JP2003231939A - High-strength steel sheet superior in sr resistance, and manufacturing method therefor - Google Patents

High-strength steel sheet superior in sr resistance, and manufacturing method therefor

Info

Publication number
JP2003231939A
JP2003231939A JP2002030301A JP2002030301A JP2003231939A JP 2003231939 A JP2003231939 A JP 2003231939A JP 2002030301 A JP2002030301 A JP 2002030301A JP 2002030301 A JP2002030301 A JP 2002030301A JP 2003231939 A JP2003231939 A JP 2003231939A
Authority
JP
Japan
Prior art keywords
temperature
strength
cooling
steel
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002030301A
Other languages
Japanese (ja)
Other versions
JP3780956B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Shigeru Endo
茂 遠藤
Toyohisa Shingu
豊久 新宮
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002030301A priority Critical patent/JP3780956B2/en
Publication of JP2003231939A publication Critical patent/JP2003231939A/en
Application granted granted Critical
Publication of JP3780956B2 publication Critical patent/JP3780956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet which has higher strength than the API X65 grade, without containing a large amount of alloying elements therein, and superior SR (stress relief annealing) resistance of keeping the strength and the toughness after SR treatment. <P>SOLUTION: The high-strength steel sheet superior in SR resistance comprises, by mass% 0.02-0.08% C, 0.01-0.50% Si, 0.5-1.8% Mn, 0.02% or less P, 0.005% or less S, 0.05-0.50% Mo, 0.005-0.04% Ti, 0.01-0.07% Al, 0.005-0.07% Nb, and/or 0.005-0.10% V, and the balance substantially Fe, wherein C/(Mo+Ti+Nb+V), which is a ratio by atom.% of an amount of C to the total amount of Mo, Ti, Nb, and V, is 0.6-2.0, a metal structure is substantially a single phase of ferrite, and precipitates containing Ti and Mo are dispersed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼管等の製造に用
いるAPI規格X65グレードを超える強度を有する高強度鋼
板に関し、特に溶接後に行う応力除去焼鈍(SR)後に
おいても優れた強度と靭性を有する耐SR特性に優れた
高強度鋼板とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength steel sheet having strength exceeding API standard X65 grade used for manufacturing steel pipes and the like, and particularly excellent strength and toughness even after stress relief annealing (SR) performed after welding. The present invention relates to a high-strength steel sheet having excellent SR resistance and a manufacturing method thereof.

【0002】[0002]

【従来の技術】石油またはガスの掘削用等に用いられる
ライザー鋼管は円周溶接によって合金元素量が非常に多
い鍛造品(例えばコネクタ等)を溶接して用いる場合が
多く、溶接後に溶接による残留応力除去を目的として応
力除去焼鈍(SR)処理が施される。また、発電プラン
ト等の配管用鋼管やその他強度部材として用いられる鋼
材または鋼板がCr-Mo鋼等と溶接接合されるような場合
も、溶接による残留応力除去を目的としてSR処理が施
される。SR処理により母材部である鋼管等も熱処理さ
れて強度や靱性が低下する場合があるので、SR処理が
施される鋼管や鋼材はSR処理後も強度、靱性が確保さ
れる必要が、すなわち耐SR特性に優れている必要があ
る。また近年、鋼管使用時の内部の圧力上昇による操業
効率向上や、より薄い鋼材の使用で素材コストを削減す
るために、API X80グレード等のAPI X65グレードを超え
る高強度鋼管または鋼材に対する需要も高まっている。
このような要請に対して、特開平11−50188号公
報、特開2001−158939号公報にはAPI X80グ
レード以上の耐SR特性に優れた鋼板または鋼管が開示
されている。
2. Description of the Related Art Riser steel pipes used for oil or gas excavation and the like are often used by welding forged products (for example, connectors) having a large amount of alloying elements by circumferential welding, and after welding, residuals due to welding A stress relief annealing (SR) process is performed for the purpose of stress relief. Further, even when a steel material or a steel plate used as a steel pipe for piping or other strength members of a power plant or the like is welded to Cr-Mo steel or the like, SR treatment is performed for the purpose of removing residual stress by welding. Since the steel pipe or the like which is the base material may be heat-treated by the SR treatment to lower the strength and toughness, the steel pipe and the steel material subjected to the SR treatment need to ensure the strength and toughness even after the SR treatment. It must have excellent SR resistance. In recent years, in order to improve operating efficiency by increasing internal pressure when using steel pipes and reduce material costs by using thinner steel materials, demand for high-strength steel pipes or steel materials exceeding API X65 grades such as API X80 grades has also increased. ing.
In response to such a request, Japanese Patent Application Laid-Open Nos. 11-50188 and 2001-158939 disclose steel sheets or steel pipes having API SR80 grade or more excellent in SR resistance.

【0003】[0003]

【発明が解決しようとする課題】しかし、特開平11−
50188号公報の鋼板はSR処理による強度低下をS
R処理時のCr炭化物の析出によって補っているため、
多量のCrの添加が必要であり、製造コストが高いだけ
でなく、溶接性や靱性の低下の問題がある。一方、特開
2001−158939号公報の鋼管はシーム溶接金属
を特定の組成範囲に限定する必要があり、SR処理によ
り強度が低下しても十分な程度に母材強度が高いこと
で、母材強度の低下に対応する技術である。したがって
母材強度はSR処理により低下している。
However, JP-A-11-
The steel plate of Japanese Patent No. 50188 suffers from strength reduction due to SR treatment by S
Since it is compensated by precipitation of Cr carbide during R treatment,
Since a large amount of Cr needs to be added, not only the manufacturing cost is high, but also the weldability and toughness are deteriorated. On the other hand, in the steel pipe disclosed in JP 2001-158939 A, it is necessary to limit the seam weld metal to a specific composition range, and the base metal has a sufficiently high strength even if the strength is lowered by SR treatment. This is a technology that copes with the decrease in strength. Therefore, the base material strength is lowered by the SR treatment.

【0004】したがって本発明の目的は、このような従
来技術の課題を解決し、API X65グレードを超える高強
度鋼板であって、多量の合金元素の添加なしに、SR処
理後も強度と靭性が低下しない、優れた耐SR特性を有
する高強度鋼板を提供することにある。
Therefore, an object of the present invention is to solve the problems of the prior art and to provide a high-strength steel sheet exceeding API X65 grade, which has strength and toughness after SR treatment without addition of a large amount of alloying elements. An object of the present invention is to provide a high-strength steel sheet having excellent SR resistance characteristics that does not deteriorate.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るための本発明の特徴は以下の通りである。
The features of the present invention for solving the above problems are as follows.

【0006】(1)、質量%で、C:0.02〜0.08%、Si:
0.01〜0.50 %、Mn:0.5〜1.8%、P:0.02%以下、S:0.0
05%以下、Mo:0.05〜0.50%、Ti:0.005〜0.04%、Al:0.
01〜0.07%を含有し、Nb:0.005〜0.07%および/または
V:0.005〜0.10%を含有し、残部が実質的にFeからな
り、原子%でのC量とMo、Ti、Nb、Vの合計量の比である
C/(Mo+Ti+Nb+V)が0.6〜2.0であり、金属組織が実質的に
フェライト単相であり、TiとMoとを含む析出物が分散析
出していることを特徴とする、耐SR特性に優れた高強
度鋼板。
(1) C: 0.02 to 0.08% by mass%, Si:
0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.02% or less, S: 0.0
05% or less, Mo: 0.05 to 0.50%, Ti: 0.005 to 0.04%, Al: 0.
01-0.07%, Nb: 0.005-0.07% and / or
V: 0.005 to 0.10% is contained, the balance is substantially Fe, and is the ratio of the amount of C in atomic% to the total amount of Mo, Ti, Nb, and V.
C / (Mo + Ti + Nb + V) is 0.6 ~ 2.0, the metallographic structure is substantially a ferrite single phase, characterized in that precipitates containing Ti and Mo are dispersed precipitation. High strength steel plate with excellent SR resistance.

【0007】(2)、さらに、質量%で、Cu:0.50%以
下、Ni:0.50%以下、Cr:0.50%以下、Ca:0.0005〜0.00
25%の中から選ばれる1種又は2種以上を含有すること
を特徴とする(1)に記載の耐SR特性に優れた高強度
鋼板。
(2) Further, in mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Ca: 0.0005 to 0.00
A high-strength steel sheet having excellent SR resistance properties according to (1), which contains one or more selected from 25%.

【0008】(3)、(1)または(2)に記載の成分
組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了
温度:750℃以上の条件で熱間圧延した後、2℃/s以上の
冷却速度で冷却し、次いで550〜700℃の温度で鋼帯に巻
き取ることを特徴とする、耐SR特性に優れた高強度鋼
板の製造方法。
Steel having the composition as described in (3), (1) or (2) is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then at 2 ° C. A method for producing a high-strength steel sheet having excellent SR resistance, comprising cooling at a cooling rate of / s or more and then winding the steel strip at a temperature of 550 to 700 ° C.

【0009】(4)、(1)または(2)に記載の成分
組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了
温度:750℃以上の条件で熱間圧延した後、2℃/s以上の
冷却速度で冷却し、次いで550〜700℃の温度で5分以上
の等温保持を行うことを特徴とする、耐SR特性に優れ
た高強度鋼板の製造方法。
Steel having the composition as described in (4), (1) or (2) is hot-rolled under the conditions of heating temperature: 1000 to 1250 ° C., rolling end temperature: 750 ° C. or higher, and then 2 ° C. A method for producing a high-strength steel sheet excellent in SR resistance, which comprises cooling at a cooling rate of / s or more and then holding at a temperature of 550 to 700 ° C. for 5 minutes or more.

【0010】(5)、(1)または(2)に記載の成分
組成を有する鋼を、加熱温度:1000〜1250℃、圧延終了
温度:750℃以上の条件で熱間圧延した後、2℃/s以上の
冷却速度で冷却し、次いで550〜700℃の温度から0.1℃/
s以下の冷却速度で冷却を行うことを特徴とする、耐S
R特性に優れた高強度鋼板の製造方法。
Steel having the composition as described in (5), (1) or (2) is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then at 2 ° C. cooling at a cooling rate of / s or more, then from the temperature of 550 ~ 700 ℃ to 0.1 ℃ /
S-resistant, characterized by cooling at a cooling rate of s or less
A method for producing a high-strength steel sheet having excellent R characteristics.

【0011】[0011]

【発明の実施の形態】本発明者らは耐SR特性向上と高
強度の両立のために、SR処理による鋼材のミクロ組織
変化について詳細な検討を行った。一般に溶接鋼管用の
鋼板や溶接構造用の鋼板は溶接性の観点から化学成分が
厳しく制限されるため、API X65グレード以上の高強度
鋼板は熱間圧延後に加速冷却されて製造されている。そ
のため、ミクロ組織はベイナイトまたはマルテンサイト
が主体の組織となるが、このような組織の鋼にSR処理
を施すと、ベイナイトまたはマルテンサイトが焼き戻さ
れることによる強度低下はさけられない。また、焼戻し
による強度低下を補うために、SR時にCr炭化物等を
析出させる方法があるが、炭化物が容易に粗大化するた
めに靭性が低下する。したがって、ベイナイトやマルテ
ンサイトを主体組織とした変態強化では、SR処理後に
おいても強度、靭性を確保することには限界がある。本
発明者らは優れた耐SR特性が得られるミクロ組織形態
に関して鋭意研究を行った結果、鋼の組織をSR処理の
前後において形態変化を生じないミクロ組織とすること
が重要であり、そのためにはマトリクスを実質的にフェ
ライト単相とし、熱的に安定な微細析出物を分散析出さ
せることによって強化すればよいという知見を得た。そ
して、鋼中で析出する種々の析出物について検討した結
果、MoとTiからなる複合炭化物は適正な成分バランスの
元では、10nm以下の極めて微細な析出物となり、かつ熱
的にも安定であることが分かった。そのため、マトリク
スが実質的にフェライト単相であっても析出強化によっ
てAPI X65グレードを超える強度が容易に得られ、且つ
SR処理によってMo とTiを含む複合炭化物はその形態
が変化しないので、強度特性もほとんど変化しないとい
う知見を得た。また、MoとTiからなる炭化物はNb及び/
またはVとも複合化し、同様の析出形態と熱的安定性を
示すため、NbまたはVを利用することができるという知
見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made detailed studies on changes in the microstructure of steel materials by SR treatment in order to improve both SR resistance and high strength. In general, steel sheets for welded steel pipes and steel sheets for welded structures are severely limited in chemical composition from the viewpoint of weldability, so high-strength steel sheets of API X65 grade or higher are manufactured by accelerated cooling after hot rolling. Therefore, the microstructure is mainly composed of bainite or martensite, but when SR treatment is performed on steel having such a structure, strength reduction due to tempering of bainite or martensite is unavoidable. Further, there is a method of precipitating Cr carbide or the like at the time of SR in order to compensate for the strength decrease due to tempering, but the toughness is deteriorated because the carbide easily coarsens. Therefore, there is a limit in securing strength and toughness even after SR treatment in the transformation strengthening mainly composed of bainite or martensite. As a result of earnest studies on the microstructure morphology with which excellent SR resistance properties are obtained, the inventors of the present invention have found that it is important to make the microstructure of steel a microstructure that does not cause a morphological change before and after SR treatment. Have found that the matrix can be made substantially a ferrite single phase and strengthened by dispersing and precipitating thermally stable fine precipitates. Then, as a result of studying various precipitates that precipitate in the steel, the composite carbide composed of Mo and Ti is an extremely fine precipitate of 10 nm or less under the proper balance of components, and is also thermally stable. I found out. Therefore, even if the matrix is essentially a ferrite single phase, the strength exceeding API X65 grade can be easily obtained by precipitation strengthening, and the morphology of the composite carbide containing Mo and Ti does not change due to the SR treatment. We also obtained the knowledge that there is almost no change. Further, the carbide composed of Mo and Ti is Nb and / or
It was also found that Nb or V can be used because it also forms a composite with V or exhibits similar morphology and thermal stability.

【0012】上記のようなTi、Moを基本として含む析出
物が分散析出したフェライト組織を有する鋼板は、特定
温度域で巻取りを行う一般的な熱延プロセスを用いるこ
とにより、薄鋼板では容易に製造できる。また、厚鋼板
でも、厚鋼板の製造プロセスを用いて一定時間以上の温
度保持または徐冷を施すことにより製造できる。このよ
うにして製造した鋼板は、従来の加速冷却等で得られる
ベイナイトまたはマルテンサイト主体の鋼板に比べ、少
ない合金元素の添加によっても高い強度が得られるた
め、素材コストが低廉で、且つ優れた溶接性も同時に得
られるものである。
The steel sheet having a ferrite structure in which the precipitates containing Ti and Mo as a base are dispersed and precipitated can be easily manufactured in a thin steel sheet by using a general hot rolling process of winding in a specific temperature range. Can be manufactured. Further, even a thick steel plate can be manufactured by holding the temperature for a certain period of time or more or gradually cooling it using the manufacturing process of the thick steel plate. The steel sheet manufactured in this manner has a higher material strength than the steel sheet mainly composed of bainite or martensite obtained by conventional accelerated cooling, etc., even with the addition of a small amount of alloying elements. Weldability is also obtained at the same time.

【0013】以下、本発明の高強度鋼板について詳しく
説明する。まず、本発明の高強度鋼板の組織について説
明する。
The high strength steel sheet of the present invention will be described in detail below. First, the structure of the high strength steel sheet of the present invention will be described.

【0014】本発明の鋼板の金属組織は実質的にフェラ
イト単相とする。一般に熱間圧延によって得られるフェ
ライト相は転位密度が少ないため、SR処理などの変態
点以下の加熱によってミクロ構造が変化することが無
く、かつ延性に富んでいるため適正な結晶粒径とするこ
とで高い靭性が得られる。フェライト相にベイナイト、
マルテンサイト、パーライト等の異なる金属組織が混在
する場合は、SR処理によってこれらの相の強度が低下
するため、フェライト相以外の組織分率は少ないほど好
ましい。しかし、フェライト以外の組織の体積分率が低
い場合は影響が無視できるため、トータルの体積分率で
10%以下の他の金属組織を、すなわちベイナイト、マル
テンサイト、パーライト、セメンタイト等を、1種また
は2種以上含有してもよい。
The metal structure of the steel sheet of the present invention is substantially a ferrite single phase. Generally, the ferrite phase obtained by hot rolling has a low dislocation density, so the microstructure does not change due to heating below the transformation point such as SR treatment, and since it is rich in ductility, the grain size should be appropriate. Provides high toughness. Bainite in the ferrite phase,
When different metallic structures such as martensite and pearlite are mixed, the strength of these phases is lowered by the SR treatment, and therefore the smaller the structural fraction other than the ferrite phase, the better. However, if the volume fraction of the structure other than ferrite is low, the effect can be ignored, so the total volume fraction is
It may contain 10% or less of another metal structure, that is, bainite, martensite, pearlite, cementite, etc., alone or in combination.

【0015】次に、本発明において鋼板内に分散析出す
る析出物について説明する。本発明における鋼板はフェ
ライト相中にMoとTiとを基本として含有する析出物が分
散析出しているものである。この析出物は極めて微細で
かつ高い熱的安定性を有しており、SR処理によっても
その形態が変化しないため、SR処理後も高い強度が保
持できる。Mo及びTiは鋼中で炭化物を形成する元素であ
り、MoC、TiCの析出により鋼を強化することは従来より
行われているが、本発明ではMoとTiを複合添加して、Mo
とTiとを基本として含有する複合炭化物を鋼中に微細析
出させることにより、MoCおよび/またはTiCの析出強化
の場合に比べて、より大きな強度向上効果が得られるこ
とが特徴である。この従来にない大きな強度向上効果
は、MoとTiとを基本として含有する複合炭化物が安定で
かつ成長速度が遅いので、粒径が10nm未満の極めて微細
な析出物が得られることによるものである。
Next, the precipitates dispersed and precipitated in the steel sheet in the present invention will be described. The steel sheet according to the present invention is one in which precipitates containing Mo and Ti as the base are dispersed and precipitated in the ferrite phase. This precipitate is extremely fine and has high thermal stability, and its shape does not change even by SR treatment, so that high strength can be maintained even after SR treatment. Mo and Ti are elements that form carbides in steel, and strengthening the steel by precipitation of MoC and TiC has been conventionally performed, but in the present invention, Mo and Ti are added in combination, and Mo is added.
By finely precipitating a composite carbide containing steel and Ti as the base in the steel, a larger strength improving effect can be obtained as compared with the case of precipitation strengthening of MoC and / or TiC. This unprecedented large strength improving effect is due to the fact that since the composite carbide containing Mo and Ti as the base is stable and has a slow growth rate, an extremely fine precipitate having a particle size of less than 10 nm can be obtained. .

【0016】MoとTiとを基本として含有する複合炭化物
は、Mo、Ti、Cのみで構成される場合は、MoとTiの合計
とCとが原子比でほぼ1:1で化合しているものであ
り、熱的安定性が高くかつ高強度化には非常に効果があ
るが、Tiの含有量が多くなる程、溶接部靭性が劣化する
という問題がある。本発明ではMo、Ti、Cのみで構成さ
れる複合炭化物において、Tiの一部を他の元素で置換す
ることにより溶接部靭性を向上させることについて検討
し、MoとTiに加えて、さらにNbおよび/またはVを添加
し、MoとTiと、Nbおよび/またはVとを含んだ複合炭化
物を析出させて、同様の析出強化と優れた耐SR特性を
得ることにより本発明を完成した。
When the composite carbide containing Mo and Ti as a base is composed of only Mo, Ti and C, the total of Mo and Ti and C are combined at an atomic ratio of about 1: 1. Although it has a high thermal stability and is very effective in increasing the strength, there is a problem that the toughness of the welded portion deteriorates as the content of Ti increases. In the present invention, in a composite carbide composed of only Mo, Ti, C, to improve the weld toughness by substituting a part of Ti with another element, in addition to Mo and Ti, Nb The present invention has been completed by adding and / or V to precipitate a composite carbide containing Mo and Ti and Nb and / or V to obtain similar precipitation strengthening and excellent SR resistance.

【0017】本発明において鋼板内に分散析出する析出
物である、MoとTiと、Nbおよび/またはVとを含んだ複
合炭化物は、以下に述べる本発明の成分の鋼材と製造方
法とを用いて鋼板を製造することにより、フェライト相
中に分散させて得ることができる。本発明の高強度鋼板
がMoとTiとを主体とする複合炭化物以外の析出物を含有
する場合は、MoとTiの複合炭化物による高強度化の効果
を損なわず、耐SR特性を劣化させない程度とする。
In the present invention, the composite carbide containing Mo and Ti and Nb and / or V, which are the precipitates dispersed and precipitated in the steel sheet in the present invention, uses the steel material and the production method of the components of the present invention described below. It can be obtained by dispersing it in the ferrite phase by producing a steel sheet using the above method. When the high-strength steel sheet of the present invention contains a precipitate other than the composite carbide mainly composed of Mo and Ti, the effect of increasing the strength by the composite carbide of Mo and Ti is not impaired and the SR resistance is not deteriorated. And

【0018】次に、本発明の高強度鋼板の化学成分につ
いて説明する。
Next, the chemical composition of the high strength steel sheet of the present invention will be described.

【0019】C:0.02〜0.08%とする。Cは炭化物として
析出強化に寄与する元素であるが、0.02%未満では十分
な強度が確保できず、0.08%を超えると靭性や耐SR性
を劣化させるため、C含有量を0.02〜0.08%に規定する。
C: 0.02 to 0.08%. C is an element that contributes to precipitation strengthening as a carbide, but if it is less than 0.02%, sufficient strength cannot be secured, and if it exceeds 0.08%, toughness and SR resistance are deteriorated, so the C content is made 0.02 to 0.08%. Stipulate.

【0020】Si:0.01〜0.50%とする。Siは脱酸のため
添加するが、0.01%未満では脱酸効果が十分でなく、0.5
0%を超えると靭性や溶接性を劣化させるため、Si含有量
を0.01〜0.50%に規定する。
Si: 0.01 to 0.50% Si is added for deoxidation, but if it is less than 0.01%, the deoxidizing effect is not sufficient and 0.5
If it exceeds 0%, the toughness and weldability are deteriorated, so the Si content is specified to be 0.01 to 0.50%.

【0021】Mn:0.5〜1.8%とする。Mnは強度、靭性の
ため添加するが、0.5%未満ではその効果が十分でなく、
1.8%を超えると溶接性が劣化するため、Mn含有量を0.5
〜1.8%に規定する。
Mn: 0.5 to 1.8% Mn is added for strength and toughness, but if it is less than 0.5%, its effect is not sufficient,
If it exceeds 1.8%, the weldability will deteriorate, so the Mn content should be 0.5.
Specify to ~ 1.8%.

【0022】P:0.02%以下とする。Pは溶接性とSR後
の靭性を劣化させる不可避不純物元素であるため、P含
有量の上限を0.02%に規定する。
P: 0.02% or less. Since P is an unavoidable impurity element that deteriorates weldability and toughness after SR, the upper limit of P content is specified to be 0.02%.

【0023】S:0.005%以下とする。SもSR後の靭性を
劣化させるため少ないほど好ましい。しかし、0.005%以
下であれば問題ないため、S含有量の上限を0.005%に規
定する。
S: 0.005% or less. Since S also deteriorates the toughness after SR, the smaller the content, the better. However, if it is 0.005% or less, there is no problem, so the upper limit of the S content is specified to 0.005%.

【0024】Mo:0.05〜0.50%とする。Moは本発明にお
いて重要な元素であり、0.05%以上含有させることで、
熱間圧延後冷却時のパーライト変態を抑制しつつ、Tiと
の微細な複合析出物を形成し、強度上昇に大きく寄与す
る。しかし、0.50%を超えて添加するとベイナイトやマ
ルテンサイトなどのフェライト以外の組織分率が増加す
るため、SR処理によって強度低下を招く。よって、Mo
含有量を0.05〜0.50%に規定する。
Mo: 0.05 to 0.50%. Mo is an important element in the present invention, and by containing 0.05% or more,
While suppressing the pearlite transformation during cooling after hot rolling, it forms fine composite precipitates with Ti and greatly contributes to the strength increase. However, if added in excess of 0.50%, the structural fraction other than ferrite such as bainite and martensite increases, so the SR treatment causes a decrease in strength. Therefore, Mo
The content is specified to be 0.05 to 0.50%.

【0025】Ti:0.005〜0.04%とする。TiはMoと同様に
本発明において重要な元素である。0.04%を超えて添加
することで、Moと複合析出物を形成し、強度上昇に大き
く寄与する。しかし、0.04%を超えると溶接熱影響部の
靭性を著しく劣化させるため、Ti含有量は0.005〜0.04%
に規定する。
Ti: 0.005 to 0.04%. Ti, like Mo, is an important element in the present invention. When added in excess of 0.04%, it forms a complex precipitate with Mo and greatly contributes to the strength increase. However, if it exceeds 0.04%, the toughness of the heat-affected zone will be significantly deteriorated, so the Ti content is 0.005 to 0.04%.
Prescribed in.

【0026】Al:0.01〜0.07%とする。Alは脱酸剤とし
て添加されるが、0.01%未満では効果がなく、0.07%を超
えると鋼の清浄度が低下し、靭性を劣化させるため、Al
含有量は0.01〜0.07%に規定する。
Al: 0.01 to 0.07%. Al is added as a deoxidizer, but if it is less than 0.01%, it has no effect, and if it exceeds 0.07%, the cleanliness of the steel decreases and the toughness deteriorates.
The content is specified as 0.01 to 0.07%.

【0027】Nb、Vのうち1種又は2種を含有する。It contains one or two of Nb and V.

【0028】Nb:0.005〜0.05%とする。Nbは組織の微細
粒化により靭性を向上させるが、Ti及びMoと共に複合析
出物を形成し、強度上昇に寄与する。しかし、0.005%未
満では効果がなく、0.05%を超えると溶接熱影響部の靭
性が劣化するため、Nb含有量は0.005〜0.05%に規定す
る。
Nb: 0.005 to 0.05% Nb improves toughness by making the structure finer, but forms a composite precipitate with Ti and Mo, and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.05%, the toughness of the weld heat affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.05%.

【0029】V:0.005〜0.10%とする。VもNbと同様にTi
及びMoと共に複合析出物を形成し、強度上昇に寄与す
る。しかし、0.005%未満では効果がなく、0.1%を超える
と溶接熱影響部の靭性が劣化するため、V含有量は0.005
〜0.1%に規定する。
V: 0.005 to 0.10% V is Ti as well as Nb
Also forms a complex precipitate with Mo and contributes to strength increase. However, if it is less than 0.005%, it has no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is 0.005%.
Specified to ~ 0.1%.

【0030】C量とMo、Ti、Nb、Vの合計量の比である、
C/(Mo+Ti+Nb+V):0.6〜2.0とする。C/(Mo+Ti+Nb+V)にお
いて各元素記号はその成分の原子%の含有量(at%)を
示す。本発明鋼板における高強度化はTiとMoと、Nbおよ
び/またはVとを含む複合析出物(炭化物)によるもの
である。この複合析出物による析出強化を有効に利用す
るためには、C量と炭化物形成元素であるMo、Ti、Nb、V
量の関係が重要であり、これらの元素を適正なバランス
のもとで添加する事によって、熱的に安定でかつ非常に
微細な複合析出物を得ることができる。このときCの原
子%での含有量と、Mo、Ti、Nb、Vの原子%での含有量
の合計量の比であるC/(Mo+Ti+Nb+V)の値は、0.6〜2.0と
する。C/(Mo+Ti+Nb+V)の値が0.6未満または2.0を超える
場合はいずれかの元素量が過剰であり、本発明のTiとMo
とを含む複合析出物以外の硬化組織が過度に形成され
て、耐SR特性の劣化や、靭性の劣化を招くため、C/(M
o+Ti+Nb+V)の値を0.6〜2.0に規定する。なお、質量%の
含有量を用いる場合は、以下の式(1)を用いて計算し
て、その値を0.6〜2.0とする。
It is the ratio of the amount of C to the total amount of Mo, Ti, Nb and V,
C / (Mo + Ti + Nb + V): 0.6 to 2.0. In C / (Mo + Ti + Nb + V), each element symbol indicates the content (at%) in atomic% of the component. The strengthening of the steel sheet of the present invention is due to the composite precipitate (carbide) containing Ti, Mo, and Nb and / or V. In order to effectively utilize the precipitation strengthening by this composite precipitate, the C content and the carbide forming elements Mo, Ti, Nb, V
The amount relationship is important, and by adding these elements in a proper balance, a thermally stable and extremely fine composite precipitate can be obtained. At this time, the value of C / (Mo + Ti + Nb + V), which is the ratio of the content of C in atomic% and the total content of Mo, Ti, Nb, and V in atomic%, is 0.6 to Set to 2.0. When the value of C / (Mo + Ti + Nb + V) is less than 0.6 or exceeds 2.0, the amount of any element is excessive, and Ti and Mo of the present invention are present.
Since a hardened structure other than the complex precipitates including and is excessively formed, the SR resistance and the toughness are deteriorated.
The value of (o + Ti + Nb + V) is specified to be 0.6 to 2.0. In addition, when using the content of mass%, it calculates using the following formula | equation (1) and makes the value 0.6-2.0.

【0031】 (C/12.01)/(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)・・・(1) 本発明では鋼板の強度や靭性をさらに改善する目的で、
以下に示すCu、Ni、Cr、Caの1種または2種以上を含有
してもよい。
(C / 12.01) / (Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) (1) In the present invention, for the purpose of further improving the strength and toughness of the steel sheet,
You may contain 1 type, or 2 or more types of Cu, Ni, Cr, and Ca shown below.

【0032】Cu:0.50%以下とする。Cuは靭性の改善と
強度の上昇に有効な元素であるが、多く添加すると溶接
性が劣化するため、添加する場合は0.50%を上限とす
る。
Cu: 0.50% or less. Cu is an element effective in improving toughness and increasing strength, but if added in a large amount, the weldability deteriorates, so if it is added, the upper limit is 0.50%.

【0033】Ni:0.50%以下とする。Niは靭性の改善と
強度の上昇に有効な元素であるが、多く添加すると耐S
R特性が低下するため、添加する場合は0.50%を上限と
する。
Ni: 0.50% or less. Ni is an element effective in improving toughness and increasing strength, but if added in a large amount, S
Since the R characteristic deteriorates, 0.50% is made the upper limit when added.

【0034】Cr:0.50%以下とする。CrはMnと同様に低C
でも十分な強度を得るために有効な元素であるが、多く
添加すると溶接性が劣化するため、添加する場合は0.50
%を上限とする。
Cr: 0.50% or less. Cr is low C like Mn
However, it is an element effective for obtaining sufficient strength, but if added in large amounts, the weldability deteriorates.
The upper limit is%.

【0035】Ca:0.0005〜0.0025%とする。Caは硫化物
系介在物の形態制御による靭性向上に有効な元素である
が、0.0005%未満ではその効果が十分でなく、0.0025%を
こえて添加しても効果が飽和し、むしろ、鋼の清浄度の
低下により靭性を劣化させるので、添加する場合はCa含
有量を0.0005〜0.0025%に規定する。
Ca: 0.0005 to 0.0025%. Ca is an element effective in improving the toughness by controlling the morphology of sulfide inclusions, but if it is less than 0.0005%, its effect is not sufficient, and if it is added in excess of 0.0025%, the effect saturates. Since the toughness deteriorates due to the decrease in cleanliness, the Ca content is specified to 0.0005 to 0.0025% when added.

【0036】上記以外の残部は実質的にFeからなる。
残部が実質的にFeからなるとは、本発明の作用効果を
無くさない限り、不可避不純物をはじめ、他の微量元素
を含有するものが本発明の範囲に含まれ得ることを意味
する。
The balance other than the above consists essentially of Fe.
The fact that the balance consists essentially of Fe means that those containing other trace elements including unavoidable impurities can be included in the scope of the present invention unless the effects of the present invention are lost.

【0037】次に、本発明の高強度鋼板の製造方法につ
いて説明する。
Next, a method for manufacturing the high strength steel sheet of the present invention will be described.

【0038】本発明の高強度鋼板は上記の成分組成を有
する鋼を用い、加熱温度:1000〜1250℃、圧延終了温
度:750℃以上で熱間圧延を行い、その後2℃/s以上の冷
却速度で冷却を行い、次いで550〜700℃の温度で一定時
間保持することで、TiとMoと、Nbおよび/またはVとを
含む微細な複合炭化物を分散析出させて製造できる。55
0〜700℃の温度で一定時間保持する方法として、550〜7
00℃の温度で鋼帯に巻き取る(第一の製造方法)、550
〜700℃の温度で5分以上の等温保持を行う(第二の製造
方法)、550〜700℃の温度から0.1℃/s以下の冷却速度
で徐冷を行う(第三の製造方法)、の3つの製造方法が
ある。以下、各製造方法について詳しく説明する。
The high-strength steel sheet of the present invention is a steel having the above-described composition, and is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then cooled at 2 ° C./s or higher. By cooling at a rate and then maintaining the temperature at 550 to 700 ° C. for a certain period of time, fine composite carbide containing Ti and Mo and Nb and / or V can be dispersed and precipitated to be produced. 55
As a method of holding at a temperature of 0 to 700 ° C for a certain time, 550 to 7
Winding steel strip at a temperature of 00 ℃ (first manufacturing method), 550
Hold isothermal for 5 minutes or more at a temperature of ~ 700 ° C (second manufacturing method), gradually cool at a cooling rate of 0.1 ° C / s or less from a temperature of 550 ~ 700 ° C (third manufacturing method), There are three manufacturing methods. Hereinafter, each manufacturing method will be described in detail.

【0039】加熱温度:1000〜1250℃とする。加熱温度
が1000℃未満では炭化物の固溶が不十分で必要な強度が
得られず、1250℃を超えると靭性が劣化するため、1000
〜1250℃とする。
Heating temperature: 1000 to 1250 ° C. If the heating temperature is less than 1000 ° C, the solid solution of carbide is insufficient to obtain the required strength, and if it exceeds 1250 ° C, the toughness deteriorates.
~ 1250 ℃

【0040】圧延終了温度:750℃以上とする。圧延終
了温度が低いと、フェライト相中に圧延歪が残留しSR
処理によって回復を生じ、SR後の強度低下を招くた
め、圧延終了温度を750℃以上とする。また、圧延終了
温度の上限は特に規定しなくとも優れた耐SR特性と強
度が得られるが、組織の粗大化による靭性低下を防ぐた
め、950℃以下の温度で圧延を終了することが好まし
い。
Rolling end temperature: 750 ° C. or higher. When the rolling end temperature is low, rolling strain remains in the ferrite phase and SR
Since the treatment causes recovery and lowers the strength after SR, the rolling end temperature is set to 750 ° C or higher. In addition, although the upper limit of the rolling end temperature is not particularly specified, excellent SR resistance and strength can be obtained, but it is preferable to end the rolling at a temperature of 950 ° C. or lower in order to prevent deterioration of toughness due to coarsening of the structure.

【0041】圧延終了後に2℃/s以上の冷却速度で冷却
する。圧延終了後に放冷または徐冷を行うと高温域から
析出物が析出して、析出物が容易に粗大化し強度が低下
する。よって、析出強化に最適な温度まで急冷を行い、
高温域からの析出を防止することが本発明における重要
な製造条件である。冷却速度が2℃/s未満では高温域で
の析出防止効果が十分ではなく強度が低下するため、圧
延終了後の冷却速度を2℃/s以上に規定する。このとき
の冷却方法については製造プロセスによって任意の冷却
設備を用いることが可能である。
After the completion of rolling, cooling is performed at a cooling rate of 2 ° C./s or more. If cooling or slow cooling is performed after the rolling is completed, precipitates are deposited from the high temperature region, and the precipitates easily coarsen and the strength decreases. Therefore, quenching to the optimum temperature for precipitation strengthening,
Preventing precipitation from a high temperature range is an important manufacturing condition in the present invention. If the cooling rate is less than 2 ° C / s, the effect of preventing precipitation in the high temperature region is insufficient and the strength decreases, so the cooling rate after rolling is specified to be 2 ° C / s or more. As a cooling method at this time, any cooling equipment can be used depending on the manufacturing process.

【0042】2℃/s以上の冷却速度での冷却後、本発明
のフェライト組織と微細析出物とを得るためには、高温
で一定時間保持することが必要である。第一の製造方法
は薄鋼板を製造する場合であり、熱間圧延後、ランアウ
トテーブルでの水冷等によって冷却した後、鋼帯に巻取
る熱延プロセスにおいて、所定の温度で巻取りを行うこ
とにより、鋼帯を等温保持して本発明の析出物を析出さ
せる。
After cooling at a cooling rate of 2 ° C./s or more, in order to obtain the ferrite structure and the fine precipitates of the present invention, it is necessary to hold at a high temperature for a certain period of time. The first manufacturing method is to manufacture a thin steel sheet, and after hot rolling, after cooling with water cooling on a run-out table, etc., in a hot rolling process of winding on a steel strip, winding is performed at a predetermined temperature. Thus, the steel strip is kept isothermally to deposit the precipitate of the present invention.

【0043】また、冷却終了温度は、その後の巻取り温
度、等温保持温度、または徐冷開始温度よりも高い温度
であればよいが、冷却終了温度が高すぎると析出物の粗
大化が生じて十分な強度が得られないので、750℃以下
とすることが望ましい。
The cooling end temperature may be higher than the subsequent winding temperature, isothermal holding temperature, or slow cooling start temperature, but if the cooling end temperature is too high, coarsening of precipitates occurs. Since sufficient strength cannot be obtained, it is desirable to set it to 750 ° C or lower.

【0044】第一の製造方法:巻取り温度:550〜700℃
とする。熱延プロセスにより鋼帯を製造する場合は、2
℃/s以上の冷却速度での冷却後に巻取り温度550〜700℃
で巻取りを行う。巻取り温度が550℃未満ではベイナイ
トが生成するために耐SR特性が劣化し、また700℃を
超えると析出物が粗大化し十分な強度が得られないた
め、熱延プロセスにおける巻取り温度を550〜700℃に規
定する。
First manufacturing method: Winding temperature: 550 to 700 ° C.
And 2 if the steel strip is produced by the hot rolling process
After cooling at a cooling rate of ℃ / s or more, coiling temperature 550 to 700 ℃
Take up with. If the coiling temperature is lower than 550 ° C, SR resistance deteriorates due to the formation of bainite, and if it exceeds 700 ° C, the precipitates become coarse and sufficient strength cannot be obtained. Specified at ~ 700 ℃.

【0045】第二の製造方法及び第三の製造方法は、巻
き取りを行わない、厚鋼板等を製造する場合に適する方
法であり、厚板ミルにおいて、仕上げ圧延後の水冷設備
で冷却した後に、均熱炉において所定の時間以上等温保
持して本発明の析出物を析出させる方法が第二の製造方
法である。また第三の製造方法は、水冷後に、カバー徐
冷等により徐冷を行うことで高温を維持して本発明の析
出物を析出させて、本発明の鋼板を製造するものであ
る。以下にこれらの場合を説明する。
The second manufacturing method and the third manufacturing method are suitable for manufacturing thick steel plates without winding, and after cooling in a water cooling facility after finish rolling in a thick plate mill. The second manufacturing method is a method of precipitating the precipitate of the present invention by holding the material in a soaking furnace isothermally for a predetermined time or longer. In the third production method, after cooling with water, the steel sheet of the present invention is produced by precipitating the precipitate of the present invention while maintaining a high temperature by performing gradual cooling such as cover gradual cooling. These cases will be described below.

【0046】第二の製造方法:2℃/s以上の冷却速度で
の冷却後に、550〜700℃の温度で5分以上の等温保持す
る。冷却終了温度は、等温保持の温度以上、750℃以下
とすることが好ましい。熱延プロセスのような鋼帯への
巻取りを行わない場合は、圧延後の冷却に引き続いて、
一定時間以上の等温保持を行うことによって、MoとTiと
を含む析出物が分散析出したフェライト単一組織を得る
ことが可能である。このとき、550℃未満ではベイナイ
トが生成するために耐SR特性が劣化し、また700℃を
超えると析出物が粗大化し十分な強度が得られないた
め、保持温度を550〜700℃に規定する。また、保持時間
が5分未満ではフェライト変態が完了せず、その後の冷
却でベイナイトまたはパーライトを生成するために耐S
R特性が劣化するので、保持時間は5分以上に規定す
る。なお、等温保持によってフェライト変態が完了して
いれば、その後の冷却速度は任意の速度で構わない。
Second production method: After cooling at a cooling rate of 2 ° C./s or more, the temperature is kept at 550 to 700 ° C. for 5 minutes or more. The cooling end temperature is preferably equal to or higher than the isothermal holding temperature and equal to or lower than 750 ° C. If the steel strip is not wound, as in the hot rolling process, following cooling after rolling,
It is possible to obtain a ferrite single structure in which precipitates containing Mo and Ti are dispersed and precipitated by carrying out isothermal holding for a certain period of time or more. At this time, if the temperature is lower than 550 ° C, SR resistance is deteriorated due to the formation of bainite, and if the temperature exceeds 700 ° C, the precipitates are coarsened and sufficient strength cannot be obtained. Therefore, the holding temperature is specified to be 550 to 700 ° C. . Further, if the holding time is less than 5 minutes, the ferrite transformation is not completed, and after the cooling, bainite or pearlite is generated, so that the S resistance is low.
Since the R characteristic deteriorates, the holding time is specified to be 5 minutes or longer. Note that, if the ferrite transformation is completed by the isothermal holding, the cooling rate thereafter may be any rate.

【0047】第三の製造方法:2℃/s以上の冷却速度で
の冷却後に、550〜700℃の温度から0.1℃/s以下の冷却
速度で徐冷する。上記のような等温保持を行わなくと
も、圧延後の冷却に引き続いて、所定の温度から徐冷を
行うことによっても本発明の鋼板を製造することが可能
である。このときの冷却速度が0.1℃/sを超えると、ベ
イナイトが生成し耐SR特性が低下するため、冷却速度
の上限を0.1℃/sに規定する。また、徐冷を開始する温
度は550〜700℃とする。550℃未満ではベイナイト生成
により耐SR特性が劣化し、また700℃を超えると析出
物が粗大化し十分な強度が得られないためである。
Third manufacturing method: After cooling at a cooling rate of 2 ° C./s or more, the temperature is gradually cooled from a temperature of 550 to 700 ° C. at a cooling rate of 0.1 ° C./s or less. It is possible to manufacture the steel sheet of the present invention by performing slow cooling from a predetermined temperature subsequent to cooling after rolling without performing the above isothermal holding. If the cooling rate at this time exceeds 0.1 ° C./s, bainite is generated and the SR resistance deteriorates, so the upper limit of the cooling rate is specified to 0.1 ° C./s. The temperature at which the slow cooling is started is 550 to 700 ° C. This is because if the temperature is lower than 550 ° C, the SR resistance is deteriorated due to the formation of bainite, and if the temperature exceeds 700 ° C, the precipitates become coarse and sufficient strength cannot be obtained.

【0048】従来の熱延ミルまたは厚板ミルを用いるこ
とのできる上記の第一、第二、第三製造方法により製造
された本発明の鋼板は、プレスベンド成形、ロール成
形、UOE成形等で鋼管に成形して、原油や天然ガスを
輸送する鋼管(電縫鋼管、スパイラル鋼管、UOE鋼
管)等に利用することができる。
The steel sheet of the present invention produced by the above-mentioned first, second and third production methods which can use a conventional hot rolling mill or thick plate mill is subjected to press bend forming, roll forming, UOE forming and the like. It can be formed into a steel pipe and used as a steel pipe (electric resistance welded pipe, spiral steel pipe, UOE steel pipe) for transporting crude oil or natural gas.

【0049】[0049]

【実施例】表1に示す化学成分の供試鋼(鋼種A〜K)
を用いて板厚12、18、26mmの鋼板を製造した。
[Examples] Test steels with chemical compositions shown in Table 1 (steel types A to K)
Was used to produce steel plates with plate thicknesses of 12, 18, and 26 mm.

【0050】[0050]

【表1】 [Table 1]

【0051】板厚12mmの熱延鋼帯(No.1〜17)は、
圧延後に冷却を行い所定の温度で巻取りを行って製造し
た。表2に各鋼板のスラブ加熱温度、圧延終了(仕上)
温度、圧延後冷却速度、巻取温度を示す。板厚18mm及び
26mmの厚鋼板(No.18〜28)は、熱間圧延(厚板プ
ロセス)により鋼種B、C、E、I、Kを用いて表3に
示す条件で製造した。表3において、冷却後の処理方法
が「温度保持」と記載されているものは、圧延後に加速
冷却装置により冷却を行った後、ガス燃焼炉で等温保持
(均熱処理)を行った。等温保持を行ったものについて
は、保持温度と保持時間を表3に併せて示す。また、冷
却後の処理方法が「徐冷」と記載されているものは、圧
延後に加速冷却装置により冷却を行った後、鋼板を積み
重ねることで室温まで徐冷を行った。徐冷を行ったもの
については、徐冷開始温度と徐冷開始から300℃まで
の平均冷却速度を表3に併せて示す。また、No.28は
圧延終了後加速冷却により350℃まで冷却し、その後
空冷によって製造した。
The hot rolled steel strip (No. 1 to 17) having a plate thickness of 12 mm is
It was manufactured by cooling after rolling and winding at a predetermined temperature. Table 2 shows the slab heating temperature of each steel sheet and the end of rolling (finishing)
The temperature, the cooling rate after rolling, and the winding temperature are shown. Board thickness 18 mm and
26 mm thick steel plates (No. 18 to 28) were manufactured by hot rolling (thick plate process) using steel types B, C, E, I and K under the conditions shown in Table 3. In Table 3, when the treatment method after cooling is described as "temperature retention", after the rolling was performed by the accelerated cooling device, the gas combustion furnace was subjected to isothermal retention (soaking treatment). Table 3 also shows the holding temperature and the holding time for those that were held isothermally. In addition, in the case where the treatment method after cooling is described as "slow cooling", after cooling by an accelerated cooling device after rolling, the steel sheets were stacked to perform slow cooling to room temperature. Table 3 also shows the slow cooling start temperature and the average cooling rate from the slow cooling start to 300 ° C. for the slow cooling. Further, No. 28 was manufactured by accelerating cooling after completion of rolling to 350 ° C. and then by air cooling.

【0052】以上のようにして製造した鋼板のミクロ組
織を、光学顕微鏡、透過型電子顕微鏡(TEM)により
観察した。析出物の成分はエネルギー分散型X線分光法
(EDX)により分析した。また耐SR特性を調査する
ため、ガス雰囲気炉を用いて各鋼板にSR処理を行っ
た。このときの熱処理条件は650℃で2時間とし、そ
の後炉から取り出し空冷によって室温まで冷却した。そ
して、SR処理前後の鋼板の引張特性及びシャルピー衝
撃特性を測定した。引張特性は、圧延垂直方向の全厚試
験片を引張試験片として引張試験を行い、降伏強度、引
張強度を測定した。そして、製造上のばらつきを考慮し
て、SR処理前後いずれにおいても降伏強度520MPa以
上、引張強度600MPa以上であるものをAPI X65グレード
を超える高強度鋼板として評価した。また、靭性につい
ては、SR処理後のシャルピー衝撃試験において、−1
0℃で吸収エネルギーが70J以上あるものを高靭性鋼
板として評価した。また、溶接熱影響部靱性(HAZ靱
性)を評価するために、SR処理前の鋼板を用いて溶接
熱サイクル再現装置により入熱15kJ/cmに相当する熱
履歴を与えた後シャルピー衝撃試験を行った。そして破
面遷移温度が−10℃以下のものをHAZ靱性が良好と
判断した。測定結果を表2、表3に併せて示す。
The microstructure of the steel sheet manufactured as described above was observed with an optical microscope and a transmission electron microscope (TEM). The components of the precipitate were analyzed by energy dispersive X-ray spectroscopy (EDX). Further, in order to investigate the SR resistance property, each steel sheet was subjected to SR treatment using a gas atmosphere furnace. The heat treatment condition at this time was 650 ° C. for 2 hours, after which it was taken out of the furnace and cooled to room temperature by air cooling. Then, the tensile properties and the Charpy impact properties of the steel sheet before and after the SR treatment were measured. As for the tensile properties, a tensile test was performed using a full-thickness test piece in the rolling vertical direction as a tensile test piece, and the yield strength and tensile strength were measured. Then, in consideration of manufacturing variations, those having a yield strength of 520 MPa or more and a tensile strength of 600 MPa or more before and after SR treatment were evaluated as high strength steel sheets exceeding API X65 grade. Regarding toughness, in the Charpy impact test after SR treatment, -1
A steel sheet having an absorbed energy of 70 J or more at 0 ° C. was evaluated as a high toughness steel sheet. In addition, in order to evaluate the weld heat affected zone toughness (HAZ toughness), a Charpy impact test was performed after applying a heat history equivalent to a heat input of 15 kJ / cm using a welding heat cycle reproduction device using a steel sheet before SR treatment. It was Then, those having a fracture surface transition temperature of −10 ° C. or less were judged to have good HAZ toughness. The measurement results are also shown in Tables 2 and 3.

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】表2において、本発明例であるNo.1〜8
はいずれも、化学成分および製造方法が本発明の範囲内
であり、SR処理の前後で引張強度600MPa以上の高強度
で、かつ靭性も優れていた。鋼板の組織は、実質的にフ
ェライト単層であり、TiとMoと、Nbおよび/またはVと
を含む粒径が10nm未満の微細な炭化物の析出物が分散析
出していた。
In Table 2, Nos. 1 to 8 which are examples of the present invention
All of the samples had a chemical composition and a manufacturing method within the scope of the present invention, and had high tensile strength of 600 MPa or more before and after SR treatment and excellent toughness. The structure of the steel sheet was substantially a ferrite single layer, and fine carbide precipitates containing Ti and Mo and Nb and / or V and having a particle size of less than 10 nm were dispersed and precipitated.

【0056】No.9〜12は化学成分は本発明の範囲内
であるが、製造方法が本発明の範囲外であり、金属組織
が実質的にフェライト単相ではないことや、TiとMoとを
含む析出物が分散析出していないため、SR処理後に十
分な強度が得られないか、または靭性が低かった。
The chemical compositions of Nos. 9 to 12 are within the scope of the present invention, but the manufacturing method is outside the scope of the present invention, the metal structure is not substantially a ferrite single phase, and Ti and Mo are Since the precipitates containing P were not dispersed and deposited, sufficient strength could not be obtained after SR treatment, or the toughness was low.

【0057】No.13〜17は化学成分が本発明の範囲
外であり、SR処理後に十分な強度が得られないか、ま
たは靭性が低かった。
Nos. 13 to 17 had chemical components outside the range of the present invention, and thus sufficient strength could not be obtained after SR treatment, or toughness was low.

【0058】表3において、本発明例であるNo.18〜
21はいずれも、化学成分および製造方法が本発明の範
囲内であり、SR処理の前後で引張強度600MPa以上
の高強度と高い靭性を有していた。鋼板の組織は、実質
的にフェライト単層であり、TiとMoと、Nbおよび/また
はVとを含む粒径が10nm未満の微細な炭化物の析出物が
分散析出していた。
In Table 3, No. 18-
Each of No. 21 had a chemical composition and a manufacturing method within the scope of the present invention, and had high strength of 600 MPa or more and high toughness before and after SR treatment. The structure of the steel sheet was substantially a ferrite single layer, and fine carbide precipitates containing Ti and Mo and Nb and / or V and having a particle size of less than 10 nm were dispersed and precipitated.

【0059】No. 22〜25は化学成分は本発明の範囲
内であるが、製造方法が本発明の範囲外であり、金属組
織が実質的にフェライト単相ではないことや、TiとMoと
を含む析出物が分散析出していないため、SR処理後に
十分な強度が得られないか、靭性が低かった。
The chemical compositions of Nos. 22 to 25 are within the scope of the present invention, but the production method is outside the scope of the present invention, the metal structure is not substantially a ferrite single phase, and Ti and Mo are Since the precipitates containing P were not dispersed and deposited, sufficient strength could not be obtained after SR treatment, or the toughness was low.

【0060】No. 26、27は化学成分が本発明の範囲
外であり、SR処理後に十分な強度が得られないか、ま
たは靭性が低かった。
In Nos. 26 and 27, the chemical composition was out of the range of the present invention, and sufficient strength could not be obtained after SR treatment, or the toughness was low.

【0061】No.28は化学成分が本発明の範囲内であ
るが、熱間圧延後の冷却条件が本発明範囲と異なるた
め、SR処理後に十分な強度が得られなかった。
No. 28 had a chemical composition within the range of the present invention, but the cooling condition after hot rolling was different from the range of the present invention, so that sufficient strength could not be obtained after SR treatment.

【0062】[0062]

【発明の効果】以上述べたように、本発明によれば、AP
I X65グレード以上の高強度を有し、かつSR処理後も
強度と靭性の優れた鋼板が得られる。このため優れた特
性を有する電縫鋼管、スパイラル鋼管、UOE鋼管等の
鋼管を製造することができる。
As described above, according to the present invention, the AP
A steel sheet having high strength of IX65 grade or higher and excellent in strength and toughness even after SR treatment can be obtained. Therefore, it is possible to manufacture steel pipes such as electric resistance welded steel pipes, spiral steel pipes and UOE steel pipes having excellent characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新宮 豊久 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 諏訪 稔 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA04 AA08 AA11 AA14 AA16 AA19 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA01 CC03 CC04 CD02 CD03 CE01 CE02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toyohisa Shingu             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Minoru Suwa             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F-term (reference) 4K032 AA01 AA04 AA08 AA11 AA14                       AA16 AA19 AA22 AA23 AA27                       AA29 AA31 AA35 AA36 BA01                       CC03 CC04 CD02 CD03 CE01                       CE02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.02〜0.08%、Si:0.01〜
0.50 %、Mn:0.5〜1.8%、P:0.02%以下、S:0.005%以
下、Mo:0.05〜0.50%、Ti:0.005〜0.04%、Al:0.01〜
0.07%を含有し、Nb:0.005〜0.07%および/またはV:0.
005〜0.10%を含有し、残部が実質的にFeからなり、原
子%でのC量とMo、Ti、Nb、Vの合計量の比であるC/(Mo+
Ti+Nb+V)が0.6〜2.0であり、金属組織が実質的にフェラ
イト単相であり、TiとMoとを含む析出物が分散析出して
いることを特徴とする、耐SR特性に優れた高強度鋼
板。
1. In mass%, C: 0.02 to 0.08%, Si: 0.01 to
0.50%, Mn: 0.5-1.8%, P: 0.02% or less, S: 0.005% or less, Mo: 0.05-0.50%, Ti: 0.005-0.04%, Al: 0.01-
0.07%, Nb: 0.005-0.07% and / or V: 0.
005-0.10% is contained, the balance is essentially Fe, and the ratio of the amount of C in atomic% to the total amount of Mo, Ti, Nb, and V is C / (Mo +
Ti + Nb + V) is 0.6 to 2.0, the metallographic structure is substantially a ferrite single phase, and the precipitates containing Ti and Mo are dispersed and precipitated, which is excellent in SR resistance characteristics. High strength steel plate.
【請求項2】 さらに、質量%で、Cu:0.50%以下、N
i:0.50%以下、Cr:0.50%以下、Ca:0.0005〜0.0025%の
中から選ばれる1種又は2種以上を含有することを特徴
とする請求項1に記載の耐SR特性に優れた高強度鋼
板。
2. Further, in mass%, Cu: 0.50% or less, N
i: 0.50% or less, Cr: 0.50% or less, Ca: 0.0005 to 0.0025%, and one or more kinds selected from the group is contained, which is excellent in SR resistance according to claim 1 and is high. Strength steel plate.
【請求項3】 請求項1または請求項2に記載の成分組
成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温
度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷
却速度で冷却し、次いで550〜700℃の温度で鋼帯に巻き
取ることを特徴とする、耐SR特性に優れた高強度鋼板
の製造方法。
3. A steel having the chemical composition according to claim 1 or 2 is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then 2 ° C./s. A method for producing a high-strength steel sheet excellent in SR resistance, characterized by cooling at the above cooling rate and then winding the steel strip at a temperature of 550 to 700 ° C.
【請求項4】 請求項1または請求項2に記載の成分組
成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温
度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷
却速度で冷却し、次いで550〜700℃の温度で5分以上の
等温保持を行うことを特徴とする、耐SR特性に優れた
高強度鋼板の製造方法。
4. A steel having the composition of claim 1 or 2 is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then 2 ° C./s. A method for producing a high-strength steel sheet excellent in SR resistance, which comprises cooling at the above cooling rate, and then maintaining isothermal at a temperature of 550 to 700 ° C. for 5 minutes or more.
【請求項5】 請求項1または請求項2に記載の成分組
成を有する鋼を、加熱温度:1000〜1250℃、圧延終了温
度:750℃以上の条件で熱間圧延した後、2℃/s以上の冷
却速度で冷却し、次いで550〜700℃の温度から0.1℃/s
以下の冷却速度で冷却を行うことを特徴とする、耐SR
特性に優れた高強度鋼板の製造方法。
5. A steel having the composition according to claim 1 or 2 is hot-rolled at a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 ° C. or higher, and then 2 ° C./s. Cool at the above cooling rate, then from the temperature of 550 ~ 700 ℃ to 0.1 ℃ / s
SR resistance, characterized by cooling at the following cooling rates
A method for producing a high strength steel plate having excellent characteristics.
JP2002030301A 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same Expired - Fee Related JP3780956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030301A JP3780956B2 (en) 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030301A JP3780956B2 (en) 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003231939A true JP2003231939A (en) 2003-08-19
JP3780956B2 JP3780956B2 (en) 2006-05-31

Family

ID=27774099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030301A Expired - Fee Related JP3780956B2 (en) 2002-02-07 2002-02-07 High strength steel plate with excellent SR resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3780956B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490566B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 High-strength steel sheet having superior cryogenic temperature toughness and low yield ratio property and manufacturing method thereof
EP2392682A4 (en) * 2009-01-30 2015-02-25 Jfe Steel Corp Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP2016148096A (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 High strength thick spiral steel pipe for conductor casing for deep well and manufacturing method therefor
US9809869B2 (en) 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
CN107363094A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of Thin Specs pipe line steel milling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392682A4 (en) * 2009-01-30 2015-02-25 Jfe Steel Corp Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
US9580782B2 (en) 2009-01-30 2017-02-28 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
US9809869B2 (en) 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
KR101490566B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 High-strength steel sheet having superior cryogenic temperature toughness and low yield ratio property and manufacturing method thereof
JP2016148096A (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 High strength thick spiral steel pipe for conductor casing for deep well and manufacturing method therefor
CN107363094A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of Thin Specs pipe line steel milling method

Also Published As

Publication number Publication date
JP3780956B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP4358900B1 (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
US7879287B2 (en) Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
WO2011040624A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
WO2011040622A1 (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
WO2014097559A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
JP2008184638A (en) Thick high tensile strength steel plate, and method for producing the same
JP2004359973A (en) High strength steel sheet having excellent delayed fracture resistance, and its production method
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
JP4254551B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
WO2016056216A1 (en) Steel sheet for line pipe, method for manufacturing same, and steel tube for line pipe
JP2004003015A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP3780956B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP4089455B2 (en) High strength steel with excellent HIC resistance
JP2004003014A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP4201310B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof
JP2003226922A (en) Manufacturing method for high strength steel sheet having excellent hic resistance
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP3896915B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same
JP3714232B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same
JP2003313638A (en) High-strength steel sheet superior in hic resistance and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3780956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees