) * 1997-02-10 1999-07-27 Kobe Steel Ltd Metal material original plate
JP2001009524A (en) * 1999-06-30 2001-01-16 Toyota Motor Corp Manufacture of cylinder element
JP2003340525A (en) * 2002-05-29 2003-12-02 Jfe Steel Kk Method and device for forming end part of steel strip
JP2005205413A (en) * 2004-01-20 2005-08-04 Tadayuki Shigematsu Program and apparatus for calculating extent of movement
JP2005207774A (en) * 2004-01-20 2005-08-04 Nippon Steel Corp Method for calculating coefficient of friction of metallic material, and molding simulation method
JP2006089804A (en) * 2004-09-24 2006-04-06 Nisshin Steel Co Ltd Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110586A (en) * 2009-11-27 2011-06-09 Seiko Epson Corp Method for manufacturing transfer roller, printing apparatus, transfer unit, and transfer roller
WO2019188001A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
WO2019188002A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
KR20200117026A (en) 2018-03-30 2020-10-13 제이에프이 스틸 가부시키가이샤 Method and apparatus for short bending of steel plate, and method and equipment for manufacturing steel pipe
KR20200119328A (en) 2018-03-30 2020-10-19 제이에프이 스틸 가부시키가이샤 Method and apparatus for short bending of steel plate, and method and equipment for manufacturing steel pipe
CN111918727A (en) * 2018-03-30 2020-11-10 杰富意钢铁株式会社 Method and apparatus for bending end of steel plate, and method and apparatus for manufacturing steel pipe
EP3778051A4 (en) * 2018-03-30 2021-05-19 JFE Steel Corporation Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
EP3778050A4 (en) * 2018-03-30 2021-05-19 JFE Steel Corporation Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
KR102325591B1 (en) 2018-03-30 2021-11-11 제이에프이 스틸 가부시키가이샤 Edge bending method and apparatus of steel plate, and method and facility for manufacturing steel pipe
KR102325590B1 (en) 2018-03-30 2021-11-11 제이에프이 스틸 가부시키가이샤 Edge bending method and apparatus of steel plate, and method and facility for manufacturing steel pipe
KR20210041032A (en) * 2018-09-14 2021-04-14 제이에프이 스틸 가부시키가이샤 Steel pipe manufacturing method and press mold
KR102425607B1 (en) 2018-09-14 2022-07-27 제이에프이 스틸 가부시키가이샤 Method of manufacturing steel pipe and press die

Also Published As

Publication number Publication date
JP5135540B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2015152107A1 (en) Die for bending-press forming
JP5135540B2 (en) Steel pipe manufacturing equipment and steel pipe manufacturing method
JP6070967B2 (en) Manufacturing method of welded steel pipe
JP5055938B2 (en) ERW pipe manufacturing equipment with good weld characteristics
JP5402404B2 (en) Differential thickness metal plate and manufacturing method thereof
JP6015686B2 (en) ERW steel pipe manufacturing method
WO2018168563A1 (en) Press mold and method for manufacturing steel pipe
JP5967302B2 (en) Steel pipe press forming method and steel pipe manufacturing method
JP4816015B2 (en) High-efficiency manufacturing method for ERW pipes with good weld characteristics
EP2883627A1 (en) Method for manufacturing steel pipe
KR101246935B1 (en) Apparatus for manufacturing seam-welded pipe excelling in welded portion characteristic
JP6658385B2 (en) Manufacturing method of steel pipe
JP4720480B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
JP6172108B2 (en) Hot rolled steel sheet rolling method
JP4706521B2 (en) U press apparatus and U press method
JP2008184686A (en) Method for manufacturing low yr square steel tube for building
JP4720479B2 (en) High-efficiency manufacturing method for ERW pipes with good weld characteristics
JP6269548B2 (en) Manufacturing method of hot-rolled steel sheet
JP6222126B2 (en) ERW steel pipe and manufacturing method thereof
JP2010075977A (en) Method of forming slab with sizing press
JP5050479B2 (en) ERW pipe manufacturing equipment with good weld characteristics
JP4315005B2 (en) ERW steel pipe manufacturing equipment
JP5401926B2 (en) Slab width reduction mold and slab width reduction method using the same
JP4682779B2 (en) ERW pipe manufacturing method with good weld characteristics
JP2009119484A (en) Method for manufacturing electric resistance welded tube excellent in characteristic of weld zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5135540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees