JP3705161B2 - High tensile steel plate - Google Patents

High tensile steel plate Download PDF

Info

Publication number
JP3705161B2
JP3705161B2 JP2001184389A JP2001184389A JP3705161B2 JP 3705161 B2 JP3705161 B2 JP 3705161B2 JP 2001184389 A JP2001184389 A JP 2001184389A JP 2001184389 A JP2001184389 A JP 2001184389A JP 3705161 B2 JP3705161 B2 JP 3705161B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel
steel plate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001184389A
Other languages
Japanese (ja)
Other versions
JP2002371336A (en
Inventor
知哉 藤原
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001184389A priority Critical patent/JP3705161B2/en
Publication of JP2002371336A publication Critical patent/JP2002371336A/en
Application granted granted Critical
Publication of JP3705161B2 publication Critical patent/JP3705161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
本発明は、溶接部の低温靱性および耐硫化物応力腐食割れ性に優れた引張強さ730MPa(以下、HT730と記す)級の高張力鋼板に関し、これは湿潤硫化水素環境下におかれるLPGなどの貯蔵容器あるいは圧力容器等の用途に好適である。
【0002】
【従来の技術】
LPG貯蔵タンクやその他の圧力容器では、硫化水素(HS)による硫化物応力腐食割れ(以下SSCと記す)が発生する危険があることはよく知られている。 SSCは、腐食反応によって発生した水素が硫化水素の存在により多量に鋼中に侵入するために生じる水素脆化割れの一種と考えられている。
【0003】
鋼のSSC感受性は、化学組成や金属組織などによって異なる。従来より鋼の低温靱性改善には、Niの添加が有効であることはよく知られているが、「川崎製鉄技報」第17巻(1985)第2号第178頁に報告されているように、Niを添加すれば活性経路腐食が促進されて耐SSC性を劣化させるため、添加することができないのが実情である。
【0004】
また、SSC性は硬さの影響が大きく、鋼の硬さを低減することによって割れ感受性は減少すると考えられている。このSSCは実際には溶接部に発生しやすく、特に溶接熱影響部(HAZ)に多く発生するが、これは溶接によってHAZが硬化することと密接に関係しているものと考えられている。
【0005】
特開昭55−76044号公報には、低合金化してBを活用することにより母材の強度を確保しつつ、HAZの硬度を抑制した高張力鋼が開示されている。
【0006】
また、第2705946号特許公報には、Bフリー、低C化によって焼入れ性を下げてHAZ硬化を防ぎ、母材強度の不足分をNbによる析出硬化を活用することによって補う方法が開示されている。しかしながら、これらの鋼材は引張強さが580MPa(HT580)級であり、さらに高強度になるとHAZ硬化を招き、耐SSC性は劣化する。また、上記の各公報に開示されている発明では、HAZを含む溶接部の低温靱性に関して何ら考慮されていないという問題がある。
【0007】
HT730級以上の高張力鋼における溶接部の靭性は、焼入れ性を上げてHAZ組織をマルテンサイトと下部ベイナイトの混合組織にすることによって改善されることが知られている。例えば、特開2000−80434号公報にはTiとNのバランスを最適化した溶接継手の靱性に優れたHT780級の高張力鋼が開示されている。しかし、この高張力鋼は−80℃という低温度で溶接部の靱性を保証するには十分とは言えない。
【0008】
このように鋼の強靱性と耐SSC性は相反する特性であり、これらを両立させることは困難であった。
【0009】
本発明の課題は、HT730級の高張力鋼でありながら、溶接部の耐硫化物応力腐食割れ性および溶接部の低温靱性に優れた高張力鋼板を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、化学組成と金属組織に関して種々実験、検討した結果下記の知見を得るに至った。
【0011】
a)母材強度および耐SSC性に影響を及ぼすHAZ硬さは、鋼の焼入れ性に依存し、HAZの高硬度化抑制とそれに相反する母材の高強度化との両立を図るためには焼入れ性を最適化することが重要である。
【0012】
b)HT730MPa級の高張力鋼の溶接部に優れた低温靱性を付与するためには、HAZ組織をマルテンサイトとベイナイトの混合組織にし、溶接部の靭性に対して有害なM−A(島状マルテンサイト)の生成を抑制する必要がある。
【0013】
c)上記a)およびb)を達成するためには、低C化してM−A生成を抑制し、Mn、CrおよびMoを下記式を満足する範囲で含有させる必要がある。
【0014】
4.1%Mn+2.33%Cr+3.14%Mo=8〜13
本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
【0015】
(1)質量%で、C:0.03〜0.08%、Si:0.3%以下、Mn:1〜2%、P:0.015%以下、S:0.01%以下、Cr:0.5〜1.5%(ただし、0.5%を除く)、Mo:0.3〜1%、sol.Al:0.001〜0.05%、B:0.0005〜0.003%、N:0.005%以下、Cu:0.5%以下、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下を含有し、残部がFeおよび不純物からなり、不純物中の酸素が0.0035%以下であり、さらにMn、CrおよびMoの各含有量は下記式を満足しており、金属組織の95%以上がベイナイトとマルテンサイトの混合組織で、かつ鋼板断面における表面から板厚の1/4の部分および裏面から板厚の1/4の部分における旧γ粒界の密度パラメータPGの値が、7〜42であることを特徴とする高張力鋼板。
4.1Mn+2.33Cr+3.14Mo=8〜13%
ここで、元素記号は各元素の含有量(質量%)を示し、パラメータPGは、鋼板断面における表面から板厚の1/4の位置または裏面から板厚の1/4の位置を通過する長さ200μmの仮想線を、鋼板表面と直交する方向に引き、この線と交差する旧γ粒界線の数を500倍の光学顕微鏡で20ヶ所測定して、その平均値とする。
【0016】
4.1Mn+2.33Cr+3.14Mo=8〜13%
ここで、元素記号は各元素の含有量(質量%)を示す。
【0017】
【発明の実施の形態】
本発明において化学組成および金属組織を上記のように規定した理由について、以下に説明する。なお、化学組成の説明における%は全て質量%を示す。
【0018】
C:
Cは、焼入れ性に最も顕著に効く元素であるが、HAZ硬度の上昇とM−A生成の抑制のため上限を0.08%とした。しかし、Cが少なすぎると必要な強度、靱性を得ることができないため、下限を0.03%とした。好ましくは0.04〜0.06%である
Si:
Siは、強度を向上させるために含有させるが、0.3%を超えて含有させると溶接部の靱性を劣化させることになるので0.3%以下とした。なお、下限は特に限定しないが、不純物量を超える量であれば効果があり、0.05%以上とするのが好ましい。
Mn:
Mnは、本発明において母材強度、溶接部の靱性を確保する上で重要な元素である。1%未満では焼入れ性が不十分となり必要な強度、靱性を得ることができない。一方、2%を超えて含有させると、靱性劣化とHAZ硬度の上昇を招くので上限を2%とした。好ましくは、1.3〜1.7%である。
【0019】
P、S
P、Sは、鋼中に混入してくる不純物であり、それぞれ0.015%以下、0.01%以下とした理由は母材、溶接部の低温靱性を一層向上させるためである。Pは含有量が0.015%を超えると、HAZにおける粒界破壊を助長し、Sは0.01%を超えるとMnS系介在物を形成して熱間圧延により進展され、割れ発生の起点となるので、それぞれ0.015%以下、0.01%以下と限定した。
【0020】
Cr:
Crは、本発明において重要な元素であり、焼入れ性を向上させ、母材強度、溶接部の靱性の改善に大きく寄与する。0.5%未満ではそれらの効果がえられなく、また1.5%を超えて含有させるとHAZの靱性が劣化する。したがって、Crの含有量は0.5〜1.5%とした。好ましくは、0.7〜1%である。
【0021】
Mo:
Moは、Mn、Crと同様本発明において重要な元素であり、0.3%以上で母材強度、溶接部の靱性改善に有効となるが、1%を超えて含有させると溶接部の靱性劣化とHAZ硬度の上昇を引き起こすため上限を1%とした。好ましくは、0.3〜0.7%である。
【0022】
4.1Mn+2.33Cr+3.14Mo=8〜13%:
Mn、CrおよびMoは前述の範囲内で含有させるが、さらに、4.1Mn+2.33Cr+3.14Moが8〜13%となる範囲としなければならない。この式は、実験により求めた式で本発明において最も重要な条件である。
【0023】
Mn、CrおよびMoの含有量が上記式を満足するように含有させ、所定の加工熱処理を施せば、HT690,HT780級の高張力鋼材の母材の金属組織の95%以上をマルテンサイトとベイナイトとの混合組織にすることができ、溶接施工後のHAZ組織が最適なマルテンサイトとベイナイトの混合組織となり、焼入れ性が最適となり、溶接部に優れた低温靱性を付与することができる。したがって、HAZ硬度が抑制され、優れた耐SSC性を合わせ持つ鋼材を得ることができる。
【0024】
上記式で8%未満では、焼入れ性が低いため十分な母材の強度と靱性を確保することができず、さらにはHAZ組織が靱性の低い上部ベイナイトの混入した組織となるため溶接部の低温靱性が劣化する。一方、13%を超えるとマルテンサイト比率が多くなるため強度が高くなり、HAZにはM−Aが析出しやすくなるため溶接部の靱性が劣化する。またHAZ硬さも高くなるので耐SSC感受性が増加する。好ましくは、9.5〜11.5%である。
sol.Al:
Alは、脱酸作用を有し、また焼入れ時にAlNとしてオーステナイト粒界の移動を「ピン止め」する、いわゆるピンニング効果を発揮し、オーステナイト粒の粗大化を防止する作用を有する。さらに、HAZ靱性に有害なNをAlNとして固定するので、オーステナイト粒界に有効Bを偏析させることができ、Bがフェライト生成を抑制し、焼入れ性を改善する効果を促進する働きをする。これらの効果を得るには0.001%以上のsol.Alを含有させる必要がある。一方、0.05%を超えると介在物の増加を招き靱性の劣化をきたすのでその上限を0.05%とした。
【0025】
B:
Bは、オーステナイト粒界に偏析しフェライトの生成を抑制することによって焼入れ性を著しく向上させる元素であり、0.0005%以上含有させる必要あるが、0.003%を超えて含有させると、靱性が劣化する。したがって、Bの含有量は0.0005〜0.003%と限定した。好ましくは0.0008〜0.0015%である。
【0026】
N:
Nは、不純物であり含有量が0.005%を超えると、固溶Nの増加によりHAZ硬度が上昇し、さらに溶接部の靱性の劣化を招くので上限を0.005%とした。
【0027】
以上の元素の他に、任意添加元素として下記の4元素がある。
【0028】
Cu、V:
CuおよびVは、焼入れ性向上および焼戻し処理の析出効果により強度上昇に有効であり必要により含有させる。Cuは、含有させる場合、前記効果を得るために0.2%以上含有させるのが好ましい。一方、0.5%を超えて多量に含有させるとCuチェッキングによる高温割れの懸念がでてくることから、Cuを含有させる場合の上限を0.5%とした。
【0029】
また、Vは、0.01%未満では上記効果を十分得ることができないので、含有させる場合は0.01%以上とするのが好ましい。一方、0.1%を超えて含有させても効果が飽和して靱性を著しく阻害するため、Vを含有させる場合の上限は0.1%とした。
Nb:
Nbは、含有させるとスラブ加熱時に結晶粒の粗大化を抑制する効果がある他、焼き入れ時にも同様の効果を発揮し組織の微細な鋼材の製造に有効であり必要により含有させる。さらに、焼き戻し時に粒内にNb(C、N)として析出し、降伏強度向上に寄与する働きを有する。下限は特に限定しないが、0.01%以上とするのが好ましく、また0.05%を超えて含有させると析出物の粗大化が顕著になり靱性を低下させる。したがってNbを含有させる場合の含有量は、0.05%以下とした。
【0030】
Ti:
Tiは、含有させると微細なTiNとなってNを固定し、加熱時のピンニング効果を発揮し、オーステナイト粒の成長を抑制するばかりでなく、B添加時には有効Bのオーステナイト粒界への偏析を助けて焼入れ性を高める効果を合わせ持つ元素で必要により含有させる。下限は、特に限定しないが0.005%以上含有させるのが好ましい。一方、0.05%を超えるとTiNの粗大化が顕著化し靱性を低下させる。したがって、含有させる場合の上限を0.05%とした。
【0031】
なお、不純物中の酸素は酸化物を形成することによりHAZの組織を微細化する作用がある。しかし、酸素の含有量が0.0035%を超えると粗大な酸化物の形成により靱性を劣化させるので、上限を0.0035%とする。
【0032】
次に、金属組織について説明する。
ベイナイトとマルテンサイトの混合組織:
HT730級の強度を得るためには、初析フェライトやパーライトの生成を抑制し、母材の金属組織をベイナイトとマルテンサイトの混合組織とする必要があり、その組織は95%以上まで高める必要がある。また、このような組織とすることにより、溶接部の金属組織をベイナイトとマルテンサイトの混合組織にすることができる。
【0033】
本発明の厚板等の鋼板は通常の方法により溶製、鋳造した後、鍛造や熱間圧延等の熱間加工をおこない、熱処理を施すことにより製造することができる。
【0034】
ベイナイトとマルテンサイトの混合組織が95%以上の金属組織を有する鋼は、Mn、CrおよびMoの含有量を、4.1Mn+2.33Cr+3.14Moが8〜13%となるように調整し、加工熱処理することにより得られる。加工熱処理処理の具体例としては、例えば1050〜1100℃に加熱したスラブを、未再結晶温度域で圧下率50%以上の圧延をおこない、室温まで水冷して焼戻すか、圧延後に再加熱して焼入れした後、焼戻す方法がある。
【0035】
旧粒界の密度パラメータ:
高張力鋼板として使用する場合、ベイナイトとマルテンサイトの混合組織の大きさは旧γ粒の大きさに強く依存するため、旧γ粒の大きさを小さくしておくのが望ましい。γ粒を小さくする方法としては、焼入れ時に低温加熱して焼入して焼戻すか、低温圧延して直接焼入する方法がある。いずれにしても、板厚方向のγ粒の粒界間隔を小さくし、γ粒界の存在密度を高めるのが好ましい。良好な靱性を得るためには、鋼板断面における表面から板厚の1/4の部分および裏面から板の1/4の部分における旧γ粒界の密度パラメータPGの値が、7〜42となるようにするのが好ましい。さらに好ましくは10〜20である。7未満では、γが粗大すぎて組織微細化の効果がなくなり、一方42を超えると焼入れ性が低下しすぎて、730MPa級の強度を得ることができない。
ここで、旧γ粒界の存在密度を示すパラメータPGは、鋼板断面における表面から板厚の1/4の位置または裏面から板厚の1/4の位置を通過する長さ200μmの仮想線を鋼板表面と直交する方向に引き、この線と交差する旧γ粒界線の数を500倍の光学顕微鏡で20ヶ所測定して、その平均値とする。
【0036】
旧γ粒界の密度パラメータPGが7〜42の鋼板は、1050〜1100℃に加熱したスラブを、未再結晶温度域で圧下率50%以上の圧延をおこない、直接焼入れするか、あるいは圧延後850〜900℃に再加熱して焼入れ処理することにより得られる。
【0037】
【実施例】
表1および表2に示す化学組成の15種の鋼を溶製し、鍛造してスラブとし、次いで表3に示す条件で加熱、熱間圧延して厚さ40〜65mmの鋼板とした。
【0038】
【表1】

Figure 0003705161
【表2】
Figure 0003705161
【表3】
Figure 0003705161
各条件で熱間圧延した鋼板に、表3に示す種類の熱処理を施して、種々の混合組織の比率、パラメータPGを有する鋼板とした。
【0039】
母材の特性を評価するために、各鋼板から引張試験片(JIS4号)とVノッチシャルピー衝撃試験(JIS Z 2202号)を採取した。引張り試験片は、平行部が圧延方向になるように、またシャルピー衝撃試験片はノッチが圧延方向と直交する方向に採取した。さらに、各鋼板からミクロ試験片を採取し、3%ナイタル腐食液で組織を現出させた後、500倍の光学顕微鏡を用いて点算法によりベイナイト+マルテンサイトの組織比率を測定すると共に、前記方法によりパラメータPGも測定した。なお、ミクロ試験片は、鋼板の表面から1/4の位置を含み表面と直行し、かつ圧延方向と平行な面が検鏡できるように採取した。
【0040】
また、各鋼板の溶接部の特性を評価するために、各鋼板にX型開先に加工して入熱3.0kJ/mmのサブマージアーク溶接により溶接継手を製作した。
【0041】
この溶接継ぎ手から、シャルピー衝撃試験片と硬さ試験片およびSSC試験片の各試験片を採取した。
【0042】
Vノッチシャルピー衝撃試験(JIS Z 2202号)はノッチの中心位置がフュージョンラインに一致するように板厚の表面から板厚の1/4の位置から採取した。
硬さは、最も応力集中度が大きく、SSCが生じやすいボンド部をHv98Nで測定した。
【0043】
SSC試験片は、溶接ビードままの表面から1.5mm×30mm×115mmの寸法で採取し、4点曲げによって降伏応力の100%応力を付与し、720時間溶液中に浸漬する試験とした。試験溶液は、5%NaCl+0.5%CHCOOH水溶液に分圧を調整したHSガスを通気し、HS濃度100ppmの飽和水溶液を用いた。試験終了後、光学顕微鏡500倍にて表面割れを調べ、評価は、割れ無しを○、割れが少しでも認めらた場合を×とした。
【0044】
各試験結果を表4と表5に示す。
【0045】
【表4】
Figure 0003705161
【表5】
Figure 0003705161
表4から明らかなように本発明例では、全て母材の引張特性では降伏耐力、YS≧620MPa、引張強さ、TS:730〜880MPaを有し、シャルピー衝撃試験では−80℃における吸収エネルギーvE−80≧47Jで、高強度でありながら、優れた靭性と耐SSC性を示していることが分かる。
【0046】
一方、比較例では本発明で規定する条件が外れているため、強度が高い場合(例えば、試番30、33)は靭性や耐SSC性が好ましくなく、また靭性が良い場合は強度が低い。試番17温度19では、ベイナイト+マルテンサイト率が95%に満たないため強度が低く、試番18ではPGが小さいため靭性が好ましくないことを示している。
【0047】
【発明の効果】
本発明によれば−80℃においても母材、継手の靱性が優れ、かつ耐SSC性に優れたHT730級の鋼を得られ、LPGなどの貯蔵タンクや圧力容器等に用いて優れた効果を発揮する。[0001]
The present invention, welds low temperature toughness and resistance to sulfide stress corrosion cracking resistance excellent tensile strength 730 MPa LPG relates (hereinafter referred to as HT730) grade high tensile steel plate, which is placed under a hydrogen moist sulfide environment It is suitable for uses such as storage containers or pressure vessels.
[0002]
[Prior art]
In LPG storage tanks and other pressure vessels, it is well known that there is a risk of sulfide stress corrosion cracking (hereinafter referred to as SSC) due to hydrogen sulfide (H 2 S). SSC is considered to be a kind of hydrogen embrittlement cracking that occurs because hydrogen generated by the corrosion reaction penetrates into steel in large quantities due to the presence of hydrogen sulfide.
[0003]
The SSC sensitivity of steel varies depending on the chemical composition and metal structure. Conventionally, it is well known that Ni is effective for improving low temperature toughness of steel, but it is reported in “Kawasaki Steel Engineering Reports” Vol. 17 (1985) No. 2, page 178. In addition, if Ni is added, the active path corrosion is promoted and the SSC resistance is deteriorated.
[0004]
Further, the SSC property is greatly affected by the hardness, and it is considered that the crack sensitivity is reduced by reducing the hardness of the steel. In practice, this SSC is likely to occur in the weld zone, and particularly in the weld heat affected zone (HAZ). This is considered to be closely related to the hardening of the HAZ by welding.
[0005]
Japanese Patent Application Laid-Open No. 55-76044 discloses a high-tensile steel in which HAZ hardness is suppressed while ensuring the strength of the base material by using B after lowering the alloy.
[0006]
Japanese Patent No. 2705946 discloses a method of compensating for the shortage of the base material strength by utilizing precipitation hardening by Nb by lowering hardenability by reducing B and reducing C to prevent HAZ hardening. . However, these steel materials have a tensile strength of 580 MPa (HT580) class, and when the strength is further increased, HAZ hardening is caused and the SSC resistance is deteriorated. Moreover, in the invention disclosed in each of the above publications, there is a problem that no consideration is given to the low temperature toughness of the welded portion including HAZ.
[0007]
It is known that the toughness of the welded portion in high-strength steel of HT730 grade or higher is improved by increasing the hardenability and making the HAZ structure a mixed structure of martensite and lower bainite. For example, Japanese Laid-Open Patent Publication No. 2000-80434 discloses HT780 grade high strength steel excellent in toughness of a welded joint with an optimized balance of Ti and N. However, this high-strength steel is not sufficient to guarantee the toughness of the weld at a low temperature of -80 ° C.
[0008]
Thus, the toughness and SSC resistance of steel are contradictory properties, and it has been difficult to achieve both.
[0009]
An object of the present invention is to provide a yet higher tensile steel HT730 primary, welds sulfide stress corrosion cracking resistance and high tensile steel plate with excellent low temperature toughness of the weld.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted various experiments and studies on the chemical composition and the metal structure, and have obtained the following knowledge.
[0011]
a) The HAZ hardness that affects the base metal strength and SSC resistance depends on the hardenability of the steel. In order to achieve both the suppression of the HAZ hardness increase and the increase in the strength of the base material, which conflicts with it. It is important to optimize the hardenability.
[0012]
b) In order to impart excellent low-temperature toughness to the welded portion of HT730MPa high-tensile steel, the HAZ structure is a mixed structure of martensite and bainite, which is harmful to the toughness of the welded part. It is necessary to suppress the generation of martensite.
[0013]
c) In order to achieve the above a) and b), it is necessary to lower the C to suppress the formation of MA, and to contain Mn, Cr and Mo in a range satisfying the following formula.
[0014]
4.1% Mn + 2.33% Cr + 3.14% Mo = 8-13
The present invention has been made based on such findings, and the gist thereof is as follows.
[0015]
(1) By mass%, C: 0.03 to 0.08%, Si: 0.3% or less, Mn: 1 to 2%, P: 0.015% or less, S: 0.01% or less, Cr : 0.5 to 1.5% (excluding 0.5%), Mo: 0.3 to 1%, sol. Al: 0.001 to 0.05%, B: 0.0005 to 0. 00%, N: 0.005% or less, Cu: 0.5% or less, V: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, with the balance being Fe and It consists of impurities, oxygen in the impurities is 0.0035% or less, and each content of Mn, Cr and Mo satisfies the following formula, and 95% or more of the metal structure is a mixed structure of bainite and martensite in, and 1/4 portion and the back surface of the sheet thickness from the surface of the steel sheet cross-section of the old γ grain boundaries in 1/4 portions of the plate thickness density Pas High tensile steel meter value PG, characterized in that it is 7-42.
4.1 Mn + 2.33Cr + 3.14Mo = 8-13%
Here, the element symbol indicates the content (% by mass) of each element, and the parameter PG is a length that passes through a position of ¼ of the plate thickness from the front surface or a position of ¼ of the plate thickness from the back surface in the cross section of the steel plate. An imaginary line having a thickness of 200 μm is drawn in a direction perpendicular to the surface of the steel sheet, and the number of old γ grain boundary lines intersecting with the line is measured at 20 points with an optical microscope of 500 times to obtain an average value.
[0016]
4.1 Mn + 2.33Cr + 3.14Mo = 8-13%
Here, atomic symbol shows the content of each element (mass%).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the chemical composition and the metal structure are defined as described above in the present invention will be described below. In addition,% in description of a chemical composition shows mass% altogether.
[0018]
C:
C is an element most effective for hardenability, but the upper limit was made 0.08% in order to increase the HAZ hardness and suppress the formation of MA. However, if the C content is too small, the required strength and toughness cannot be obtained, so the lower limit was made 0.03%. Preferably Si is 0.04-0.06%:
Si is contained in order to improve the strength, but if contained over 0.3%, the toughness of the welded portion is deteriorated, so the content was made 0.3% or less. The lower limit is not particularly limited, but it is effective as long as it exceeds the amount of impurities, and is preferably 0.05% or more.
Mn:
Mn is an important element in the present invention for ensuring the strength of the base metal and the toughness of the welded portion. If it is less than 1%, the hardenability becomes insufficient and the required strength and toughness cannot be obtained. On the other hand, if the content exceeds 2%, the toughness deteriorates and the HAZ hardness increases, so the upper limit was made 2%. Preferably, it is 1.3 to 1.7%.
[0019]
P, S
P and S are impurities mixed into the steel, and the reason why they are 0.015% or less and 0.01% or less, respectively, is to further improve the low temperature toughness of the base material and the welded part. When the P content exceeds 0.015%, grain boundary fracture in the HAZ is promoted. When the S content exceeds 0.01%, MnS inclusions are formed and progressed by hot rolling, and the origin of crack generation. Therefore, they are limited to 0.015% or less and 0.01% or less, respectively.
[0020]
Cr:
Cr is an important element in the present invention, improves the hardenability, and greatly contributes to the improvement of the base metal strength and the toughness of the welded portion. If it is less than 0.5%, those effects cannot be obtained, and if it exceeds 1.5%, the toughness of the HAZ deteriorates. Therefore, the Cr content is set to 0.5 to 1.5%. Preferably, it is 0.7 to 1%.
[0021]
Mo:
Mo is an important element in the present invention, like Mn and Cr, and is effective for improving the base material strength and the toughness of the welded portion at 0.3% or more, but if contained in excess of 1%, the toughness of the welded portion The upper limit was made 1% in order to cause deterioration and increase in HAZ hardness. Preferably, it is 0.3 to 0.7%.
[0022]
4.1 Mn + 2.33Cr + 3.14Mo = 8-13%:
Mn, Cr, and Mo are contained within the above-mentioned range, but 4.1Mn + 2.33Cr + 3.14Mo should be 8-13%. This equation is an experimentally obtained equation and is the most important condition in the present invention.
[0023]
If the contents of Mn, Cr and Mo are contained so as to satisfy the above formula and subjected to a predetermined heat treatment, 95% or more of the metal structure of the high-strength steel materials of HT690 and HT780 grades will be martensite and bainite. The HAZ structure after welding construction becomes an optimal mixed structure of martensite and bainite, the hardenability is optimized, and excellent low temperature toughness can be imparted to the welded portion. Therefore, the HAZ hardness is suppressed and a steel material having excellent SSC resistance can be obtained.
[0024]
If the above formula is less than 8%, the hardenability is low, so that sufficient strength and toughness of the base material cannot be secured, and furthermore, the HAZ structure becomes a structure mixed with upper bainite having low toughness, so the low temperature of the welded portion. Toughness deteriorates. On the other hand, if it exceeds 13%, the martensite ratio increases, so the strength increases, and MA tends to precipitate in HAZ, so the toughness of the welded portion deteriorates. Moreover, since HAZ hardness also becomes high, SSC-resistant sensitivity increases. Preferably, it is 9.5 to 11.5%.
sol.Al:
Al has a deoxidizing action and also exhibits a so-called pinning effect of “pinning” the movement of the austenite grain boundary as AlN during quenching, and has the action of preventing the austenite grains from becoming coarse. Furthermore, since N harmful to HAZ toughness is fixed as AlN, effective B can be segregated at the austenite grain boundaries, and B functions to suppress the formation of ferrite and promote the effect of improving hardenability. In order to obtain these effects, it is necessary to contain 0.001% or more of sol.Al. On the other hand, if it exceeds 0.05%, inclusions increase and toughness deteriorates, so the upper limit was made 0.05%.
[0025]
B:
B is an element that segregates at the austenite grain boundaries and suppresses the formation of ferrite to significantly improve the hardenability, and needs to be contained in an amount of 0.0005% or more, but if contained over 0.003%, toughness Deteriorates. Therefore, the B content is limited to 0.0005 to 0.003%. Preferably it is 0.0008 to 0.0015%.
[0026]
N:
N is an impurity, and if the content exceeds 0.005%, the HAZ hardness increases due to an increase in the solid solution N, and further the deterioration of the toughness of the welded portion is caused, so the upper limit was made 0.005%.
[0027]
In addition to the above elements, there are the following four elements as optional additional elements.
[0028]
Cu, V:
Cu and V are effective in increasing the strength due to the hardenability improvement and the precipitation effect of the tempering treatment, and are contained if necessary. When Cu is contained, it is preferable to contain 0.2% or more in order to obtain the above effect. On the other hand, if it is contained in a large amount exceeding 0.5%, there is a concern of hot cracking due to Cu checking, so the upper limit in the case of containing Cu is set to 0.5%.
[0029]
Further, if V is less than 0.01%, the above effect cannot be sufficiently obtained. Therefore, when V is contained, the content is preferably 0.01% or more. On the other hand, even if the content exceeds 0.1%, the effect is saturated and the toughness is remarkably inhibited. Therefore, the upper limit when V is contained is set to 0.1%.
Nb:
When Nb is contained, it has the effect of suppressing coarsening of crystal grains during slab heating, and also exhibits the same effect during quenching and is effective in the production of fine steel with a fine structure, and is contained as necessary. Furthermore, Nb (C, N) precipitates in the grains during tempering and has a function of contributing to improvement in yield strength. The lower limit is not particularly limited, but is preferably 0.01% or more, and if it exceeds 0.05%, the coarsening of the precipitate becomes remarkable and the toughness is lowered. Therefore, the content when Nb is contained is set to 0.05% or less.
[0030]
Ti:
When Ti is contained, it becomes fine TiN and fixes N, exerts a pinning effect at the time of heating, not only suppresses the growth of austenite grains, but also segregates effective B to austenite grain boundaries when B is added. It is an element that has the effect of enhancing the hardenability by helping it, and is contained if necessary. Although a minimum is not specifically limited, It is preferable to make it contain 0.005% or more. On the other hand, if it exceeds 0.05%, the coarsening of TiN becomes remarkable and the toughness is lowered. Therefore, the upper limit of the content is set to 0.05%.
[0031]
Note that oxygen in the impurity has the effect of refining the HAZ structure by forming an oxide. However, since the content of oxygen degrades the toughness by the formation of coarse oxides exceeds 0.0035% you 0.0035 percent limit.
[0032]
Next, the metal structure will be described.
Mixed structure of bainite and martensite:
In order to obtain the strength of HT730 grade, it is necessary to suppress the formation of pro-eutectoid ferrite and pearlite, and to make the metal structure of the base material a mixed structure of bainite and martensite, and the structure needs to be increased to 95% or more. is there. Moreover, by setting it as such a structure | tissue, the metal structure of a welding part can be made into the mixed structure of a bainite and a martensite.
[0033]
A steel plate such as a thick plate of the present invention can be produced by melting and casting by a usual method, then performing hot working such as forging or hot rolling, and performing heat treatment.
[0034]
Steel having a metal structure with a mixed structure of bainite and martensite of 95% or more is prepared by adjusting the contents of Mn, Cr and Mo so that 4.1Mn + 2.33Cr + 3.14Mo is 8 to 13%, and heat treatment Can be obtained. As a specific example of the thermomechanical treatment, for example, a slab heated to 1050 to 1100 ° C. is rolled at a reduction rate of 50% or more in an unrecrystallized temperature range and tempered by water cooling to room temperature or reheated after rolling. There is a method of tempering after quenching.
[0035]
Old grain boundary density parameter:
When used as a high-tensile steel plate, the size of the mixed structure of bainite and martensite is strongly dependent on the size of the old γ grains, so it is desirable to reduce the size of the old γ grains. As a method for reducing γ grains, there are a method of heating at a low temperature during quenching and quenching and tempering, or a method of quenching directly by low-temperature rolling. In any case, it is preferable to reduce the grain boundary interval of γ grains in the thickness direction and increase the existence density of γ grain boundaries. In order to obtain good toughness, the value of the density parameter PG Old γ grain boundaries in 1/4 portions of the plate thickness from 1/4 portion and the back surface of the sheet thickness from the surface of steel sheet cross section, a 7-42 It is preferable to do so. More preferably, it is 10-20. If it is less than 7, γ is too coarse and the effect of refining the structure is lost. On the other hand, if it exceeds 42, the hardenability deteriorates too much, and a strength of 730 MPa cannot be obtained.
Here, the parameter PG indicating the abundance density of the prior γ grain boundaries is a phantom line having a length of 200 μm that passes through a position of ¼ of the plate thickness from the front surface or a position of ¼ of the plate thickness from the back surface in the cross section of the steel plate. It is drawn in a direction perpendicular to the steel sheet surface, and the number of old γ grain boundary lines intersecting with this line is measured at 20 points with an optical microscope of 500 times, and the average value is obtained.
[0036]
For steel plates with a density parameter PG of the former γ grain boundary of 7 to 42, a slab heated to 1050 to 1100 ° C. is rolled at a reduction rate of 50% or more in the non-recrystallization temperature range and directly quenched or after rolling. It is obtained by reheating to 850 to 900 ° C. and quenching.
[0037]
【Example】
Fifteen types of steels having the chemical compositions shown in Table 1 and Table 2 were melted and forged into slabs, and then heated and hot-rolled under the five conditions shown in Table 3 to obtain steel plates having a thickness of 40 to 65 mm.
[0038]
[Table 1]
Figure 0003705161
[Table 2]
Figure 0003705161
[Table 3]
Figure 0003705161
The steel sheet hot-rolled under each condition was subjected to five types of heat treatment shown in Table 3 to obtain steel sheets having various mixed structure ratios and parameters PG.
[0039]
In order to evaluate the characteristics of the base material, a tensile test piece (JIS No. 4) and a V-notch Charpy impact test (JIS Z 2202) were collected from each steel plate. The tensile test specimen was sampled so that the parallel portion was in the rolling direction, and the Charpy impact test specimen was sampled in the direction perpendicular to the rolling direction. Furthermore, after collecting a micro test piece from each steel plate and revealing the structure with a 3% nital corrosion solution, while measuring the structure ratio of bainite + martensite by a point calculation method using a 500 times optical microscope, The parameter PG was also measured by the method. In addition, the micro test piece was extract | collected so that a surface parallel to a rolling direction including a 1/4 position from the surface of a steel plate and parallel to a rolling direction could be examined.
[0040]
Further, in order to evaluate the characteristics of the welded portion of each steel plate, each steel plate was processed into an X-shaped groove and a welded joint was manufactured by submerged arc welding with a heat input of 3.0 kJ / mm.
[0041]
From this weld joint, Charpy impact test pieces, hardness test pieces, and SSC test pieces were collected.
[0042]
In the V-notch Charpy impact test (JIS Z 2202), samples were taken from the surface of the plate thickness from 1/4 of the plate thickness so that the center position of the notch coincided with the fusion line.
The hardness was measured at Hv98N for the bond portion where the stress concentration was the highest and SSC was likely to occur.
[0043]
The SSC test piece was taken as a 1.5 mm × 30 mm × 115 mm dimension from the surface of the weld bead, applied with 100% yield stress by 4-point bending, and immersed in the solution for 720 hours. The test solution used was a saturated aqueous solution with a H 2 S concentration of 100 ppm, in which H 2 S gas with adjusted partial pressure was passed through a 5% NaCl + 0.5% CH 3 COOH aqueous solution. After the test was completed, surface cracks were examined with an optical microscope 500 times, and the evaluation was evaluated as ○ when no cracks were observed and x when cracks were observed even a little.
[0044]
The test results are shown in Tables 4 and 5.
[0045]
[Table 4]
Figure 0003705161
[Table 5]
Figure 0003705161
As is apparent from Table 4, all the examples of the present invention have yield strength, YS ≧ 620 MPa, tensile strength, TS: 730 to 880 MPa in the tensile properties of the base material, and absorbed energy vE at −80 ° C. in the Charpy impact test. It can be seen that −80 ≧ 47 J shows excellent toughness and SSC resistance while having high strength.
[0046]
On the other hand, since the conditions defined in the present invention are not used in the comparative example, when the strength is high (for example, trial numbers 30 and 33), toughness and SSC resistance are not preferable, and when the toughness is good, the strength is low. In Run No. 17 the temperature 19, bainite and martensite rate is low strength because less than 95%, indicating that the undesirable toughness because PG is low in Run No. 18.
[0047]
【The invention's effect】
Matrix even at -80 ° C. According to the present invention, the toughness of the joint excellent, and obtained an HT730 grade steel plate having excellent SSC resistance, excellent effects by using a storage tank or pressure vessel, etc., such as LPG Demonstrate.

Claims (1)

質量%で、C:0.03〜0.08%、Si:0.3%以下、Mn:1〜2%、P:0.015%以下、S:0.01%以下、Cr:0.5〜1.5%(ただし、0.5%を除く)、Mo:0.3〜1%、In mass%, C: 0.03 to 0.08%, Si: 0.3% or less, Mn: 1 to 2%, P: 0.015% or less, S: 0.01% or less, Cr: 0.0. 5 to 1.5% (excluding 0.5%), Mo: 0.3 to 1%, sol.sol. Al:0.001〜0.05%、B:0.0005〜0.003%、N:0.005%以下、Cu:0.5%以下、V:0.1%以下、Nb:0.05%以下、Ti:0.05%以下を含有し、残部がFeおよび不純物からなり、不純物中の酸素が0.0035%以下であり、さらにMn、CrおよびMoの各含有量は下記式を満足しており、金属組織の95%以上がベイナイトとマルテンサイトの混合組織で、かつ鋼板断面における表面から板厚の1/4の部分および裏面から板厚の1/4の部分における旧γ粒界の密度パラメータPGの値が、7〜42であることを特徴とする高張力鋼板。Al: 0.001 to 0.05%, B: 0.0005 to 0.003%, N: 0.005% or less, Cu: 0.5% or less, V: 0.1% or less, Nb: 0.0. 05% or less, Ti: 0.05% or less, the balance is Fe and impurities, oxygen in the impurities is 0.0035% or less, and each content of Mn, Cr and Mo is expressed by the following formula Satisfactory, 95% or more of the metal structure is a mixed structure of bainite and martensite, and the former γ grains in the ¼ portion of the plate thickness from the surface and ¼ of the plate thickness from the back surface in the cross section of the steel plate A high-tensile steel plate having a density parameter PG of the boundary of 7 to 42.
4.1Mn+2.33Cr+3.14Mo=8〜13%4.1 Mn + 2.33Cr + 3.14Mo = 8-13%
ここで、元素記号は各元素の含有量(質量%)を示し、パラメータPGは、鋼板断面における表面から板厚の1/4の位置または裏面から板厚の1/4の位置を通過する長さ200μmの仮想線を、鋼板表面と直交する方向に引き、この線と交差する旧γ粒界線の数を500倍の光学顕微鏡で20ヶ所測定して、その平均値とする。Here, the element symbol indicates the content (% by mass) of each element, and the parameter PG is a length that passes through a position of ¼ of the plate thickness from the surface or a position of ¼ of the plate thickness from the back surface in the cross section of the steel plate. An imaginary line having a thickness of 200 μm is drawn in a direction perpendicular to the surface of the steel sheet, and the number of old γ grain boundary lines intersecting with the line is measured at 20 points with a 500-fold optical microscope to obtain an average value.
JP2001184389A 2001-06-19 2001-06-19 High tensile steel plate Expired - Fee Related JP3705161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184389A JP3705161B2 (en) 2001-06-19 2001-06-19 High tensile steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184389A JP3705161B2 (en) 2001-06-19 2001-06-19 High tensile steel plate

Publications (2)

Publication Number Publication Date
JP2002371336A JP2002371336A (en) 2002-12-26
JP3705161B2 true JP3705161B2 (en) 2005-10-12

Family

ID=19024154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184389A Expired - Fee Related JP3705161B2 (en) 2001-06-19 2001-06-19 High tensile steel plate

Country Status (1)

Country Link
JP (1) JP3705161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063920A (en) * 2020-08-06 2020-12-11 湖南华菱涟钢薄板有限公司 Thin container plate and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695787A (en) * 2013-12-26 2014-04-02 南阳汉冶特钢有限公司 Weather-proof structural steel S355K2W thick plate and production method
JP6582590B2 (en) * 2015-06-17 2019-10-02 日本製鉄株式会社 Steel sheet for LPG storage tank and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063920A (en) * 2020-08-06 2020-12-11 湖南华菱涟钢薄板有限公司 Thin container plate and preparation method thereof
CN112063920B (en) * 2020-08-06 2021-12-24 湖南华菱涟钢特种新材料有限公司 Thin container plate and preparation method thereof

Also Published As

Publication number Publication date
JP2002371336A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
US11628512B2 (en) Clad steel plate and method of producing the same
JP2018053281A (en) Rectangular steel tube
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
WO2007080645A1 (en) Cryogenic steel excelling in ctod performance of weld heat-affected zone
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP3705161B2 (en) High tensile steel plate
KR20160119243A (en) Weld joint
JP5531909B2 (en) High-strength steel material and manufacturing method thereof
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP2003301236A (en) High-strength steel material showing excellent resistance to hydrogen-induced cracking (hic)
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JPH10130785A (en) Martensitic stainless steel for oil well use, excellent in hot workability
JP4736374B2 (en) Steel material with super large heat input welding characteristics
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP2001234276A (en) Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE
WO2023162507A1 (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Ref document number: 3705161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees